A Deep Learning Model for Automated Classification of Intraoperative Continuous EMG

Objective: Intraoperative neurophysiological monitoring (IONM) is the use of electrophysiological methods during certain high-risk surgeries to assess the functional integrity of nerves in real time and alert the surgeon to prevent damage. However, the efficiency of IONM in current practice is limit...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical robotics and bionics Vol. 3; no. 1; pp. 44 - 52
Main Authors Zha, Xuefan, Wehbe, Leila, Sclabassi, Robert J., Mace, Zachary, Liang, Ye V., Yu, Alexander, Leonardo, Jody, Cheng, Boyle C., Hillman, Todd A., Chen, Douglas A., Riviere, Cameron N.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.02.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2576-3202
2576-3202
DOI10.1109/TMRB.2020.3048255

Cover

Loading…
Abstract Objective: Intraoperative neurophysiological monitoring (IONM) is the use of electrophysiological methods during certain high-risk surgeries to assess the functional integrity of nerves in real time and alert the surgeon to prevent damage. However, the efficiency of IONM in current practice is limited by latency of verbal communications, inter-rater variability, and the subjective manner in which electrophysiological signals are described. Methods: In an attempt to address these shortcomings, we investigate automated classification of free-running electromyogram (EMG) waveforms during IONM. We propose a hybrid model with a convolutional neural network (CNN) component and a long short-term memory (LSTM) component to better capture complicated EMG patterns under conditions of both electrical noise and movement artifacts. Moreover, a preprocessing pipeline based on data normalization is used to handle classification of data from multiple subjects. To investigate model robustness, we also analyze models under different methods for processing of artifacts. Results: Compared with several benchmark modeling methods, CNN-LSTM performs best in classification, achieving accuracy of 89.54% and sensitivity of 94.23% in cross-patient evaluation. Conclusion: The CNN-LSTM model shows promise for automated classification of continuous EMG in IONM. Significance: This technique has potential to improve surgical safety by reducing cognitive load and inter-rater variability.
AbstractList Objective: Intraoperative neurophysiological monitoring (IONM) is the use of electrophysiological methods during certain high-risk surgeries to assess the functional integrity of nerves in real time and alert the surgeon to prevent damage. However, the efficiency of IONM in current practice is limited by latency of verbal communications, inter-rater variability, and the subjective manner in which electrophysiological signals are described. Methods: In an attempt to address these shortcomings, we investigate automated classification of free-running electromyogram (EMG) waveforms during IONM. We propose a hybrid model with a convolutional neural network (CNN) component and a long short-term memory (LSTM) component to better capture complicated EMG patterns under conditions of both electrical noise and movement artifacts. Moreover, a preprocessing pipeline based on data normalization is used to handle classification of data from multiple subjects. To investigate model robustness, we also analyze models under different methods for processing of artifacts. Results: Compared with several benchmark modeling methods, CNN-LSTM performs best in classification, achieving accuracy of 89.54% and sensitivity of 94.23% in cross-patient evaluation. Conclusion: The CNN-LSTM model shows promise for automated classification of continuous EMG in IONM. Significance: This technique has potential to improve surgical safety by reducing cognitive load and inter-rater variability.
Intraoperative neurophysiological monitoring (IONM) is the use of electrophysiological methods during certain high-risk surgeries to assess the functional integrity of nerves in real time and alert the surgeon to prevent damage. However, the efficiency of IONM in current practice is limited by latency of verbal communications, inter-rater variability, and the subjective manner in which electrophysiological signals are described. In an attempt to address these shortcomings, we investigate automated classification of free-running electromyogram (EMG) waveforms during IONM. We propose a hybrid model with a convolutional neural network (CNN) component and a long short-term memory (LSTM) component to better capture complicated EMG patterns under conditions of both electrical noise and movement artifacts. Moreover, a preprocessing pipeline based on data normalization is used to handle classification of data from multiple subjects. To investigate model robustness, we also analyze models under different methods for processing of artifacts. Compared with several benchmark modeling methods, CNN-LSTM performs best in classification, achieving accuracy of 89.54% and sensitivity of 94.23% in cross-patient evaluation. The CNN-LSTM model shows promise for automated classification of continuous EMG in IONM. This technique has potential to improve surgical safety by reducing cognitive load and inter-rater variability.
Intraoperative neurophysiological monitoring (IONM) is the use of electrophysiological methods during certain high-risk surgeries to assess the functional integrity of nerves in real time and alert the surgeon to prevent damage. However, the efficiency of IONM in current practice is limited by latency of verbal communications, inter-rater variability, and the subjective manner in which electrophysiological signals are described.OBJECTIVEIntraoperative neurophysiological monitoring (IONM) is the use of electrophysiological methods during certain high-risk surgeries to assess the functional integrity of nerves in real time and alert the surgeon to prevent damage. However, the efficiency of IONM in current practice is limited by latency of verbal communications, inter-rater variability, and the subjective manner in which electrophysiological signals are described.In an attempt to address these shortcomings, we investigate automated classification of free-running electromyogram (EMG) waveforms during IONM. We propose a hybrid model with a convolutional neural network (CNN) component and a long short-term memory (LSTM) component to better capture complicated EMG patterns under conditions of both electrical noise and movement artifacts. Moreover, a preprocessing pipeline based on data normalization is used to handle classification of data from multiple subjects. To investigate model robustness, we also analyze models under different methods for processing of artifacts.METHODSIn an attempt to address these shortcomings, we investigate automated classification of free-running electromyogram (EMG) waveforms during IONM. We propose a hybrid model with a convolutional neural network (CNN) component and a long short-term memory (LSTM) component to better capture complicated EMG patterns under conditions of both electrical noise and movement artifacts. Moreover, a preprocessing pipeline based on data normalization is used to handle classification of data from multiple subjects. To investigate model robustness, we also analyze models under different methods for processing of artifacts.Compared with several benchmark modeling methods, CNN-LSTM performs best in classification, achieving accuracy of 89.54% and sensitivity of 94.23% in cross-patient evaluation.RESULTSCompared with several benchmark modeling methods, CNN-LSTM performs best in classification, achieving accuracy of 89.54% and sensitivity of 94.23% in cross-patient evaluation.The CNN-LSTM model shows promise for automated classification of continuous EMG in IONM.CONCLUSIONThe CNN-LSTM model shows promise for automated classification of continuous EMG in IONM.This technique has potential to improve surgical safety by reducing cognitive load and inter-rater variability.SIGNIFICANCEThis technique has potential to improve surgical safety by reducing cognitive load and inter-rater variability.
Author Wehbe, Leila
Zha, Xuefan
Chen, Douglas A.
Mace, Zachary
Leonardo, Jody
Sclabassi, Robert J.
Hillman, Todd A.
Riviere, Cameron N.
Yu, Alexander
Cheng, Boyle C.
Liang, Ye V.
Author_xml – sequence: 1
  givenname: Xuefan
  surname: Zha
  fullname: Zha, Xuefan
  organization: Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
– sequence: 2
  givenname: Leila
  surname: Wehbe
  fullname: Wehbe, Leila
  organization: Department of Machine Learning, Carnegie Mellon University, Pittsburgh, PA, USA
– sequence: 3
  givenname: Robert J.
  orcidid: 0000-0001-5604-4094
  surname: Sclabassi
  fullname: Sclabassi, Robert J.
  organization: Computational Diagnostics, Inc., Pittsburgh, PA, USA
– sequence: 4
  givenname: Zachary
  surname: Mace
  fullname: Mace, Zachary
  organization: Computational Diagnostics, Inc., Pittsburgh, PA, USA
– sequence: 5
  givenname: Ye V.
  surname: Liang
  fullname: Liang, Ye V.
  organization: Computational Diagnostics, Inc., Pittsburgh, PA, USA
– sequence: 6
  givenname: Alexander
  orcidid: 0000-0002-1582-7938
  surname: Yu
  fullname: Yu, Alexander
  organization: Department of Neurosurgery, Allegheny Health Network, Pittsburgh, PA, USA
– sequence: 7
  givenname: Jody
  surname: Leonardo
  fullname: Leonardo, Jody
  organization: Department of Neurosurgery, Allegheny Health Network, Pittsburgh, PA, USA
– sequence: 8
  givenname: Boyle C.
  surname: Cheng
  fullname: Cheng, Boyle C.
  organization: Department of Neurosurgery, Allegheny Health Network, Pittsburgh, PA, USA
– sequence: 9
  givenname: Todd A.
  surname: Hillman
  fullname: Hillman, Todd A.
  organization: Pittsburgh Ear Associates, Pittsburgh, PA, USA
– sequence: 10
  givenname: Douglas A.
  surname: Chen
  fullname: Chen, Douglas A.
  organization: Pittsburgh Ear Associates, Pittsburgh, PA, USA
– sequence: 11
  givenname: Cameron N.
  orcidid: 0000-0002-6749-3140
  surname: Riviere
  fullname: Riviere, Cameron N.
  email: camr@ri.cmu.edu
  organization: Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33997657$$D View this record in MEDLINE/PubMed
BookMark eNp9UU1vEzEUtFARLaU_ACEhS71wSfDnen1BCqGUSomQ2nK2vN63xdXGDvZupf57vCREpQdOtp5n5s14XqOjEAMg9JaSOaVEf7xdX3-eM8LInBNRMylfoBMmVTXjZXj05H6MznK-J4QwKoni1St0zLnWqpLqBN0s8BeALV6BTcGHO7yOLfS4iwkvxiFu7AAtXvY2Z995ZwcfA44dvgpDsnELqUweAC9jGHwY45jxxfryDXrZ2T7D2f48RT--Xtwuv81W3y-vlovVzAmhhpmklXRSVFLqmhBe1Y3iSquOWNUpaJtWEid45WpqiaiathEVZaIT1rXM1UrxU_Rpp7sdmw20DiZTvdkmv7Hp0UTrzb8vwf80d_HB1JQqzWQR-LAXSPHXCHkwG58d9L0NULIYJlktuKQ1K9DzZ9D7OKZQ4hkmNJdacjoJvn_q6GDl738XAN0BXIo5J-gOEErMVKuZajVTrWZfa-GoZxznhz9NlFC-_y_z3Y7pAeCwSXNKBaH8N2Nirec
CitedBy_id crossref_primary_10_1007_s00521_022_08111_6
crossref_primary_10_1016_j_dib_2024_110250
crossref_primary_10_1016_j_array_2023_100277
crossref_primary_10_1007_s11042_024_19468_2
crossref_primary_10_1109_THMS_2023_3310524
crossref_primary_10_1142_S0129065723500053
crossref_primary_10_1109_TFUZZ_2022_3198172
crossref_primary_10_3390_jcm12041687
crossref_primary_10_1186_s12911_023_02276_3
crossref_primary_10_3390_app12157943
crossref_primary_10_1109_TMRB_2021_3122931
crossref_primary_10_1051_shsconf_202213903004
crossref_primary_10_1109_ACCESS_2022_3190967
Cites_doi 10.1371/journal.pone.0206049
10.26417/ejis.v2i3-35-44
10.1002/lary.27360
10.1016/j.cmpb.2018.04.005
10.1016/S1567-4231(07)08033-1
10.1109/EMBC.2012.6346501
10.1251/bpo115
10.21437/Interspeech.2016-402
10.1016/j.patcog.2017.10.013
10.3389/fnins.2017.00379
10.1109/BioRob.2012.6290287
10.1111/aor.13004
10.1007/s11771-015-2698-0
10.1016/j.eswa.2012.01.102
10.12720/ijeee.2.3.242-248
10.1016/j.aeue.2016.12.008
10.3171/jns.2007.106.5.826
10.1016/j.bspc.2007.09.002
10.1109/TNSRE.2015.2477557
10.1227/01.NEU.0000369605.79765.3E
10.3171/jns.2000.93.4.0586
10.1016/j.eswa.2014.11.044
10.1145/3268866.3268890
10.1002/lary.21119
10.3390/s130912431
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SP
8FD
K9.
L7M
7X8
5PM
DOI 10.1109/TMRB.2020.3048255
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Electronics & Communications Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
MEDLINE - Academic
DatabaseTitleList
ProQuest Health & Medical Complete (Alumni)
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2576-3202
EndPage 52
ExternalDocumentID PMC8117925
33997657
10_1109_TMRB_2020_3048255
9311401
Genre orig-research
Journal Article
GrantInformation_xml – fundername: U.S. National Institutes of Health
  grantid: R01EB000526; R21EB012209; R01HL078839; R01EB024564
  funderid: 10.13039/100000002
– fundername: NHLBI NIH HHS
  grantid: R01 HL078839
– fundername: NIBIB NIH HHS
  grantid: R01 EB024564
– fundername: NIBIB NIH HHS
  grantid: R01 EB000526
– fundername: NIBIB NIH HHS
  grantid: R21 EB012209
GroupedDBID 0R~
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
JAVBF
M~E
OCL
RIA
RIE
AAYXX
CITATION
NPM
7SP
8FD
K9.
L7M
7X8
5PM
ID FETCH-LOGICAL-c447t-5165c546559800368b73797f0a7f7edbd50c436c81a046bdb46124f4acd2c8773
IEDL.DBID RIE
ISSN 2576-3202
IngestDate Thu Aug 21 18:09:06 EDT 2025
Fri Jul 11 12:13:07 EDT 2025
Mon Jun 30 03:30:14 EDT 2025
Wed Feb 19 02:25:34 EST 2025
Tue Jul 01 02:51:46 EDT 2025
Thu Apr 24 22:53:20 EDT 2025
Wed Aug 27 02:43:55 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Electromyography
Pattern recognition
Convolutional neural networks
Intraoperative Neuromonitoring
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c447t-5165c546559800368b73797f0a7f7edbd50c436c81a046bdb46124f4acd2c8773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5604-4094
0000-0002-6749-3140
0000-0002-1582-7938
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/8117925
PMID 33997657
PQID 2493595315
PQPubID 4437212
PageCount 9
ParticipantIDs ieee_primary_9311401
pubmed_primary_33997657
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8117925
crossref_primary_10_1109_TMRB_2020_3048255
proquest_miscellaneous_2528435182
proquest_journals_2493595315
crossref_citationtrail_10_1109_TMRB_2020_3048255
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on medical robotics and bionics
PublicationTitleAbbrev TMRB
PublicationTitleAlternate IEEE Trans Med Robot Bionics
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
sclabassi (ref3) 2008; 8
zhu (ref28) 2010; 19
sclabassi (ref1) 2006
ref2
ref17
ref16
ref19
ref18
kingma (ref27) 2014
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref8
ref7
ref9
ref4
ref6
ref5
References_xml – ident: ref14
  doi: 10.1371/journal.pone.0206049
– ident: ref15
  doi: 10.26417/ejis.v2i3-35-44
– ident: ref22
  doi: 10.1002/lary.27360
– ident: ref16
  doi: 10.1016/j.cmpb.2018.04.005
– volume: 8
  start-page: 464
  year: 2008
  ident: ref3
  article-title: Technological advances in intraoperative neurophysiological monitoring
  publication-title: Handbook of Clinical Neurophysiology
  doi: 10.1016/S1567-4231(07)08033-1
– ident: ref26
  doi: 10.1109/EMBC.2012.6346501
– ident: ref7
  doi: 10.1251/bpo115
– ident: ref25
  doi: 10.21437/Interspeech.2016-402
– ident: ref24
  doi: 10.1016/j.patcog.2017.10.013
– ident: ref12
  doi: 10.3389/fnins.2017.00379
– ident: ref11
  doi: 10.1109/BioRob.2012.6290287
– volume: 19
  start-page: 67
  year: 2010
  ident: ref28
  article-title: Sensitivity, specificity, accuracy, associated confidence interval and ROC analysis with practical SAS implementations
  publication-title: NESUG Proc Health Care Life Sci Baltimore Maryland
– year: 2014
  ident: ref27
  publication-title: Adam A method for stochastic optimization
– ident: ref10
  doi: 10.1111/aor.13004
– ident: ref9
  doi: 10.1007/s11771-015-2698-0
– ident: ref6
  doi: 10.1016/j.eswa.2012.01.102
– ident: ref5
  doi: 10.12720/ijeee.2.3.242-248
– ident: ref20
  doi: 10.1016/j.aeue.2016.12.008
– ident: ref17
  doi: 10.3171/jns.2007.106.5.826
– ident: ref8
  doi: 10.1016/j.bspc.2007.09.002
– ident: ref2
  doi: 10.1109/TNSRE.2015.2477557
– ident: ref18
  doi: 10.1227/01.NEU.0000369605.79765.3E
– ident: ref4
  doi: 10.3171/jns.2000.93.4.0586
– ident: ref23
  doi: 10.1016/j.eswa.2014.11.044
– ident: ref13
  doi: 10.1145/3268866.3268890
– ident: ref21
  doi: 10.1002/lary.21119
– start-page: 50
  year: 2006
  ident: ref1
  article-title: Neurophysiological monitoring: A tool for neurosurgery
  publication-title: Atlas of Neurosurgical Techniques
– ident: ref19
  doi: 10.3390/s130912431
SSID ssj0002150736
Score 2.2479744
Snippet Objective: Intraoperative neurophysiological monitoring (IONM) is the use of electrophysiological methods during certain high-risk surgeries to assess the...
Intraoperative neurophysiological monitoring (IONM) is the use of electrophysiological methods during certain high-risk surgeries to assess the functional...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 44
SubjectTerms Artificial neural networks
Automation
Classification
convolutional neural networks
Damage prevention
Deep learning
Electrical noise
Electromyography
Injuries
intraoperative neuromonitoring
Monitoring
Nerves
pattern recognition
Spectrogram
Surgery
Task analysis
Waveforms
Title A Deep Learning Model for Automated Classification of Intraoperative Continuous EMG
URI https://ieeexplore.ieee.org/document/9311401
https://www.ncbi.nlm.nih.gov/pubmed/33997657
https://www.proquest.com/docview/2493595315
https://www.proquest.com/docview/2528435182
https://pubmed.ncbi.nlm.nih.gov/PMC8117925
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB51e4IDrwJNKZWROCGyTWI7To7bsqUghQO0Um9R_AhUrZIVTS498NuZcbLRtqoQt0R2Isfjx_fFM98AvOe6srXQaYhrnQsF-TdmMtd4a3hSI0K3hohi8S09PRdfL-TFFnycYmGcc975zM3p0p_l29b09KvsMOcx8YEZzJC4DbFa0_-UhJANT8eDyzjKD8-K70dIABPkpThMEwrm29h6fC6Vh2Dlfe_Ije3m5CkU64YOXiZX877Tc3N7T8Pxf7_kGTwZcSdbDAPlOWy55gU83lAj3IEfC_bJuRUbJVd_MsqTds0Q1bJF37UIbZ1lPokmuRd5i7K2Zl-o_e3KDRLijOSuLpu-7W_Ysvj8Es5PlmfHp-GYcyE0QqgulHEqDSVIl3lGWjWZVlzlqo4qVStntZWRETw1WVwhs9ZWC4RIohaVsYnJlOKvYLtpG7cLLHWVdHlVOUrlkZgo07auHa6QvMpsVkcBRGtzlGYUJKe8GNelJyZRXpIFS7JgOVowgA_TI6tBjeNflXeo46eKY58HsL-2eTnO15sSSShFKPMYn3o3FeNMo-OTqnHYaWUicSvnEglZAK-HITK9myPOU6lUAag7g2eqQCred0uay19ezZsiffNE7j3c2jfwKCEvGu8nvg_b3e_evUUY1OkDmBV_lgd-FvwFpT0Gaw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOvEohUMBInBDZJrEdJ8cFWrbQ9ABbqbcofkFFlaxocuHXM5Nko21VIW6JbEeOZ2x_Y898A_CW68p6odMQ1zoXCvJvzGSu8dXwxCNCt4YMxeIkXZyKL2fybAveT7Ewzrne-czN6LG_y7eN6eiobD_nMdkDt-C2pGDcIVprOlFJCNvwdLy6jKN8f1l8-4AmYIKWKSpqQuF8G5tPn03lJmB53T9yY8M5fADFuquDn8mvWdfqmflzjcXxf__lIdwfkSebD6ryCLZc_RjubfAR7sD3Ofvk3IqNpKs_GGVKu2CIa9m8axsEt86yPo0mORj1MmWNZ0fU_2blBhJxRoRX53XXdJfsoPj8BE4PD5YfF-GYdSE0Qqg2lHEqDaVIl3lGbDWZVlzlykeV8spZbWVkBE9NFldoW2urBYIk4UVlbGIypfgubNdN7Z4BS10lXV5VjpJ5JCbKtPXe4RrJq8xmPgogWoujNCMlOWXGuCh70yTKS5JgSRIsRwkG8G5qshr4OP5VeYcGfqo4jnkAe2uZl-OMvSzRDKUYZR5jqzdTMc41ukCpaoeDViYSN3Mu0SQL4OmgItO3OSI9lUoVgLqiPFMF4vG-WlKf_-z5vCnWN0_k85t7-xruLJbFcXl8dPL1BdxNyKem9xrfg-32d-deIihq9at-LvwFO9oIgg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep+Learning+Model+for+Automated+Classification+of+Intraoperative+Continuous+EMG&rft.jtitle=IEEE+transactions+on+medical+robotics+and+bionics&rft.au=Zha%2C+Xuefan&rft.au=Wehbe%2C+Leila&rft.au=Sclabassi%2C+Robert+J&rft.au=Mace%2C+Zachary&rft.date=2021-02-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2576-3202&rft.volume=3&rft.issue=1&rft.spage=44&rft_id=info:doi/10.1109%2FTMRB.2020.3048255&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2576-3202&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2576-3202&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2576-3202&client=summon