Prediction of drought trigger thresholds for future winter wheat yield losses in China based on the DSSAT-CERES-Wheat model and Copula conditional probabilities
Predicting the risk of diminished wheat yields caused by drought under future climate change climate is essential for the long-term sustainability of agriculture. Although studies have explored the relationship between drought and crop yield loss, the precise thresholds triggering yield losses in th...
Saved in:
Published in | Agricultural water management Vol. 299; p. 108881 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
30.06.2024
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Predicting the risk of diminished wheat yields caused by drought under future climate change climate is essential for the long-term sustainability of agriculture. Although studies have explored the relationship between drought and crop yield loss, the precise thresholds triggering yield losses in the future remain unclear. In this study, we established a conditional probability framework for drought trigger thresholds at various yield loss levels in China’s winter wheat regions in the future based on copula functions. The primary drivers influencing the dynamics of drought thresholds were evaluated using a random forest model. The results revealed that the projected drought thresholds for the baseline period (1981–2020), near future (2021–2060), and far future (2061–2100) ranged from –2.1 to –1.2, –0.8 to –0.6, and –1.2 to –1.0, respectively, implying that the drought thresholds for winter wheat yield loss in the future firstly rises and then declines. This trend was primarily due to the increased contribution of precipitation (Pre) (from 24.0% to 31.5%) to the drought threshold in the far future, coupled with a decrease in the contribution of temperature (Tmean) (from 37.1% to 30.4%). This shift suggested that the increased Pre might alleviate the adverse effect of high temperature on yield in the future. The average drought thresholds for yield loss were higher in the Southwest (–1.0 to –0.6) and Xinjiang (–1.1 to –0.7) winter wheat regions, where mild drought occurrences led to a 30% yield loss (70th percentile). Tmean was the primary driving factor for the dynamic changes in future drought thresholds. The research findings provide scientific guidance for future agricultural water resource allocation and drought risk management.
•The risk of future winter wheat yield losses was quantified by drought-triggering thresholds.•Drought thresholds in the far future (2061–2100) are lower than those in the near future (2021–2060).•The contribution of Tmean to drought thresholds decreases in the far future, whereas Pre was increased.•The negative effect of Tmean on winter wheat yield in the future might be alleviated by the increased Pre.•The drought thresholds are higher in the SW and XJ regions with an increased risk of winter wheat yield reduction. |
---|---|
AbstractList | Predicting the risk of diminished wheat yields caused by drought under future climate change climate is essential for the long-term sustainability of agriculture. Although studies have explored the relationship between drought and crop yield loss, the precise thresholds triggering yield losses in the future remain unclear. In this study, we established a conditional probability framework for drought trigger thresholds at various yield loss levels in China’s winter wheat regions in the future based on copula functions. The primary drivers influencing the dynamics of drought thresholds were evaluated using a random forest model. The results revealed that the projected drought thresholds for the baseline period (1981–2020), near future (2021–2060), and far future (2061–2100) ranged from –2.1 to –1.2, –0.8 to –0.6, and –1.2 to –1.0, respectively, implying that the drought thresholds for winter wheat yield loss in the future firstly rises and then declines. This trend was primarily due to the increased contribution of precipitation (Pre) (from 24.0% to 31.5%) to the drought threshold in the far future, coupled with a decrease in the contribution of temperature (Tmean) (from 37.1% to 30.4%). This shift suggested that the increased Pre might alleviate the adverse effect of high temperature on yield in the future. The average drought thresholds for yield loss were higher in the Southwest (–1.0 to –0.6) and Xinjiang (–1.1 to –0.7) winter wheat regions, where mild drought occurrences led to a 30% yield loss (70th percentile). Tmean was the primary driving factor for the dynamic changes in future drought thresholds. The research findings provide scientific guidance for future agricultural water resource allocation and drought risk management. Predicting the risk of diminished wheat yields caused by drought under future climate change climate is essential for the long-term sustainability of agriculture. Although studies have explored the relationship between drought and crop yield loss, the precise thresholds triggering yield losses in the future remain unclear. In this study, we established a conditional probability framework for drought trigger thresholds at various yield loss levels in China’s winter wheat regions in the future based on copula functions. The primary drivers influencing the dynamics of drought thresholds were evaluated using a random forest model. The results revealed that the projected drought thresholds for the baseline period (1981–2020), near future (2021–2060), and far future (2061–2100) ranged from –2.1 to –1.2, –0.8 to –0.6, and –1.2 to –1.0, respectively, implying that the drought thresholds for winter wheat yield loss in the future firstly rises and then declines. This trend was primarily due to the increased contribution of precipitation (Pre) (from 24.0% to 31.5%) to the drought threshold in the far future, coupled with a decrease in the contribution of temperature (Tmean) (from 37.1% to 30.4%). This shift suggested that the increased Pre might alleviate the adverse effect of high temperature on yield in the future. The average drought thresholds for yield loss were higher in the Southwest (–1.0 to –0.6) and Xinjiang (–1.1 to –0.7) winter wheat regions, where mild drought occurrences led to a 30% yield loss (70th percentile). Tmean was the primary driving factor for the dynamic changes in future drought thresholds. The research findings provide scientific guidance for future agricultural water resource allocation and drought risk management. •The risk of future winter wheat yield losses was quantified by drought-triggering thresholds.•Drought thresholds in the far future (2061–2100) are lower than those in the near future (2021–2060).•The contribution of Tmean to drought thresholds decreases in the far future, whereas Pre was increased.•The negative effect of Tmean on winter wheat yield in the future might be alleviated by the increased Pre.•The drought thresholds are higher in the SW and XJ regions with an increased risk of winter wheat yield reduction. Predicting the risk of diminished wheat yields caused by drought under future climate change climate is essential for the long-term sustainability of agriculture. Although studies have explored the relationship between drought and crop yield loss, the precise thresholds triggering yield losses in the future remain unclear. In this study, we established a conditional probability framework for drought trigger thresholds at various yield loss levels in China’s winter wheat regions in the future based on copula functions. The primary drivers influencing the dynamics of drought thresholds were evaluated using a random forest model. The results revealed that the projected drought thresholds for the baseline period (1981–2020), near future (2021–2060), and far future (2061–2100) ranged from –2.1 to –1.2, –0.8 to –0.6, and –1.2 to –1.0, respectively, implying that the drought thresholds for winter wheat yield loss in the future firstly rises and then declines. This trend was primarily due to the increased contribution of precipitation (Pᵣₑ) (from 24.0% to 31.5%) to the drought threshold in the far future, coupled with a decrease in the contribution of temperature (Tₘₑₐₙ) (from 37.1% to 30.4%). This shift suggested that the increased Pᵣₑ might alleviate the adverse effect of high temperature on yield in the future. The average drought thresholds for yield loss were higher in the Southwest (–1.0 to –0.6) and Xinjiang (–1.1 to –0.7) winter wheat regions, where mild drought occurrences led to a 30% yield loss (70th percentile). Tₘₑₐₙ was the primary driving factor for the dynamic changes in future drought thresholds. The research findings provide scientific guidance for future agricultural water resource allocation and drought risk management. |
ArticleNumber | 108881 |
Author | Liu, Yanxin Liu, Changhong Ma, Xiaoyi Yang, Cuiping Gao, Yunhe Xing, Xuguang |
Author_xml | – sequence: 1 givenname: Cuiping surname: Yang fullname: Yang, Cuiping organization: A Key Laboratory of Agricultural Soil and Water Engineering in Arid Area of Ministry of Education, Northwest A & F University, Yangling, Shaanxi 712100, China – sequence: 2 givenname: Changhong surname: Liu fullname: Liu, Changhong organization: College of Agronomy, Northwest A & F University, Yangling, Shaanxi 712100, China – sequence: 3 givenname: Yanxin surname: Liu fullname: Liu, Yanxin organization: A Key Laboratory of Agricultural Soil and Water Engineering in Arid Area of Ministry of Education, Northwest A & F University, Yangling, Shaanxi 712100, China – sequence: 4 givenname: Yunhe surname: Gao fullname: Gao, Yunhe organization: A Key Laboratory of Agricultural Soil and Water Engineering in Arid Area of Ministry of Education, Northwest A & F University, Yangling, Shaanxi 712100, China – sequence: 5 givenname: Xuguang surname: Xing fullname: Xing, Xuguang organization: A Key Laboratory of Agricultural Soil and Water Engineering in Arid Area of Ministry of Education, Northwest A & F University, Yangling, Shaanxi 712100, China – sequence: 6 givenname: Xiaoyi orcidid: 0000-0001-5518-2401 surname: Ma fullname: Ma, Xiaoyi email: xma@nwafu.edu.cn organization: A Key Laboratory of Agricultural Soil and Water Engineering in Arid Area of Ministry of Education, Northwest A & F University, Yangling, Shaanxi 712100, China |
BookMark | eNqFks2O0zAUhSM0SHQGnoCNl2xS_JfEXrAYlQIjjQSig1hajn3TuHLjYjtTzdvwqLgtYsECVpav73fse46vq6spTFBVrwleEkzat7ul3h51XlJMeakIIcizakFEx2pKBbuqFph1omZdx19U1yntMMYc825R_fwSwTqTXZhQGJCNYd6OGeXotluIKI8R0hi8TWgIEQ1zniOgo5tyOTyOoDN6cuAt8iElSMhNaDW6SaNeJ7CoiOYR0PvN5vahXq2_rjf19zO0DxY80pNFq3CYvUYmTNadXqE9OsTQ6975sof0sno-aJ_g1e_1pvr2Yf2w-lTff_54t7q9rw3nXa4bitlgmeaD6Ighou0xo61gupGtpBRoz5iQsjO9BsFpK0E00PSYt1xKajG7qe4uujbonTpEt9fxSQXt1LkQ4lbpmJ3xoCTFoKlkfaOBD4PumexNSwCkJK2VvGi9uWiVSX7MkLLau2TAez1BmJNipGGCMsFFaWWXVhOLgxGGP1cTrE7Zqp06Z6tO2apLtoWSf1HGZX2yL0ft_H_YdxcWipuPDqJKxsFkyjeIYHIZ1_2T_wV6ucQv |
CitedBy_id | crossref_primary_10_3390_agronomy15030679 crossref_primary_10_1016_j_geosus_2024_06_006 crossref_primary_10_3390_agronomy15030696 crossref_primary_10_1016_j_agwat_2025_109443 crossref_primary_10_1016_j_atmosres_2025_107950 crossref_primary_10_1016_j_compag_2024_109888 |
Cites_doi | 10.1016/j.chemosphere.2019.125611 10.1038/s41598-019-40362-7 10.1002/hyp.13750 10.1080/01621459.1951.10500769 10.1016/j.agrformet.2023.109349 10.1016/j.eja.2014.10.003 10.1371/journal.pone.0156362 10.1007/s00382-018-4480-0 10.3390/su16020634 10.1016/j.agwat.2022.107720 10.1007/s11269-005-9008-9 10.1038/nature09364 10.1016/j.agwat.2020.106592 10.1016/j.plaphy.2021.02.015 10.1002/joc.7257 10.1016/j.gloplacha.2016.06.011 10.1175/2009JCLI2909.1 10.1016/j.agwat.2022.108076 10.1016/j.jhydrol.2020.124793 10.1016/j.agwat.2023.108359 10.3390/w11051064 10.1002/ldr.3447 10.1016/j.atmosres.2023.106731 10.1016/j.eja.2022.126500 10.1038/s41598-019-51587-x 10.1016/j.scitotenv.2023.166147 10.1016/j.agwat.2021.107391 10.1038/ngeo2646 10.1016/j.scitotenv.2019.04.297 10.1038/s41598-017-05660-y 10.1017/aae.2021.23 10.1007/978-94-017-3624-4_3 10.5194/gmd-9-3461-2016 10.1175/JHM-D-12-0149.1 10.1080/15226514.2021.1929826 10.1016/j.accre.2022.02.006 10.1016/j.scitotenv.2017.07.270 10.1016/j.agsy.2022.103581 10.1016/j.agrformet.2020.108248 10.1016/j.ecoenv.2018.05.082 10.1016/j.agrformet.2022.108933 10.1111/j.1365-2486.2010.02262.x 10.1126/science.1146663 10.1016/j.catena.2022.106048 10.1111/1365-2435.13577 10.1029/2007GL031541 10.1016/j.geoderma.2013.09.016 10.1016/j.scitotenv.2023.165906 10.1038/nclimate1990 10.1016/j.ecoinf.2021.101380 10.1016/j.ecoenv.2019.109594 10.1016/j.agsy.2020.102955 10.1016/j.jhydrol.2021.126995 10.1007/s11069-018-3514-6 10.1016/j.agwat.2019.105956 10.1080/03650340.2017.1410542 10.1016/j.agsy.2010.01.006 10.1016/j.agrformet.2018.09.008 10.1016/S1161-0301(02)00107-7 10.1016/j.fcr.2011.07.001 10.1016/j.agwat.2023.108431 10.1016/j.scitotenv.2021.151746 10.1111/gcb.14034 10.1016/j.agrformet.2021.108452 |
ContentType | Journal Article |
Copyright | 2024 The Authors |
Copyright_xml | – notice: 2024 The Authors |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 DOA |
DOI | 10.1016/j.agwat.2024.108881 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1873-2283 |
ExternalDocumentID | oai_doaj_org_article_920ea293b5ae4ffab39bc61ee9916d94 10_1016_j_agwat_2024_108881 S0378377424002166 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --K --M .~1 0R~ 0SF 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAFTH AAHBH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABGRD ABJNI ABMAC ABQEM ACDAQ ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GROUPED_DOAJ IHE IMUCA J1W KOM LW9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SAB SDF SDG SES SEW SPCBC SSA SSJ SSZ T5K Y6R ~02 ~G- ~KM AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLV HMA HVGLF HZ~ R2- SEP SSH VH1 WUQ XPP ZMT 7S9 L.6 EFKBS |
ID | FETCH-LOGICAL-c447t-5203fd3a4f871c186b032683a596922e2b338997cbae84269e85e5b0464992d03 |
IEDL.DBID | DOA |
ISSN | 0378-3774 |
IngestDate | Wed Aug 27 01:23:23 EDT 2025 Wed Jul 02 03:23:17 EDT 2025 Thu Apr 24 22:55:09 EDT 2025 Tue Jul 01 04:31:21 EDT 2025 Tue Jun 18 08:50:45 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | DSSAT-CERES-Wheat Conditional probability Future climate change Yield loss Drought trigger threshold |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c447t-5203fd3a4f871c186b032683a596922e2b338997cbae84269e85e5b0464992d03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5518-2401 |
OpenAccessLink | https://doaj.org/article/920ea293b5ae4ffab39bc61ee9916d94 |
PQID | 3153823848 |
PQPubID | 24069 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_920ea293b5ae4ffab39bc61ee9916d94 proquest_miscellaneous_3153823848 crossref_primary_10_1016_j_agwat_2024_108881 crossref_citationtrail_10_1016_j_agwat_2024_108881 elsevier_sciencedirect_doi_10_1016_j_agwat_2024_108881 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-30 |
PublicationDateYYYYMMDD | 2024-06-30 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-30 day: 30 |
PublicationDecade | 2020 |
PublicationTitle | Agricultural water management |
PublicationYear | 2024 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Easterling, Wallis, Lawrimore, Heim (bib15) 2007; 34 Turan, Khan, Iqbal, Ramzani, Fatima (bib57) 2018; 161 Du, Lu, Xia (bib14) 2020; 34 CMDC, 2022. China National Meteorological Data Center. White, Hoogenboom, Kimball, Wall (bib66) 2011; 124 Clarke, Hess, Haro-Monteagudo, Semenov, Knox (bib8) 2021; 297 Abdelhakim, Palma, Zhou, Wollenweber, Ottosen, Rosenqvist (bib1) 2021; 162 Rezaei, Webber, Asseng, Boote, Durand, Ewert, MacCarthy (bib42) 2023 Turan (bib53) 2019; 183 Jiang, Wang, Xu, Cao, Li Liu, He, Jin, Ma, Chen, Zhao (bib26) 2022; 319 Wen, Wei, Zheng, Rui, Niu, Gao, Xiong (bib65) 2023; 901 Cetin, Akıncı, Albayrak, Turgut, Ozkan, Doganay (bib5) 2022; 6 Bebber, Ramotowski, Gurr (bib3) 2013; 3 Luo, Liu, Meng, Duan, Bao, Xing, Frankl (bib35) 2019; 676 Saleska, Didan, Huete, Da Rocha (bib44) 2007; 318 Dixit, Telleria, Al Khatib, Allouzi (bib13) 2018; 610 Cetin, Yildirim, Akinci, Yarosh (bib6) 2022; 39 Zeng, Wu, Li, Zhou, Guo, Huang (bib72) 2019; 11 Dai, Shangguan, Duan, Liu, Fu, Niu (bib10) 2013; 14 Gouveia, Trigo, Beguería, Vicente-Serrano (bib20) 2017; 151 Yao, Li, Dong, Li, Peng, Feng (bib69) 2020; 31 Li, Huang, Huang, Leng, Peng, Wang, Fang (bib30) 2022; 261 Ritchie (bib43) 1998 Vicente-Serrano, Beguería, López-Moreno (bib61) 2010; 23 Li, Babovic (bib29) 2019; 52 Yang, Li, Huang, Li, Liu, Zhou (bib68) 2022; 212 Sun, Zhao, Zhang, Chen, Ying, Lv, Che, Wang (bib50) 2022; 818 Zhang, Liu, Li, Batchelor, Wu, Zhen, Ju (bib75) 2023; 902 . Wang, Wang, Yang, Di, Zhao, Liang (bib64) 2020; 585 Turan (bib54) 2020; 245 Piao, Ciais, Huang, Shen, Peng, Li, Zhou, Liu, Ma, Ding (bib41) 2010; 467 Li, Wu, Ye, Jiang, Gan, Wu, He, Jiang (bib31) 2019; 95 Long, Ju, Wang, Gong, Li (bib34) 2022; 13 Farhad, Noor, Yasin, Nizamani, Turan, Iqbal (bib17) 2024; 16 Godfrey, Ip, Nordblom (bib19) 2022; 54 Guo, Huang, Huang, Leng, Mu, Han, Wei, She, Wang, Wang (bib21) 2023; 331 Zeng, Lin, Welch, Yang, Huang, Sassenrath, Yao (bib71) 2023; 287 Hernandez-Ochoa, Asseng, Kassie, Xiong, Robertson, Pequeno, Sonder, Reynolds, Babar, Milan (bib23) 2018; 263 Liu, Zhu, Liu, Yu (bib33) 2021; 64 Wang, Liu, O'Leary, Asseng, Macadam, Lines-Kelly, Yu (bib63) 2018; 24 Cetin, Akinci (bib4) 2015; 61 Daryanto, Wang, Jacinthe (bib11) 2016; 11 Chen, Li, Yao, Li Liu, Javed, Liu, Liu (bib7) 2020; 185 Feng, Hao, Zhang, Hao (bib18) 2021; 304 Turan (bib55) 2021; 173 Tooley, Mallory, Porter, Hoogenboom (bib52) 2021; 307 Xiang, Wang, Li Liu, Chen, Waters, Huete, Yu (bib67) 2023; 284 Van Loon, Gleeson, Clark, Van Dijk, Stahl, Hannaford, Di Baldassarre, Teuling, Tallaksen, Uijlenhoet (bib60) 2016; 9 Wang, Cheng, Liao, Guo, Zhang, Fan, Wang (bib62) 2023; 276 Su, Chen, Cannon, Xie, Guo (bib49) 2020; 34 Hussain, Men, Hussain, Chen, Ali, Zhang, Wang (bib25) 2019; 9 Asseng, Foster, Turner (bib2) 2011; 17 NTPSD, 2014. National Tibetan Plateau Science Data Center. Shiau (bib46) 2006; 20 Massey (bib36) 1951; 46 Zhang, Li, Xinguo, Wang, Niu, Li Liu, He, Pulatov, Hassan, Meng (bib74) 2023; 205 O'Neill, Tebaldi, Van Vuuren, Eyring, Friedlingstein, Hurtt, Knutti, Kriegler, Lamarque, Lowe (bib39) 2016; 9 Si, Zain, Li, Liu, Liang, Gao, Duan (bib47) 2021; 244 Jones, He, Boote, Wilkens, Porter, Hu (bib27) 2011; 2 Zhao, Wang, Hu, Zhan, Guo (bib76) 2021; 603 Turan, Ramzani, Ali, Abbas, Iqbal, Irum, Khan (bib58) 2018; 64 NBSC, National Bureau of Statistics of China, 2019. China Statistical Yearbook. China Statistics Press, Beijing. Yu, Liu, Yang, Sun, Yu, King (bib70) 2023; 288 Heung, Bulmer, Schmidt (bib24) 2014; 214 Shen, Wang, Jiang, Li, Huang, Wu, Wang, Wang, Ma (bib45) 2022; 269 Eyshi Rezaei, Webber, Gaiser, Naab, Ewert (bib16) 2015; 64 Liu, Fu (bib32) 2021; 76 Peng, Li, Feng (bib40) 2017; 7 Ding, Hu, Wu, Yang, Feng (bib12) 2020; 230 Tao, Zhang, Zhang, Chen (bib51) 2022; 136 Zhang, Chen, Gu (bib73) 2022; 42 He, Jones, Graham, Dukes (bib22) 2010; 103 Turan, Schröder, Bilen, Insam, Fernández-Delgado Juárez (bib59) 2019; 9 Turan (bib56) 2022; 24 Sklar (bib48) 1959 Jones, Hoogenboom, Porter, Boote, Batchelor, Hunt, Wilkens, Singh, Gijsman, Ritchie (bib28) 2003; 18 Asseng (10.1016/j.agwat.2024.108881_bib2) 2011; 17 Heung (10.1016/j.agwat.2024.108881_bib24) 2014; 214 Long (10.1016/j.agwat.2024.108881_bib34) 2022; 13 Turan (10.1016/j.agwat.2024.108881_bib58) 2018; 64 Turan (10.1016/j.agwat.2024.108881_bib56) 2022; 24 He (10.1016/j.agwat.2024.108881_bib22) 2010; 103 Massey (10.1016/j.agwat.2024.108881_bib36) 1951; 46 Sklar (10.1016/j.agwat.2024.108881_bib48) 1959 Bebber (10.1016/j.agwat.2024.108881_bib3) 2013; 3 10.1016/j.agwat.2024.108881_bib38 10.1016/j.agwat.2024.108881_bib37 Chen (10.1016/j.agwat.2024.108881_bib7) 2020; 185 Turan (10.1016/j.agwat.2024.108881_bib54) 2020; 245 Zeng (10.1016/j.agwat.2024.108881_bib72) 2019; 11 Zhang (10.1016/j.agwat.2024.108881_bib75) 2023; 902 Farhad (10.1016/j.agwat.2024.108881_bib17) 2024; 16 Jones (10.1016/j.agwat.2024.108881_bib28) 2003; 18 Wen (10.1016/j.agwat.2024.108881_bib65) 2023; 901 Godfrey (10.1016/j.agwat.2024.108881_bib19) 2022; 54 Clarke (10.1016/j.agwat.2024.108881_bib8) 2021; 297 Saleska (10.1016/j.agwat.2024.108881_bib44) 2007; 318 Turan (10.1016/j.agwat.2024.108881_bib57) 2018; 161 Si (10.1016/j.agwat.2024.108881_bib47) 2021; 244 Tooley (10.1016/j.agwat.2024.108881_bib52) 2021; 307 Wang (10.1016/j.agwat.2024.108881_bib64) 2020; 585 Hernandez-Ochoa (10.1016/j.agwat.2024.108881_bib23) 2018; 263 Jiang (10.1016/j.agwat.2024.108881_bib26) 2022; 319 Turan (10.1016/j.agwat.2024.108881_bib55) 2021; 173 Wang (10.1016/j.agwat.2024.108881_bib62) 2023; 276 Zeng (10.1016/j.agwat.2024.108881_bib71) 2023; 287 Eyshi Rezaei (10.1016/j.agwat.2024.108881_bib16) 2015; 64 Zhang (10.1016/j.agwat.2024.108881_bib73) 2022; 42 White (10.1016/j.agwat.2024.108881_bib66) 2011; 124 Daryanto (10.1016/j.agwat.2024.108881_bib11) 2016; 11 Li (10.1016/j.agwat.2024.108881_bib29) 2019; 52 10.1016/j.agwat.2024.108881_bib9 Wang (10.1016/j.agwat.2024.108881_bib63) 2018; 24 Jones (10.1016/j.agwat.2024.108881_bib27) 2011; 2 Du (10.1016/j.agwat.2024.108881_bib14) 2020; 34 Shen (10.1016/j.agwat.2024.108881_bib45) 2022; 269 Peng (10.1016/j.agwat.2024.108881_bib40) 2017; 7 Zhao (10.1016/j.agwat.2024.108881_bib76) 2021; 603 Van Loon (10.1016/j.agwat.2024.108881_bib60) 2016; 9 Yu (10.1016/j.agwat.2024.108881_bib70) 2023; 288 Yang (10.1016/j.agwat.2024.108881_bib68) 2022; 212 Li (10.1016/j.agwat.2024.108881_bib30) 2022; 261 O'Neill (10.1016/j.agwat.2024.108881_bib39) 2016; 9 Cetin (10.1016/j.agwat.2024.108881_bib6) 2022; 39 Ding (10.1016/j.agwat.2024.108881_bib12) 2020; 230 Easterling (10.1016/j.agwat.2024.108881_bib15) 2007; 34 Guo (10.1016/j.agwat.2024.108881_bib21) 2023; 331 Turan (10.1016/j.agwat.2024.108881_bib59) 2019; 9 Piao (10.1016/j.agwat.2024.108881_bib41) 2010; 467 Luo (10.1016/j.agwat.2024.108881_bib35) 2019; 676 Cetin (10.1016/j.agwat.2024.108881_bib4) 2015; 61 Xiang (10.1016/j.agwat.2024.108881_bib67) 2023; 284 Su (10.1016/j.agwat.2024.108881_bib49) 2020; 34 Turan (10.1016/j.agwat.2024.108881_bib53) 2019; 183 Gouveia (10.1016/j.agwat.2024.108881_bib20) 2017; 151 Li (10.1016/j.agwat.2024.108881_bib31) 2019; 95 Rezaei (10.1016/j.agwat.2024.108881_bib42) 2023 Zhang (10.1016/j.agwat.2024.108881_bib74) 2023; 205 Feng (10.1016/j.agwat.2024.108881_bib18) 2021; 304 Dixit (10.1016/j.agwat.2024.108881_bib13) 2018; 610 Hussain (10.1016/j.agwat.2024.108881_bib25) 2019; 9 Vicente-Serrano (10.1016/j.agwat.2024.108881_bib61) 2010; 23 Yao (10.1016/j.agwat.2024.108881_bib69) 2020; 31 Shiau (10.1016/j.agwat.2024.108881_bib46) 2006; 20 Tao (10.1016/j.agwat.2024.108881_bib51) 2022; 136 Cetin (10.1016/j.agwat.2024.108881_bib5) 2022; 6 Dai (10.1016/j.agwat.2024.108881_bib10) 2013; 14 Liu (10.1016/j.agwat.2024.108881_bib33) 2021; 64 Liu (10.1016/j.agwat.2024.108881_bib32) 2021; 76 Ritchie (10.1016/j.agwat.2024.108881_bib43) 1998 Sun (10.1016/j.agwat.2024.108881_bib50) 2022; 818 Abdelhakim (10.1016/j.agwat.2024.108881_bib1) 2021; 162 |
References_xml | – volume: 39 start-page: 247 year: 2022 end-page: 257 ident: bib6 article-title: Critical threshold temperatures and rainfall in declining grain yield of durum wheat ( publication-title: Rom. Agric. Res. – volume: 95 start-page: 677 year: 2019 end-page: 720 ident: bib31 article-title: Innovative trend analysis of main agriculture natural hazards in China during 1989–2014 publication-title: Nat. Hazards – volume: 212 year: 2022 ident: bib68 article-title: Development of a multi-GCMs Bayesian copula method for assessing multivariate drought risk under climate change: a case study of the Aral Sea basin publication-title: Catena – volume: 103 start-page: 256 year: 2010 end-page: 264 ident: bib22 article-title: Influence of likelihood function choice for estimating crop model parameters using the generalized likelihood uncertainty estimation method publication-title: Agric. Syst. – volume: 64 start-page: 1053 year: 2018 end-page: 1067 ident: bib58 article-title: Alleviation of nickel toxicity and an improvement in zinc bioavailability in sunflower seed with chitosan and biochar application in pH adjusted nickel contaminated soil publication-title: Arch. Agron. Soil Sci. – volume: 585 year: 2020 ident: bib64 article-title: A new copula-based standardized precipitation evapotranspiration streamflow index for drought monitoring publication-title: J. Hydrol. – volume: 902 year: 2023 ident: bib75 article-title: Future climate change impacts on wheat grain yield and protein in the North China Region publication-title: Sci. Total Environ. – volume: 61 start-page: 287 year: 2015 end-page: 293 ident: bib4 article-title: Effects of drought on optimizing nitrogen use of winter wheat in a semi arid region publication-title: Agric. For. – volume: 124 start-page: 357 year: 2011 end-page: 368 ident: bib66 article-title: Methodologies for simulating impacts of climate change on crop production publication-title: Field Crops Res – volume: 610 start-page: 219 year: 2018 end-page: 233 ident: bib13 article-title: Decadal analysis of impact of future climate on wheat production in dry Mediterranean environment: a case of Jordan publication-title: Sci. Total Environ. – volume: 13 start-page: 397 year: 2022 end-page: 407 ident: bib34 article-title: Impact of climate change on wheat yield and quality in the Yellow River Basin under RCP8. 5 during 2020–2050 publication-title: Adv. Clim. Chang. Res. – volume: 603 year: 2021 ident: bib76 article-title: Joint probability of drought encounter among three major grain production zones of China under nonstationary climate publication-title: J. Hydrol. – volume: 297 year: 2021 ident: bib8 article-title: Assessing future drought risks and wheat yield losses in England. publication-title: Agric. . Meteorol. – volume: 9 year: 2019 ident: bib59 article-title: Co-inoculation effect of Rhizobium and Achillea millefolium L. oil extracts on growth of common bean ( publication-title: Sci. Rep. – volume: 173 start-page: 418 year: 2021 end-page: 429 ident: bib55 article-title: Arbuscular mycorrhizal fungi and pistachio husk biochar combination reduces Ni distribution in mungbean plant and improves plant antioxidants and soil enzymes publication-title: Physiol. Plant. – volume: 185 year: 2020 ident: bib7 article-title: Impacts of multi-timescale SPEI and SMDI variations on winter wheat yields publication-title: Agric. Syst. – volume: 9 start-page: 3461 year: 2016 end-page: 3482 ident: bib39 article-title: The scenario model intercomparison project (ScenarioMIP) for CMIP6 publication-title: Geosci. Model Dev. – volume: 31 start-page: 266 year: 2020 end-page: 282 ident: bib69 article-title: Influence of the accuracy of reference crop evapotranspiration on drought monitoring using standardized precipitation evapotranspiration index in mainland China publication-title: Land Degrad. Dev. – volume: 3 start-page: 985 year: 2013 end-page: 988 ident: bib3 article-title: Crop pests and pathogens move polewards in a warming world publication-title: Nat. Clim. Change – volume: 24 start-page: 2403 year: 2018 end-page: 2415 ident: bib63 article-title: Australian wheat production expected to decrease by the late 21st century. publication-title: Glob. Chang. Biol. – reference: CMDC, 2022. China National Meteorological Data Center. – volume: 7 start-page: 5458 year: 2017 ident: bib40 article-title: The best alternative for estimating reference crop evapotranspiration in different sub-regions of mainland China publication-title: Sci. Rep. – volume: 20 start-page: 795 year: 2006 end-page: 815 ident: bib46 article-title: Fitting drought duration and severity with two-dimensional copulas publication-title: Water Resour. Manag. – volume: 14 start-page: 869 year: 2013 end-page: 887 ident: bib10 article-title: Development of a China dataset of soil hydraulic parameters using pedotransfer functions for land surface modeling publication-title: J. Hydrometeorol. – volume: 276 year: 2023 ident: bib62 article-title: Performance evaluation of AquaCrop and DSSAT-SUBSTOR-Potato models in simulating potato growth, yield and water productivity under various drip fertigation regimes publication-title: Agric. Water Manag. – volume: 64 start-page: 101380 year: 2021 ident: bib33 article-title: Thresholds of key disaster-inducing factors and drought simulation in the Xilinguole Grassland publication-title: Ecol. Inform. – start-page: 41 year: 1998 end-page: 54 ident: bib43 article-title: Soil water balance and plant water stress publication-title: Underst. Options Agric. Prod. – volume: 287 year: 2023 ident: bib71 article-title: Impact of water deficit and irrigation management on winter wheat yield in China publication-title: Agric. Water Manag. – volume: 162 start-page: 301 year: 2021 end-page: 314 ident: bib1 article-title: The effect of individual and combined drought and heat stress under elevated CO publication-title: Plant Physiol. Biochem. – volume: 205 year: 2023 ident: bib74 article-title: Impact of climate change and planting date shifts on growth and yields of double cropping rice in southeastern China in future publication-title: Agric. Syst. – volume: 34 start-page: 2575 year: 2020 end-page: 2598 ident: bib49 article-title: Multi-site bias correction of climate model outputs for hydro-meteorological impact studies: an application over a watershed in China publication-title: Hydrol. Process – volume: 161 start-page: 409 year: 2018 end-page: 419 ident: bib57 article-title: Promoting the productivity and quality of brinjal aligned with heavy metals immobilization in a wastewater irrigated heavy metal polluted soil with biochar and chitosan publication-title: Ecotox. Environ. Safe. – volume: 136 start-page: 126 year: 2022 end-page: 500 ident: bib51 article-title: Designing wheat cultivar adaptation to future climate change across China by coupling biophysical modelling and machine learning publication-title: Eur. J. Agron. – volume: 64 start-page: 98 year: 2015 end-page: 113 ident: bib16 article-title: Heat stress in cereals: mechanisms and modelling publication-title: Eur. J. Agron. – volume: 676 start-page: 613 year: 2019 end-page: 626 ident: bib35 article-title: Identifying climate change impacts on water resources in Xinjiang, China publication-title: Sci. Total Environ. – volume: 331 year: 2023 ident: bib21 article-title: Drought trigger thresholds for different levels of vegetation loss in China and their dynamics publication-title: Agric. . Meteorol. – reference: NBSC, National Bureau of Statistics of China, 2019. China Statistical Yearbook. China Statistics Press, Beijing. – volume: 151 start-page: 15 year: 2017 end-page: 27 ident: bib20 article-title: Drought impacts on vegetation activity in the Mediterranean region: an assessment using remote sensing data and multi-scale drought indicators publication-title: Glob. Planet. Change – volume: 214 start-page: 141 year: 2014 end-page: 154 ident: bib24 article-title: Predictive soil parent material mapping at a regional-scale: a random forest approach publication-title: Geoderma – volume: 11 year: 2016 ident: bib11 article-title: Global synthesis of drought effects on maize and wheat production publication-title: PloS One – volume: 76 start-page: 2632 year: 2021 end-page: 2646 ident: bib32 article-title: Drought impacts on crop yield: progress, challenges and prospect publication-title: Acta Geogr. Sin. – volume: 23 start-page: 1696 year: 2010 end-page: 1718 ident: bib61 article-title: A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index publication-title: J. Clim. – start-page: 229 year: 1959 end-page: 231 ident: bib48 publication-title: Fonct. De. R. éPartit. à N. Dimens. Et. leurs Marges – volume: 17 start-page: 997 year: 2011 end-page: 1012 ident: bib2 article-title: The impact of temperature variability on wheat yields publication-title: Glob. Chang. Biol. – volume: 307 year: 2021 ident: bib52 article-title: Predicting the response of a potato-grain production system to climate change for a humid continental climate using DSSAT publication-title: Agric. For. Meteorol. – volume: 319 year: 2022 ident: bib26 article-title: Identifying sources of uncertainty in wheat production projections with consideration of crop climatic suitability under future climate publication-title: Agric. For. Meteorol. – volume: 901 year: 2023 ident: bib65 article-title: Adaptability of wheat to future climate change: effects of sowing date and sowing rate on wheat yield in three wheat production regions in the North China Plain publication-title: Sci. Total Environ. – volume: 2 start-page: 365 year: 2011 end-page: 393 ident: bib27 article-title: Estimating DSSAT cropping system cultivar-specific parameters using Bayesian techniques publication-title: Methods Introd. Syst. Models into Agric. Res. – volume: 288 year: 2023 ident: bib70 article-title: Future climate change for major agricultural zones in China as projected by CORDEX-EA-II, CMIP5 and CMIP6 ensembles publication-title: Atmos. Res. – volume: 24 start-page: 166 year: 2022 end-page: 176 ident: bib56 article-title: Calcite in combination with olive pulp biochar reduces Ni mobility in soil and its distribution in chili plant publication-title: Int. J. Phytoremediat. – volume: 183 year: 2019 ident: bib53 article-title: Confident performance of chitosan and pistachio shell biochar on reducing Ni bioavailability in soil and plant plus improved the soil enzymatic activities, antioxidant defense system and nutritional quality of lettuce publication-title: Ecotox. Environ. Safe. – volume: 11 start-page: 1064 year: 2019 ident: bib72 article-title: Agricultural drought risk assessment in Southwest China publication-title: Water – volume: 304 year: 2021 ident: bib18 article-title: Changes in climate-crop yield relationships affect risks of crop yield reduction publication-title: Agric. . Meteorol. – volume: 261 year: 2022 ident: bib30 article-title: Various maize yield losses and their dynamics triggered by drought thresholds based on Copula-Bayesian conditional probabilities publication-title: Agric. Water Manag. – volume: 6 start-page: 25 year: 2022 end-page: 36 ident: bib5 article-title: Impact of climate on durum wheat yield ( publication-title: Int. J. Agric. Environ. Food Sci. – volume: 18 start-page: 235 year: 2003 end-page: 265 ident: bib28 article-title: The DSSAT cropping system model publication-title: Eur. J. Agron. – volume: 34 start-page: 1525 year: 2020 end-page: 1536 ident: bib14 article-title: Impacts of global environmental change drivers on non-structural carbohydrates in terrestrial plants publication-title: Funct. Ecol. – volume: 54 start-page: 72 year: 2022 end-page: 92 ident: bib19 article-title: Risk Analysis of Australia’s Victorian dairy farms using multivariate copulae publication-title: J. Agric. Appl. Econ. – volume: 244 year: 2021 ident: bib47 article-title: Optimizing nitrogen application for drip-irrigated winter wheat using the DSSAT-CERES-Wheat model publication-title: Agric. Water Manag. – volume: 52 start-page: 5775 year: 2019 end-page: 5799 ident: bib29 article-title: Multi-site multivariate downscaling of global climate model outputs: an integrated framework combining quantile mapping, stochastic weather generator and Empirical Copula approaches publication-title: Clim. Dyn. – volume: 263 start-page: 373 year: 2018 end-page: 387 ident: bib23 article-title: Climate change impact on Mexico wheat production publication-title: Agric. For. Meteorol. – volume: 269 year: 2022 ident: bib45 article-title: Simulation modeling for effective management of irrigation water for winter wheat publication-title: Agric. Water Manag. – start-page: 1 year: 2023 end-page: 16 ident: bib42 article-title: Climate change impacts on crop yields publication-title: Nat. Rev. Earth Env. – volume: 34 year: 2007 ident: bib15 article-title: Effects of temperature and precipitation trends on US drought. publication-title: Geophys. Res. Lett. – volume: 245 year: 2020 ident: bib54 article-title: Potential of pistachio shell biochar and dicalcium phosphate combination to reduce Pb speciation in spinach, improved soil enzymatic activities, plant nutritional quality, and antioxidant defense system publication-title: Chemosphere – volume: 318 year: 2007 ident: bib44 article-title: Amazon forests green-up during 2005 drought publication-title: Science – volume: 46 start-page: 68 year: 1951 end-page: 78 ident: bib36 article-title: The Kolmogorov-Smirnov test for goodness of fit publication-title: J. Am. Stat. Assoc. – reference: . – reference: NTPSD, 2014. National Tibetan Plateau Science Data Center. – volume: 230 start-page: 1 year: 2020 end-page: 8 ident: bib12 article-title: Simulating the effects of conventional versus conservation tillage on soil water, nitrogen dynamics, and yield of winter wheat with RZWQM2 publication-title: Agric. Water Manag. – volume: 284 year: 2023 ident: bib67 article-title: Probabilistic assessment of drought impacts on wheat yield in south-eastern Australia publication-title: Agric. Water Manag. – volume: 42 start-page: 507 year: 2022 end-page: 520 ident: bib73 article-title: Overall uncertainty of climate change impacts on watershed hydrology in China publication-title: Int. J. Climatol. – volume: 9 start-page: 89 year: 2016 end-page: 91 ident: bib60 article-title: Drought in the Anthropocene publication-title: Nat. Geosci. – volume: 467 start-page: 43 year: 2010 end-page: 51 ident: bib41 article-title: The impacts of climate change on water resources and agriculture in China publication-title: Nature – volume: 818 year: 2022 ident: bib50 article-title: Heat stress may cause a significant reduction of rice yield in China under future climate scenarios publication-title: Sci. Total Environ. – volume: 9 start-page: 3890 year: 2019 ident: bib25 article-title: Interactive effects of drought and heat stresses on morpho-physiological attributes, yield, nutrient uptake and oxidative status in maize hybrids publication-title: Sci. Rep. – volume: 16 start-page: 634 year: 2024 ident: bib17 article-title: Interactive suitability of rice stubble biochar and arbuscular mycorrhizal fungi for improving wastewater-polluted soil health and reducing heavy metals in peas publication-title: Sustainability – volume: 245 year: 2020 ident: 10.1016/j.agwat.2024.108881_bib54 article-title: Potential of pistachio shell biochar and dicalcium phosphate combination to reduce Pb speciation in spinach, improved soil enzymatic activities, plant nutritional quality, and antioxidant defense system publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.125611 – volume: 9 start-page: 3890 year: 2019 ident: 10.1016/j.agwat.2024.108881_bib25 article-title: Interactive effects of drought and heat stresses on morpho-physiological attributes, yield, nutrient uptake and oxidative status in maize hybrids publication-title: Sci. Rep. doi: 10.1038/s41598-019-40362-7 – volume: 34 start-page: 2575 year: 2020 ident: 10.1016/j.agwat.2024.108881_bib49 article-title: Multi-site bias correction of climate model outputs for hydro-meteorological impact studies: an application over a watershed in China publication-title: Hydrol. Process doi: 10.1002/hyp.13750 – volume: 46 start-page: 68 year: 1951 ident: 10.1016/j.agwat.2024.108881_bib36 article-title: The Kolmogorov-Smirnov test for goodness of fit publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1951.10500769 – volume: 331 year: 2023 ident: 10.1016/j.agwat.2024.108881_bib21 article-title: Drought trigger thresholds for different levels of vegetation loss in China and their dynamics publication-title: Agric. . Meteorol. doi: 10.1016/j.agrformet.2023.109349 – volume: 64 start-page: 98 year: 2015 ident: 10.1016/j.agwat.2024.108881_bib16 article-title: Heat stress in cereals: mechanisms and modelling publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2014.10.003 – volume: 11 year: 2016 ident: 10.1016/j.agwat.2024.108881_bib11 article-title: Global synthesis of drought effects on maize and wheat production publication-title: PloS One doi: 10.1371/journal.pone.0156362 – volume: 52 start-page: 5775 year: 2019 ident: 10.1016/j.agwat.2024.108881_bib29 article-title: Multi-site multivariate downscaling of global climate model outputs: an integrated framework combining quantile mapping, stochastic weather generator and Empirical Copula approaches publication-title: Clim. Dyn. doi: 10.1007/s00382-018-4480-0 – volume: 16 start-page: 634 year: 2024 ident: 10.1016/j.agwat.2024.108881_bib17 article-title: Interactive suitability of rice stubble biochar and arbuscular mycorrhizal fungi for improving wastewater-polluted soil health and reducing heavy metals in peas publication-title: Sustainability doi: 10.3390/su16020634 – volume: 269 year: 2022 ident: 10.1016/j.agwat.2024.108881_bib45 article-title: Simulation modeling for effective management of irrigation water for winter wheat publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2022.107720 – volume: 20 start-page: 795 year: 2006 ident: 10.1016/j.agwat.2024.108881_bib46 article-title: Fitting drought duration and severity with two-dimensional copulas publication-title: Water Resour. Manag. doi: 10.1007/s11269-005-9008-9 – volume: 467 start-page: 43 year: 2010 ident: 10.1016/j.agwat.2024.108881_bib41 article-title: The impacts of climate change on water resources and agriculture in China publication-title: Nature doi: 10.1038/nature09364 – volume: 244 year: 2021 ident: 10.1016/j.agwat.2024.108881_bib47 article-title: Optimizing nitrogen application for drip-irrigated winter wheat using the DSSAT-CERES-Wheat model publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2020.106592 – volume: 162 start-page: 301 year: 2021 ident: 10.1016/j.agwat.2024.108881_bib1 article-title: The effect of individual and combined drought and heat stress under elevated CO2 on physiological responses in spring wheat genotypes. publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2021.02.015 – ident: 10.1016/j.agwat.2024.108881_bib9 – volume: 42 start-page: 507 year: 2022 ident: 10.1016/j.agwat.2024.108881_bib73 article-title: Overall uncertainty of climate change impacts on watershed hydrology in China publication-title: Int. J. Climatol. doi: 10.1002/joc.7257 – volume: 151 start-page: 15 year: 2017 ident: 10.1016/j.agwat.2024.108881_bib20 article-title: Drought impacts on vegetation activity in the Mediterranean region: an assessment using remote sensing data and multi-scale drought indicators publication-title: Glob. Planet. Change doi: 10.1016/j.gloplacha.2016.06.011 – volume: 23 start-page: 1696 year: 2010 ident: 10.1016/j.agwat.2024.108881_bib61 article-title: A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index publication-title: J. Clim. doi: 10.1175/2009JCLI2909.1 – volume: 39 start-page: 247 year: 2022 ident: 10.1016/j.agwat.2024.108881_bib6 article-title: Critical threshold temperatures and rainfall in declining grain yield of durum wheat (Triticum durum Desf.) during crop development stages publication-title: Rom. Agric. Res. – volume: 276 year: 2023 ident: 10.1016/j.agwat.2024.108881_bib62 article-title: Performance evaluation of AquaCrop and DSSAT-SUBSTOR-Potato models in simulating potato growth, yield and water productivity under various drip fertigation regimes publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2022.108076 – volume: 585 year: 2020 ident: 10.1016/j.agwat.2024.108881_bib64 article-title: A new copula-based standardized precipitation evapotranspiration streamflow index for drought monitoring publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.124793 – volume: 284 year: 2023 ident: 10.1016/j.agwat.2024.108881_bib67 article-title: Probabilistic assessment of drought impacts on wheat yield in south-eastern Australia publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2023.108359 – volume: 11 start-page: 1064 year: 2019 ident: 10.1016/j.agwat.2024.108881_bib72 article-title: Agricultural drought risk assessment in Southwest China publication-title: Water doi: 10.3390/w11051064 – ident: 10.1016/j.agwat.2024.108881_bib37 – volume: 31 start-page: 266 year: 2020 ident: 10.1016/j.agwat.2024.108881_bib69 article-title: Influence of the accuracy of reference crop evapotranspiration on drought monitoring using standardized precipitation evapotranspiration index in mainland China publication-title: Land Degrad. Dev. doi: 10.1002/ldr.3447 – volume: 288 year: 2023 ident: 10.1016/j.agwat.2024.108881_bib70 article-title: Future climate change for major agricultural zones in China as projected by CORDEX-EA-II, CMIP5 and CMIP6 ensembles publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2023.106731 – volume: 173 start-page: 418 year: 2021 ident: 10.1016/j.agwat.2024.108881_bib55 article-title: Arbuscular mycorrhizal fungi and pistachio husk biochar combination reduces Ni distribution in mungbean plant and improves plant antioxidants and soil enzymes publication-title: Physiol. Plant. – volume: 136 start-page: 126 year: 2022 ident: 10.1016/j.agwat.2024.108881_bib51 article-title: Designing wheat cultivar adaptation to future climate change across China by coupling biophysical modelling and machine learning publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2022.126500 – volume: 9 year: 2019 ident: 10.1016/j.agwat.2024.108881_bib59 article-title: Co-inoculation effect of Rhizobium and Achillea millefolium L. oil extracts on growth of common bean (Phaseolus vulgaris L.) and soil microbial-chemical properties publication-title: Sci. Rep. doi: 10.1038/s41598-019-51587-x – volume: 902 year: 2023 ident: 10.1016/j.agwat.2024.108881_bib75 article-title: Future climate change impacts on wheat grain yield and protein in the North China Region publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2023.166147 – volume: 6 start-page: 25 year: 2022 ident: 10.1016/j.agwat.2024.108881_bib5 article-title: Impact of climate on durum wheat yield (Triticum durum Desf.) under different cultivation and irrigation methods publication-title: Int. J. Agric. Environ. Food Sci. – volume: 261 year: 2022 ident: 10.1016/j.agwat.2024.108881_bib30 article-title: Various maize yield losses and their dynamics triggered by drought thresholds based on Copula-Bayesian conditional probabilities publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2021.107391 – volume: 9 start-page: 89 year: 2016 ident: 10.1016/j.agwat.2024.108881_bib60 article-title: Drought in the Anthropocene publication-title: Nat. Geosci. doi: 10.1038/ngeo2646 – start-page: 229 year: 1959 ident: 10.1016/j.agwat.2024.108881_bib48 publication-title: Fonct. De. R. éPartit. à N. Dimens. Et. leurs Marges – volume: 676 start-page: 613 year: 2019 ident: 10.1016/j.agwat.2024.108881_bib35 article-title: Identifying climate change impacts on water resources in Xinjiang, China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.04.297 – volume: 7 start-page: 5458 year: 2017 ident: 10.1016/j.agwat.2024.108881_bib40 article-title: The best alternative for estimating reference crop evapotranspiration in different sub-regions of mainland China publication-title: Sci. Rep. doi: 10.1038/s41598-017-05660-y – volume: 54 start-page: 72 year: 2022 ident: 10.1016/j.agwat.2024.108881_bib19 article-title: Risk Analysis of Australia’s Victorian dairy farms using multivariate copulae publication-title: J. Agric. Appl. Econ. doi: 10.1017/aae.2021.23 – start-page: 41 year: 1998 ident: 10.1016/j.agwat.2024.108881_bib43 article-title: Soil water balance and plant water stress publication-title: Underst. Options Agric. Prod. doi: 10.1007/978-94-017-3624-4_3 – volume: 2 start-page: 365 year: 2011 ident: 10.1016/j.agwat.2024.108881_bib27 article-title: Estimating DSSAT cropping system cultivar-specific parameters using Bayesian techniques publication-title: Methods Introd. Syst. Models into Agric. Res. – volume: 9 start-page: 3461 year: 2016 ident: 10.1016/j.agwat.2024.108881_bib39 article-title: The scenario model intercomparison project (ScenarioMIP) for CMIP6 publication-title: Geosci. Model Dev. doi: 10.5194/gmd-9-3461-2016 – volume: 14 start-page: 869 year: 2013 ident: 10.1016/j.agwat.2024.108881_bib10 article-title: Development of a China dataset of soil hydraulic parameters using pedotransfer functions for land surface modeling publication-title: J. Hydrometeorol. doi: 10.1175/JHM-D-12-0149.1 – volume: 24 start-page: 166 year: 2022 ident: 10.1016/j.agwat.2024.108881_bib56 article-title: Calcite in combination with olive pulp biochar reduces Ni mobility in soil and its distribution in chili plant publication-title: Int. J. Phytoremediat. doi: 10.1080/15226514.2021.1929826 – volume: 13 start-page: 397 year: 2022 ident: 10.1016/j.agwat.2024.108881_bib34 article-title: Impact of climate change on wheat yield and quality in the Yellow River Basin under RCP8. 5 during 2020–2050 publication-title: Adv. Clim. Chang. Res. doi: 10.1016/j.accre.2022.02.006 – ident: 10.1016/j.agwat.2024.108881_bib38 – volume: 304 year: 2021 ident: 10.1016/j.agwat.2024.108881_bib18 article-title: Changes in climate-crop yield relationships affect risks of crop yield reduction publication-title: Agric. . Meteorol. – volume: 610 start-page: 219 year: 2018 ident: 10.1016/j.agwat.2024.108881_bib13 article-title: Decadal analysis of impact of future climate on wheat production in dry Mediterranean environment: a case of Jordan publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.07.270 – start-page: 1 year: 2023 ident: 10.1016/j.agwat.2024.108881_bib42 article-title: Climate change impacts on crop yields publication-title: Nat. Rev. Earth Env. – volume: 205 year: 2023 ident: 10.1016/j.agwat.2024.108881_bib74 article-title: Impact of climate change and planting date shifts on growth and yields of double cropping rice in southeastern China in future publication-title: Agric. Syst. doi: 10.1016/j.agsy.2022.103581 – volume: 297 year: 2021 ident: 10.1016/j.agwat.2024.108881_bib8 article-title: Assessing future drought risks and wheat yield losses in England. publication-title: Agric. . Meteorol. doi: 10.1016/j.agrformet.2020.108248 – volume: 161 start-page: 409 year: 2018 ident: 10.1016/j.agwat.2024.108881_bib57 article-title: Promoting the productivity and quality of brinjal aligned with heavy metals immobilization in a wastewater irrigated heavy metal polluted soil with biochar and chitosan publication-title: Ecotox. Environ. Safe. doi: 10.1016/j.ecoenv.2018.05.082 – volume: 319 year: 2022 ident: 10.1016/j.agwat.2024.108881_bib26 article-title: Identifying sources of uncertainty in wheat production projections with consideration of crop climatic suitability under future climate publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2022.108933 – volume: 17 start-page: 997 year: 2011 ident: 10.1016/j.agwat.2024.108881_bib2 article-title: The impact of temperature variability on wheat yields publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2010.02262.x – volume: 318 year: 2007 ident: 10.1016/j.agwat.2024.108881_bib44 article-title: Amazon forests green-up during 2005 drought publication-title: Science doi: 10.1126/science.1146663 – volume: 212 year: 2022 ident: 10.1016/j.agwat.2024.108881_bib68 article-title: Development of a multi-GCMs Bayesian copula method for assessing multivariate drought risk under climate change: a case study of the Aral Sea basin publication-title: Catena doi: 10.1016/j.catena.2022.106048 – volume: 34 start-page: 1525 year: 2020 ident: 10.1016/j.agwat.2024.108881_bib14 article-title: Impacts of global environmental change drivers on non-structural carbohydrates in terrestrial plants publication-title: Funct. Ecol. doi: 10.1111/1365-2435.13577 – volume: 34 year: 2007 ident: 10.1016/j.agwat.2024.108881_bib15 article-title: Effects of temperature and precipitation trends on US drought. publication-title: Geophys. Res. Lett. doi: 10.1029/2007GL031541 – volume: 214 start-page: 141 year: 2014 ident: 10.1016/j.agwat.2024.108881_bib24 article-title: Predictive soil parent material mapping at a regional-scale: a random forest approach publication-title: Geoderma doi: 10.1016/j.geoderma.2013.09.016 – volume: 76 start-page: 2632 year: 2021 ident: 10.1016/j.agwat.2024.108881_bib32 article-title: Drought impacts on crop yield: progress, challenges and prospect publication-title: Acta Geogr. Sin. – volume: 901 year: 2023 ident: 10.1016/j.agwat.2024.108881_bib65 article-title: Adaptability of wheat to future climate change: effects of sowing date and sowing rate on wheat yield in three wheat production regions in the North China Plain publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2023.165906 – volume: 3 start-page: 985 year: 2013 ident: 10.1016/j.agwat.2024.108881_bib3 article-title: Crop pests and pathogens move polewards in a warming world publication-title: Nat. Clim. Change doi: 10.1038/nclimate1990 – volume: 64 start-page: 101380 year: 2021 ident: 10.1016/j.agwat.2024.108881_bib33 article-title: Thresholds of key disaster-inducing factors and drought simulation in the Xilinguole Grassland publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2021.101380 – volume: 183 year: 2019 ident: 10.1016/j.agwat.2024.108881_bib53 article-title: Confident performance of chitosan and pistachio shell biochar on reducing Ni bioavailability in soil and plant plus improved the soil enzymatic activities, antioxidant defense system and nutritional quality of lettuce publication-title: Ecotox. Environ. Safe. doi: 10.1016/j.ecoenv.2019.109594 – volume: 185 year: 2020 ident: 10.1016/j.agwat.2024.108881_bib7 article-title: Impacts of multi-timescale SPEI and SMDI variations on winter wheat yields publication-title: Agric. Syst. doi: 10.1016/j.agsy.2020.102955 – volume: 603 year: 2021 ident: 10.1016/j.agwat.2024.108881_bib76 article-title: Joint probability of drought encounter among three major grain production zones of China under nonstationary climate publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2021.126995 – volume: 61 start-page: 287 year: 2015 ident: 10.1016/j.agwat.2024.108881_bib4 article-title: Effects of drought on optimizing nitrogen use of winter wheat in a semi arid region publication-title: Agric. For. – volume: 95 start-page: 677 year: 2019 ident: 10.1016/j.agwat.2024.108881_bib31 article-title: Innovative trend analysis of main agriculture natural hazards in China during 1989–2014 publication-title: Nat. Hazards doi: 10.1007/s11069-018-3514-6 – volume: 230 start-page: 1 year: 2020 ident: 10.1016/j.agwat.2024.108881_bib12 article-title: Simulating the effects of conventional versus conservation tillage on soil water, nitrogen dynamics, and yield of winter wheat with RZWQM2 publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2019.105956 – volume: 64 start-page: 1053 issue: 8 year: 2018 ident: 10.1016/j.agwat.2024.108881_bib58 article-title: Alleviation of nickel toxicity and an improvement in zinc bioavailability in sunflower seed with chitosan and biochar application in pH adjusted nickel contaminated soil publication-title: Arch. Agron. Soil Sci. doi: 10.1080/03650340.2017.1410542 – volume: 103 start-page: 256 year: 2010 ident: 10.1016/j.agwat.2024.108881_bib22 article-title: Influence of likelihood function choice for estimating crop model parameters using the generalized likelihood uncertainty estimation method publication-title: Agric. Syst. doi: 10.1016/j.agsy.2010.01.006 – volume: 263 start-page: 373 year: 2018 ident: 10.1016/j.agwat.2024.108881_bib23 article-title: Climate change impact on Mexico wheat production publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2018.09.008 – volume: 18 start-page: 235 year: 2003 ident: 10.1016/j.agwat.2024.108881_bib28 article-title: The DSSAT cropping system model publication-title: Eur. J. Agron. doi: 10.1016/S1161-0301(02)00107-7 – volume: 124 start-page: 357 year: 2011 ident: 10.1016/j.agwat.2024.108881_bib66 article-title: Methodologies for simulating impacts of climate change on crop production publication-title: Field Crops Res doi: 10.1016/j.fcr.2011.07.001 – volume: 287 year: 2023 ident: 10.1016/j.agwat.2024.108881_bib71 article-title: Impact of water deficit and irrigation management on winter wheat yield in China publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2023.108431 – volume: 818 year: 2022 ident: 10.1016/j.agwat.2024.108881_bib50 article-title: Heat stress may cause a significant reduction of rice yield in China under future climate scenarios publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.151746 – volume: 24 start-page: 2403 year: 2018 ident: 10.1016/j.agwat.2024.108881_bib63 article-title: Australian wheat production expected to decrease by the late 21st century. publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.14034 – volume: 307 year: 2021 ident: 10.1016/j.agwat.2024.108881_bib52 article-title: Predicting the response of a potato-grain production system to climate change for a humid continental climate using DSSAT publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2021.108452 |
SSID | ssj0004047 |
Score | 2.4730277 |
Snippet | Predicting the risk of diminished wheat yields caused by drought under future climate change climate is essential for the long-term sustainability of... |
SourceID | doaj proquest crossref elsevier |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 108881 |
SubjectTerms | adverse effects algorithms China climate climate change Conditional probability crop yield drought Drought trigger threshold DSSAT-CERES-Wheat Future climate change prediction resource allocation risk risk management temperature water management winter wheat Yield loss |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqnuCAeIqlgAaJI2ET23kdl6VVhQRC2lbqzRon9iqoSqpsqhUXfgs_lRknKVoOPXCM5TiRZzzzTWbyjRDvlc0kVkkV1YTFI_LQLkKHeeQzrDCX6BH5O-TXb9n5pf5ylV4difX8LwyXVU62f7TpwVpPI8tpN5c3TbPcxCqn6IpCO82OKmPaba1z1vKPv_6Weeg4NBnjyRHPnpmHQo0XbvfIBZVSc61dUSQH3imQ-B84qX_MdfBBZ4_Fowk8wmp8vyfiyLVPxcPVtp8INNwz8ft7z6kX3m7oPNShC88AAwXhW9fDQKLbccZpB4RWYWQUgT2TRvSwZ8MMP7mmDa47zgZD00LosA3s7WqgRQkwwufNZnURrU9JelGw5hAa6gC2NaxDRzCgMLtuxu-MwE1rRjpwCsufi8uz04v1eTR1YYgq2s6BItVY-Vqh9hRbVUmR2ZggX6EwLbNSSietYo6-vLLoCv4x1hWpSy2nTMtS1rF6IY7brnUvBZD1qGzMPtErneaxzaxLtJOIJZIE_ULIefdNNVGUc6eMazPXov0wQWSGRWZGkS3Eh7ubbkaGjvunf2Kx3k1leu0w0PVbM-mXKWXskICQTdFp79Gq0lZZ4hyj6brUC5HNSmEOtJWWau5_-rtZhQydY07OYOu6251R7HoIP-ni1f8ufiIe8NVYzfhaHA_9rXtDkGmwb8OZ-AOlFBWg priority: 102 providerName: Elsevier |
Title | Prediction of drought trigger thresholds for future winter wheat yield losses in China based on the DSSAT-CERES-Wheat model and Copula conditional probabilities |
URI | https://dx.doi.org/10.1016/j.agwat.2024.108881 https://www.proquest.com/docview/3153823848 https://doaj.org/article/920ea293b5ae4ffab39bc61ee9916d94 |
Volume | 299 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgXOBQ8SkW6GqQOBJIbOfruF1aLSAqpLZSb9Y4cVZbVVmUTbXqhd_Sn9oZO6koh3LhGjlx5Jn4vcmM3wjxQdlMYpVUUU1cPCKEdhE6zKMmwwpziQ0i_4f8cZQtTvW3s_Tsj1ZfXBMW5IHDwn0uZeyQMMmm6HTToFWlrbLEOSY2demVQAnzxmBqPBEZ63zUGPLVXLjcIpdOSs1VdUWR3MEhL9d_B47-2pg92hw-FbsDTYRZeL1n4oFrn4sns2U3SGW4F-L6Z8dJFl5YWDdQ-347PfQUbi9dBz0ZacO5pQ0QL4WgHQJblofoYMtbMFxx9RpcrDnvC6sWfC9tYFyrgR5K1BC-HB_PTqL5Adkp8vs2-NY5gG0Nc9_7CyigrlfhjyJwe5og_E0B-EtxenhwMl9EQ7-FqNI67ykmjVVTK9QNRVFVUmQ2JnJXKEzLrJTSSatYjS-vLLqCj8C6InWp5eRoWco6Vq_ETrtu3WsBtE9UNmb0a5RO89hm1iXaScQSZZI1EyHH1TfVIEbOPTEuzFh1dm68yQybzASTTcTH25t-BS2O-4fvs1lvh7KQtr9A7mUG9zL_cq-JyEanMAMnCVyDHrW6f_b3owsZ-mI5DYOtW19ujGKQIaakizf_4w3fisc8bahhfCd2-u7S7RFR6u1UPPz0O5mKR7Ov3xdHU_-F3ADOvhaK |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6VcgAOiKcaymOQOGLix3ptH0NoFaCtkJJKva1m7XVkVNmV4yri0t_CT2VmbReFQw9cnc3a2tmd-cYz_j4hPkRGhZgHuVcQFvcoQlsPLSZeqTDHJMQSkd9Dnp6pxbn8dhFf7In5-C0Mt1UOvr_36c5bD1emw2pOr6pquvSjhLIrSu0kByql7on7ko4vyxh8uvnb5yF9pzLGoz0ePlIPuSYvXG-ROypDyc12aRrshCfH4r8Tpf7x1y4IHT8Rjwf0CLP-AZ-KPVs_E49m63Zg0LDPxe8fLddeeL2hKaFwMjwddJSFr20LHdluwyWnDRBchZ5SBLbMGtHClj0z_OKmNrhsuBwMVQ1OYhs43BVAkxJihC_L5WzlzY_IfJ5z5-AUdQDrAuZOEgwozy6q_kUjsGpNzwdOefkLcX58tJovvEGGwculTDpKVf2oLCKUJSVXeZAq4xPmSyOMM5WFoQ1NxCR9SW7QpvxlrE1jGxuumWZZWPjRS7FfN7U9EEDuIzc-B8UyknHiG2VsIG2ImCGZsJyIcFx9nQ8c5SyVcanHZrSf2plMs8l0b7KJ-Hj7p6ueouPu4Z_ZrLdDmV_bXWjatR42mM5C3yIhIROjlWWJJspMrgJrGU4XmZwINW4KvbNdaarq7ru_H7eQpoPM1RmsbXO90RHHHgJQMn31v5O_Ew8Wq9MTffL17PuheMi_9K2Nr8V-117bN4SfOvPWnY8_i-oYvA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+drought+trigger+thresholds+for+future+winter+wheat+yield+losses+in+China+based+on+the+DSSAT-CERES-Wheat+model+and+Copula+conditional+probabilities&rft.jtitle=Agricultural+water+management&rft.au=Cuiping+Yang&rft.au=Changhong+Liu&rft.au=Yanxin+Liu&rft.au=Yunhe+Gao&rft.date=2024-06-30&rft.pub=Elsevier&rft.eissn=1873-2283&rft.volume=299&rft.spage=108881&rft_id=info:doi/10.1016%2Fj.agwat.2024.108881&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_920ea293b5ae4ffab39bc61ee9916d94 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-3774&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-3774&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-3774&client=summon |