Novel Density Poincaré Plot Based Machine Learning Method to Detect Atrial Fibrillation From Premature Atrial/Ventricular Contractions

Objective: Detection of Atrial fibrillation (AF) from premature atrial contraction (PAC) and premature ventricular contraction (PVC) is difficult as frequent occurrences of these ectopic beats can mimic the typical irregular patterns of AF. In this paper, we present a novel density Poincaré plot-bas...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 68; no. 2; pp. 448 - 460
Main Authors Bashar, Syed Khairul, Han, Dong, Zieneddin, Fearass, Ding, Eric, Fitzgibbons, Timothy P., Walkey, Allan J., McManus, David D., Javidi, Bahram, Chon, Ki H.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.02.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9294
1558-2531
1558-2531
DOI10.1109/TBME.2020.3004310

Cover

Loading…
Abstract Objective: Detection of Atrial fibrillation (AF) from premature atrial contraction (PAC) and premature ventricular contraction (PVC) is difficult as frequent occurrences of these ectopic beats can mimic the typical irregular patterns of AF. In this paper, we present a novel density Poincaré plot-based machine learning method to detect AF from PAC/PVCs using electrocardiogram (ECG) recordings. Methods: First, we propose the generation of this new density Poincaré plot which is derived from the difference of the heart rate (DHR) and provides the overlapping phase-space trajectory information of the DHR. Next, from this density Poincaré plot, several image processing domain-based approaches including statistical central moments, template correlation, Zernike moment, discrete wavelet transform and Hough transform features are used to extract suitable features. Subsequently, the infinite latent feature selection algorithm is implemented to rank the features. Finally, classification of AF vs. PAC/PVC is performed using K-Nearest Neighbor, Support vector machine (SVM) and Random Forest (RF) classifiers. Our method is developed and validated using a subset of Medical Information Mart for Intensive Care (MIMIC) III database containing 10 AF and 10 PAC/PVC subjects. Results- During the segment-wise 10-fold cross-validation, SVM achieved the best performance with 98.99% sensitivity, 95.18% specificity and 97.45% accuracy with the extracted features. In subject-wise scenario, RF achieved the highest accuracy of 91.93%. Moreover, we further validated the proposed method using two other databases: wearable armband ECG data and the Physionet AFPDB. 100% PAC detection accuracy was obtained for both databases without any further training. Conclusion: Our proposed density Poincaré plot-based method showed superior performance when compared with four existing algorithms; thus showing the efficacy of the extracted image domain-based features. Significance: From intensive care unit's ECG to wearable armband ECGs, the proposed method is shown to discriminate PAC/PVCs from AF with high accuracy.
AbstractList Detection of Atrial fibrillation (AF) from premature atrial contraction (PAC) and premature ventricular contraction (PVC) is difficult as frequent occurrences of these ectopic beats can mimic the typical irregular patterns of AF. In this paper, we present a novel density Poincaré plot-based machine learning method to detect AF from PAC/PVCs using electrocardiogram (ECG) recordings.OBJECTIVEDetection of Atrial fibrillation (AF) from premature atrial contraction (PAC) and premature ventricular contraction (PVC) is difficult as frequent occurrences of these ectopic beats can mimic the typical irregular patterns of AF. In this paper, we present a novel density Poincaré plot-based machine learning method to detect AF from PAC/PVCs using electrocardiogram (ECG) recordings.First, we propose the generation of this new density Poincaré plot which is derived from the difference of the heart rate (DHR) and provides the overlapping phase-space trajectory information of the DHR. Next, from this density Poincaré plot, several image processing domain-based approaches including statistical central moments, template correlation, Zernike moment, discrete wavelet transform and Hough transform features are used to extract suitable features. Subsequently, the infinite latent feature selection algorithm is implemented to rank the features. Finally, classification of AF vs. PAC/PVC is performed using K-Nearest Neighbor, Support vector machine (SVM) and Random Forest (RF) classifiers. Our method is developed and validated using a subset of Medical Information Mart for Intensive Care (MIMIC) III database containing 10 AF and 10 PAC/PVC subjects. Results- During the segment-wise 10-fold cross-validation, SVM achieved the best performance with 98.99% sensitivity, 95.18% specificity and 97.45% accuracy with the extracted features. In subject-wise scenario, RF achieved the highest accuracy of 91.93%. Moreover, we further validated the proposed method using two other databases: wearable armband ECG data and the Physionet AFPDB. 100% PAC detection accuracy was obtained for both databases without any further training.METHODSFirst, we propose the generation of this new density Poincaré plot which is derived from the difference of the heart rate (DHR) and provides the overlapping phase-space trajectory information of the DHR. Next, from this density Poincaré plot, several image processing domain-based approaches including statistical central moments, template correlation, Zernike moment, discrete wavelet transform and Hough transform features are used to extract suitable features. Subsequently, the infinite latent feature selection algorithm is implemented to rank the features. Finally, classification of AF vs. PAC/PVC is performed using K-Nearest Neighbor, Support vector machine (SVM) and Random Forest (RF) classifiers. Our method is developed and validated using a subset of Medical Information Mart for Intensive Care (MIMIC) III database containing 10 AF and 10 PAC/PVC subjects. Results- During the segment-wise 10-fold cross-validation, SVM achieved the best performance with 98.99% sensitivity, 95.18% specificity and 97.45% accuracy with the extracted features. In subject-wise scenario, RF achieved the highest accuracy of 91.93%. Moreover, we further validated the proposed method using two other databases: wearable armband ECG data and the Physionet AFPDB. 100% PAC detection accuracy was obtained for both databases without any further training.Our proposed density Poincaré plot-based method showed superior performance when compared with four existing algorithms; thus showing the efficacy of the extracted image domain-based features.CONCLUSIONOur proposed density Poincaré plot-based method showed superior performance when compared with four existing algorithms; thus showing the efficacy of the extracted image domain-based features.From intensive care unit's ECG to wearable armband ECGs, the proposed method is shown to discriminate PAC/PVCs from AF with high accuracy.SIGNIFICANCEFrom intensive care unit's ECG to wearable armband ECGs, the proposed method is shown to discriminate PAC/PVCs from AF with high accuracy.
Objective: Detection of Atrial fibrillation (AF) from premature atrial contraction (PAC) and premature ventricular contraction (PVC) is difficult as frequent occurrences of these ectopic beats can mimic the typical irregular patterns of AF. In this paper, we present a novel density Poincaré plot-based machine learning method to detect AF from PAC/PVCs using electrocardiogram (ECG) recordings. Methods: First, we propose the generation of this new density Poincaré plot which is derived from the difference of the heart rate (DHR) and provides the overlapping phase-space trajectory information of the DHR. Next, from this density Poincaré plot, several image processing domain-based approaches including statistical central moments, template correlation, Zernike moment, discrete wavelet transform and Hough transform features are used to extract suitable features. Subsequently, the infinite latent feature selection algorithm is implemented to rank the features. Finally, classification of AF vs. PAC/PVC is performed using K-Nearest Neighbor, Support vector machine (SVM) and Random Forest (RF) classifiers. Our method is developed and validated using a subset of Medical Information Mart for Intensive Care (MIMIC) III database containing 10 AF and 10 PAC/PVC subjects. Results- During the segment-wise 10-fold cross-validation, SVM achieved the best performance with 98.99% sensitivity, 95.18% specificity and 97.45% accuracy with the extracted features. In subject-wise scenario, RF achieved the highest accuracy of 91.93%. Moreover, we further validated the proposed method using two other databases: wearable armband ECG data and the Physionet AFPDB. 100% PAC detection accuracy was obtained for both databases without any further training. Conclusion: Our proposed density Poincaré plot-based method showed superior performance when compared with four existing algorithms; thus showing the efficacy of the extracted image domain-based features. Significance: From intensive care unit's ECG to wearable armband ECGs, the proposed method is shown to discriminate PAC/PVCs from AF with high accuracy.
Detection of Atrial fibrillation (AF) from premature atrial contraction (PAC) and premature ventricular contraction (PVC) is difficult as frequent occurrences of these ectopic beats can mimic the typical irregular patterns of AF. In this paper, we present a novel density Poincaré plot-based machine learning method to detect AF from PAC/PVCs using electrocardiogram (ECG) recordings. First, we propose the generation of this new density Poincaré plot which is derived from the difference of the heart rate (DHR) and provides the overlapping phase-space trajectory information of the DHR. Next, from this density Poincaré plot, several image processing domain-based approaches including statistical central moments, template correlation, Zernike moment, discrete wavelet transform and Hough transform features are used to extract suitable features. Subsequently, the infinite latent feature selection algorithm is implemented to rank the features. Finally, classification of AF vs. PAC/PVC is performed using K-Nearest Neighbor, Support vector machine (SVM) and Random Forest (RF) classifiers. Our method is developed and validated using a subset of Medical Information Mart for Intensive Care (MIMIC) III database containing 10 AF and 10 PAC/PVC subjects. Results- During the segment-wise 10-fold cross-validation, SVM achieved the best performance with 98.99% sensitivity, 95.18% specificity and 97.45% accuracy with the extracted features. In subject-wise scenario, RF achieved the highest accuracy of 91.93%. Moreover, we further validated the proposed method using two other databases: wearable armband ECG data and the Physionet AFPDB. 100% PAC detection accuracy was obtained for both databases without any further training. Our proposed density Poincaré plot-based method showed superior performance when compared with four existing algorithms; thus showing the efficacy of the extracted image domain-based features. From intensive care unit's ECG to wearable armband ECGs, the proposed method is shown to discriminate PAC/PVCs from AF with high accuracy.
Author Zieneddin, Fearass
McManus, David D.
Ding, Eric
Fitzgibbons, Timothy P.
Han, Dong
Chon, Ki H.
Javidi, Bahram
Bashar, Syed Khairul
Walkey, Allan J.
Author_xml – sequence: 1
  givenname: Syed Khairul
  orcidid: 0000-0002-0180-1980
  surname: Bashar
  fullname: Bashar, Syed Khairul
  organization: Biomedical Engineering DepartmentUniversity of Connecticut
– sequence: 2
  givenname: Dong
  orcidid: 0000-0001-7872-7371
  surname: Han
  fullname: Han, Dong
  organization: Biomedical Engineering DepartmentUniversity of Connecticut
– sequence: 3
  givenname: Fearass
  surname: Zieneddin
  fullname: Zieneddin, Fearass
  organization: Biomedical Engineering DepartmentUniversity of Connecticut
– sequence: 4
  givenname: Eric
  surname: Ding
  fullname: Ding, Eric
  organization: Division of CardiologyUniversity of Massachusetts Medical School
– sequence: 5
  givenname: Timothy P.
  surname: Fitzgibbons
  fullname: Fitzgibbons, Timothy P.
  organization: Division of CardiologyUniversity of Massachusetts Medical School
– sequence: 6
  givenname: Allan J.
  surname: Walkey
  fullname: Walkey, Allan J.
  organization: Department of MedicineBoston University School of Medicine
– sequence: 7
  givenname: David D.
  surname: McManus
  fullname: McManus, David D.
  organization: Division of CardiologyUniversity of Massachusetts Medical School
– sequence: 8
  givenname: Bahram
  orcidid: 0000-0002-3612-2873
  surname: Javidi
  fullname: Javidi, Bahram
  organization: Department of Electrical and Computer EngineeringUniversity of Connecticut
– sequence: 9
  givenname: Ki H.
  orcidid: 0000-0002-4422-4837
  surname: Chon
  fullname: Chon, Ki H.
  email: ki.chon@uconn.edu
  organization: Biomedical Engineering Department, University of Connecticut, Storrs, CT, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32746035$$D View this record in MEDLINE/PubMed
BookMark eNp9ksFuEzEQhi1URNPCAyAkZIkLl03ttTdeX5Da0ABSAjkUrpbXO9u42tit7a3UJ-BZeA5eDC8JEfSAL_bY3z-eXzMn6Mh5Bwi9pGRKKZFnVxery2lJSjJlhHBGyRM0oVVVF2XF6BGaEELrQpaSH6OTGG9yyGs-e4aOWSn4jLBqgr5_9vfQ4_fgok0PeO2tMzr8_IHXvU_4Qkdo8UqbjXWAl6CDs-4aryBtfIuTz7oEJuHzFKzu8cI2wfa9TtY7vAh-i9cBtjoNAfbI2Tdw-WCGXgc89_mszUjH5-hpp_sIL_b7Kfq6uLyafyyWXz58mp8vC8O5SAUHwzqQvKPQdk2TbQItGy25rFsCrClpvmlrYyphurJmQHNQNbQllRasnrFT9G6X93ZottCasRzdq9tgtzo8KK-t-vfF2Y269vdKZHHF65zg7T5B8HcDxKS2NhrIrh34IaqSM8IEkZxk9M0j9MYPwWV7mRKyzkvQTL3-u6JDKX96lAG6A0zwMQboDgglapwDNc6BGudA7ecga8QjjbHpd1-yKdv_V_lqp7QAcPhJ0pLNpGC_AC6rwtE
CODEN IEBEAX
CitedBy_id crossref_primary_10_2139_ssrn_4092345
crossref_primary_10_1016_j_cvdhj_2023_12_003
crossref_primary_10_3390_electronics13122245
crossref_primary_10_3390_bios12040185
crossref_primary_10_1113_JP282562
crossref_primary_10_1016_j_apacoust_2024_109918
crossref_primary_10_1016_j_engappai_2024_108325
crossref_primary_10_1109_TBME_2022_3193906
crossref_primary_10_1016_j_jvc_2022_04_003
crossref_primary_10_1109_JBHI_2023_3272155
crossref_primary_10_3390_s21186043
crossref_primary_10_1515_bmt_2022_0430
crossref_primary_10_1111_exsy_13277
crossref_primary_10_1002_widm_1530
crossref_primary_10_3390_s21206915
crossref_primary_10_1016_j_eswa_2023_123112
crossref_primary_10_1109_JTEHM_2024_3397739
crossref_primary_10_1109_LSENS_2024_3392693
crossref_primary_10_3390_s23104805
crossref_primary_10_1109_ACCESS_2022_3185129
crossref_primary_10_1016_j_health_2024_100370
crossref_primary_10_1007_s00540_024_03316_6
crossref_primary_10_1016_j_bspc_2024_106602
crossref_primary_10_1016_j_cvdhj_2022_02_001
crossref_primary_10_1093_jrsssc_qlad066
crossref_primary_10_1007_s11831_023_09935_8
crossref_primary_10_1016_j_jnca_2022_103544
crossref_primary_10_1109_JSEN_2022_3217037
crossref_primary_10_1016_j_cvdhj_2021_05_004
crossref_primary_10_1016_j_eswa_2022_118930
crossref_primary_10_31083_j_rcm2507257
crossref_primary_10_1088_2057_1976_ada965
crossref_primary_10_1016_j_compbiomed_2021_104367
crossref_primary_10_1111_pace_14891
crossref_primary_10_3389_fphys_2021_657304
crossref_primary_10_2196_29434
crossref_primary_10_3390_s24154978
crossref_primary_10_3390_s24020398
crossref_primary_10_1109_JSEN_2022_3208427
Cites_doi 10.1088/1361-6579/aa5feb
10.1016/j.compbiomed.2010.11.003
10.1038/sdata.2016.35
10.1109/ACCESS.2019.2926199
10.1109/CIC.1997.647834
10.3390/e18080285
10.1109/TNNLS.2018.2812279
10.1016/j.neucom.2015.11.034
10.1109/CVPR.2009.5206693
10.1152/ajpheart.00561.2010
10.1177/0885066619866172
10.1109/ICCV.2017.156
10.1109/EMBC.2019.8857325
10.1109/JBHI.2020.2995139
10.1109/78.157221
10.1007/BF02344809
10.1109/CIC.2001.977604
10.1007/s11517-018-1892-2
10.1109/JBHI.2015.2418195
10.1016/j.bspc.2012.08.004
10.1161/CIRCULATIONAHA.113.005119
10.1016/j.eswa.2011.08.025
10.1007/s10439-009-9740-z
10.1016/j.patcog.2006.03.004
10.1109/TBME.2012.2213253
10.1016/j.compbiomed.2011.06.009
10.1016/j.eswa.2012.04.072
10.1145/361237.361242
10.1109/TIP.2007.894242
10.1109/JBHI.2017.2688473
10.1023/A:1010933404324
10.1016/S0031-3203(02)00081-X
10.1016/j.jelectrocard.2016.07.033
10.1111/j.1540-8159.1978.tb03504.x
10.1186/1475-925X-10-22
10.1161/01.STR.0000131269.69502.d9
10.1109/TBME.2018.2810508
10.1016/j.neucom.2018.04.059
10.1109/TSMCA.2008.2007988
10.1109/TBME.2020.2987759
10.1016/j.gheart.2017.01.015
10.1109/TIP.2011.2171696
10.1016/j.medengphy.2012.02.002
10.1109/TBME.2010.2096506
10.1109/ACCESS.2019.2894092
10.1109/TPWRD.2018.2889471
10.1016/j.eswa.2007.12.016
10.1016/j.measurement.2009.01.004
10.1134/S1054661811010044
10.1109/TBME.2007.903707
10.1016/j.compbiomed.2015.06.012
10.1016/j.measurement.2017.05.022
10.1007/s004220050414
10.1161/01.CIR.101.23.e215
10.1016/j.cmpb.2015.12.024
10.1016/j.cmpb.2015.10.010
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
5PM
DOI 10.1109/TBME.2020.3004310
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Materials Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 460
ExternalDocumentID PMC7863548
32746035
10_1109_TBME_2020_3004310
9123697
Genre orig-research
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIH
  grantid: R01 HL136660
– fundername: NHLBI NIH HHS
  grantid: R01 HL136660
– fundername: NHLBI NIH HHS
  grantid: F30 HL149335
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
5PM
ID FETCH-LOGICAL-c447t-4ec3fe94f1edfbb531e12ba9498d0e3b2131ed8cc57cf283e1d8c5b1d05a73863
IEDL.DBID RIE
ISSN 0018-9294
1558-2531
IngestDate Thu Aug 21 18:28:05 EDT 2025
Thu Jul 10 22:00:10 EDT 2025
Mon Jun 30 08:38:22 EDT 2025
Mon Jul 21 06:07:07 EDT 2025
Tue Jul 01 03:28:34 EDT 2025
Thu Apr 24 22:56:41 EDT 2025
Wed Aug 27 06:01:04 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publicationsstandards/publications/rights/index.html for more information.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c447t-4ec3fe94f1edfbb531e12ba9498d0e3b2131ed8cc57cf283e1d8c5b1d05a73863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4422-4837
0000-0002-0180-1980
0000-0001-7872-7371
0000-0002-3612-2873
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7863548
PMID 32746035
PQID 2479888871
PQPubID 85474
PageCount 13
ParticipantIDs pubmed_primary_32746035
proquest_miscellaneous_2430370940
ieee_primary_9123697
crossref_primary_10_1109_TBME_2020_3004310
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7863548
crossref_citationtrail_10_1109_TBME_2020_3004310
proquest_journals_2479888871
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref56
ref12
ref59
bishop (ref57) 2006
ref15
ref58
ref14
ref53
ref55
ref11
ref54
ref10
ref17
ref16
ref18
ref50
ref46
ref45
ref48
ref42
ye (ref19) 2012; 59
ref41
ref44
ref43
moody (ref5) 0
ref8
ref7
ref9
ref4
ref3
ref6
ref40
xu (ref49) 2014; 24
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
nguyen (ref47) 0
ref28
(ref52) 0
ref27
ref29
duan (ref51) 0; 2
ref60
ref62
ref61
References_xml – ident: ref34
  doi: 10.1088/1361-6579/aa5feb
– ident: ref24
  doi: 10.1016/j.compbiomed.2010.11.003
– ident: ref26
  doi: 10.1038/sdata.2016.35
– ident: ref30
  doi: 10.1109/ACCESS.2019.2926199
– ident: ref11
  doi: 10.1109/CIC.1997.647834
– start-page: 1
  year: 0
  ident: ref47
  article-title: An improvement of the standard hough transform to detect line segments
  publication-title: Proc IEEE Int Conf Ind Technol
– ident: ref17
  doi: 10.3390/e18080285
– ident: ref55
  doi: 10.1109/TNNLS.2018.2812279
– ident: ref43
  doi: 10.1016/j.neucom.2015.11.034
– ident: ref50
  doi: 10.1109/CVPR.2009.5206693
– ident: ref8
  doi: 10.1152/ajpheart.00561.2010
– ident: ref27
  doi: 10.1177/0885066619866172
– ident: ref53
  doi: 10.1109/ICCV.2017.156
– ident: ref32
  doi: 10.1109/EMBC.2019.8857325
– ident: ref15
  doi: 10.1109/JBHI.2020.2995139
– ident: ref45
  doi: 10.1109/78.157221
– ident: ref61
  doi: 10.1007/BF02344809
– ident: ref29
  doi: 10.1109/CIC.2001.977604
– ident: ref59
  doi: 10.1007/s11517-018-1892-2
– ident: ref13
  doi: 10.1109/JBHI.2015.2418195
– ident: ref22
  doi: 10.1016/j.bspc.2012.08.004
– ident: ref2
  doi: 10.1161/CIRCULATIONAHA.113.005119
– ident: ref54
  doi: 10.1016/j.eswa.2011.08.025
– ident: ref6
  doi: 10.1007/s10439-009-9740-z
– year: 2006
  ident: ref57
  publication-title: Pattern Recognition and Machine Learning
– ident: ref39
  doi: 10.1016/j.patcog.2006.03.004
– volume: 59
  start-page: 2930
  year: 2012
  ident: ref19
  article-title: Heartbeat classification using morphological and dynamic features of ECG signals
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2012.2213253
– volume: 24
  start-page: 813
  year: 2014
  ident: ref49
  article-title: Accurate and robust line segment extraction using minimum entropy with hough transform
  publication-title: IEEE Trans Image Process
– ident: ref42
  doi: 10.1016/j.compbiomed.2011.06.009
– ident: ref21
  doi: 10.1016/j.eswa.2012.04.072
– ident: ref48
  doi: 10.1145/361237.361242
– ident: ref46
  doi: 10.1109/TIP.2007.894242
– ident: ref4
  doi: 10.1109/JBHI.2017.2688473
– ident: ref58
  doi: 10.1023/A:1010933404324
– ident: ref36
  doi: 10.1016/S0031-3203(02)00081-X
– ident: ref10
  doi: 10.1016/j.jelectrocard.2016.07.033
– ident: ref62
  doi: 10.1111/j.1540-8159.1978.tb03504.x
– start-page: 227
  year: 0
  ident: ref5
  article-title: A new method for detecting atrial fibrillation using RR intervals
  publication-title: Proc Comput Cardiol
– ident: ref20
  doi: 10.1186/1475-925X-10-22
– ident: ref3
  doi: 10.1161/01.STR.0000131269.69502.d9
– ident: ref14
  doi: 10.1109/TBME.2018.2810508
– ident: ref37
  doi: 10.1016/j.neucom.2018.04.059
– ident: ref40
  doi: 10.1109/TSMCA.2008.2007988
– ident: ref28
  doi: 10.1109/TBME.2020.2987759
– ident: ref1
  doi: 10.1016/j.gheart.2017.01.015
– ident: ref38
  doi: 10.1109/TIP.2011.2171696
– ident: ref12
  doi: 10.1016/j.medengphy.2012.02.002
– year: 0
  ident: ref52
  article-title: Mathworks - makers of matlab and simulink
– ident: ref9
  doi: 10.1109/TBME.2010.2096506
– ident: ref31
  doi: 10.1109/ACCESS.2019.2894092
– ident: ref35
  doi: 10.1109/TPWRD.2018.2889471
– volume: 2
  start-page: 2v
  year: 0
  ident: ref51
  article-title: An improved hough transform for line detection
  publication-title: Proc Int Conf Comput Appl Syst Model
– ident: ref56
  doi: 10.1016/j.eswa.2007.12.016
– ident: ref18
  doi: 10.1016/j.measurement.2009.01.004
– ident: ref41
  doi: 10.1134/S1054661811010044
– ident: ref7
  doi: 10.1109/TBME.2007.903707
– ident: ref33
  doi: 10.1016/j.compbiomed.2015.06.012
– ident: ref16
  doi: 10.1016/j.measurement.2017.05.022
– ident: ref60
  doi: 10.1007/s004220050414
– ident: ref25
  doi: 10.1161/01.CIR.101.23.e215
– ident: ref23
  doi: 10.1016/j.cmpb.2015.12.024
– ident: ref44
  doi: 10.1016/j.cmpb.2015.10.010
SSID ssj0014846
Score 2.538833
Snippet Objective: Detection of Atrial fibrillation (AF) from premature atrial contraction (PAC) and premature ventricular contraction (PVC) is difficult as frequent...
Detection of Atrial fibrillation (AF) from premature atrial contraction (PAC) and premature ventricular contraction (PVC) is difficult as frequent occurrences...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 448
SubjectTerms Accuracy
Algorithms
atrial fibrillation
Atrial Fibrillation - diagnosis
Atrial Premature Complexes - diagnosis
Cardiac arrhythmia
correlation
Density
density Poincaré plot
Discrete Wavelet Transform
Domains
EKG
Electrocardiography
Feature extraction
Fibrillation
Heart Atria
Heart rate
Heart rate variability
Hough transformation
Humans
Image processing
Intensive care
Learning algorithms
Machine Learning
MIMICs
Picture archiving and communication systems
Premature atrial contraction
premature ventricular contraction
random forest
Signal Processing, Computer-Assisted
Support vector machines
SVM
Ventricle
Ventricular Premature Complexes - diagnosis
wavelet transform
Wavelet transforms
Wearable technology
Title Novel Density Poincaré Plot Based Machine Learning Method to Detect Atrial Fibrillation From Premature Atrial/Ventricular Contractions
URI https://ieeexplore.ieee.org/document/9123697
https://www.ncbi.nlm.nih.gov/pubmed/32746035
https://www.proquest.com/docview/2479888871
https://www.proquest.com/docview/2430370940
https://pubmed.ncbi.nlm.nih.gov/PMC7863548
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwEB61PSA48NPyEyjISJwQ2bUTJ1kfW-iqQkq1hxb1FsXOGFYsCUqzSPACPAvPwYvhcbKhrSrEbbOZREk8jmcy33wfwCsreSwxVaGIUx7KuBShlkKH6czayqBU6BuF85P0-Ey-P0_Ot-DN2AuDiB58hhP66Wv5VWPW9KlsqogqRGXbsO0St75Xa6wYyFnflMOFm8CRkkMFU3A1PT3Mj1wmGLkElQpfgtTfYpeNpdyLvP1djry-yk2h5nXE5KUlaH4P8s3F98iTz5N1pyfmxzVex_-9u_twd4hF2UHvPA9gC-tduHOJoXAXbuVD7X0Pfp4033DF3hHivfvOFs2yNmX7-xdbrJqOHbrVsGK5h2YiG1hbP7LcC1SzrnHHUbmCHXiZEDanToNVj8Nj87b5whYtsceuWxxMph_oISw9TJYRh1bbt2BcPISz-dHp2-NwkHEIjZRZF0o0sUUlrcDKau0mPYpIl0qqWcUx1pFw_1QzY5LMWBftoHAbiRYVT0qSJI0fwU7d1PgEGMlYJFWstbYohVXaZdgm5lpoq0qhbAB8M5qFGTjOSWpjVfhch6uCfKEgXygGXwjg9XjI157g41_GezRuo-EwZAHsb1ymGF4BF0UkiQrOvcNFAC_H3W7yUkWmrLFZk42LIDKiMAzgce9h47k3HhpAdsX3RgMiBr-6p15-8gThmXtoLhN9evPVPoPbEQFzPPR8H3a6do3PXWTV6Rd-Sv0Bzv8hBg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3bbtNAEB2VInF54NJyMRRYJJ4QTrz2Os4-ttAoQB3lIUV9s7zrWYgINnIdJPgBvoXv4MfYWTumrSrEWxyPLds7653xnDkH4IURQSRwJH0ejQJfRDn3leDKH42NKTQKia5ROJ2Npsfi3Ul8sgWv-l4YRHTgMxzQT1fLLyq9pk9lQ0lUITK5Alftuh_ztlurrxmIcduWE3A7hUMpuhomD-RwcZAe2lwwtCkqlb446b9FNh8bBU7m7e-C5BRWLgs2L2ImzyxCk9uQbi6_xZ58HqwbNdA_LjA7_u_93YFbXTTK9lv3uQtbWO7AzTMchTtwLe2q77vwc1Z9wxV7Q5j35jubV8tS5_XvX2y-qhp2YNfDgqUOnIms4239yFInUc2ayh5HBQu274RC2IR6DVYtEo9N6uoLm9fEH7uusTMZfqCHsHRAWUYsWnXbhHF6D44nh4vXU78TcvC1EEnjC9SRQSkMx8IoZac98lDlUshxEWCkQm7_KcZax4k2Nt5BbjdixYsgzkmUNLoP22VV4kNgJGQRF5FSyqDgRiqbY-soUFwZmXNpPAg2o5npjuWcxDZWmct2ApmRL2TkC1nnCx687A_52lJ8_Mt4l8atN-yGzIO9jctk3UvgNAsFkcHZtzj34Hm_205fqsnkJVZrsrExREIkhh48aD2sP_fGQz1Izvleb0DU4Of3lMtPjiI8sQ_N5qKPLr_aZ3B9ukiPsqO3s_eP4UZIMB0HRN-D7aZe4xMbZzXqqZtefwD46yRP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+Density+Poincar%C3%A9+Plot+Based+Machine+Learning+Method+to+Detect+Atrial+Fibrillation+from+Premature+Atrial%2FVentricular+Contractions&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Bashar%2C+Syed+Khairul&rft.au=Han%2C+Dong&rft.au=Zieneddin%2C+Fearass&rft.au=Ding%2C+Eric&rft.date=2021-02-01&rft.issn=0018-9294&rft.eissn=1558-2531&rft.volume=68&rft.issue=2&rft.spage=448&rft.epage=460&rft_id=info:doi/10.1109%2FTBME.2020.3004310&rft_id=info%3Apmid%2F32746035&rft.externalDocID=PMC7863548
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon