Novel Density Poincaré Plot Based Machine Learning Method to Detect Atrial Fibrillation From Premature Atrial/Ventricular Contractions
Objective: Detection of Atrial fibrillation (AF) from premature atrial contraction (PAC) and premature ventricular contraction (PVC) is difficult as frequent occurrences of these ectopic beats can mimic the typical irregular patterns of AF. In this paper, we present a novel density Poincaré plot-bas...
Saved in:
Published in | IEEE transactions on biomedical engineering Vol. 68; no. 2; pp. 448 - 460 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.02.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9294 1558-2531 1558-2531 |
DOI | 10.1109/TBME.2020.3004310 |
Cover
Loading…
Abstract | Objective: Detection of Atrial fibrillation (AF) from premature atrial contraction (PAC) and premature ventricular contraction (PVC) is difficult as frequent occurrences of these ectopic beats can mimic the typical irregular patterns of AF. In this paper, we present a novel density Poincaré plot-based machine learning method to detect AF from PAC/PVCs using electrocardiogram (ECG) recordings. Methods: First, we propose the generation of this new density Poincaré plot which is derived from the difference of the heart rate (DHR) and provides the overlapping phase-space trajectory information of the DHR. Next, from this density Poincaré plot, several image processing domain-based approaches including statistical central moments, template correlation, Zernike moment, discrete wavelet transform and Hough transform features are used to extract suitable features. Subsequently, the infinite latent feature selection algorithm is implemented to rank the features. Finally, classification of AF vs. PAC/PVC is performed using K-Nearest Neighbor, Support vector machine (SVM) and Random Forest (RF) classifiers. Our method is developed and validated using a subset of Medical Information Mart for Intensive Care (MIMIC) III database containing 10 AF and 10 PAC/PVC subjects. Results- During the segment-wise 10-fold cross-validation, SVM achieved the best performance with 98.99% sensitivity, 95.18% specificity and 97.45% accuracy with the extracted features. In subject-wise scenario, RF achieved the highest accuracy of 91.93%. Moreover, we further validated the proposed method using two other databases: wearable armband ECG data and the Physionet AFPDB. 100% PAC detection accuracy was obtained for both databases without any further training. Conclusion: Our proposed density Poincaré plot-based method showed superior performance when compared with four existing algorithms; thus showing the efficacy of the extracted image domain-based features. Significance: From intensive care unit's ECG to wearable armband ECGs, the proposed method is shown to discriminate PAC/PVCs from AF with high accuracy. |
---|---|
AbstractList | Detection of Atrial fibrillation (AF) from premature atrial contraction (PAC) and premature ventricular contraction (PVC) is difficult as frequent occurrences of these ectopic beats can mimic the typical irregular patterns of AF. In this paper, we present a novel density Poincaré plot-based machine learning method to detect AF from PAC/PVCs using electrocardiogram (ECG) recordings.OBJECTIVEDetection of Atrial fibrillation (AF) from premature atrial contraction (PAC) and premature ventricular contraction (PVC) is difficult as frequent occurrences of these ectopic beats can mimic the typical irregular patterns of AF. In this paper, we present a novel density Poincaré plot-based machine learning method to detect AF from PAC/PVCs using electrocardiogram (ECG) recordings.First, we propose the generation of this new density Poincaré plot which is derived from the difference of the heart rate (DHR) and provides the overlapping phase-space trajectory information of the DHR. Next, from this density Poincaré plot, several image processing domain-based approaches including statistical central moments, template correlation, Zernike moment, discrete wavelet transform and Hough transform features are used to extract suitable features. Subsequently, the infinite latent feature selection algorithm is implemented to rank the features. Finally, classification of AF vs. PAC/PVC is performed using K-Nearest Neighbor, Support vector machine (SVM) and Random Forest (RF) classifiers. Our method is developed and validated using a subset of Medical Information Mart for Intensive Care (MIMIC) III database containing 10 AF and 10 PAC/PVC subjects. Results- During the segment-wise 10-fold cross-validation, SVM achieved the best performance with 98.99% sensitivity, 95.18% specificity and 97.45% accuracy with the extracted features. In subject-wise scenario, RF achieved the highest accuracy of 91.93%. Moreover, we further validated the proposed method using two other databases: wearable armband ECG data and the Physionet AFPDB. 100% PAC detection accuracy was obtained for both databases without any further training.METHODSFirst, we propose the generation of this new density Poincaré plot which is derived from the difference of the heart rate (DHR) and provides the overlapping phase-space trajectory information of the DHR. Next, from this density Poincaré plot, several image processing domain-based approaches including statistical central moments, template correlation, Zernike moment, discrete wavelet transform and Hough transform features are used to extract suitable features. Subsequently, the infinite latent feature selection algorithm is implemented to rank the features. Finally, classification of AF vs. PAC/PVC is performed using K-Nearest Neighbor, Support vector machine (SVM) and Random Forest (RF) classifiers. Our method is developed and validated using a subset of Medical Information Mart for Intensive Care (MIMIC) III database containing 10 AF and 10 PAC/PVC subjects. Results- During the segment-wise 10-fold cross-validation, SVM achieved the best performance with 98.99% sensitivity, 95.18% specificity and 97.45% accuracy with the extracted features. In subject-wise scenario, RF achieved the highest accuracy of 91.93%. Moreover, we further validated the proposed method using two other databases: wearable armband ECG data and the Physionet AFPDB. 100% PAC detection accuracy was obtained for both databases without any further training.Our proposed density Poincaré plot-based method showed superior performance when compared with four existing algorithms; thus showing the efficacy of the extracted image domain-based features.CONCLUSIONOur proposed density Poincaré plot-based method showed superior performance when compared with four existing algorithms; thus showing the efficacy of the extracted image domain-based features.From intensive care unit's ECG to wearable armband ECGs, the proposed method is shown to discriminate PAC/PVCs from AF with high accuracy.SIGNIFICANCEFrom intensive care unit's ECG to wearable armband ECGs, the proposed method is shown to discriminate PAC/PVCs from AF with high accuracy. Objective: Detection of Atrial fibrillation (AF) from premature atrial contraction (PAC) and premature ventricular contraction (PVC) is difficult as frequent occurrences of these ectopic beats can mimic the typical irregular patterns of AF. In this paper, we present a novel density Poincaré plot-based machine learning method to detect AF from PAC/PVCs using electrocardiogram (ECG) recordings. Methods: First, we propose the generation of this new density Poincaré plot which is derived from the difference of the heart rate (DHR) and provides the overlapping phase-space trajectory information of the DHR. Next, from this density Poincaré plot, several image processing domain-based approaches including statistical central moments, template correlation, Zernike moment, discrete wavelet transform and Hough transform features are used to extract suitable features. Subsequently, the infinite latent feature selection algorithm is implemented to rank the features. Finally, classification of AF vs. PAC/PVC is performed using K-Nearest Neighbor, Support vector machine (SVM) and Random Forest (RF) classifiers. Our method is developed and validated using a subset of Medical Information Mart for Intensive Care (MIMIC) III database containing 10 AF and 10 PAC/PVC subjects. Results- During the segment-wise 10-fold cross-validation, SVM achieved the best performance with 98.99% sensitivity, 95.18% specificity and 97.45% accuracy with the extracted features. In subject-wise scenario, RF achieved the highest accuracy of 91.93%. Moreover, we further validated the proposed method using two other databases: wearable armband ECG data and the Physionet AFPDB. 100% PAC detection accuracy was obtained for both databases without any further training. Conclusion: Our proposed density Poincaré plot-based method showed superior performance when compared with four existing algorithms; thus showing the efficacy of the extracted image domain-based features. Significance: From intensive care unit's ECG to wearable armband ECGs, the proposed method is shown to discriminate PAC/PVCs from AF with high accuracy. Detection of Atrial fibrillation (AF) from premature atrial contraction (PAC) and premature ventricular contraction (PVC) is difficult as frequent occurrences of these ectopic beats can mimic the typical irregular patterns of AF. In this paper, we present a novel density Poincaré plot-based machine learning method to detect AF from PAC/PVCs using electrocardiogram (ECG) recordings. First, we propose the generation of this new density Poincaré plot which is derived from the difference of the heart rate (DHR) and provides the overlapping phase-space trajectory information of the DHR. Next, from this density Poincaré plot, several image processing domain-based approaches including statistical central moments, template correlation, Zernike moment, discrete wavelet transform and Hough transform features are used to extract suitable features. Subsequently, the infinite latent feature selection algorithm is implemented to rank the features. Finally, classification of AF vs. PAC/PVC is performed using K-Nearest Neighbor, Support vector machine (SVM) and Random Forest (RF) classifiers. Our method is developed and validated using a subset of Medical Information Mart for Intensive Care (MIMIC) III database containing 10 AF and 10 PAC/PVC subjects. Results- During the segment-wise 10-fold cross-validation, SVM achieved the best performance with 98.99% sensitivity, 95.18% specificity and 97.45% accuracy with the extracted features. In subject-wise scenario, RF achieved the highest accuracy of 91.93%. Moreover, we further validated the proposed method using two other databases: wearable armband ECG data and the Physionet AFPDB. 100% PAC detection accuracy was obtained for both databases without any further training. Our proposed density Poincaré plot-based method showed superior performance when compared with four existing algorithms; thus showing the efficacy of the extracted image domain-based features. From intensive care unit's ECG to wearable armband ECGs, the proposed method is shown to discriminate PAC/PVCs from AF with high accuracy. |
Author | Zieneddin, Fearass McManus, David D. Ding, Eric Fitzgibbons, Timothy P. Han, Dong Chon, Ki H. Javidi, Bahram Bashar, Syed Khairul Walkey, Allan J. |
Author_xml | – sequence: 1 givenname: Syed Khairul orcidid: 0000-0002-0180-1980 surname: Bashar fullname: Bashar, Syed Khairul organization: Biomedical Engineering DepartmentUniversity of Connecticut – sequence: 2 givenname: Dong orcidid: 0000-0001-7872-7371 surname: Han fullname: Han, Dong organization: Biomedical Engineering DepartmentUniversity of Connecticut – sequence: 3 givenname: Fearass surname: Zieneddin fullname: Zieneddin, Fearass organization: Biomedical Engineering DepartmentUniversity of Connecticut – sequence: 4 givenname: Eric surname: Ding fullname: Ding, Eric organization: Division of CardiologyUniversity of Massachusetts Medical School – sequence: 5 givenname: Timothy P. surname: Fitzgibbons fullname: Fitzgibbons, Timothy P. organization: Division of CardiologyUniversity of Massachusetts Medical School – sequence: 6 givenname: Allan J. surname: Walkey fullname: Walkey, Allan J. organization: Department of MedicineBoston University School of Medicine – sequence: 7 givenname: David D. surname: McManus fullname: McManus, David D. organization: Division of CardiologyUniversity of Massachusetts Medical School – sequence: 8 givenname: Bahram orcidid: 0000-0002-3612-2873 surname: Javidi fullname: Javidi, Bahram organization: Department of Electrical and Computer EngineeringUniversity of Connecticut – sequence: 9 givenname: Ki H. orcidid: 0000-0002-4422-4837 surname: Chon fullname: Chon, Ki H. email: ki.chon@uconn.edu organization: Biomedical Engineering Department, University of Connecticut, Storrs, CT, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32746035$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ksFuEzEQhi1URNPCAyAkZIkLl03ttTdeX5Da0ABSAjkUrpbXO9u42tit7a3UJ-BZeA5eDC8JEfSAL_bY3z-eXzMn6Mh5Bwi9pGRKKZFnVxery2lJSjJlhHBGyRM0oVVVF2XF6BGaEELrQpaSH6OTGG9yyGs-e4aOWSn4jLBqgr5_9vfQ4_fgok0PeO2tMzr8_IHXvU_4Qkdo8UqbjXWAl6CDs-4aryBtfIuTz7oEJuHzFKzu8cI2wfa9TtY7vAh-i9cBtjoNAfbI2Tdw-WCGXgc89_mszUjH5-hpp_sIL_b7Kfq6uLyafyyWXz58mp8vC8O5SAUHwzqQvKPQdk2TbQItGy25rFsCrClpvmlrYyphurJmQHNQNbQllRasnrFT9G6X93ZottCasRzdq9tgtzo8KK-t-vfF2Y269vdKZHHF65zg7T5B8HcDxKS2NhrIrh34IaqSM8IEkZxk9M0j9MYPwWV7mRKyzkvQTL3-u6JDKX96lAG6A0zwMQboDgglapwDNc6BGudA7ecga8QjjbHpd1-yKdv_V_lqp7QAcPhJ0pLNpGC_AC6rwtE |
CODEN | IEBEAX |
CitedBy_id | crossref_primary_10_2139_ssrn_4092345 crossref_primary_10_1016_j_cvdhj_2023_12_003 crossref_primary_10_3390_electronics13122245 crossref_primary_10_3390_bios12040185 crossref_primary_10_1113_JP282562 crossref_primary_10_1016_j_apacoust_2024_109918 crossref_primary_10_1016_j_engappai_2024_108325 crossref_primary_10_1109_TBME_2022_3193906 crossref_primary_10_1016_j_jvc_2022_04_003 crossref_primary_10_1109_JBHI_2023_3272155 crossref_primary_10_3390_s21186043 crossref_primary_10_1515_bmt_2022_0430 crossref_primary_10_1111_exsy_13277 crossref_primary_10_1002_widm_1530 crossref_primary_10_3390_s21206915 crossref_primary_10_1016_j_eswa_2023_123112 crossref_primary_10_1109_JTEHM_2024_3397739 crossref_primary_10_1109_LSENS_2024_3392693 crossref_primary_10_3390_s23104805 crossref_primary_10_1109_ACCESS_2022_3185129 crossref_primary_10_1016_j_health_2024_100370 crossref_primary_10_1007_s00540_024_03316_6 crossref_primary_10_1016_j_bspc_2024_106602 crossref_primary_10_1016_j_cvdhj_2022_02_001 crossref_primary_10_1093_jrsssc_qlad066 crossref_primary_10_1007_s11831_023_09935_8 crossref_primary_10_1016_j_jnca_2022_103544 crossref_primary_10_1109_JSEN_2022_3217037 crossref_primary_10_1016_j_cvdhj_2021_05_004 crossref_primary_10_1016_j_eswa_2022_118930 crossref_primary_10_31083_j_rcm2507257 crossref_primary_10_1088_2057_1976_ada965 crossref_primary_10_1016_j_compbiomed_2021_104367 crossref_primary_10_1111_pace_14891 crossref_primary_10_3389_fphys_2021_657304 crossref_primary_10_2196_29434 crossref_primary_10_3390_s24154978 crossref_primary_10_3390_s24020398 crossref_primary_10_1109_JSEN_2022_3208427 |
Cites_doi | 10.1088/1361-6579/aa5feb 10.1016/j.compbiomed.2010.11.003 10.1038/sdata.2016.35 10.1109/ACCESS.2019.2926199 10.1109/CIC.1997.647834 10.3390/e18080285 10.1109/TNNLS.2018.2812279 10.1016/j.neucom.2015.11.034 10.1109/CVPR.2009.5206693 10.1152/ajpheart.00561.2010 10.1177/0885066619866172 10.1109/ICCV.2017.156 10.1109/EMBC.2019.8857325 10.1109/JBHI.2020.2995139 10.1109/78.157221 10.1007/BF02344809 10.1109/CIC.2001.977604 10.1007/s11517-018-1892-2 10.1109/JBHI.2015.2418195 10.1016/j.bspc.2012.08.004 10.1161/CIRCULATIONAHA.113.005119 10.1016/j.eswa.2011.08.025 10.1007/s10439-009-9740-z 10.1016/j.patcog.2006.03.004 10.1109/TBME.2012.2213253 10.1016/j.compbiomed.2011.06.009 10.1016/j.eswa.2012.04.072 10.1145/361237.361242 10.1109/TIP.2007.894242 10.1109/JBHI.2017.2688473 10.1023/A:1010933404324 10.1016/S0031-3203(02)00081-X 10.1016/j.jelectrocard.2016.07.033 10.1111/j.1540-8159.1978.tb03504.x 10.1186/1475-925X-10-22 10.1161/01.STR.0000131269.69502.d9 10.1109/TBME.2018.2810508 10.1016/j.neucom.2018.04.059 10.1109/TSMCA.2008.2007988 10.1109/TBME.2020.2987759 10.1016/j.gheart.2017.01.015 10.1109/TIP.2011.2171696 10.1016/j.medengphy.2012.02.002 10.1109/TBME.2010.2096506 10.1109/ACCESS.2019.2894092 10.1109/TPWRD.2018.2889471 10.1016/j.eswa.2007.12.016 10.1016/j.measurement.2009.01.004 10.1134/S1054661811010044 10.1109/TBME.2007.903707 10.1016/j.compbiomed.2015.06.012 10.1016/j.measurement.2017.05.022 10.1007/s004220050414 10.1161/01.CIR.101.23.e215 10.1016/j.cmpb.2015.12.024 10.1016/j.cmpb.2015.10.010 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 5PM |
DOI | 10.1109/TBME.2020.3004310 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-2531 |
EndPage | 460 |
ExternalDocumentID | PMC7863548 32746035 10_1109_TBME_2020_3004310 9123697 |
Genre | orig-research Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIH grantid: R01 HL136660 – fundername: NHLBI NIH HHS grantid: R01 HL136660 – fundername: NHLBI NIH HHS grantid: F30 HL149335 |
GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 5PM |
ID | FETCH-LOGICAL-c447t-4ec3fe94f1edfbb531e12ba9498d0e3b2131ed8cc57cf283e1d8c5b1d05a73863 |
IEDL.DBID | RIE |
ISSN | 0018-9294 1558-2531 |
IngestDate | Thu Aug 21 18:28:05 EDT 2025 Thu Jul 10 22:00:10 EDT 2025 Mon Jun 30 08:38:22 EDT 2025 Mon Jul 21 06:07:07 EDT 2025 Tue Jul 01 03:28:34 EDT 2025 Thu Apr 24 22:56:41 EDT 2025 Wed Aug 27 06:01:04 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publicationsstandards/publications/rights/index.html for more information. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c447t-4ec3fe94f1edfbb531e12ba9498d0e3b2131ed8cc57cf283e1d8c5b1d05a73863 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4422-4837 0000-0002-0180-1980 0000-0001-7872-7371 0000-0002-3612-2873 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/7863548 |
PMID | 32746035 |
PQID | 2479888871 |
PQPubID | 85474 |
PageCount | 13 |
ParticipantIDs | pubmed_primary_32746035 proquest_miscellaneous_2430370940 ieee_primary_9123697 crossref_primary_10_1109_TBME_2020_3004310 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7863548 crossref_citationtrail_10_1109_TBME_2020_3004310 proquest_journals_2479888871 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-01 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on biomedical engineering |
PublicationTitleAbbrev | TBME |
PublicationTitleAlternate | IEEE Trans Biomed Eng |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref56 ref12 ref59 bishop (ref57) 2006 ref15 ref58 ref14 ref53 ref55 ref11 ref54 ref10 ref17 ref16 ref18 ref50 ref46 ref45 ref48 ref42 ye (ref19) 2012; 59 ref41 ref44 ref43 moody (ref5) 0 ref8 ref7 ref9 ref4 ref3 ref6 ref40 xu (ref49) 2014; 24 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 nguyen (ref47) 0 ref28 (ref52) 0 ref27 ref29 duan (ref51) 0; 2 ref60 ref62 ref61 |
References_xml | – ident: ref34 doi: 10.1088/1361-6579/aa5feb – ident: ref24 doi: 10.1016/j.compbiomed.2010.11.003 – ident: ref26 doi: 10.1038/sdata.2016.35 – ident: ref30 doi: 10.1109/ACCESS.2019.2926199 – ident: ref11 doi: 10.1109/CIC.1997.647834 – start-page: 1 year: 0 ident: ref47 article-title: An improvement of the standard hough transform to detect line segments publication-title: Proc IEEE Int Conf Ind Technol – ident: ref17 doi: 10.3390/e18080285 – ident: ref55 doi: 10.1109/TNNLS.2018.2812279 – ident: ref43 doi: 10.1016/j.neucom.2015.11.034 – ident: ref50 doi: 10.1109/CVPR.2009.5206693 – ident: ref8 doi: 10.1152/ajpheart.00561.2010 – ident: ref27 doi: 10.1177/0885066619866172 – ident: ref53 doi: 10.1109/ICCV.2017.156 – ident: ref32 doi: 10.1109/EMBC.2019.8857325 – ident: ref15 doi: 10.1109/JBHI.2020.2995139 – ident: ref45 doi: 10.1109/78.157221 – ident: ref61 doi: 10.1007/BF02344809 – ident: ref29 doi: 10.1109/CIC.2001.977604 – ident: ref59 doi: 10.1007/s11517-018-1892-2 – ident: ref13 doi: 10.1109/JBHI.2015.2418195 – ident: ref22 doi: 10.1016/j.bspc.2012.08.004 – ident: ref2 doi: 10.1161/CIRCULATIONAHA.113.005119 – ident: ref54 doi: 10.1016/j.eswa.2011.08.025 – ident: ref6 doi: 10.1007/s10439-009-9740-z – year: 2006 ident: ref57 publication-title: Pattern Recognition and Machine Learning – ident: ref39 doi: 10.1016/j.patcog.2006.03.004 – volume: 59 start-page: 2930 year: 2012 ident: ref19 article-title: Heartbeat classification using morphological and dynamic features of ECG signals publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2012.2213253 – volume: 24 start-page: 813 year: 2014 ident: ref49 article-title: Accurate and robust line segment extraction using minimum entropy with hough transform publication-title: IEEE Trans Image Process – ident: ref42 doi: 10.1016/j.compbiomed.2011.06.009 – ident: ref21 doi: 10.1016/j.eswa.2012.04.072 – ident: ref48 doi: 10.1145/361237.361242 – ident: ref46 doi: 10.1109/TIP.2007.894242 – ident: ref4 doi: 10.1109/JBHI.2017.2688473 – ident: ref58 doi: 10.1023/A:1010933404324 – ident: ref36 doi: 10.1016/S0031-3203(02)00081-X – ident: ref10 doi: 10.1016/j.jelectrocard.2016.07.033 – ident: ref62 doi: 10.1111/j.1540-8159.1978.tb03504.x – start-page: 227 year: 0 ident: ref5 article-title: A new method for detecting atrial fibrillation using RR intervals publication-title: Proc Comput Cardiol – ident: ref20 doi: 10.1186/1475-925X-10-22 – ident: ref3 doi: 10.1161/01.STR.0000131269.69502.d9 – ident: ref14 doi: 10.1109/TBME.2018.2810508 – ident: ref37 doi: 10.1016/j.neucom.2018.04.059 – ident: ref40 doi: 10.1109/TSMCA.2008.2007988 – ident: ref28 doi: 10.1109/TBME.2020.2987759 – ident: ref1 doi: 10.1016/j.gheart.2017.01.015 – ident: ref38 doi: 10.1109/TIP.2011.2171696 – ident: ref12 doi: 10.1016/j.medengphy.2012.02.002 – year: 0 ident: ref52 article-title: Mathworks - makers of matlab and simulink – ident: ref9 doi: 10.1109/TBME.2010.2096506 – ident: ref31 doi: 10.1109/ACCESS.2019.2894092 – ident: ref35 doi: 10.1109/TPWRD.2018.2889471 – volume: 2 start-page: 2v year: 0 ident: ref51 article-title: An improved hough transform for line detection publication-title: Proc Int Conf Comput Appl Syst Model – ident: ref56 doi: 10.1016/j.eswa.2007.12.016 – ident: ref18 doi: 10.1016/j.measurement.2009.01.004 – ident: ref41 doi: 10.1134/S1054661811010044 – ident: ref7 doi: 10.1109/TBME.2007.903707 – ident: ref33 doi: 10.1016/j.compbiomed.2015.06.012 – ident: ref16 doi: 10.1016/j.measurement.2017.05.022 – ident: ref60 doi: 10.1007/s004220050414 – ident: ref25 doi: 10.1161/01.CIR.101.23.e215 – ident: ref23 doi: 10.1016/j.cmpb.2015.12.024 – ident: ref44 doi: 10.1016/j.cmpb.2015.10.010 |
SSID | ssj0014846 |
Score | 2.538833 |
Snippet | Objective: Detection of Atrial fibrillation (AF) from premature atrial contraction (PAC) and premature ventricular contraction (PVC) is difficult as frequent... Detection of Atrial fibrillation (AF) from premature atrial contraction (PAC) and premature ventricular contraction (PVC) is difficult as frequent occurrences... |
SourceID | pubmedcentral proquest pubmed crossref ieee |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 448 |
SubjectTerms | Accuracy Algorithms atrial fibrillation Atrial Fibrillation - diagnosis Atrial Premature Complexes - diagnosis Cardiac arrhythmia correlation Density density Poincaré plot Discrete Wavelet Transform Domains EKG Electrocardiography Feature extraction Fibrillation Heart Atria Heart rate Heart rate variability Hough transformation Humans Image processing Intensive care Learning algorithms Machine Learning MIMICs Picture archiving and communication systems Premature atrial contraction premature ventricular contraction random forest Signal Processing, Computer-Assisted Support vector machines SVM Ventricle Ventricular Premature Complexes - diagnosis wavelet transform Wavelet transforms Wearable technology |
Title | Novel Density Poincaré Plot Based Machine Learning Method to Detect Atrial Fibrillation From Premature Atrial/Ventricular Contractions |
URI | https://ieeexplore.ieee.org/document/9123697 https://www.ncbi.nlm.nih.gov/pubmed/32746035 https://www.proquest.com/docview/2479888871 https://www.proquest.com/docview/2430370940 https://pubmed.ncbi.nlm.nih.gov/PMC7863548 |
Volume | 68 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwEB61PSA48NPyEyjISJwQ2bUTJ1kfW-iqQkq1hxb1FsXOGFYsCUqzSPACPAvPwYvhcbKhrSrEbbOZREk8jmcy33wfwCsreSwxVaGIUx7KuBShlkKH6czayqBU6BuF85P0-Ey-P0_Ot-DN2AuDiB58hhP66Wv5VWPW9KlsqogqRGXbsO0St75Xa6wYyFnflMOFm8CRkkMFU3A1PT3Mj1wmGLkElQpfgtTfYpeNpdyLvP1djry-yk2h5nXE5KUlaH4P8s3F98iTz5N1pyfmxzVex_-9u_twd4hF2UHvPA9gC-tduHOJoXAXbuVD7X0Pfp4033DF3hHivfvOFs2yNmX7-xdbrJqOHbrVsGK5h2YiG1hbP7LcC1SzrnHHUbmCHXiZEDanToNVj8Nj87b5whYtsceuWxxMph_oISw9TJYRh1bbt2BcPISz-dHp2-NwkHEIjZRZF0o0sUUlrcDKau0mPYpIl0qqWcUx1pFw_1QzY5LMWBftoHAbiRYVT0qSJI0fwU7d1PgEGMlYJFWstbYohVXaZdgm5lpoq0qhbAB8M5qFGTjOSWpjVfhch6uCfKEgXygGXwjg9XjI157g41_GezRuo-EwZAHsb1ymGF4BF0UkiQrOvcNFAC_H3W7yUkWmrLFZk42LIDKiMAzgce9h47k3HhpAdsX3RgMiBr-6p15-8gThmXtoLhN9evPVPoPbEQFzPPR8H3a6do3PXWTV6Rd-Sv0Bzv8hBg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3bbtNAEB2VInF54NJyMRRYJJ4QTrz2Os4-ttAoQB3lIUV9s7zrWYgINnIdJPgBvoXv4MfYWTumrSrEWxyPLds7653xnDkH4IURQSRwJH0ejQJfRDn3leDKH42NKTQKia5ROJ2Npsfi3Ul8sgWv-l4YRHTgMxzQT1fLLyq9pk9lQ0lUITK5Alftuh_ztlurrxmIcduWE3A7hUMpuhomD-RwcZAe2lwwtCkqlb446b9FNh8bBU7m7e-C5BRWLgs2L2ImzyxCk9uQbi6_xZ58HqwbNdA_LjA7_u_93YFbXTTK9lv3uQtbWO7AzTMchTtwLe2q77vwc1Z9wxV7Q5j35jubV8tS5_XvX2y-qhp2YNfDgqUOnIms4239yFInUc2ayh5HBQu274RC2IR6DVYtEo9N6uoLm9fEH7uusTMZfqCHsHRAWUYsWnXbhHF6D44nh4vXU78TcvC1EEnjC9SRQSkMx8IoZac98lDlUshxEWCkQm7_KcZax4k2Nt5BbjdixYsgzkmUNLoP22VV4kNgJGQRF5FSyqDgRiqbY-soUFwZmXNpPAg2o5npjuWcxDZWmct2ApmRL2TkC1nnCx687A_52lJ8_Mt4l8atN-yGzIO9jctk3UvgNAsFkcHZtzj34Hm_205fqsnkJVZrsrExREIkhh48aD2sP_fGQz1Izvleb0DU4Of3lMtPjiI8sQ_N5qKPLr_aZ3B9ukiPsqO3s_eP4UZIMB0HRN-D7aZe4xMbZzXqqZtefwD46yRP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+Density+Poincar%C3%A9+Plot+Based+Machine+Learning+Method+to+Detect+Atrial+Fibrillation+from+Premature+Atrial%2FVentricular+Contractions&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Bashar%2C+Syed+Khairul&rft.au=Han%2C+Dong&rft.au=Zieneddin%2C+Fearass&rft.au=Ding%2C+Eric&rft.date=2021-02-01&rft.issn=0018-9294&rft.eissn=1558-2531&rft.volume=68&rft.issue=2&rft.spage=448&rft.epage=460&rft_id=info:doi/10.1109%2FTBME.2020.3004310&rft_id=info%3Apmid%2F32746035&rft.externalDocID=PMC7863548 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |