Prediction of drought trigger thresholds for future winter wheat yield losses in China based on the DSSAT-CERES-Wheat model and Copula conditional probabilities

Predicting the risk of diminished wheat yields caused by drought under future climate change climate is essential for the long-term sustainability of agriculture. Although studies have explored the relationship between drought and crop yield loss, the precise thresholds triggering yield losses in th...

Full description

Saved in:
Bibliographic Details
Published inAgricultural water management Vol. 299; p. 108881
Main Authors Yang, Cuiping, Liu, Changhong, Liu, Yanxin, Gao, Yunhe, Xing, Xuguang, Ma, Xiaoyi
Format Journal Article
LanguageEnglish
Published Elsevier B.V 30.06.2024
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Predicting the risk of diminished wheat yields caused by drought under future climate change climate is essential for the long-term sustainability of agriculture. Although studies have explored the relationship between drought and crop yield loss, the precise thresholds triggering yield losses in the future remain unclear. In this study, we established a conditional probability framework for drought trigger thresholds at various yield loss levels in China’s winter wheat regions in the future based on copula functions. The primary drivers influencing the dynamics of drought thresholds were evaluated using a random forest model. The results revealed that the projected drought thresholds for the baseline period (1981–2020), near future (2021–2060), and far future (2061–2100) ranged from –2.1 to –1.2, –0.8 to –0.6, and –1.2 to –1.0, respectively, implying that the drought thresholds for winter wheat yield loss in the future firstly rises and then declines. This trend was primarily due to the increased contribution of precipitation (Pre) (from 24.0% to 31.5%) to the drought threshold in the far future, coupled with a decrease in the contribution of temperature (Tmean) (from 37.1% to 30.4%). This shift suggested that the increased Pre might alleviate the adverse effect of high temperature on yield in the future. The average drought thresholds for yield loss were higher in the Southwest (–1.0 to –0.6) and Xinjiang (–1.1 to –0.7) winter wheat regions, where mild drought occurrences led to a 30% yield loss (70th percentile). Tmean was the primary driving factor for the dynamic changes in future drought thresholds. The research findings provide scientific guidance for future agricultural water resource allocation and drought risk management. •The risk of future winter wheat yield losses was quantified by drought-triggering thresholds.•Drought thresholds in the far future (2061–2100) are lower than those in the near future (2021–2060).•The contribution of Tmean to drought thresholds decreases in the far future, whereas Pre was increased.•The negative effect of Tmean on winter wheat yield in the future might be alleviated by the increased Pre.•The drought thresholds are higher in the SW and XJ regions with an increased risk of winter wheat yield reduction.
AbstractList Predicting the risk of diminished wheat yields caused by drought under future climate change climate is essential for the long-term sustainability of agriculture. Although studies have explored the relationship between drought and crop yield loss, the precise thresholds triggering yield losses in the future remain unclear. In this study, we established a conditional probability framework for drought trigger thresholds at various yield loss levels in China’s winter wheat regions in the future based on copula functions. The primary drivers influencing the dynamics of drought thresholds were evaluated using a random forest model. The results revealed that the projected drought thresholds for the baseline period (1981–2020), near future (2021–2060), and far future (2061–2100) ranged from –2.1 to –1.2, –0.8 to –0.6, and –1.2 to –1.0, respectively, implying that the drought thresholds for winter wheat yield loss in the future firstly rises and then declines. This trend was primarily due to the increased contribution of precipitation (Pre) (from 24.0% to 31.5%) to the drought threshold in the far future, coupled with a decrease in the contribution of temperature (Tmean) (from 37.1% to 30.4%). This shift suggested that the increased Pre might alleviate the adverse effect of high temperature on yield in the future. The average drought thresholds for yield loss were higher in the Southwest (–1.0 to –0.6) and Xinjiang (–1.1 to –0.7) winter wheat regions, where mild drought occurrences led to a 30% yield loss (70th percentile). Tmean was the primary driving factor for the dynamic changes in future drought thresholds. The research findings provide scientific guidance for future agricultural water resource allocation and drought risk management.
Predicting the risk of diminished wheat yields caused by drought under future climate change climate is essential for the long-term sustainability of agriculture. Although studies have explored the relationship between drought and crop yield loss, the precise thresholds triggering yield losses in the future remain unclear. In this study, we established a conditional probability framework for drought trigger thresholds at various yield loss levels in China’s winter wheat regions in the future based on copula functions. The primary drivers influencing the dynamics of drought thresholds were evaluated using a random forest model. The results revealed that the projected drought thresholds for the baseline period (1981–2020), near future (2021–2060), and far future (2061–2100) ranged from –2.1 to –1.2, –0.8 to –0.6, and –1.2 to –1.0, respectively, implying that the drought thresholds for winter wheat yield loss in the future firstly rises and then declines. This trend was primarily due to the increased contribution of precipitation (Pre) (from 24.0% to 31.5%) to the drought threshold in the far future, coupled with a decrease in the contribution of temperature (Tmean) (from 37.1% to 30.4%). This shift suggested that the increased Pre might alleviate the adverse effect of high temperature on yield in the future. The average drought thresholds for yield loss were higher in the Southwest (–1.0 to –0.6) and Xinjiang (–1.1 to –0.7) winter wheat regions, where mild drought occurrences led to a 30% yield loss (70th percentile). Tmean was the primary driving factor for the dynamic changes in future drought thresholds. The research findings provide scientific guidance for future agricultural water resource allocation and drought risk management. •The risk of future winter wheat yield losses was quantified by drought-triggering thresholds.•Drought thresholds in the far future (2061–2100) are lower than those in the near future (2021–2060).•The contribution of Tmean to drought thresholds decreases in the far future, whereas Pre was increased.•The negative effect of Tmean on winter wheat yield in the future might be alleviated by the increased Pre.•The drought thresholds are higher in the SW and XJ regions with an increased risk of winter wheat yield reduction.
Predicting the risk of diminished wheat yields caused by drought under future climate change climate is essential for the long-term sustainability of agriculture. Although studies have explored the relationship between drought and crop yield loss, the precise thresholds triggering yield losses in the future remain unclear. In this study, we established a conditional probability framework for drought trigger thresholds at various yield loss levels in China’s winter wheat regions in the future based on copula functions. The primary drivers influencing the dynamics of drought thresholds were evaluated using a random forest model. The results revealed that the projected drought thresholds for the baseline period (1981–2020), near future (2021–2060), and far future (2061–2100) ranged from –2.1 to –1.2, –0.8 to –0.6, and –1.2 to –1.0, respectively, implying that the drought thresholds for winter wheat yield loss in the future firstly rises and then declines. This trend was primarily due to the increased contribution of precipitation (Pᵣₑ) (from 24.0% to 31.5%) to the drought threshold in the far future, coupled with a decrease in the contribution of temperature (Tₘₑₐₙ) (from 37.1% to 30.4%). This shift suggested that the increased Pᵣₑ might alleviate the adverse effect of high temperature on yield in the future. The average drought thresholds for yield loss were higher in the Southwest (–1.0 to –0.6) and Xinjiang (–1.1 to –0.7) winter wheat regions, where mild drought occurrences led to a 30% yield loss (70th percentile). Tₘₑₐₙ was the primary driving factor for the dynamic changes in future drought thresholds. The research findings provide scientific guidance for future agricultural water resource allocation and drought risk management.
ArticleNumber 108881
Author Liu, Yanxin
Liu, Changhong
Ma, Xiaoyi
Yang, Cuiping
Gao, Yunhe
Xing, Xuguang
Author_xml – sequence: 1
  givenname: Cuiping
  surname: Yang
  fullname: Yang, Cuiping
  organization: A Key Laboratory of Agricultural Soil and Water Engineering in Arid Area of Ministry of Education, Northwest A & F University, Yangling, Shaanxi 712100, China
– sequence: 2
  givenname: Changhong
  surname: Liu
  fullname: Liu, Changhong
  organization: College of Agronomy, Northwest A & F University, Yangling, Shaanxi 712100, China
– sequence: 3
  givenname: Yanxin
  surname: Liu
  fullname: Liu, Yanxin
  organization: A Key Laboratory of Agricultural Soil and Water Engineering in Arid Area of Ministry of Education, Northwest A & F University, Yangling, Shaanxi 712100, China
– sequence: 4
  givenname: Yunhe
  surname: Gao
  fullname: Gao, Yunhe
  organization: A Key Laboratory of Agricultural Soil and Water Engineering in Arid Area of Ministry of Education, Northwest A & F University, Yangling, Shaanxi 712100, China
– sequence: 5
  givenname: Xuguang
  surname: Xing
  fullname: Xing, Xuguang
  organization: A Key Laboratory of Agricultural Soil and Water Engineering in Arid Area of Ministry of Education, Northwest A & F University, Yangling, Shaanxi 712100, China
– sequence: 6
  givenname: Xiaoyi
  orcidid: 0000-0001-5518-2401
  surname: Ma
  fullname: Ma, Xiaoyi
  email: xma@nwafu.edu.cn
  organization: A Key Laboratory of Agricultural Soil and Water Engineering in Arid Area of Ministry of Education, Northwest A & F University, Yangling, Shaanxi 712100, China
BookMark eNqFks2O0zAUhSM0SHQGnoCNl2xS_JfEXrAYlQIjjQSig1hajn3TuHLjYjtTzdvwqLgtYsECVpav73fse46vq6spTFBVrwleEkzat7ul3h51XlJMeakIIcizakFEx2pKBbuqFph1omZdx19U1yntMMYc825R_fwSwTqTXZhQGJCNYd6OGeXotluIKI8R0hi8TWgIEQ1zniOgo5tyOTyOoDN6cuAt8iElSMhNaDW6SaNeJ7CoiOYR0PvN5vahXq2_rjf19zO0DxY80pNFq3CYvUYmTNadXqE9OsTQ6975sof0sno-aJ_g1e_1pvr2Yf2w-lTff_54t7q9rw3nXa4bitlgmeaD6Ighou0xo61gupGtpBRoz5iQsjO9BsFpK0E00PSYt1xKajG7qe4uujbonTpEt9fxSQXt1LkQ4lbpmJ3xoCTFoKlkfaOBD4PumexNSwCkJK2VvGi9uWiVSX7MkLLau2TAez1BmJNipGGCMsFFaWWXVhOLgxGGP1cTrE7Zqp06Z6tO2apLtoWSf1HGZX2yL0ft_H_YdxcWipuPDqJKxsFkyjeIYHIZ1_2T_wV6ucQv
CitedBy_id crossref_primary_10_3390_agronomy15030679
crossref_primary_10_1016_j_geosus_2024_06_006
crossref_primary_10_3390_agronomy15030696
crossref_primary_10_1016_j_agwat_2025_109443
crossref_primary_10_1016_j_atmosres_2025_107950
crossref_primary_10_1016_j_compag_2024_109888
Cites_doi 10.1016/j.chemosphere.2019.125611
10.1038/s41598-019-40362-7
10.1002/hyp.13750
10.1080/01621459.1951.10500769
10.1016/j.agrformet.2023.109349
10.1016/j.eja.2014.10.003
10.1371/journal.pone.0156362
10.1007/s00382-018-4480-0
10.3390/su16020634
10.1016/j.agwat.2022.107720
10.1007/s11269-005-9008-9
10.1038/nature09364
10.1016/j.agwat.2020.106592
10.1016/j.plaphy.2021.02.015
10.1002/joc.7257
10.1016/j.gloplacha.2016.06.011
10.1175/2009JCLI2909.1
10.1016/j.agwat.2022.108076
10.1016/j.jhydrol.2020.124793
10.1016/j.agwat.2023.108359
10.3390/w11051064
10.1002/ldr.3447
10.1016/j.atmosres.2023.106731
10.1016/j.eja.2022.126500
10.1038/s41598-019-51587-x
10.1016/j.scitotenv.2023.166147
10.1016/j.agwat.2021.107391
10.1038/ngeo2646
10.1016/j.scitotenv.2019.04.297
10.1038/s41598-017-05660-y
10.1017/aae.2021.23
10.1007/978-94-017-3624-4_3
10.5194/gmd-9-3461-2016
10.1175/JHM-D-12-0149.1
10.1080/15226514.2021.1929826
10.1016/j.accre.2022.02.006
10.1016/j.scitotenv.2017.07.270
10.1016/j.agsy.2022.103581
10.1016/j.agrformet.2020.108248
10.1016/j.ecoenv.2018.05.082
10.1016/j.agrformet.2022.108933
10.1111/j.1365-2486.2010.02262.x
10.1126/science.1146663
10.1016/j.catena.2022.106048
10.1111/1365-2435.13577
10.1029/2007GL031541
10.1016/j.geoderma.2013.09.016
10.1016/j.scitotenv.2023.165906
10.1038/nclimate1990
10.1016/j.ecoinf.2021.101380
10.1016/j.ecoenv.2019.109594
10.1016/j.agsy.2020.102955
10.1016/j.jhydrol.2021.126995
10.1007/s11069-018-3514-6
10.1016/j.agwat.2019.105956
10.1080/03650340.2017.1410542
10.1016/j.agsy.2010.01.006
10.1016/j.agrformet.2018.09.008
10.1016/S1161-0301(02)00107-7
10.1016/j.fcr.2011.07.001
10.1016/j.agwat.2023.108431
10.1016/j.scitotenv.2021.151746
10.1111/gcb.14034
10.1016/j.agrformet.2021.108452
ContentType Journal Article
Copyright 2024 The Authors
Copyright_xml – notice: 2024 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOA
DOI 10.1016/j.agwat.2024.108881
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1873-2283
ExternalDocumentID oai_doaj_org_article_920ea293b5ae4ffab39bc61ee9916d94
10_1016_j_agwat_2024_108881
S0378377424002166
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
.~1
0R~
0SF
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAHBH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABGRD
ABJNI
ABMAC
ABQEM
ACDAQ
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GROUPED_DOAJ
IHE
IMUCA
J1W
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SAB
SDF
SDG
SES
SEW
SPCBC
SSA
SSJ
SSZ
T5K
Y6R
~02
~G-
~KM
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLV
HMA
HVGLF
HZ~
R2-
SEP
SSH
VH1
WUQ
XPP
ZMT
7S9
L.6
EFKBS
ID FETCH-LOGICAL-c447t-5203fd3a4f871c186b032683a596922e2b338997cbae84269e85e5b0464992d03
IEDL.DBID DOA
ISSN 0378-3774
IngestDate Wed Aug 27 01:23:23 EDT 2025
Wed Jul 02 03:23:17 EDT 2025
Thu Apr 24 22:55:09 EDT 2025
Tue Jul 01 04:31:21 EDT 2025
Tue Jun 18 08:50:45 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords DSSAT-CERES-Wheat
Conditional probability
Future climate change
Yield loss
Drought trigger threshold
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c447t-5203fd3a4f871c186b032683a596922e2b338997cbae84269e85e5b0464992d03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5518-2401
OpenAccessLink https://doaj.org/article/920ea293b5ae4ffab39bc61ee9916d94
PQID 3153823848
PQPubID 24069
ParticipantIDs doaj_primary_oai_doaj_org_article_920ea293b5ae4ffab39bc61ee9916d94
proquest_miscellaneous_3153823848
crossref_primary_10_1016_j_agwat_2024_108881
crossref_citationtrail_10_1016_j_agwat_2024_108881
elsevier_sciencedirect_doi_10_1016_j_agwat_2024_108881
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-30
PublicationDateYYYYMMDD 2024-06-30
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-30
  day: 30
PublicationDecade 2020
PublicationTitle Agricultural water management
PublicationYear 2024
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Easterling, Wallis, Lawrimore, Heim (bib15) 2007; 34
Turan, Khan, Iqbal, Ramzani, Fatima (bib57) 2018; 161
Du, Lu, Xia (bib14) 2020; 34
CMDC, 2022. China National Meteorological Data Center.
White, Hoogenboom, Kimball, Wall (bib66) 2011; 124
Clarke, Hess, Haro-Monteagudo, Semenov, Knox (bib8) 2021; 297
Abdelhakim, Palma, Zhou, Wollenweber, Ottosen, Rosenqvist (bib1) 2021; 162
Rezaei, Webber, Asseng, Boote, Durand, Ewert, MacCarthy (bib42) 2023
Turan (bib53) 2019; 183
Jiang, Wang, Xu, Cao, Li Liu, He, Jin, Ma, Chen, Zhao (bib26) 2022; 319
Wen, Wei, Zheng, Rui, Niu, Gao, Xiong (bib65) 2023; 901
Cetin, Akıncı, Albayrak, Turgut, Ozkan, Doganay (bib5) 2022; 6
Bebber, Ramotowski, Gurr (bib3) 2013; 3
Luo, Liu, Meng, Duan, Bao, Xing, Frankl (bib35) 2019; 676
Saleska, Didan, Huete, Da Rocha (bib44) 2007; 318
Dixit, Telleria, Al Khatib, Allouzi (bib13) 2018; 610
Cetin, Yildirim, Akinci, Yarosh (bib6) 2022; 39
Zeng, Wu, Li, Zhou, Guo, Huang (bib72) 2019; 11
Dai, Shangguan, Duan, Liu, Fu, Niu (bib10) 2013; 14
Gouveia, Trigo, Beguería, Vicente-Serrano (bib20) 2017; 151
Yao, Li, Dong, Li, Peng, Feng (bib69) 2020; 31
Li, Huang, Huang, Leng, Peng, Wang, Fang (bib30) 2022; 261
Ritchie (bib43) 1998
Vicente-Serrano, Beguería, López-Moreno (bib61) 2010; 23
Li, Babovic (bib29) 2019; 52
Yang, Li, Huang, Li, Liu, Zhou (bib68) 2022; 212
Sun, Zhao, Zhang, Chen, Ying, Lv, Che, Wang (bib50) 2022; 818
Zhang, Liu, Li, Batchelor, Wu, Zhen, Ju (bib75) 2023; 902
.
Wang, Wang, Yang, Di, Zhao, Liang (bib64) 2020; 585
Turan (bib54) 2020; 245
Piao, Ciais, Huang, Shen, Peng, Li, Zhou, Liu, Ma, Ding (bib41) 2010; 467
Li, Wu, Ye, Jiang, Gan, Wu, He, Jiang (bib31) 2019; 95
Long, Ju, Wang, Gong, Li (bib34) 2022; 13
Farhad, Noor, Yasin, Nizamani, Turan, Iqbal (bib17) 2024; 16
Godfrey, Ip, Nordblom (bib19) 2022; 54
Guo, Huang, Huang, Leng, Mu, Han, Wei, She, Wang, Wang (bib21) 2023; 331
Zeng, Lin, Welch, Yang, Huang, Sassenrath, Yao (bib71) 2023; 287
Hernandez-Ochoa, Asseng, Kassie, Xiong, Robertson, Pequeno, Sonder, Reynolds, Babar, Milan (bib23) 2018; 263
Liu, Zhu, Liu, Yu (bib33) 2021; 64
Wang, Liu, O'Leary, Asseng, Macadam, Lines-Kelly, Yu (bib63) 2018; 24
Cetin, Akinci (bib4) 2015; 61
Daryanto, Wang, Jacinthe (bib11) 2016; 11
Chen, Li, Yao, Li Liu, Javed, Liu, Liu (bib7) 2020; 185
Feng, Hao, Zhang, Hao (bib18) 2021; 304
Turan (bib55) 2021; 173
Tooley, Mallory, Porter, Hoogenboom (bib52) 2021; 307
Xiang, Wang, Li Liu, Chen, Waters, Huete, Yu (bib67) 2023; 284
Van Loon, Gleeson, Clark, Van Dijk, Stahl, Hannaford, Di Baldassarre, Teuling, Tallaksen, Uijlenhoet (bib60) 2016; 9
Wang, Cheng, Liao, Guo, Zhang, Fan, Wang (bib62) 2023; 276
Su, Chen, Cannon, Xie, Guo (bib49) 2020; 34
Hussain, Men, Hussain, Chen, Ali, Zhang, Wang (bib25) 2019; 9
Asseng, Foster, Turner (bib2) 2011; 17
NTPSD, 2014. National Tibetan Plateau Science Data Center.
Shiau (bib46) 2006; 20
Massey (bib36) 1951; 46
Zhang, Li, Xinguo, Wang, Niu, Li Liu, He, Pulatov, Hassan, Meng (bib74) 2023; 205
O'Neill, Tebaldi, Van Vuuren, Eyring, Friedlingstein, Hurtt, Knutti, Kriegler, Lamarque, Lowe (bib39) 2016; 9
Si, Zain, Li, Liu, Liang, Gao, Duan (bib47) 2021; 244
Jones, He, Boote, Wilkens, Porter, Hu (bib27) 2011; 2
Zhao, Wang, Hu, Zhan, Guo (bib76) 2021; 603
Turan, Ramzani, Ali, Abbas, Iqbal, Irum, Khan (bib58) 2018; 64
NBSC, National Bureau of Statistics of China, 2019. China Statistical Yearbook. China Statistics Press, Beijing.
Yu, Liu, Yang, Sun, Yu, King (bib70) 2023; 288
Heung, Bulmer, Schmidt (bib24) 2014; 214
Shen, Wang, Jiang, Li, Huang, Wu, Wang, Wang, Ma (bib45) 2022; 269
Eyshi Rezaei, Webber, Gaiser, Naab, Ewert (bib16) 2015; 64
Liu, Fu (bib32) 2021; 76
Peng, Li, Feng (bib40) 2017; 7
Ding, Hu, Wu, Yang, Feng (bib12) 2020; 230
Tao, Zhang, Zhang, Chen (bib51) 2022; 136
Zhang, Chen, Gu (bib73) 2022; 42
He, Jones, Graham, Dukes (bib22) 2010; 103
Turan, Schröder, Bilen, Insam, Fernández-Delgado Juárez (bib59) 2019; 9
Turan (bib56) 2022; 24
Sklar (bib48) 1959
Jones, Hoogenboom, Porter, Boote, Batchelor, Hunt, Wilkens, Singh, Gijsman, Ritchie (bib28) 2003; 18
Asseng (10.1016/j.agwat.2024.108881_bib2) 2011; 17
Heung (10.1016/j.agwat.2024.108881_bib24) 2014; 214
Long (10.1016/j.agwat.2024.108881_bib34) 2022; 13
Turan (10.1016/j.agwat.2024.108881_bib58) 2018; 64
Turan (10.1016/j.agwat.2024.108881_bib56) 2022; 24
He (10.1016/j.agwat.2024.108881_bib22) 2010; 103
Massey (10.1016/j.agwat.2024.108881_bib36) 1951; 46
Sklar (10.1016/j.agwat.2024.108881_bib48) 1959
Bebber (10.1016/j.agwat.2024.108881_bib3) 2013; 3
10.1016/j.agwat.2024.108881_bib38
10.1016/j.agwat.2024.108881_bib37
Chen (10.1016/j.agwat.2024.108881_bib7) 2020; 185
Turan (10.1016/j.agwat.2024.108881_bib54) 2020; 245
Zeng (10.1016/j.agwat.2024.108881_bib72) 2019; 11
Zhang (10.1016/j.agwat.2024.108881_bib75) 2023; 902
Farhad (10.1016/j.agwat.2024.108881_bib17) 2024; 16
Jones (10.1016/j.agwat.2024.108881_bib28) 2003; 18
Wen (10.1016/j.agwat.2024.108881_bib65) 2023; 901
Godfrey (10.1016/j.agwat.2024.108881_bib19) 2022; 54
Clarke (10.1016/j.agwat.2024.108881_bib8) 2021; 297
Saleska (10.1016/j.agwat.2024.108881_bib44) 2007; 318
Turan (10.1016/j.agwat.2024.108881_bib57) 2018; 161
Si (10.1016/j.agwat.2024.108881_bib47) 2021; 244
Tooley (10.1016/j.agwat.2024.108881_bib52) 2021; 307
Wang (10.1016/j.agwat.2024.108881_bib64) 2020; 585
Hernandez-Ochoa (10.1016/j.agwat.2024.108881_bib23) 2018; 263
Jiang (10.1016/j.agwat.2024.108881_bib26) 2022; 319
Turan (10.1016/j.agwat.2024.108881_bib55) 2021; 173
Wang (10.1016/j.agwat.2024.108881_bib62) 2023; 276
Zeng (10.1016/j.agwat.2024.108881_bib71) 2023; 287
Eyshi Rezaei (10.1016/j.agwat.2024.108881_bib16) 2015; 64
Zhang (10.1016/j.agwat.2024.108881_bib73) 2022; 42
White (10.1016/j.agwat.2024.108881_bib66) 2011; 124
Daryanto (10.1016/j.agwat.2024.108881_bib11) 2016; 11
Li (10.1016/j.agwat.2024.108881_bib29) 2019; 52
10.1016/j.agwat.2024.108881_bib9
Wang (10.1016/j.agwat.2024.108881_bib63) 2018; 24
Jones (10.1016/j.agwat.2024.108881_bib27) 2011; 2
Du (10.1016/j.agwat.2024.108881_bib14) 2020; 34
Shen (10.1016/j.agwat.2024.108881_bib45) 2022; 269
Peng (10.1016/j.agwat.2024.108881_bib40) 2017; 7
Zhao (10.1016/j.agwat.2024.108881_bib76) 2021; 603
Van Loon (10.1016/j.agwat.2024.108881_bib60) 2016; 9
Yu (10.1016/j.agwat.2024.108881_bib70) 2023; 288
Yang (10.1016/j.agwat.2024.108881_bib68) 2022; 212
Li (10.1016/j.agwat.2024.108881_bib30) 2022; 261
O'Neill (10.1016/j.agwat.2024.108881_bib39) 2016; 9
Cetin (10.1016/j.agwat.2024.108881_bib6) 2022; 39
Ding (10.1016/j.agwat.2024.108881_bib12) 2020; 230
Easterling (10.1016/j.agwat.2024.108881_bib15) 2007; 34
Guo (10.1016/j.agwat.2024.108881_bib21) 2023; 331
Turan (10.1016/j.agwat.2024.108881_bib59) 2019; 9
Piao (10.1016/j.agwat.2024.108881_bib41) 2010; 467
Luo (10.1016/j.agwat.2024.108881_bib35) 2019; 676
Cetin (10.1016/j.agwat.2024.108881_bib4) 2015; 61
Xiang (10.1016/j.agwat.2024.108881_bib67) 2023; 284
Su (10.1016/j.agwat.2024.108881_bib49) 2020; 34
Turan (10.1016/j.agwat.2024.108881_bib53) 2019; 183
Gouveia (10.1016/j.agwat.2024.108881_bib20) 2017; 151
Li (10.1016/j.agwat.2024.108881_bib31) 2019; 95
Rezaei (10.1016/j.agwat.2024.108881_bib42) 2023
Zhang (10.1016/j.agwat.2024.108881_bib74) 2023; 205
Feng (10.1016/j.agwat.2024.108881_bib18) 2021; 304
Dixit (10.1016/j.agwat.2024.108881_bib13) 2018; 610
Hussain (10.1016/j.agwat.2024.108881_bib25) 2019; 9
Vicente-Serrano (10.1016/j.agwat.2024.108881_bib61) 2010; 23
Yao (10.1016/j.agwat.2024.108881_bib69) 2020; 31
Shiau (10.1016/j.agwat.2024.108881_bib46) 2006; 20
Tao (10.1016/j.agwat.2024.108881_bib51) 2022; 136
Cetin (10.1016/j.agwat.2024.108881_bib5) 2022; 6
Dai (10.1016/j.agwat.2024.108881_bib10) 2013; 14
Liu (10.1016/j.agwat.2024.108881_bib33) 2021; 64
Liu (10.1016/j.agwat.2024.108881_bib32) 2021; 76
Ritchie (10.1016/j.agwat.2024.108881_bib43) 1998
Sun (10.1016/j.agwat.2024.108881_bib50) 2022; 818
Abdelhakim (10.1016/j.agwat.2024.108881_bib1) 2021; 162
References_xml – volume: 39
  start-page: 247
  year: 2022
  end-page: 257
  ident: bib6
  article-title: Critical threshold temperatures and rainfall in declining grain yield of durum wheat (
  publication-title: Rom. Agric. Res.
– volume: 95
  start-page: 677
  year: 2019
  end-page: 720
  ident: bib31
  article-title: Innovative trend analysis of main agriculture natural hazards in China during 1989–2014
  publication-title: Nat. Hazards
– volume: 212
  year: 2022
  ident: bib68
  article-title: Development of a multi-GCMs Bayesian copula method for assessing multivariate drought risk under climate change: a case study of the Aral Sea basin
  publication-title: Catena
– volume: 103
  start-page: 256
  year: 2010
  end-page: 264
  ident: bib22
  article-title: Influence of likelihood function choice for estimating crop model parameters using the generalized likelihood uncertainty estimation method
  publication-title: Agric. Syst.
– volume: 64
  start-page: 1053
  year: 2018
  end-page: 1067
  ident: bib58
  article-title: Alleviation of nickel toxicity and an improvement in zinc bioavailability in sunflower seed with chitosan and biochar application in pH adjusted nickel contaminated soil
  publication-title: Arch. Agron. Soil Sci.
– volume: 585
  year: 2020
  ident: bib64
  article-title: A new copula-based standardized precipitation evapotranspiration streamflow index for drought monitoring
  publication-title: J. Hydrol.
– volume: 902
  year: 2023
  ident: bib75
  article-title: Future climate change impacts on wheat grain yield and protein in the North China Region
  publication-title: Sci. Total Environ.
– volume: 61
  start-page: 287
  year: 2015
  end-page: 293
  ident: bib4
  article-title: Effects of drought on optimizing nitrogen use of winter wheat in a semi arid region
  publication-title: Agric. For.
– volume: 124
  start-page: 357
  year: 2011
  end-page: 368
  ident: bib66
  article-title: Methodologies for simulating impacts of climate change on crop production
  publication-title: Field Crops Res
– volume: 610
  start-page: 219
  year: 2018
  end-page: 233
  ident: bib13
  article-title: Decadal analysis of impact of future climate on wheat production in dry Mediterranean environment: a case of Jordan
  publication-title: Sci. Total Environ.
– volume: 13
  start-page: 397
  year: 2022
  end-page: 407
  ident: bib34
  article-title: Impact of climate change on wheat yield and quality in the Yellow River Basin under RCP8. 5 during 2020–2050
  publication-title: Adv. Clim. Chang. Res.
– volume: 603
  year: 2021
  ident: bib76
  article-title: Joint probability of drought encounter among three major grain production zones of China under nonstationary climate
  publication-title: J. Hydrol.
– volume: 297
  year: 2021
  ident: bib8
  article-title: Assessing future drought risks and wheat yield losses in England.
  publication-title: Agric. . Meteorol.
– volume: 9
  year: 2019
  ident: bib59
  article-title: Co-inoculation effect of Rhizobium and Achillea millefolium L. oil extracts on growth of common bean (
  publication-title: Sci. Rep.
– volume: 173
  start-page: 418
  year: 2021
  end-page: 429
  ident: bib55
  article-title: Arbuscular mycorrhizal fungi and pistachio husk biochar combination reduces Ni distribution in mungbean plant and improves plant antioxidants and soil enzymes
  publication-title: Physiol. Plant.
– volume: 185
  year: 2020
  ident: bib7
  article-title: Impacts of multi-timescale SPEI and SMDI variations on winter wheat yields
  publication-title: Agric. Syst.
– volume: 9
  start-page: 3461
  year: 2016
  end-page: 3482
  ident: bib39
  article-title: The scenario model intercomparison project (ScenarioMIP) for CMIP6
  publication-title: Geosci. Model Dev.
– volume: 31
  start-page: 266
  year: 2020
  end-page: 282
  ident: bib69
  article-title: Influence of the accuracy of reference crop evapotranspiration on drought monitoring using standardized precipitation evapotranspiration index in mainland China
  publication-title: Land Degrad. Dev.
– volume: 3
  start-page: 985
  year: 2013
  end-page: 988
  ident: bib3
  article-title: Crop pests and pathogens move polewards in a warming world
  publication-title: Nat. Clim. Change
– volume: 24
  start-page: 2403
  year: 2018
  end-page: 2415
  ident: bib63
  article-title: Australian wheat production expected to decrease by the late 21st century.
  publication-title: Glob. Chang. Biol.
– reference: CMDC, 2022. China National Meteorological Data Center.
– volume: 7
  start-page: 5458
  year: 2017
  ident: bib40
  article-title: The best alternative for estimating reference crop evapotranspiration in different sub-regions of mainland China
  publication-title: Sci. Rep.
– volume: 20
  start-page: 795
  year: 2006
  end-page: 815
  ident: bib46
  article-title: Fitting drought duration and severity with two-dimensional copulas
  publication-title: Water Resour. Manag.
– volume: 14
  start-page: 869
  year: 2013
  end-page: 887
  ident: bib10
  article-title: Development of a China dataset of soil hydraulic parameters using pedotransfer functions for land surface modeling
  publication-title: J. Hydrometeorol.
– volume: 276
  year: 2023
  ident: bib62
  article-title: Performance evaluation of AquaCrop and DSSAT-SUBSTOR-Potato models in simulating potato growth, yield and water productivity under various drip fertigation regimes
  publication-title: Agric. Water Manag.
– volume: 64
  start-page: 101380
  year: 2021
  ident: bib33
  article-title: Thresholds of key disaster-inducing factors and drought simulation in the Xilinguole Grassland
  publication-title: Ecol. Inform.
– start-page: 41
  year: 1998
  end-page: 54
  ident: bib43
  article-title: Soil water balance and plant water stress
  publication-title: Underst. Options Agric. Prod.
– volume: 287
  year: 2023
  ident: bib71
  article-title: Impact of water deficit and irrigation management on winter wheat yield in China
  publication-title: Agric. Water Manag.
– volume: 162
  start-page: 301
  year: 2021
  end-page: 314
  ident: bib1
  article-title: The effect of individual and combined drought and heat stress under elevated CO
  publication-title: Plant Physiol. Biochem.
– volume: 205
  year: 2023
  ident: bib74
  article-title: Impact of climate change and planting date shifts on growth and yields of double cropping rice in southeastern China in future
  publication-title: Agric. Syst.
– volume: 34
  start-page: 2575
  year: 2020
  end-page: 2598
  ident: bib49
  article-title: Multi-site bias correction of climate model outputs for hydro-meteorological impact studies: an application over a watershed in China
  publication-title: Hydrol. Process
– volume: 161
  start-page: 409
  year: 2018
  end-page: 419
  ident: bib57
  article-title: Promoting the productivity and quality of brinjal aligned with heavy metals immobilization in a wastewater irrigated heavy metal polluted soil with biochar and chitosan
  publication-title: Ecotox. Environ. Safe.
– volume: 136
  start-page: 126
  year: 2022
  end-page: 500
  ident: bib51
  article-title: Designing wheat cultivar adaptation to future climate change across China by coupling biophysical modelling and machine learning
  publication-title: Eur. J. Agron.
– volume: 64
  start-page: 98
  year: 2015
  end-page: 113
  ident: bib16
  article-title: Heat stress in cereals: mechanisms and modelling
  publication-title: Eur. J. Agron.
– volume: 676
  start-page: 613
  year: 2019
  end-page: 626
  ident: bib35
  article-title: Identifying climate change impacts on water resources in Xinjiang, China
  publication-title: Sci. Total Environ.
– volume: 331
  year: 2023
  ident: bib21
  article-title: Drought trigger thresholds for different levels of vegetation loss in China and their dynamics
  publication-title: Agric. . Meteorol.
– reference: NBSC, National Bureau of Statistics of China, 2019. China Statistical Yearbook. China Statistics Press, Beijing.
– volume: 151
  start-page: 15
  year: 2017
  end-page: 27
  ident: bib20
  article-title: Drought impacts on vegetation activity in the Mediterranean region: an assessment using remote sensing data and multi-scale drought indicators
  publication-title: Glob. Planet. Change
– volume: 214
  start-page: 141
  year: 2014
  end-page: 154
  ident: bib24
  article-title: Predictive soil parent material mapping at a regional-scale: a random forest approach
  publication-title: Geoderma
– volume: 11
  year: 2016
  ident: bib11
  article-title: Global synthesis of drought effects on maize and wheat production
  publication-title: PloS One
– volume: 76
  start-page: 2632
  year: 2021
  end-page: 2646
  ident: bib32
  article-title: Drought impacts on crop yield: progress, challenges and prospect
  publication-title: Acta Geogr. Sin.
– volume: 23
  start-page: 1696
  year: 2010
  end-page: 1718
  ident: bib61
  article-title: A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index
  publication-title: J. Clim.
– start-page: 229
  year: 1959
  end-page: 231
  ident: bib48
  publication-title: Fonct. De. R. éPartit. à N. Dimens. Et. leurs Marges
– volume: 17
  start-page: 997
  year: 2011
  end-page: 1012
  ident: bib2
  article-title: The impact of temperature variability on wheat yields
  publication-title: Glob. Chang. Biol.
– volume: 307
  year: 2021
  ident: bib52
  article-title: Predicting the response of a potato-grain production system to climate change for a humid continental climate using DSSAT
  publication-title: Agric. For. Meteorol.
– volume: 319
  year: 2022
  ident: bib26
  article-title: Identifying sources of uncertainty in wheat production projections with consideration of crop climatic suitability under future climate
  publication-title: Agric. For. Meteorol.
– volume: 901
  year: 2023
  ident: bib65
  article-title: Adaptability of wheat to future climate change: effects of sowing date and sowing rate on wheat yield in three wheat production regions in the North China Plain
  publication-title: Sci. Total Environ.
– volume: 2
  start-page: 365
  year: 2011
  end-page: 393
  ident: bib27
  article-title: Estimating DSSAT cropping system cultivar-specific parameters using Bayesian techniques
  publication-title: Methods Introd. Syst. Models into Agric. Res.
– volume: 288
  year: 2023
  ident: bib70
  article-title: Future climate change for major agricultural zones in China as projected by CORDEX-EA-II, CMIP5 and CMIP6 ensembles
  publication-title: Atmos. Res.
– volume: 24
  start-page: 166
  year: 2022
  end-page: 176
  ident: bib56
  article-title: Calcite in combination with olive pulp biochar reduces Ni mobility in soil and its distribution in chili plant
  publication-title: Int. J. Phytoremediat.
– volume: 183
  year: 2019
  ident: bib53
  article-title: Confident performance of chitosan and pistachio shell biochar on reducing Ni bioavailability in soil and plant plus improved the soil enzymatic activities, antioxidant defense system and nutritional quality of lettuce
  publication-title: Ecotox. Environ. Safe.
– volume: 11
  start-page: 1064
  year: 2019
  ident: bib72
  article-title: Agricultural drought risk assessment in Southwest China
  publication-title: Water
– volume: 304
  year: 2021
  ident: bib18
  article-title: Changes in climate-crop yield relationships affect risks of crop yield reduction
  publication-title: Agric. . Meteorol.
– volume: 261
  year: 2022
  ident: bib30
  article-title: Various maize yield losses and their dynamics triggered by drought thresholds based on Copula-Bayesian conditional probabilities
  publication-title: Agric. Water Manag.
– volume: 6
  start-page: 25
  year: 2022
  end-page: 36
  ident: bib5
  article-title: Impact of climate on durum wheat yield (
  publication-title: Int. J. Agric. Environ. Food Sci.
– volume: 18
  start-page: 235
  year: 2003
  end-page: 265
  ident: bib28
  article-title: The DSSAT cropping system model
  publication-title: Eur. J. Agron.
– volume: 34
  start-page: 1525
  year: 2020
  end-page: 1536
  ident: bib14
  article-title: Impacts of global environmental change drivers on non-structural carbohydrates in terrestrial plants
  publication-title: Funct. Ecol.
– volume: 54
  start-page: 72
  year: 2022
  end-page: 92
  ident: bib19
  article-title: Risk Analysis of Australia’s Victorian dairy farms using multivariate copulae
  publication-title: J. Agric. Appl. Econ.
– volume: 244
  year: 2021
  ident: bib47
  article-title: Optimizing nitrogen application for drip-irrigated winter wheat using the DSSAT-CERES-Wheat model
  publication-title: Agric. Water Manag.
– volume: 52
  start-page: 5775
  year: 2019
  end-page: 5799
  ident: bib29
  article-title: Multi-site multivariate downscaling of global climate model outputs: an integrated framework combining quantile mapping, stochastic weather generator and Empirical Copula approaches
  publication-title: Clim. Dyn.
– volume: 263
  start-page: 373
  year: 2018
  end-page: 387
  ident: bib23
  article-title: Climate change impact on Mexico wheat production
  publication-title: Agric. For. Meteorol.
– volume: 269
  year: 2022
  ident: bib45
  article-title: Simulation modeling for effective management of irrigation water for winter wheat
  publication-title: Agric. Water Manag.
– start-page: 1
  year: 2023
  end-page: 16
  ident: bib42
  article-title: Climate change impacts on crop yields
  publication-title: Nat. Rev. Earth Env.
– volume: 34
  year: 2007
  ident: bib15
  article-title: Effects of temperature and precipitation trends on US drought.
  publication-title: Geophys. Res. Lett.
– volume: 245
  year: 2020
  ident: bib54
  article-title: Potential of pistachio shell biochar and dicalcium phosphate combination to reduce Pb speciation in spinach, improved soil enzymatic activities, plant nutritional quality, and antioxidant defense system
  publication-title: Chemosphere
– volume: 318
  year: 2007
  ident: bib44
  article-title: Amazon forests green-up during 2005 drought
  publication-title: Science
– volume: 46
  start-page: 68
  year: 1951
  end-page: 78
  ident: bib36
  article-title: The Kolmogorov-Smirnov test for goodness of fit
  publication-title: J. Am. Stat. Assoc.
– reference: .
– reference: NTPSD, 2014. National Tibetan Plateau Science Data Center.
– volume: 230
  start-page: 1
  year: 2020
  end-page: 8
  ident: bib12
  article-title: Simulating the effects of conventional versus conservation tillage on soil water, nitrogen dynamics, and yield of winter wheat with RZWQM2
  publication-title: Agric. Water Manag.
– volume: 284
  year: 2023
  ident: bib67
  article-title: Probabilistic assessment of drought impacts on wheat yield in south-eastern Australia
  publication-title: Agric. Water Manag.
– volume: 42
  start-page: 507
  year: 2022
  end-page: 520
  ident: bib73
  article-title: Overall uncertainty of climate change impacts on watershed hydrology in China
  publication-title: Int. J. Climatol.
– volume: 9
  start-page: 89
  year: 2016
  end-page: 91
  ident: bib60
  article-title: Drought in the Anthropocene
  publication-title: Nat. Geosci.
– volume: 467
  start-page: 43
  year: 2010
  end-page: 51
  ident: bib41
  article-title: The impacts of climate change on water resources and agriculture in China
  publication-title: Nature
– volume: 818
  year: 2022
  ident: bib50
  article-title: Heat stress may cause a significant reduction of rice yield in China under future climate scenarios
  publication-title: Sci. Total Environ.
– volume: 9
  start-page: 3890
  year: 2019
  ident: bib25
  article-title: Interactive effects of drought and heat stresses on morpho-physiological attributes, yield, nutrient uptake and oxidative status in maize hybrids
  publication-title: Sci. Rep.
– volume: 16
  start-page: 634
  year: 2024
  ident: bib17
  article-title: Interactive suitability of rice stubble biochar and arbuscular mycorrhizal fungi for improving wastewater-polluted soil health and reducing heavy metals in peas
  publication-title: Sustainability
– volume: 245
  year: 2020
  ident: 10.1016/j.agwat.2024.108881_bib54
  article-title: Potential of pistachio shell biochar and dicalcium phosphate combination to reduce Pb speciation in spinach, improved soil enzymatic activities, plant nutritional quality, and antioxidant defense system
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.125611
– volume: 9
  start-page: 3890
  year: 2019
  ident: 10.1016/j.agwat.2024.108881_bib25
  article-title: Interactive effects of drought and heat stresses on morpho-physiological attributes, yield, nutrient uptake and oxidative status in maize hybrids
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-40362-7
– volume: 34
  start-page: 2575
  year: 2020
  ident: 10.1016/j.agwat.2024.108881_bib49
  article-title: Multi-site bias correction of climate model outputs for hydro-meteorological impact studies: an application over a watershed in China
  publication-title: Hydrol. Process
  doi: 10.1002/hyp.13750
– volume: 46
  start-page: 68
  year: 1951
  ident: 10.1016/j.agwat.2024.108881_bib36
  article-title: The Kolmogorov-Smirnov test for goodness of fit
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1951.10500769
– volume: 331
  year: 2023
  ident: 10.1016/j.agwat.2024.108881_bib21
  article-title: Drought trigger thresholds for different levels of vegetation loss in China and their dynamics
  publication-title: Agric. . Meteorol.
  doi: 10.1016/j.agrformet.2023.109349
– volume: 64
  start-page: 98
  year: 2015
  ident: 10.1016/j.agwat.2024.108881_bib16
  article-title: Heat stress in cereals: mechanisms and modelling
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2014.10.003
– volume: 11
  year: 2016
  ident: 10.1016/j.agwat.2024.108881_bib11
  article-title: Global synthesis of drought effects on maize and wheat production
  publication-title: PloS One
  doi: 10.1371/journal.pone.0156362
– volume: 52
  start-page: 5775
  year: 2019
  ident: 10.1016/j.agwat.2024.108881_bib29
  article-title: Multi-site multivariate downscaling of global climate model outputs: an integrated framework combining quantile mapping, stochastic weather generator and Empirical Copula approaches
  publication-title: Clim. Dyn.
  doi: 10.1007/s00382-018-4480-0
– volume: 16
  start-page: 634
  year: 2024
  ident: 10.1016/j.agwat.2024.108881_bib17
  article-title: Interactive suitability of rice stubble biochar and arbuscular mycorrhizal fungi for improving wastewater-polluted soil health and reducing heavy metals in peas
  publication-title: Sustainability
  doi: 10.3390/su16020634
– volume: 269
  year: 2022
  ident: 10.1016/j.agwat.2024.108881_bib45
  article-title: Simulation modeling for effective management of irrigation water for winter wheat
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2022.107720
– volume: 20
  start-page: 795
  year: 2006
  ident: 10.1016/j.agwat.2024.108881_bib46
  article-title: Fitting drought duration and severity with two-dimensional copulas
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-005-9008-9
– volume: 467
  start-page: 43
  year: 2010
  ident: 10.1016/j.agwat.2024.108881_bib41
  article-title: The impacts of climate change on water resources and agriculture in China
  publication-title: Nature
  doi: 10.1038/nature09364
– volume: 244
  year: 2021
  ident: 10.1016/j.agwat.2024.108881_bib47
  article-title: Optimizing nitrogen application for drip-irrigated winter wheat using the DSSAT-CERES-Wheat model
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2020.106592
– volume: 162
  start-page: 301
  year: 2021
  ident: 10.1016/j.agwat.2024.108881_bib1
  article-title: The effect of individual and combined drought and heat stress under elevated CO2 on physiological responses in spring wheat genotypes.
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2021.02.015
– ident: 10.1016/j.agwat.2024.108881_bib9
– volume: 42
  start-page: 507
  year: 2022
  ident: 10.1016/j.agwat.2024.108881_bib73
  article-title: Overall uncertainty of climate change impacts on watershed hydrology in China
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.7257
– volume: 151
  start-page: 15
  year: 2017
  ident: 10.1016/j.agwat.2024.108881_bib20
  article-title: Drought impacts on vegetation activity in the Mediterranean region: an assessment using remote sensing data and multi-scale drought indicators
  publication-title: Glob. Planet. Change
  doi: 10.1016/j.gloplacha.2016.06.011
– volume: 23
  start-page: 1696
  year: 2010
  ident: 10.1016/j.agwat.2024.108881_bib61
  article-title: A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index
  publication-title: J. Clim.
  doi: 10.1175/2009JCLI2909.1
– volume: 39
  start-page: 247
  year: 2022
  ident: 10.1016/j.agwat.2024.108881_bib6
  article-title: Critical threshold temperatures and rainfall in declining grain yield of durum wheat (Triticum durum Desf.) during crop development stages
  publication-title: Rom. Agric. Res.
– volume: 276
  year: 2023
  ident: 10.1016/j.agwat.2024.108881_bib62
  article-title: Performance evaluation of AquaCrop and DSSAT-SUBSTOR-Potato models in simulating potato growth, yield and water productivity under various drip fertigation regimes
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2022.108076
– volume: 585
  year: 2020
  ident: 10.1016/j.agwat.2024.108881_bib64
  article-title: A new copula-based standardized precipitation evapotranspiration streamflow index for drought monitoring
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.124793
– volume: 284
  year: 2023
  ident: 10.1016/j.agwat.2024.108881_bib67
  article-title: Probabilistic assessment of drought impacts on wheat yield in south-eastern Australia
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2023.108359
– volume: 11
  start-page: 1064
  year: 2019
  ident: 10.1016/j.agwat.2024.108881_bib72
  article-title: Agricultural drought risk assessment in Southwest China
  publication-title: Water
  doi: 10.3390/w11051064
– ident: 10.1016/j.agwat.2024.108881_bib37
– volume: 31
  start-page: 266
  year: 2020
  ident: 10.1016/j.agwat.2024.108881_bib69
  article-title: Influence of the accuracy of reference crop evapotranspiration on drought monitoring using standardized precipitation evapotranspiration index in mainland China
  publication-title: Land Degrad. Dev.
  doi: 10.1002/ldr.3447
– volume: 288
  year: 2023
  ident: 10.1016/j.agwat.2024.108881_bib70
  article-title: Future climate change for major agricultural zones in China as projected by CORDEX-EA-II, CMIP5 and CMIP6 ensembles
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2023.106731
– volume: 173
  start-page: 418
  year: 2021
  ident: 10.1016/j.agwat.2024.108881_bib55
  article-title: Arbuscular mycorrhizal fungi and pistachio husk biochar combination reduces Ni distribution in mungbean plant and improves plant antioxidants and soil enzymes
  publication-title: Physiol. Plant.
– volume: 136
  start-page: 126
  year: 2022
  ident: 10.1016/j.agwat.2024.108881_bib51
  article-title: Designing wheat cultivar adaptation to future climate change across China by coupling biophysical modelling and machine learning
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2022.126500
– volume: 9
  year: 2019
  ident: 10.1016/j.agwat.2024.108881_bib59
  article-title: Co-inoculation effect of Rhizobium and Achillea millefolium L. oil extracts on growth of common bean (Phaseolus vulgaris L.) and soil microbial-chemical properties
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-51587-x
– volume: 902
  year: 2023
  ident: 10.1016/j.agwat.2024.108881_bib75
  article-title: Future climate change impacts on wheat grain yield and protein in the North China Region
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2023.166147
– volume: 6
  start-page: 25
  year: 2022
  ident: 10.1016/j.agwat.2024.108881_bib5
  article-title: Impact of climate on durum wheat yield (Triticum durum Desf.) under different cultivation and irrigation methods
  publication-title: Int. J. Agric. Environ. Food Sci.
– volume: 261
  year: 2022
  ident: 10.1016/j.agwat.2024.108881_bib30
  article-title: Various maize yield losses and their dynamics triggered by drought thresholds based on Copula-Bayesian conditional probabilities
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2021.107391
– volume: 9
  start-page: 89
  year: 2016
  ident: 10.1016/j.agwat.2024.108881_bib60
  article-title: Drought in the Anthropocene
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo2646
– start-page: 229
  year: 1959
  ident: 10.1016/j.agwat.2024.108881_bib48
  publication-title: Fonct. De. R. éPartit. à N. Dimens. Et. leurs Marges
– volume: 676
  start-page: 613
  year: 2019
  ident: 10.1016/j.agwat.2024.108881_bib35
  article-title: Identifying climate change impacts on water resources in Xinjiang, China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.04.297
– volume: 7
  start-page: 5458
  year: 2017
  ident: 10.1016/j.agwat.2024.108881_bib40
  article-title: The best alternative for estimating reference crop evapotranspiration in different sub-regions of mainland China
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-05660-y
– volume: 54
  start-page: 72
  year: 2022
  ident: 10.1016/j.agwat.2024.108881_bib19
  article-title: Risk Analysis of Australia’s Victorian dairy farms using multivariate copulae
  publication-title: J. Agric. Appl. Econ.
  doi: 10.1017/aae.2021.23
– start-page: 41
  year: 1998
  ident: 10.1016/j.agwat.2024.108881_bib43
  article-title: Soil water balance and plant water stress
  publication-title: Underst. Options Agric. Prod.
  doi: 10.1007/978-94-017-3624-4_3
– volume: 2
  start-page: 365
  year: 2011
  ident: 10.1016/j.agwat.2024.108881_bib27
  article-title: Estimating DSSAT cropping system cultivar-specific parameters using Bayesian techniques
  publication-title: Methods Introd. Syst. Models into Agric. Res.
– volume: 9
  start-page: 3461
  year: 2016
  ident: 10.1016/j.agwat.2024.108881_bib39
  article-title: The scenario model intercomparison project (ScenarioMIP) for CMIP6
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-9-3461-2016
– volume: 14
  start-page: 869
  year: 2013
  ident: 10.1016/j.agwat.2024.108881_bib10
  article-title: Development of a China dataset of soil hydraulic parameters using pedotransfer functions for land surface modeling
  publication-title: J. Hydrometeorol.
  doi: 10.1175/JHM-D-12-0149.1
– volume: 24
  start-page: 166
  year: 2022
  ident: 10.1016/j.agwat.2024.108881_bib56
  article-title: Calcite in combination with olive pulp biochar reduces Ni mobility in soil and its distribution in chili plant
  publication-title: Int. J. Phytoremediat.
  doi: 10.1080/15226514.2021.1929826
– volume: 13
  start-page: 397
  year: 2022
  ident: 10.1016/j.agwat.2024.108881_bib34
  article-title: Impact of climate change on wheat yield and quality in the Yellow River Basin under RCP8. 5 during 2020–2050
  publication-title: Adv. Clim. Chang. Res.
  doi: 10.1016/j.accre.2022.02.006
– ident: 10.1016/j.agwat.2024.108881_bib38
– volume: 304
  year: 2021
  ident: 10.1016/j.agwat.2024.108881_bib18
  article-title: Changes in climate-crop yield relationships affect risks of crop yield reduction
  publication-title: Agric. . Meteorol.
– volume: 610
  start-page: 219
  year: 2018
  ident: 10.1016/j.agwat.2024.108881_bib13
  article-title: Decadal analysis of impact of future climate on wheat production in dry Mediterranean environment: a case of Jordan
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.07.270
– start-page: 1
  year: 2023
  ident: 10.1016/j.agwat.2024.108881_bib42
  article-title: Climate change impacts on crop yields
  publication-title: Nat. Rev. Earth Env.
– volume: 205
  year: 2023
  ident: 10.1016/j.agwat.2024.108881_bib74
  article-title: Impact of climate change and planting date shifts on growth and yields of double cropping rice in southeastern China in future
  publication-title: Agric. Syst.
  doi: 10.1016/j.agsy.2022.103581
– volume: 297
  year: 2021
  ident: 10.1016/j.agwat.2024.108881_bib8
  article-title: Assessing future drought risks and wheat yield losses in England.
  publication-title: Agric. . Meteorol.
  doi: 10.1016/j.agrformet.2020.108248
– volume: 161
  start-page: 409
  year: 2018
  ident: 10.1016/j.agwat.2024.108881_bib57
  article-title: Promoting the productivity and quality of brinjal aligned with heavy metals immobilization in a wastewater irrigated heavy metal polluted soil with biochar and chitosan
  publication-title: Ecotox. Environ. Safe.
  doi: 10.1016/j.ecoenv.2018.05.082
– volume: 319
  year: 2022
  ident: 10.1016/j.agwat.2024.108881_bib26
  article-title: Identifying sources of uncertainty in wheat production projections with consideration of crop climatic suitability under future climate
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2022.108933
– volume: 17
  start-page: 997
  year: 2011
  ident: 10.1016/j.agwat.2024.108881_bib2
  article-title: The impact of temperature variability on wheat yields
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2010.02262.x
– volume: 318
  year: 2007
  ident: 10.1016/j.agwat.2024.108881_bib44
  article-title: Amazon forests green-up during 2005 drought
  publication-title: Science
  doi: 10.1126/science.1146663
– volume: 212
  year: 2022
  ident: 10.1016/j.agwat.2024.108881_bib68
  article-title: Development of a multi-GCMs Bayesian copula method for assessing multivariate drought risk under climate change: a case study of the Aral Sea basin
  publication-title: Catena
  doi: 10.1016/j.catena.2022.106048
– volume: 34
  start-page: 1525
  year: 2020
  ident: 10.1016/j.agwat.2024.108881_bib14
  article-title: Impacts of global environmental change drivers on non-structural carbohydrates in terrestrial plants
  publication-title: Funct. Ecol.
  doi: 10.1111/1365-2435.13577
– volume: 34
  year: 2007
  ident: 10.1016/j.agwat.2024.108881_bib15
  article-title: Effects of temperature and precipitation trends on US drought.
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2007GL031541
– volume: 214
  start-page: 141
  year: 2014
  ident: 10.1016/j.agwat.2024.108881_bib24
  article-title: Predictive soil parent material mapping at a regional-scale: a random forest approach
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.09.016
– volume: 76
  start-page: 2632
  year: 2021
  ident: 10.1016/j.agwat.2024.108881_bib32
  article-title: Drought impacts on crop yield: progress, challenges and prospect
  publication-title: Acta Geogr. Sin.
– volume: 901
  year: 2023
  ident: 10.1016/j.agwat.2024.108881_bib65
  article-title: Adaptability of wheat to future climate change: effects of sowing date and sowing rate on wheat yield in three wheat production regions in the North China Plain
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2023.165906
– volume: 3
  start-page: 985
  year: 2013
  ident: 10.1016/j.agwat.2024.108881_bib3
  article-title: Crop pests and pathogens move polewards in a warming world
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate1990
– volume: 64
  start-page: 101380
  year: 2021
  ident: 10.1016/j.agwat.2024.108881_bib33
  article-title: Thresholds of key disaster-inducing factors and drought simulation in the Xilinguole Grassland
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2021.101380
– volume: 183
  year: 2019
  ident: 10.1016/j.agwat.2024.108881_bib53
  article-title: Confident performance of chitosan and pistachio shell biochar on reducing Ni bioavailability in soil and plant plus improved the soil enzymatic activities, antioxidant defense system and nutritional quality of lettuce
  publication-title: Ecotox. Environ. Safe.
  doi: 10.1016/j.ecoenv.2019.109594
– volume: 185
  year: 2020
  ident: 10.1016/j.agwat.2024.108881_bib7
  article-title: Impacts of multi-timescale SPEI and SMDI variations on winter wheat yields
  publication-title: Agric. Syst.
  doi: 10.1016/j.agsy.2020.102955
– volume: 603
  year: 2021
  ident: 10.1016/j.agwat.2024.108881_bib76
  article-title: Joint probability of drought encounter among three major grain production zones of China under nonstationary climate
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2021.126995
– volume: 61
  start-page: 287
  year: 2015
  ident: 10.1016/j.agwat.2024.108881_bib4
  article-title: Effects of drought on optimizing nitrogen use of winter wheat in a semi arid region
  publication-title: Agric. For.
– volume: 95
  start-page: 677
  year: 2019
  ident: 10.1016/j.agwat.2024.108881_bib31
  article-title: Innovative trend analysis of main agriculture natural hazards in China during 1989–2014
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-018-3514-6
– volume: 230
  start-page: 1
  year: 2020
  ident: 10.1016/j.agwat.2024.108881_bib12
  article-title: Simulating the effects of conventional versus conservation tillage on soil water, nitrogen dynamics, and yield of winter wheat with RZWQM2
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2019.105956
– volume: 64
  start-page: 1053
  issue: 8
  year: 2018
  ident: 10.1016/j.agwat.2024.108881_bib58
  article-title: Alleviation of nickel toxicity and an improvement in zinc bioavailability in sunflower seed with chitosan and biochar application in pH adjusted nickel contaminated soil
  publication-title: Arch. Agron. Soil Sci.
  doi: 10.1080/03650340.2017.1410542
– volume: 103
  start-page: 256
  year: 2010
  ident: 10.1016/j.agwat.2024.108881_bib22
  article-title: Influence of likelihood function choice for estimating crop model parameters using the generalized likelihood uncertainty estimation method
  publication-title: Agric. Syst.
  doi: 10.1016/j.agsy.2010.01.006
– volume: 263
  start-page: 373
  year: 2018
  ident: 10.1016/j.agwat.2024.108881_bib23
  article-title: Climate change impact on Mexico wheat production
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2018.09.008
– volume: 18
  start-page: 235
  year: 2003
  ident: 10.1016/j.agwat.2024.108881_bib28
  article-title: The DSSAT cropping system model
  publication-title: Eur. J. Agron.
  doi: 10.1016/S1161-0301(02)00107-7
– volume: 124
  start-page: 357
  year: 2011
  ident: 10.1016/j.agwat.2024.108881_bib66
  article-title: Methodologies for simulating impacts of climate change on crop production
  publication-title: Field Crops Res
  doi: 10.1016/j.fcr.2011.07.001
– volume: 287
  year: 2023
  ident: 10.1016/j.agwat.2024.108881_bib71
  article-title: Impact of water deficit and irrigation management on winter wheat yield in China
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2023.108431
– volume: 818
  year: 2022
  ident: 10.1016/j.agwat.2024.108881_bib50
  article-title: Heat stress may cause a significant reduction of rice yield in China under future climate scenarios
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.151746
– volume: 24
  start-page: 2403
  year: 2018
  ident: 10.1016/j.agwat.2024.108881_bib63
  article-title: Australian wheat production expected to decrease by the late 21st century.
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.14034
– volume: 307
  year: 2021
  ident: 10.1016/j.agwat.2024.108881_bib52
  article-title: Predicting the response of a potato-grain production system to climate change for a humid continental climate using DSSAT
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2021.108452
SSID ssj0004047
Score 2.4730277
Snippet Predicting the risk of diminished wheat yields caused by drought under future climate change climate is essential for the long-term sustainability of...
SourceID doaj
proquest
crossref
elsevier
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 108881
SubjectTerms adverse effects
algorithms
China
climate
climate change
Conditional probability
crop yield
drought
Drought trigger threshold
DSSAT-CERES-Wheat
Future climate change
prediction
resource allocation
risk
risk management
temperature
water management
winter wheat
Yield loss
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqnuCAeIqlgAaJI2ET23kdl6VVhQRC2lbqzRon9iqoSqpsqhUXfgs_lRknKVoOPXCM5TiRZzzzTWbyjRDvlc0kVkkV1YTFI_LQLkKHeeQzrDCX6BH5O-TXb9n5pf5ylV4difX8LwyXVU62f7TpwVpPI8tpN5c3TbPcxCqn6IpCO82OKmPaba1z1vKPv_6Weeg4NBnjyRHPnpmHQo0XbvfIBZVSc61dUSQH3imQ-B84qX_MdfBBZ4_Fowk8wmp8vyfiyLVPxcPVtp8INNwz8ft7z6kX3m7oPNShC88AAwXhW9fDQKLbccZpB4RWYWQUgT2TRvSwZ8MMP7mmDa47zgZD00LosA3s7WqgRQkwwufNZnURrU9JelGw5hAa6gC2NaxDRzCgMLtuxu-MwE1rRjpwCsufi8uz04v1eTR1YYgq2s6BItVY-Vqh9hRbVUmR2ZggX6EwLbNSSietYo6-vLLoCv4x1hWpSy2nTMtS1rF6IY7brnUvBZD1qGzMPtErneaxzaxLtJOIJZIE_ULIefdNNVGUc6eMazPXov0wQWSGRWZGkS3Eh7ubbkaGjvunf2Kx3k1leu0w0PVbM-mXKWXskICQTdFp79Gq0lZZ4hyj6brUC5HNSmEOtJWWau5_-rtZhQydY07OYOu6251R7HoIP-ni1f8ufiIe8NVYzfhaHA_9rXtDkGmwb8OZ-AOlFBWg
  priority: 102
  providerName: Elsevier
Title Prediction of drought trigger thresholds for future winter wheat yield losses in China based on the DSSAT-CERES-Wheat model and Copula conditional probabilities
URI https://dx.doi.org/10.1016/j.agwat.2024.108881
https://www.proquest.com/docview/3153823848
https://doaj.org/article/920ea293b5ae4ffab39bc61ee9916d94
Volume 299
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgXOBQ8SkW6GqQOBJIbOfruF1aLSAqpLZSb9Y4cVZbVVmUTbXqhd_Sn9oZO6koh3LhGjlx5Jn4vcmM3wjxQdlMYpVUUU1cPCKEdhE6zKMmwwpziQ0i_4f8cZQtTvW3s_Tsj1ZfXBMW5IHDwn0uZeyQMMmm6HTToFWlrbLEOSY2demVQAnzxmBqPBEZ63zUGPLVXLjcIpdOSs1VdUWR3MEhL9d_B47-2pg92hw-FbsDTYRZeL1n4oFrn4sns2U3SGW4F-L6Z8dJFl5YWDdQ-347PfQUbi9dBz0ZacO5pQ0QL4WgHQJblofoYMtbMFxx9RpcrDnvC6sWfC9tYFyrgR5K1BC-HB_PTqL5Adkp8vs2-NY5gG0Nc9_7CyigrlfhjyJwe5og_E0B-EtxenhwMl9EQ7-FqNI67ykmjVVTK9QNRVFVUmQ2JnJXKEzLrJTSSatYjS-vLLqCj8C6InWp5eRoWco6Vq_ETrtu3WsBtE9UNmb0a5RO89hm1iXaScQSZZI1EyHH1TfVIEbOPTEuzFh1dm68yQybzASTTcTH25t-BS2O-4fvs1lvh7KQtr9A7mUG9zL_cq-JyEanMAMnCVyDHrW6f_b3owsZ-mI5DYOtW19ujGKQIaakizf_4w3fisc8bahhfCd2-u7S7RFR6u1UPPz0O5mKR7Ov3xdHU_-F3ADOvhaK
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6VcgAOiKcaymOQOGLix3ptH0NoFaCtkJJKva1m7XVkVNmV4yri0t_CT2VmbReFQw9cnc3a2tmd-cYz_j4hPkRGhZgHuVcQFvcoQlsPLSZeqTDHJMQSkd9Dnp6pxbn8dhFf7In5-C0Mt1UOvr_36c5bD1emw2pOr6pquvSjhLIrSu0kByql7on7ko4vyxh8uvnb5yF9pzLGoz0ePlIPuSYvXG-ROypDyc12aRrshCfH4r8Tpf7x1y4IHT8Rjwf0CLP-AZ-KPVs_E49m63Zg0LDPxe8fLddeeL2hKaFwMjwddJSFr20LHdluwyWnDRBchZ5SBLbMGtHClj0z_OKmNrhsuBwMVQ1OYhs43BVAkxJihC_L5WzlzY_IfJ5z5-AUdQDrAuZOEgwozy6q_kUjsGpNzwdOefkLcX58tJovvEGGwculTDpKVf2oLCKUJSVXeZAq4xPmSyOMM5WFoQ1NxCR9SW7QpvxlrE1jGxuumWZZWPjRS7FfN7U9EEDuIzc-B8UyknHiG2VsIG2ImCGZsJyIcFx9nQ8c5SyVcanHZrSf2plMs8l0b7KJ-Hj7p6ueouPu4Z_ZrLdDmV_bXWjatR42mM5C3yIhIROjlWWJJspMrgJrGU4XmZwINW4KvbNdaarq7ru_H7eQpoPM1RmsbXO90RHHHgJQMn31v5O_Ew8Wq9MTffL17PuheMi_9K2Nr8V-117bN4SfOvPWnY8_i-oYvA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+drought+trigger+thresholds+for+future+winter+wheat+yield+losses+in+China+based+on+the+DSSAT-CERES-Wheat+model+and+Copula+conditional+probabilities&rft.jtitle=Agricultural+water+management&rft.au=Cuiping+Yang&rft.au=Changhong+Liu&rft.au=Yanxin+Liu&rft.au=Yunhe+Gao&rft.date=2024-06-30&rft.pub=Elsevier&rft.eissn=1873-2283&rft.volume=299&rft.spage=108881&rft_id=info:doi/10.1016%2Fj.agwat.2024.108881&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_920ea293b5ae4ffab39bc61ee9916d94
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-3774&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-3774&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-3774&client=summon