Use of urease and nitrification inhibitors to reduce gaseous nitrogen emissions from fertilizers containing ammonium nitrate and urea
Nitrogen (N) fertilizers increase agricultural yields, but also lead to the release of the greenhouse gases nitrous oxide (N2O) and ammonia (NH3). This not only reduces the efficiency of N use, but also results in climate change and loss of biodiversity. The use of nitrification inhibitors may impro...
Saved in:
Published in | Global ecology and conservation Vol. 22; p. e00933 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2020
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nitrogen (N) fertilizers increase agricultural yields, but also lead to the release of the greenhouse gases nitrous oxide (N2O) and ammonia (NH3). This not only reduces the efficiency of N use, but also results in climate change and loss of biodiversity. The use of nitrification inhibitors may improve the efficiency of N use and reduce the emission of greenhouse gases. We tested three inhibitors (NZONE MAX, Piadin and N-(n-butyl) thiophosphoric triamide (NBPT)) added to two common N fertilizers (urea and urea ammonium nitrate (UAN)) and determined emissions of CO2, N2O and NH3 to evaluate the effectiveness of these three inhibitors and to improve our understanding of the soil nitrogen cycle. NBPT effectively reduced NH3 volatilization by 50% (from 3.0 g NH3-N m−2 in urea alone to 1.4 g NH3-N m−2 in urea + NBPT). Piadin decreased N2O emissions (from 0.98 g N2O-N m−2 in urea alone to 0.15 g N2O-N m−2 in urea + Piadin and from 0.81 g N2O-N m−2 in UAN alone to 0.39 g N2O-N m−2 in UAN + Piadin) by inhibiting the conversion of NH4+ to NO3−. However, although Piadin was found to be an effective nitrification inhibitor, the risk of higher NH3 emissions (from 3.0 g NH3-N m−2 in urea alone to 4.5 g NH3-N m−2 in urea + Piadin) with the addition of Piadin cannot be neglected in environmental and economical evaluations. |
---|---|
AbstractList | Nitrogen (N) fertilizers increase agricultural yields, but also lead to the release of the greenhouse gases nitrous oxide (N₂O) and ammonia (NH₃). This not only reduces the efficiency of N use, but also results in climate change and loss of biodiversity. The use of nitrification inhibitors may improve the efficiency of N use and reduce the emission of greenhouse gases. We tested three inhibitors (NZONE MAX, Piadin and N-(n-butyl) thiophosphoric triamide (NBPT)) added to two common N fertilizers (urea and urea ammonium nitrate (UAN)) and determined emissions of CO₂, N₂O and NH₃ to evaluate the effectiveness of these three inhibitors and to improve our understanding of the soil nitrogen cycle. NBPT effectively reduced NH₃ volatilization by 50% (from 3.0 g NH₃-N m⁻² in urea alone to 1.4 g NH₃-N m⁻² in urea + NBPT). Piadin decreased N₂O emissions (from 0.98 g N₂O-N m⁻² in urea alone to 0.15 g N₂O-N m⁻² in urea + Piadin and from 0.81 g N₂O-N m⁻² in UAN alone to 0.39 g N₂O-N m⁻² in UAN + Piadin) by inhibiting the conversion of NH₄⁺ to NO₃⁻. However, although Piadin was found to be an effective nitrification inhibitor, the risk of higher NH₃ emissions (from 3.0 g NH₃-N m⁻² in urea alone to 4.5 g NH₃-N m⁻² in urea + Piadin) with the addition of Piadin cannot be neglected in environmental and economical evaluations. Nitrogen (N) fertilizers increase agricultural yields, but also lead to the release of the greenhouse gases nitrous oxide (N2O) and ammonia (NH3). This not only reduces the efficiency of N use, but also results in climate change and loss of biodiversity. The use of nitrification inhibitors may improve the efficiency of N use and reduce the emission of greenhouse gases. We tested three inhibitors (NZONE MAX, Piadin and N-(n-butyl) thiophosphoric triamide (NBPT)) added to two common N fertilizers (urea and urea ammonium nitrate (UAN)) and determined emissions of CO2, N2O and NH3 to evaluate the effectiveness of these three inhibitors and to improve our understanding of the soil nitrogen cycle. NBPT effectively reduced NH3 volatilization by 50% (from 3.0 g NH3-N m−2 in urea alone to 1.4 g NH3-N m−2 in urea + NBPT). Piadin decreased N2O emissions (from 0.98 g N2O-N m−2 in urea alone to 0.15 g N2O-N m−2 in urea + Piadin and from 0.81 g N2O-N m−2 in UAN alone to 0.39 g N2O-N m−2 in UAN + Piadin) by inhibiting the conversion of NH4+ to NO3−. However, although Piadin was found to be an effective nitrification inhibitor, the risk of higher NH3 emissions (from 3.0 g NH3-N m−2 in urea alone to 4.5 g NH3-N m−2 in urea + Piadin) with the addition of Piadin cannot be neglected in environmental and economical evaluations. |
ArticleNumber | e00933 |
Author | Köbke, Sarah Wang, Haitao Dittert, Klaus |
Author_xml | – sequence: 1 givenname: Haitao surname: Wang fullname: Wang, Haitao email: haitao.wang@agr.uni-goettingen.de – sequence: 2 givenname: Sarah surname: Köbke fullname: Köbke, Sarah – sequence: 3 givenname: Klaus surname: Dittert fullname: Dittert, Klaus |
BookMark | eNp9kTtvFTEQhVcoSISQX0DjkuZe_NqHCwoUQYgUiYbUlu0dL3O1awfbiwQ9_xvfXZAQRSqP7PPNjM952VyEGKBpXjN6ZJR1b0_HCZyLR045PQKlSohnzSUXLTuoQcmLf-oXzXXOJ0orxns2iMvm10MGEj1ZE5hamTCSgCWhR2cKxkAwfEWLJaZMSiQJxtUBmao2rnmTxgkCgQVzrvJMfIoL8ZAKzvgTKuViKAYDhomYZYkB12XjTNnHnSe_ap57M2e4_nNeNQ8fP3y5-XS4_3x7d_P-_uCk7MtBejv0lFpgfgQreeeU6fxI_SBsbzmvD-CYUqqD1g8KlDTGGj8q67p26Jy4au72vmM0J_2YcDHph44G9XYR06RN3dzNoLm3gsp27OnQS8GpMU7QvuuNFdIbx2uvN3uvxxS_rZCLrh44mGcTzt5o3nas5XxgskrVLnUp5pzAa4dls7fagLNmVJ-T1Ce9JanPSeo9ycqK_9i_az9NvdspqG5-R0g6O4TgYMQErtTv4pP8b4w6vxs |
CitedBy_id | crossref_primary_10_7717_peerj_12762 crossref_primary_10_1002_vjch_202200076 crossref_primary_10_1038_s41598_021_85308_0 crossref_primary_10_1016_j_atech_2022_100158 crossref_primary_10_1017_S0021859623000126 crossref_primary_10_3390_agronomy13092428 crossref_primary_10_31545_intagr_139714 crossref_primary_10_1111_sum_12861 crossref_primary_10_1016_j_geoderma_2021_115305 crossref_primary_10_1111_gcb_15993 crossref_primary_10_3389_fpls_2020_00764 crossref_primary_10_1080_23311932_2023_2217603 crossref_primary_10_1007_s13593_023_00940_6 crossref_primary_10_1080_03650340_2022_2025588 crossref_primary_10_2139_ssrn_4148224 crossref_primary_10_3389_fagro_2024_1394143 crossref_primary_10_3390_soilsystems7040083 crossref_primary_10_1016_j_aeaoa_2023_100224 crossref_primary_10_1021_acsomega_4c01451 crossref_primary_10_1080_00103624_2022_2109667 crossref_primary_10_1007_s12665_024_11892_9 crossref_primary_10_1007_s44279_024_00060_z crossref_primary_10_1007_s00374_024_01811_2 crossref_primary_10_1111_gcb_16294 crossref_primary_10_1071_SR23192 crossref_primary_10_1016_j_jclepro_2022_131197 |
Cites_doi | 10.1002/jpln.201400251 10.1016/j.agee.2012.04.025 10.1016/j.soilbio.2016.10.022 10.1590/S0100-06832011000200018 10.2134/jeq2017.03.0106 10.1023/A:1015709302073 10.2134/agronj2016.03.0153 10.2134/agronj2016.04.0200 10.1007/s10705-014-9631-z 10.1007/s11368-016-1471-9 10.1007/s11368-016-1588-x 10.1016/j.geoderma.2017.08.018 10.1071/SR15317 10.1111/j.1475-2743.1999.tb00059.x 10.1111/1462-2920.13978 10.1016/j.still.2017.01.011 10.1016/j.envsci.2009.11.001 10.1017/S0021859616000022 10.1007/s10705-013-9556-y 10.1038/srep12153 10.1126/science.1176985 10.1016/j.jes.2017.02.014 10.1016/j.agee.2017.10.008 10.4141/cjps2013-289 10.1016/j.fcr.2015.02.005 10.2134/jeq2002.1795 10.1111/j.1475-2743.1990.tb00804.x 10.1111/gcb.12802 10.2135/cropsci2011.01.0052 10.1016/j.soilbio.2017.10.008 10.1007/s00374-007-0228-4 10.1016/j.agee.2017.07.032 10.1016/j.soilbio.2014.02.011 10.1007/s10705-017-9883-5 10.1007/s00374-014-0907-x 10.1007/s11368-013-0843-7 10.1016/j.agee.2010.01.001 10.1007/s10705-006-9003-4 10.1016/j.still.2017.08.011 10.1016/j.fcr.2014.12.012 10.1016/j.soilbio.2012.04.026 10.1016/j.agee.2011.06.022 10.1007/s11368-015-1086-6 10.1016/j.scitotenv.2017.08.159 10.1016/j.geoderma.2017.10.007 10.2136/sssaj2016.10.0332 10.1016/j.agee.2016.08.019 10.1016/j.envpol.2007.06.033 10.1016/j.scitotenv.2015.06.147 10.1073/pnas.0914216107 10.1007/s003740100386 10.2134/jeq2011.0394 10.5194/bg-14-4691-2017 10.1016/j.agrformet.2012.11.009 10.1111/gcb.13338 |
ContentType | Journal Article |
Copyright | 2020 The Authors |
Copyright_xml | – notice: 2020 The Authors |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 DOA |
DOI | 10.1016/j.gecco.2020.e00933 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Ecology |
EISSN | 2351-9894 |
ExternalDocumentID | oai_doaj_org_article_2fb3045d70874320aac30767ab34fac2 10_1016_j_gecco_2020_e00933 S2351989419306961 |
GroupedDBID | 0R~ 0SF 4.4 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAFWJ AAHBH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE ADVLN AEXQZ AFJKZ AFPKN AFTJW AGHFR AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ IPNFZ KQ8 M41 M~E NCXOZ O9- OK1 RIG ROL SSZ AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP APXCP CITATION 7S9 L.6 |
ID | FETCH-LOGICAL-c447t-4fb8700be1fdeb426c9a6fd0f83b7b22be1ec19996e5f89e94aabafd9bc6586c3 |
IEDL.DBID | DOA |
ISSN | 2351-9894 |
IngestDate | Wed Aug 27 01:29:45 EDT 2025 Fri Jul 11 08:08:31 EDT 2025 Thu Apr 24 23:03:12 EDT 2025 Tue Jul 01 01:57:49 EDT 2025 Sat Dec 28 15:49:55 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Nitrification inhibitor Ammonia volatilization Nitrous oxide |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c447t-4fb8700be1fdeb426c9a6fd0f83b7b22be1ec19996e5f89e94aabafd9bc6586c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/2fb3045d70874320aac30767ab34fac2 |
PQID | 2561522814 |
PQPubID | 24069 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2fb3045d70874320aac30767ab34fac2 proquest_miscellaneous_2561522814 crossref_citationtrail_10_1016_j_gecco_2020_e00933 crossref_primary_10_1016_j_gecco_2020_e00933 elsevier_sciencedirect_doi_10_1016_j_gecco_2020_e00933 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2020 2020-06-00 20200601 2020-06-01 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: June 2020 |
PublicationDecade | 2020 |
PublicationTitle | Global ecology and conservation |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Kowles (bib23) 2018 UNFCCC (bib55) 1997 Lam, Suter, Mosier, Chen (bib25) 2017; 23 Pacholski, Cai, Nieder, Richter, Fan, Zhu, Roelcke (bib34) 2006; 74 Weiske, Benckiser, Herbert, Ottow (bib62) 2001; 34 Ferm, Kasimir-Klemedtsson, Weslien, Klemedtsson (bib14) 2006; 15 Römer, Hilmer, Claassen, Nöhren, Dittert (bib42) 2015; 71 71 Liu, Hayden, Suter, He, Chen (bib28) 2015; 15 Bakken, Frostegard (bib1) 2017; 19 Rajkovich, Osmond, Weisz, Crozier, Israel, Austin (bib40) 2017; 109 IUSS (bib22) 2015 Florio, Maienza, Dell’Abate, Stazi, Benedetti (bib15) 2016; 16 Pietzner, Rücknagel, Koblenz, Bednorz, Tauchnitz, Bischoff, Köbke, Meurer, Meißner, Christen (bib38) 2017; 169 Bremner (bib3) 2007; 6 Lam, Suter, Davies, Bai, Mosier, Sun, Chen (bib26) 2018; 116 Wolf, Fuss, Hoeppner, Flessa (bib63) 2014; 100 Li, Yang, Wang, Roelcke, Chen, Zhang, Pasda, Zerulla, Wissemeier, Liu (bib27) 2015; 175 Wulf, Maeting, Clemens (bib66) 2002; 31 Volpi, Laville, Bonari, o di Nasso, Bosco (bib59) 2017; 307 Sun, Zhang, Powlson, Min, Shi (bib50) 2015; 173 Mira, Cantarella, Souza-Netto, Moreira, Kamogawa, Otto (bib33) 2017; 248 Sassman (bib45) 2014; vol. 14276 Erisman, Bleeker, Galloway, Sutton (bib11) 2007; 150 Maienza, Bååth, Stazi, Benedetti, Grego, Dell’Abate (bib31) 2014; 50 Zaman, Zaman, Nguyen, Smith, Nawaz (bib70) 2013; 465 Luo, Lindsey, Ledgard (bib30) 2008; 44 Boyer, Goodale, Jaworsk, Howarth (bib2) 2002; 57 Goos (bib17) 2012 Burney, Davis, Lobell (bib4) 2010; 107 Silva, Sequeira, Sermarini, Otto (bib49) 2017; 109 Zaman, Nguyen (bib69) 2012; 156 Menéndez, Barrena, Setien, González-Murua, Estavillo (bib32) 2012; 53 Fan, Li, Xiong (bib12) 2018; 612 Shi, Hu, Kelly, Chen, He, Suter (bib48) 2017; 17 Wang, Zheng, Pihlatie, Vesala, Liu, Haapanala, Mammarella, Rannik, Liu (bib60) 2013; 171-172 Parkin, Venterea, Hargreaves (bib37) 2012; 41 Suter, Sultana, Turner, Davies, Walker, Chen (bib51) 2013; 95 Qiao, Liu, Hu, Compton, Greaver, Li (bib39) 2015; 21 Rose, Wood, Rose, Van Zwieten (bib43) 2018; 252 Camberato (bib5) 2017 Venterea, Clough, Coulter, Breuillin-Sessoms, Wang, Sadowsky (bib58) 2015; 5 Cardenas, Bol, Lewicka-Szczebak, Gregory, Matthews, Whalley, Misselbrook, Scholefield, Well (bib6) 2017; 14 Senbayram, Chen, Budai, Bakken, Dittert (bib47) 2012; 147 Tasca, Ernani, Rogeri, Gatiboni, Cassol (bib53) 2011; 35 van Beek, Meerburg, Schils, Verhagen, Kuikman (bib57) 2010; 13 Pan, Lam, Mosier, Luo, Chen (bib36) 2016; 232 Guo, Di, Cameron, Li (bib20) 2014; 14 Webb, Pain, Bittman, Morgan (bib61) 2010; 137 International Fertilizer Industry Association (bib21) 2013 Pacholski, Doehler, Schmidhalter, Kreuter (bib35) 2018; 110 Grave, Nicoloso, Cassol, Busi da Silva, Mezzari, Aita, Wuaden (bib19) 2018; 175 Tian, Wang, Liu, Zhang, Dodla, Myers (bib54) 2015; 533 Franzen (bib16) 2017 Liu, Wang, Tian, Wang, Harrison (bib29) 2017; 57 Di, Cameron, Podolyan, Robinson (bib8) 2014; 73 Wu, Senbayram, Well, Brueggemann, Pfeiffer, Loick, Stempfhuber, Dittert, Bol (bib65) 2017; 104 Schraml, Gutser, Maier, Schmidhalter (bib46) 2016; 154 Drury, Yang, Reynolds, Calder, Oloya, Woodley (bib9) 2017; 46 Connell, Hancock, Durham, Cabrera, Harris (bib7) 2011; 51 Engel, Jones, Romero, Wallander (bib10) 2017; 81 Ravishankara, Daniel, Portmann (bib41) 2009; 326 Yu, Junwei, Wanchun, Ping, Hui, Changhuan, Jianrong (bib67) 2018; 312 Grant (bib18) 2013; 94 Ruser, Schulz (bib44) 2015; 178 FAOSTAT (bib13) 2015 Suter, Sultana, Davies, Walker, Chen (bib52) 2016; 54 Zaman, Blennerhassett (bib68) 2010; 136 Weiske (10.1016/j.gecco.2020.e00933_bib62) 2001; 34 Grave (10.1016/j.gecco.2020.e00933_bib19) 2018; 175 Connell (10.1016/j.gecco.2020.e00933_bib7) 2011; 51 Bremner (10.1016/j.gecco.2020.e00933_bib3) 2007; 6 Suter (10.1016/j.gecco.2020.e00933_bib51) 2013; 95 UNFCCC (10.1016/j.gecco.2020.e00933_bib55) 1997 Zaman (10.1016/j.gecco.2020.e00933_bib70) 2013; 465 Bakken (10.1016/j.gecco.2020.e00933_bib1) 2017; 19 Wu (10.1016/j.gecco.2020.e00933_bib65) 2017; 104 Ferm (10.1016/j.gecco.2020.e00933_bib14) 2006; 15 Luo (10.1016/j.gecco.2020.e00933_bib30) 2008; 44 Zaman (10.1016/j.gecco.2020.e00933_bib68) 2010; 136 Liu (10.1016/j.gecco.2020.e00933_bib29) 2017; 57 Mira (10.1016/j.gecco.2020.e00933_bib33) 2017; 248 Sun (10.1016/j.gecco.2020.e00933_bib50) 2015; 173 Zaman (10.1016/j.gecco.2020.e00933_bib69) 2012; 156 Lam (10.1016/j.gecco.2020.e00933_bib25) 2017; 23 Silva (10.1016/j.gecco.2020.e00933_bib49) 2017; 109 Florio (10.1016/j.gecco.2020.e00933_bib15) 2016; 16 Drury (10.1016/j.gecco.2020.e00933_bib9) 2017; 46 Wulf (10.1016/j.gecco.2020.e00933_bib66) 2002; 31 Pan (10.1016/j.gecco.2020.e00933_bib36) 2016; 232 Webb (10.1016/j.gecco.2020.e00933_bib61) 2010; 137 Wolf (10.1016/j.gecco.2020.e00933_bib63) 2014; 100 International Fertilizer Industry Association (10.1016/j.gecco.2020.e00933_bib21) 2013 Sassman (10.1016/j.gecco.2020.e00933_bib45) 2014; vol. 14276 Di (10.1016/j.gecco.2020.e00933_bib8) 2014; 73 Volpi (10.1016/j.gecco.2020.e00933_bib59) 2017; 307 Li (10.1016/j.gecco.2020.e00933_bib27) 2015; 175 Tian (10.1016/j.gecco.2020.e00933_bib54) 2015; 533 Senbayram (10.1016/j.gecco.2020.e00933_bib47) 2012; 147 Qiao (10.1016/j.gecco.2020.e00933_bib39) 2015; 21 Ruser (10.1016/j.gecco.2020.e00933_bib44) 2015; 178 Pacholski (10.1016/j.gecco.2020.e00933_bib34) 2006; 74 IUSS (10.1016/j.gecco.2020.e00933_bib22) 2015 Guo (10.1016/j.gecco.2020.e00933_bib20) 2014; 14 Venterea (10.1016/j.gecco.2020.e00933_bib58) 2015; 5 Franzen (10.1016/j.gecco.2020.e00933_bib16) 2017 Maienza (10.1016/j.gecco.2020.e00933_bib31) 2014; 50 Schraml (10.1016/j.gecco.2020.e00933_bib46) 2016; 154 Menéndez (10.1016/j.gecco.2020.e00933_bib32) 2012; 53 Kowles (10.1016/j.gecco.2020.e00933_bib23) 2018 Römer (10.1016/j.gecco.2020.e00933_bib42) 2015; 71 71 FAOSTAT (10.1016/j.gecco.2020.e00933_bib13) Rose (10.1016/j.gecco.2020.e00933_bib43) 2018; 252 Burney (10.1016/j.gecco.2020.e00933_bib4) 2010; 107 Wang (10.1016/j.gecco.2020.e00933_bib60) 2013; 171-172 Grant (10.1016/j.gecco.2020.e00933_bib18) 2013; 94 van Beek (10.1016/j.gecco.2020.e00933_bib57) 2010; 13 Liu (10.1016/j.gecco.2020.e00933_bib28) 2015; 15 Rajkovich (10.1016/j.gecco.2020.e00933_bib40) 2017; 109 Yu (10.1016/j.gecco.2020.e00933_bib67) 2018; 312 Pacholski (10.1016/j.gecco.2020.e00933_bib35) 2018; 110 Shi (10.1016/j.gecco.2020.e00933_bib48) 2017; 17 Lam (10.1016/j.gecco.2020.e00933_bib26) 2018; 116 Camberato (10.1016/j.gecco.2020.e00933_bib5) 2017 Suter (10.1016/j.gecco.2020.e00933_bib52) 2016; 54 Tasca (10.1016/j.gecco.2020.e00933_bib53) 2011; 35 Boyer (10.1016/j.gecco.2020.e00933_bib2) 2002; 57 Engel (10.1016/j.gecco.2020.e00933_bib10) 2017; 81 Fan (10.1016/j.gecco.2020.e00933_bib12) 2018; 612 Pietzner (10.1016/j.gecco.2020.e00933_bib38) 2017; 169 Erisman (10.1016/j.gecco.2020.e00933_bib11) 2007; 150 Ravishankara (10.1016/j.gecco.2020.e00933_bib41) 2009; 326 Cardenas (10.1016/j.gecco.2020.e00933_bib6) 2017; 14 Parkin (10.1016/j.gecco.2020.e00933_bib37) 2012; 41 Goos (10.1016/j.gecco.2020.e00933_bib17) 2012 |
References_xml | – volume: 15 start-page: 27 year: 2006 end-page: 33 ident: bib14 article-title: Emission of NH3 and N2O after spreading of pig slurry by broadcasting or band spreading publication-title: Soil Use Manag. – volume: 137 start-page: 39 year: 2010 end-page: 46 ident: bib61 article-title: The impacts of manure application methods on emissions of ammonia, nitrous oxide and on crop response—a review publication-title: Agric. Ecosyst. Environ. – volume: 41 start-page: 705 year: 2012 end-page: 715 ident: bib37 article-title: Calculating the detection limits of chamber-based soil greenhouse gas flux measurements publication-title: J. Environ. Qual. – volume: 17 start-page: 974 year: 2017 end-page: 984 ident: bib48 article-title: Response of ammonia oxidizers and denitrifiers to repeated applications of a nitrification inhibitor and a urease inhibitor in two pasture soils publication-title: J. Soils Sediments – volume: 109 start-page: 1811 year: 2017 end-page: 1824 ident: bib40 article-title: Evaluation of nitrogen-loss prevention amendments in maize and wheat in North Carolina publication-title: Agron. J. – volume: 104 start-page: 197 year: 2017 end-page: 207 ident: bib65 article-title: Nitrification inhibitors mitigate N2O emissions more effectively under straw-induced conditions favoring denitrification publication-title: Soil Biol. Biochem. – volume: 175 start-page: 96 year: 2015 end-page: 105 ident: bib27 article-title: Effect of a new urease inhibitor on ammonia volatilization and nitrogen utilization in wheat in north and northwest China publication-title: Field Crop. Res. – volume: 171-172 start-page: 9 year: 2013 end-page: 19 ident: bib60 article-title: Comparison between static chamber and tunable diode laser-based eddy covariance techniques for measuring nitrous oxide fluxes from a cotton field publication-title: Agric. For. Meteorol. – start-page: 1 year: 2017 end-page: 4 ident: bib5 article-title: Improving the Efficient Use of Urea- Containing Fertilizers – volume: 312 start-page: 45 year: 2018 end-page: 51 ident: bib67 article-title: Evaluations of the DMPP on organic and inorganic nitrogen mineralization and plant heavy metals absorption publication-title: Geoderma – volume: 23 start-page: 485 year: 2017 end-page: 489 ident: bib25 article-title: Using nitrification inhibitors to mitigate agricultural N2O emission: a double-edged sword? publication-title: Global Change Biol. – volume: 109 start-page: 1 year: 2017 end-page: 13 ident: bib49 article-title: Urease inhibitor NBPT on ammonia volatilization and crop productivity: a meta-analysis publication-title: Agron. J. – volume: 94 start-page: 329 year: 2013 end-page: 335 ident: bib18 article-title: Use of NBPT and ammonium thiosulphate as urease inhibitors with varying surface placement of urea and urea ammonium nitrate in production of hard red spring wheat under reduced tillage management publication-title: Can. J. Plant Sci. – volume: 14 start-page: 897 year: 2014 end-page: 903 ident: bib20 article-title: Effect of application rate of a nitrification inhibitor, dicyandiamide (DCD), on nitrification rate, and ammonia-oxidizing bacteria and archaea growth in a grazed pasture soil: an incubation study publication-title: J. Soils Sediments – volume: 307 start-page: 181 year: 2017 end-page: 188 ident: bib59 article-title: Improving the management of mineral fertilizers for nitrous oxide mitigation: the effect of nitrogen fertilizer type, urease and nitrification inhibitors in two different textured soils publication-title: Geoderma – volume: 116 start-page: 48 year: 2018 end-page: 51 ident: bib26 article-title: Direct and indirect greenhouse gas emissions from two intensive vegetable farms applied with a nitrification inhibitor publication-title: Soil Biol. Biochem. – volume: 465 start-page: 97 year: 2013 end-page: 106 ident: bib70 article-title: The effect of urease and nitrification inhibitors on ammonia and nitrous oxide emissions from simulated urine patches in pastoral system: a two-year study publication-title: Sci. Total Environ., Soil Source Sink Greenh. Gases – volume: 110 start-page: 177 year: 2018 end-page: 193 ident: bib35 article-title: Scenario modeling of ammonia emissions from surface applied urea under temperate conditions: application effects and model comparison publication-title: Nutrient Cycl. Agroecosyst. – volume: 107 start-page: 12052 year: 2010 end-page: 12057 ident: bib4 article-title: Greenhouse gas mitigation by agricultural intensification publication-title: Proc. Natl. Acad. Sci. – volume: 169 start-page: 54 year: 2017 end-page: 64 ident: bib38 article-title: Impact of slurry strip-till and surface slurry incorporation on NH3 and N2O emissions on different plot trials in Central Germany publication-title: Soil Tillage Res. – volume: 100 start-page: 121 year: 2014 end-page: 134 ident: bib63 article-title: Contribution of N2O and NH3 to total greenhouse gas emission from fertilization: results from a sandy soil fertilized with nitrate and biogas digestate with and without nitrification inhibitor publication-title: Nutrient Cycl. Agroecosyst. – volume: 31 start-page: 1795 year: 2002 ident: bib66 article-title: Application technique and slurry co-fermentation effects on ammonia, nitrous oxide, and methane emissions after spreading publication-title: J. Environ. Qual. – year: 2015 ident: bib22 article-title: World Reference Base for Soil Resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps publication-title: World Soil Resour. Rep. – volume: 13 start-page: 89 year: 2010 end-page: 96 ident: bib57 article-title: Feeding the world’s increasing population while limiting climate change impacts: linking N2O and CH4 emissions from agriculture to population growth publication-title: Environ. Sci. Pol. – volume: 156 start-page: 37 year: 2012 end-page: 48 ident: bib69 article-title: How application timings of urease and nitrification inhibitors affect N losses from urine patches in pastoral system publication-title: Agric. Ecosyst. Environ. – volume: 73 start-page: 59 year: 2014 end-page: 68 ident: bib8 article-title: Effect of soil moisture status and a nitrification inhibitor, dicyandiamide, on ammonia oxidizer and denitrifier growth and nitrous oxide emissions in a grassland soil publication-title: Soil Biol. Biochem. – volume: 248 start-page: 105 year: 2017 end-page: 112 ident: bib33 article-title: Optimizing urease inhibitor usage to reduce ammonia emission following urea application over crop residues publication-title: Agric. Ecosyst. Environ. – volume: 74 start-page: 259 year: 2006 end-page: 273 ident: bib34 article-title: Calibration of a simple method for determining ammonia volatilization in the field – comparative measurements in Henan Province, China publication-title: Nutrient Cycl. Agroecosyst. – volume: 173 start-page: 1 year: 2015 end-page: 7 ident: bib50 article-title: Rice production, nitrous oxide emission and ammonia volatilization as impacted by the nitrification inhibitor 2-chloro-6-(trichloromethyl)-pyridine publication-title: Field Crop. Res. – volume: 46 start-page: 939 year: 2017 end-page: 949 ident: bib9 article-title: Combining urease and nitrification inhibitors with incorporation reduces ammonia and nitrous oxide emissions and increases corn yields publication-title: J. Environ. Qual. – volume: 57 start-page: 137 year: 2002 end-page: 169 ident: bib2 article-title: Anthropogenic nitrogen sources and relationships to riverine nitrogen export in the northeastern USA publication-title: Biogeochemistry – volume: 50 start-page: 869 year: 2014 end-page: 877 ident: bib31 article-title: Microbial dynamics after adding bovine manure effluent together with a nitrification inhibitor (3, 4 DMPP) in a microcosm experiment publication-title: Biol. Fertil. Soils – volume: 147 start-page: 4 year: 2012 end-page: 12 ident: bib47 article-title: N2O emission and the N2O/(N2O+N2) product ratio of denitrification as controlled by available carbon substrates and nitrate concentrations publication-title: Agric. Ecosyst. Environ. – volume: 53 start-page: 82 year: 2012 end-page: 89 ident: bib32 article-title: Efficiency of nitrification inhibitor DMPP to reduce nitrous oxide emissions under different temperature and moisture conditions publication-title: Soil Biol. Biochem. – volume: 612 start-page: 480 year: 2018 end-page: 489 ident: bib12 article-title: Nitrification inhibitors mitigated reactive gaseous nitrogen intensity in intensive vegetable soils from China publication-title: Sci. Total Environ. – volume: 154 start-page: 1453 year: 2016 end-page: 1462 ident: bib46 article-title: Ammonia loss from urea in grassland and its mitigation by the new urease inhibitor 2-NPT publication-title: J. Agric. Sci. – start-page: 1 year: 2012 end-page: 38 ident: bib17 article-title: Some Random Reflections on Nitrification and Nitrification Inhibitors - Presentation – volume: 57 start-page: 196 year: 2017 end-page: 210 ident: bib29 article-title: Ammonia and greenhouse gas emissions from a subtropical wheat field under different nitrogen fertilization strategies publication-title: J. Environ. Sci. – volume: 150 start-page: 140 year: 2007 end-page: 149 ident: bib11 article-title: Reduced nitrogen in ecology and the environment publication-title: Environ. Pollut. Barking Essex – volume: 21 start-page: 1249 year: 2015 end-page: 1257 ident: bib39 article-title: How inhibiting nitrification affects nitrogen cycle and reduces environmental impacts of anthropogenic nitrogen input publication-title: Global Change Biol. – volume: 15 start-page: 1113 year: 2015 end-page: 1118 ident: bib28 article-title: The effect of nitrification inhibitors in reducing nitrification and the ammonia oxidizer population in three contrasting soils publication-title: J. Soils Sediments – year: 1997 ident: bib55 article-title: Kyoto Protocol to the United Nations Framework Convention on Climate Change – volume: 34 start-page: 109 year: 2001 end-page: 117 ident: bib62 article-title: Influence of the nitrification inhibitor 3, 4-dimethylpyrazole phosphate (DMPP) in comparison to dicyandiamide (DCD) on nitrous oxide emissions, carbon dioxide fluxes and methane oxidation during 3 years of repeated application in field experiments publication-title: Biol. Fertil. Soils – volume: 232 start-page: 283 year: 2016 end-page: 289 ident: bib36 article-title: Ammonia volatilization from synthetic fertilizers and its mitigation strategies: a global synthesis publication-title: Agric. Ecosyst. Environ. – volume: 533 start-page: 329 year: 2015 end-page: 338 ident: bib54 article-title: Application effects of coated urea and urease and nitrification inhibitors on ammonia and greenhouse gas emissions from a subtropical cotton field of the Mississippi delta region publication-title: Sci. Total Environ. – volume: 326 start-page: 123 year: 2009 end-page: 125 ident: bib41 article-title: Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century publication-title: Science – volume: 175 start-page: 1 year: 2018 end-page: 12 ident: bib19 article-title: Determining the effects of tillage and nitrogen sources on soil N2O emission publication-title: Soil Tillage Res. – year: 2013 ident: bib21 article-title: Fertilizer Indicators – volume: 44 start-page: 463 year: 2008 end-page: 470 ident: bib30 article-title: Nitrous oxide emissions from animal urine application on a New Zealand pasture publication-title: Biol. Fertil. Soils – volume: 5 start-page: 1 year: 2015 end-page: 15 ident: bib58 article-title: Ammonium sorption and ammonia inhibition of nitrite-oxidizing bacteria explain contrasting soil N 2 O production publication-title: Sci. Rep. – volume: 54 start-page: 523 year: 2016 end-page: 532 ident: bib52 article-title: Influence of enhanced efficiency fertilisation techniques on nitrous oxide emissions and productivity response from urea in a temperate Australian ryegrass pasture publication-title: Soil Res. – volume: 14 start-page: 4691 year: 2017 end-page: 4710 ident: bib6 article-title: Effect of soil saturation on denitrification in a grassland soil publication-title: Biogeosciences – volume: 71 71 start-page: 279 year: 2015 end-page: 285 ident: bib42 article-title: Einfluss einer langjährigen P-Düngung auf Ertäge und Dynamik der CAL-P-Gehalte in einem Lösslehmboden publication-title: VDLUFA - Schriftenr. – volume: 252 start-page: 69 year: 2018 end-page: 73 ident: bib43 article-title: A re-evaluation of the agronomic effectiveness of the nitrification inhibitors DCD and DMPP and the urease inhibitor NBPT publication-title: Agric. Ecosyst. Environ. – volume: 136 start-page: 236 year: 2010 end-page: 246 ident: bib68 article-title: Effects of the different rates of urease and nitrification inhibitors on gaseous emissions of ammonia and nitrous oxide, nitrate leaching and pasture production from urine patches in an intensive grazed pasture system publication-title: Agric. Ecosyst. Environ., Estim. Nitrous Oxide Emiss. Ecosyst. Mitig. Technol. – volume: 16 start-page: 2687 year: 2016 end-page: 2697 ident: bib15 article-title: Changes in the activity and abundance of the soil microbial community in response to the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) publication-title: J. Soils Sediments – volume: vol. 14276 start-page: 48 year: 2014 end-page: 76 ident: bib45 publication-title: Corn Production with Instinct Nitrification Inhibitor Applied with Urea-Ammonium Nitrate Solution and Liquid Swine Manure – volume: 95 start-page: 175 year: 2013 end-page: 185 ident: bib51 article-title: Influence of urea fertiliser formulation, urease inhibitor and season on ammonia loss from ryegrass publication-title: Nutrient Cycl. Agroecosyst. – year: 2015 ident: bib13 article-title: Food and agricultural organization of the United Nations – year: 2018 ident: bib23 article-title: Diversity of Bacterial Respiratory Systems – volume: 6 start-page: 70 year: 2007 end-page: 71 ident: bib3 article-title: Problems in the use of urea as a nitrogen fertilizer publication-title: Soil Use Manag. – volume: 35 start-page: 493 year: 2011 end-page: 502 ident: bib53 article-title: Volatilização De Amônia Do Solo Após a Aplicação De Ureia Convencional Ou Com Inibidor De urease publication-title: Rev. Bras. Ciênc. Solo – volume: 19 start-page: 4801 year: 2017 end-page: 4805 ident: bib1 article-title: Sources and sinks for N2O, can microbiologist help to mitigate N2O emissions? publication-title: Environ. Microbiol. – volume: 51 start-page: 2237 year: 2011 end-page: 2248 ident: bib7 article-title: Comparison of enhanced-efficiency nitrogen fertilizers for reducing ammonia loss and improving Bermudagrass forage production publication-title: Crop Sci. – start-page: 1 year: 2017 end-page: 11 ident: bib16 article-title: Nitrogen Extenders and Additives for Field Crops. NCERA-103 Comm – volume: 178 start-page: 171 year: 2015 end-page: 188 ident: bib44 article-title: The effect of nitrification inhibitors on the nitrous oxide (N2O) release from agricultural soils—a review publication-title: J. Plant Nutr. Soil Sci. – volume: 81 start-page: 322 year: 2017 end-page: 330 ident: bib10 article-title: Late-fall, winter and spring broadcast applications of urea to No-till winter wheat I. Ammonia loss and mitigation by NBPT publication-title: Soil Sci. Soc. Am. J. – volume: 178 start-page: 171 year: 2015 ident: 10.1016/j.gecco.2020.e00933_bib44 article-title: The effect of nitrification inhibitors on the nitrous oxide (N2O) release from agricultural soils—a review publication-title: J. Plant Nutr. Soil Sci. doi: 10.1002/jpln.201400251 – volume: 156 start-page: 37 year: 2012 ident: 10.1016/j.gecco.2020.e00933_bib69 article-title: How application timings of urease and nitrification inhibitors affect N losses from urine patches in pastoral system publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2012.04.025 – volume: 104 start-page: 197 year: 2017 ident: 10.1016/j.gecco.2020.e00933_bib65 article-title: Nitrification inhibitors mitigate N2O emissions more effectively under straw-induced conditions favoring denitrification publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2016.10.022 – volume: 71 71 start-page: 279 year: 2015 ident: 10.1016/j.gecco.2020.e00933_bib42 article-title: Einfluss einer langjährigen P-Düngung auf Ertäge und Dynamik der CAL-P-Gehalte in einem Lösslehmboden publication-title: VDLUFA - Schriftenr. – volume: 35 start-page: 493 year: 2011 ident: 10.1016/j.gecco.2020.e00933_bib53 article-title: Volatilização De Amônia Do Solo Após a Aplicação De Ureia Convencional Ou Com Inibidor De urease publication-title: Rev. Bras. Ciênc. Solo doi: 10.1590/S0100-06832011000200018 – volume: 46 start-page: 939 year: 2017 ident: 10.1016/j.gecco.2020.e00933_bib9 article-title: Combining urease and nitrification inhibitors with incorporation reduces ammonia and nitrous oxide emissions and increases corn yields publication-title: J. Environ. Qual. doi: 10.2134/jeq2017.03.0106 – volume: 57 start-page: 137 year: 2002 ident: 10.1016/j.gecco.2020.e00933_bib2 article-title: Anthropogenic nitrogen sources and relationships to riverine nitrogen export in the northeastern USA publication-title: Biogeochemistry doi: 10.1023/A:1015709302073 – volume: 109 start-page: 1811 year: 2017 ident: 10.1016/j.gecco.2020.e00933_bib40 article-title: Evaluation of nitrogen-loss prevention amendments in maize and wheat in North Carolina publication-title: Agron. J. doi: 10.2134/agronj2016.03.0153 – volume: 109 start-page: 1 year: 2017 ident: 10.1016/j.gecco.2020.e00933_bib49 article-title: Urease inhibitor NBPT on ammonia volatilization and crop productivity: a meta-analysis publication-title: Agron. J. doi: 10.2134/agronj2016.04.0200 – volume: 100 start-page: 121 year: 2014 ident: 10.1016/j.gecco.2020.e00933_bib63 article-title: Contribution of N2O and NH3 to total greenhouse gas emission from fertilization: results from a sandy soil fertilized with nitrate and biogas digestate with and without nitrification inhibitor publication-title: Nutrient Cycl. Agroecosyst. doi: 10.1007/s10705-014-9631-z – volume: 16 start-page: 2687 year: 2016 ident: 10.1016/j.gecco.2020.e00933_bib15 article-title: Changes in the activity and abundance of the soil microbial community in response to the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) publication-title: J. Soils Sediments doi: 10.1007/s11368-016-1471-9 – volume: 17 start-page: 974 year: 2017 ident: 10.1016/j.gecco.2020.e00933_bib48 article-title: Response of ammonia oxidizers and denitrifiers to repeated applications of a nitrification inhibitor and a urease inhibitor in two pasture soils publication-title: J. Soils Sediments doi: 10.1007/s11368-016-1588-x – volume: 307 start-page: 181 year: 2017 ident: 10.1016/j.gecco.2020.e00933_bib59 article-title: Improving the management of mineral fertilizers for nitrous oxide mitigation: the effect of nitrogen fertilizer type, urease and nitrification inhibitors in two different textured soils publication-title: Geoderma doi: 10.1016/j.geoderma.2017.08.018 – volume: 54 start-page: 523 year: 2016 ident: 10.1016/j.gecco.2020.e00933_bib52 article-title: Influence of enhanced efficiency fertilisation techniques on nitrous oxide emissions and productivity response from urea in a temperate Australian ryegrass pasture publication-title: Soil Res. doi: 10.1071/SR15317 – volume: 15 start-page: 27 year: 2006 ident: 10.1016/j.gecco.2020.e00933_bib14 article-title: Emission of NH3 and N2O after spreading of pig slurry by broadcasting or band spreading publication-title: Soil Use Manag. doi: 10.1111/j.1475-2743.1999.tb00059.x – volume: 136 start-page: 236 year: 2010 ident: 10.1016/j.gecco.2020.e00933_bib68 article-title: Effects of the different rates of urease and nitrification inhibitors on gaseous emissions of ammonia and nitrous oxide, nitrate leaching and pasture production from urine patches in an intensive grazed pasture system publication-title: Agric. Ecosyst. Environ., Estim. Nitrous Oxide Emiss. Ecosyst. Mitig. Technol. – volume: 19 start-page: 4801 year: 2017 ident: 10.1016/j.gecco.2020.e00933_bib1 article-title: Sources and sinks for N2O, can microbiologist help to mitigate N2O emissions? publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.13978 – volume: 169 start-page: 54 year: 2017 ident: 10.1016/j.gecco.2020.e00933_bib38 article-title: Impact of slurry strip-till and surface slurry incorporation on NH3 and N2O emissions on different plot trials in Central Germany publication-title: Soil Tillage Res. doi: 10.1016/j.still.2017.01.011 – volume: 13 start-page: 89 year: 2010 ident: 10.1016/j.gecco.2020.e00933_bib57 article-title: Feeding the world’s increasing population while limiting climate change impacts: linking N2O and CH4 emissions from agriculture to population growth publication-title: Environ. Sci. Pol. doi: 10.1016/j.envsci.2009.11.001 – volume: 154 start-page: 1453 year: 2016 ident: 10.1016/j.gecco.2020.e00933_bib46 article-title: Ammonia loss from urea in grassland and its mitigation by the new urease inhibitor 2-NPT publication-title: J. Agric. Sci. doi: 10.1017/S0021859616000022 – volume: 95 start-page: 175 year: 2013 ident: 10.1016/j.gecco.2020.e00933_bib51 article-title: Influence of urea fertiliser formulation, urease inhibitor and season on ammonia loss from ryegrass publication-title: Nutrient Cycl. Agroecosyst. doi: 10.1007/s10705-013-9556-y – volume: 5 start-page: 1 year: 2015 ident: 10.1016/j.gecco.2020.e00933_bib58 article-title: Ammonium sorption and ammonia inhibition of nitrite-oxidizing bacteria explain contrasting soil N 2 O production publication-title: Sci. Rep. doi: 10.1038/srep12153 – volume: 326 start-page: 123 year: 2009 ident: 10.1016/j.gecco.2020.e00933_bib41 article-title: Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century publication-title: Science doi: 10.1126/science.1176985 – volume: 57 start-page: 196 year: 2017 ident: 10.1016/j.gecco.2020.e00933_bib29 article-title: Ammonia and greenhouse gas emissions from a subtropical wheat field under different nitrogen fertilization strategies publication-title: J. Environ. Sci. doi: 10.1016/j.jes.2017.02.014 – volume: 252 start-page: 69 year: 2018 ident: 10.1016/j.gecco.2020.e00933_bib43 article-title: A re-evaluation of the agronomic effectiveness of the nitrification inhibitors DCD and DMPP and the urease inhibitor NBPT publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2017.10.008 – volume: 94 start-page: 329 year: 2013 ident: 10.1016/j.gecco.2020.e00933_bib18 article-title: Use of NBPT and ammonium thiosulphate as urease inhibitors with varying surface placement of urea and urea ammonium nitrate in production of hard red spring wheat under reduced tillage management publication-title: Can. J. Plant Sci. doi: 10.4141/cjps2013-289 – volume: 175 start-page: 96 year: 2015 ident: 10.1016/j.gecco.2020.e00933_bib27 article-title: Effect of a new urease inhibitor on ammonia volatilization and nitrogen utilization in wheat in north and northwest China publication-title: Field Crop. Res. doi: 10.1016/j.fcr.2015.02.005 – volume: 31 start-page: 1795 year: 2002 ident: 10.1016/j.gecco.2020.e00933_bib66 article-title: Application technique and slurry co-fermentation effects on ammonia, nitrous oxide, and methane emissions after spreading publication-title: J. Environ. Qual. doi: 10.2134/jeq2002.1795 – year: 1997 ident: 10.1016/j.gecco.2020.e00933_bib55 – volume: 6 start-page: 70 year: 2007 ident: 10.1016/j.gecco.2020.e00933_bib3 article-title: Problems in the use of urea as a nitrogen fertilizer publication-title: Soil Use Manag. doi: 10.1111/j.1475-2743.1990.tb00804.x – volume: 21 start-page: 1249 year: 2015 ident: 10.1016/j.gecco.2020.e00933_bib39 article-title: How inhibiting nitrification affects nitrogen cycle and reduces environmental impacts of anthropogenic nitrogen input publication-title: Global Change Biol. doi: 10.1111/gcb.12802 – volume: 51 start-page: 2237 year: 2011 ident: 10.1016/j.gecco.2020.e00933_bib7 article-title: Comparison of enhanced-efficiency nitrogen fertilizers for reducing ammonia loss and improving Bermudagrass forage production publication-title: Crop Sci. doi: 10.2135/cropsci2011.01.0052 – volume: 116 start-page: 48 year: 2018 ident: 10.1016/j.gecco.2020.e00933_bib26 article-title: Direct and indirect greenhouse gas emissions from two intensive vegetable farms applied with a nitrification inhibitor publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2017.10.008 – ident: 10.1016/j.gecco.2020.e00933_bib13 – volume: 44 start-page: 463 year: 2008 ident: 10.1016/j.gecco.2020.e00933_bib30 article-title: Nitrous oxide emissions from animal urine application on a New Zealand pasture publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-007-0228-4 – volume: 248 start-page: 105 year: 2017 ident: 10.1016/j.gecco.2020.e00933_bib33 article-title: Optimizing urease inhibitor usage to reduce ammonia emission following urea application over crop residues publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2017.07.032 – volume: 73 start-page: 59 year: 2014 ident: 10.1016/j.gecco.2020.e00933_bib8 article-title: Effect of soil moisture status and a nitrification inhibitor, dicyandiamide, on ammonia oxidizer and denitrifier growth and nitrous oxide emissions in a grassland soil publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2014.02.011 – start-page: 1 year: 2017 ident: 10.1016/j.gecco.2020.e00933_bib16 – volume: 110 start-page: 177 year: 2018 ident: 10.1016/j.gecco.2020.e00933_bib35 article-title: Scenario modeling of ammonia emissions from surface applied urea under temperate conditions: application effects and model comparison publication-title: Nutrient Cycl. Agroecosyst. doi: 10.1007/s10705-017-9883-5 – year: 2015 ident: 10.1016/j.gecco.2020.e00933_bib22 article-title: World Reference Base for Soil Resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps publication-title: World Soil Resour. Rep. – volume: 50 start-page: 869 year: 2014 ident: 10.1016/j.gecco.2020.e00933_bib31 article-title: Microbial dynamics after adding bovine manure effluent together with a nitrification inhibitor (3, 4 DMPP) in a microcosm experiment publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-014-0907-x – volume: 14 start-page: 897 year: 2014 ident: 10.1016/j.gecco.2020.e00933_bib20 article-title: Effect of application rate of a nitrification inhibitor, dicyandiamide (DCD), on nitrification rate, and ammonia-oxidizing bacteria and archaea growth in a grazed pasture soil: an incubation study publication-title: J. Soils Sediments doi: 10.1007/s11368-013-0843-7 – volume: 137 start-page: 39 year: 2010 ident: 10.1016/j.gecco.2020.e00933_bib61 article-title: The impacts of manure application methods on emissions of ammonia, nitrous oxide and on crop response—a review publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2010.01.001 – volume: 74 start-page: 259 year: 2006 ident: 10.1016/j.gecco.2020.e00933_bib34 article-title: Calibration of a simple method for determining ammonia volatilization in the field – comparative measurements in Henan Province, China publication-title: Nutrient Cycl. Agroecosyst. doi: 10.1007/s10705-006-9003-4 – volume: 175 start-page: 1 year: 2018 ident: 10.1016/j.gecco.2020.e00933_bib19 article-title: Determining the effects of tillage and nitrogen sources on soil N2O emission publication-title: Soil Tillage Res. doi: 10.1016/j.still.2017.08.011 – year: 2018 ident: 10.1016/j.gecco.2020.e00933_bib23 – volume: 173 start-page: 1 year: 2015 ident: 10.1016/j.gecco.2020.e00933_bib50 article-title: Rice production, nitrous oxide emission and ammonia volatilization as impacted by the nitrification inhibitor 2-chloro-6-(trichloromethyl)-pyridine publication-title: Field Crop. Res. doi: 10.1016/j.fcr.2014.12.012 – volume: 53 start-page: 82 year: 2012 ident: 10.1016/j.gecco.2020.e00933_bib32 article-title: Efficiency of nitrification inhibitor DMPP to reduce nitrous oxide emissions under different temperature and moisture conditions publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2012.04.026 – start-page: 1 year: 2012 ident: 10.1016/j.gecco.2020.e00933_bib17 – volume: 147 start-page: 4 year: 2012 ident: 10.1016/j.gecco.2020.e00933_bib47 article-title: N2O emission and the N2O/(N2O+N2) product ratio of denitrification as controlled by available carbon substrates and nitrate concentrations publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2011.06.022 – volume: 15 start-page: 1113 year: 2015 ident: 10.1016/j.gecco.2020.e00933_bib28 article-title: The effect of nitrification inhibitors in reducing nitrification and the ammonia oxidizer population in three contrasting soils publication-title: J. Soils Sediments doi: 10.1007/s11368-015-1086-6 – volume: 465 start-page: 97 year: 2013 ident: 10.1016/j.gecco.2020.e00933_bib70 article-title: The effect of urease and nitrification inhibitors on ammonia and nitrous oxide emissions from simulated urine patches in pastoral system: a two-year study publication-title: Sci. Total Environ., Soil Source Sink Greenh. Gases – volume: 612 start-page: 480 year: 2018 ident: 10.1016/j.gecco.2020.e00933_bib12 article-title: Nitrification inhibitors mitigated reactive gaseous nitrogen intensity in intensive vegetable soils from China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.08.159 – year: 2013 ident: 10.1016/j.gecco.2020.e00933_bib21 – volume: 312 start-page: 45 year: 2018 ident: 10.1016/j.gecco.2020.e00933_bib67 article-title: Evaluations of the DMPP on organic and inorganic nitrogen mineralization and plant heavy metals absorption publication-title: Geoderma doi: 10.1016/j.geoderma.2017.10.007 – volume: 81 start-page: 322 year: 2017 ident: 10.1016/j.gecco.2020.e00933_bib10 article-title: Late-fall, winter and spring broadcast applications of urea to No-till winter wheat I. Ammonia loss and mitigation by NBPT publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2016.10.0332 – volume: 232 start-page: 283 year: 2016 ident: 10.1016/j.gecco.2020.e00933_bib36 article-title: Ammonia volatilization from synthetic fertilizers and its mitigation strategies: a global synthesis publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2016.08.019 – volume: 150 start-page: 140 year: 2007 ident: 10.1016/j.gecco.2020.e00933_bib11 article-title: Reduced nitrogen in ecology and the environment publication-title: Environ. Pollut. Barking Essex doi: 10.1016/j.envpol.2007.06.033 – volume: 533 start-page: 329 year: 2015 ident: 10.1016/j.gecco.2020.e00933_bib54 article-title: Application effects of coated urea and urease and nitrification inhibitors on ammonia and greenhouse gas emissions from a subtropical cotton field of the Mississippi delta region publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2015.06.147 – volume: 107 start-page: 12052 year: 2010 ident: 10.1016/j.gecco.2020.e00933_bib4 article-title: Greenhouse gas mitigation by agricultural intensification publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0914216107 – volume: 34 start-page: 109 year: 2001 ident: 10.1016/j.gecco.2020.e00933_bib62 article-title: Influence of the nitrification inhibitor 3, 4-dimethylpyrazole phosphate (DMPP) in comparison to dicyandiamide (DCD) on nitrous oxide emissions, carbon dioxide fluxes and methane oxidation during 3 years of repeated application in field experiments publication-title: Biol. Fertil. Soils doi: 10.1007/s003740100386 – volume: 41 start-page: 705 year: 2012 ident: 10.1016/j.gecco.2020.e00933_bib37 article-title: Calculating the detection limits of chamber-based soil greenhouse gas flux measurements publication-title: J. Environ. Qual. doi: 10.2134/jeq2011.0394 – volume: vol. 14276 start-page: 48 year: 2014 ident: 10.1016/j.gecco.2020.e00933_bib45 – start-page: 1 year: 2017 ident: 10.1016/j.gecco.2020.e00933_bib5 – volume: 14 start-page: 4691 year: 2017 ident: 10.1016/j.gecco.2020.e00933_bib6 article-title: Effect of soil saturation on denitrification in a grassland soil publication-title: Biogeosciences doi: 10.5194/bg-14-4691-2017 – volume: 171-172 start-page: 9 year: 2013 ident: 10.1016/j.gecco.2020.e00933_bib60 article-title: Comparison between static chamber and tunable diode laser-based eddy covariance techniques for measuring nitrous oxide fluxes from a cotton field publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2012.11.009 – volume: 23 start-page: 485 year: 2017 ident: 10.1016/j.gecco.2020.e00933_bib25 article-title: Using nitrification inhibitors to mitigate agricultural N2O emission: a double-edged sword? publication-title: Global Change Biol. doi: 10.1111/gcb.13338 |
SSID | ssj0001627183 |
Score | 2.4274359 |
Snippet | Nitrogen (N) fertilizers increase agricultural yields, but also lead to the release of the greenhouse gases nitrous oxide (N2O) and ammonia (NH3). This not... Nitrogen (N) fertilizers increase agricultural yields, but also lead to the release of the greenhouse gases nitrous oxide (N₂O) and ammonia (NH₃). This not... |
SourceID | doaj proquest crossref elsevier |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e00933 |
SubjectTerms | ammonia Ammonia volatilization ammonium nitrate biodiversity carbon dioxide climate change greenhouses nitrification Nitrification inhibitor nitrification inhibitors nitrogen nitrogen cycle Nitrous oxide risk soil urea urea ammonium nitrate urease volatilization |
Title | Use of urease and nitrification inhibitors to reduce gaseous nitrogen emissions from fertilizers containing ammonium nitrate and urea |
URI | https://dx.doi.org/10.1016/j.gecco.2020.e00933 https://www.proquest.com/docview/2561522814 https://doaj.org/article/2fb3045d70874320aac30767ab34fac2 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqqkpcEH0glrbIlXokrTdx7ORIKxAqag8Vq3KzZhwbgiBbLcsB7vzvzjgJgh7gwjXxS56x5xt7_I0Qny2A1aggC9bGTHtoMggW2eeZVoC1MsAPnH_-Mgcz_eO4PL6X6otjwnp64H7ivuYR-TKvsaoiY5crAE9qaSxgoSP4tPuSzbvnTKXTFZPTplukzHKcR76q9Ug5lIK7Tmjk_PQvV19CcuofmKXE3v_AOv23Tyfjs78u1gbUKHf70b4WL0L3RrzaS4zT12_F7ewyyHmUKcI8SOgaSSt1wVFAaeJl25222HJiHbmcywXTtQZ5QmXJ709F56RHklO_8eHZpeRHJzJyyPV5e0MAUXJEe59LQgJrbnt1keoRUk3dcc_vxGx_7-j7QTbkV8i81naZ6Yi0WhWGaWwCkqn2NZjYqFgVaDHP6UfwTFNgQhmrOtQaACE2NXrCLcYXG2Klm3dhU8hgylhopFaw0uSBQIneK1S-RCDMgxORj9Pr_EA-zjkwzt0YZXbmkkwcy8T1MpmInbtKf3vujceLf2O53RVl4uz0gdTJDerknlKniTCj1N2AQXpsQU21j_f-adQRR9LiaxfoWIqOQCWBpLya6q3nGOF7scrd9uFqH8TKcnEVPhIwWuK2eLl7-PvP4XZaC_8AGq0P7A |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Use+of+urease+and+nitrification+inhibitors+to+reduce+gaseous+nitrogen+emissions+from+fertilizers+containing+ammonium+nitrate+and+urea&rft.jtitle=Global+ecology+and+conservation&rft.au=Haitao+Wang&rft.au=Sarah+K%C3%B6bke&rft.au=Klaus+Dittert&rft.date=2020-06-01&rft.pub=Elsevier&rft.issn=2351-9894&rft.eissn=2351-9894&rft.volume=22&rft_id=info:doi/10.1016%2Fj.gecco.2020.e00933&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2fb3045d70874320aac30767ab34fac2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2351-9894&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2351-9894&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2351-9894&client=summon |