An Automatic Tool for Quantification of Nerve Fibers in Corneal Confocal Microscopy Images
We describe and evaluate an automated software tool for nerve-fiber detection and quantification in corneal confocal microscopy (CCM) images, combining sensitive nerve-fiber detection with morphological descriptors. Method: We have evaluated the tool for quantification of Diabetic Sensorimotor Polyn...
Saved in:
Published in | IEEE transactions on biomedical engineering Vol. 64; no. 4; pp. 786 - 794 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.04.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9294 1558-2531 1558-2531 |
DOI | 10.1109/TBME.2016.2573642 |
Cover
Loading…
Abstract | We describe and evaluate an automated software tool for nerve-fiber detection and quantification in corneal confocal microscopy (CCM) images, combining sensitive nerve-fiber detection with morphological descriptors. Method: We have evaluated the tool for quantification of Diabetic Sensorimotor Polyneuropathy (DSPN) using both new and previously published morphological features. The evaluation used 888 images from 176 subjects (84 controls and 92 patients with type 1 diabetes). The patient group was further subdivided into those with (n = 63) and without (n = 29) DSPN. Results: We achieve improved nervefiber detection over previous results (91.7% sensitivity and specificity in identifying nerve-fiber pixels). Automatic quantification of nerve morphology shows a high correlation with previously reported, manually measured, features. Receiver Operating Characteristic (ROC) analysis of both manual and automatic measurement regimes resulted in similar results in distinguishing patients with DSPN from those without: AUC of about 0.77 and 72% sensitivity-specificity at the equal error rate point. Conclusion: Automated quantification of corneal nerves in CCM images provides a sensitive tool for identification of DSPN. Its performance is equivalent to manual quantification, while improving speed and repeatability. Significance: CCM is a novel in vivo imaging modality that has the potential to be a noninvasive and objective image biomarker for peripheral neuropathy. Automatic quantification of nerve morphology is a major step forward in the early diagnosis and assessment of progression, and, in particular, for use in clinical trials to establish therapeutic benefit in diabetic and other peripheral neuropathies. |
---|---|
AbstractList | We describe and evaluate an automated software tool for nerve-fiber detection and quantification in corneal confocal microscopy (CCM) images, combining sensitive nerve- fiber detection with morphological descriptors.
We have evaluated the tool for quantification of Diabetic Sensorimotor Polyneuropathy (DSPN) using both new and previously published morphological features. The evaluation used 888 images from 176 subjects (84 controls and 92 patients with type 1 diabetes). The patient group was further subdivided into those with ( n = 63) and without ( n = 29) DSPN.
We achieve improved nerve- fiber detection over previous results (91.7% sensitivity and specificity in identifying nerve-fiber pixels). Automatic quantification of nerve morphology shows a high correlation with previously reported, manually measured, features. Receiver Operating Characteristic (ROC) analysis of both manual and automatic measurement regimes resulted in similar results in distinguishing patients with DSPN from those without: AUC of about 0.77 and 72% sensitivity-specificity at the equal error rate point.
Automated quantification of corneal nerves in CCM images provides a sensitive tool for identification of DSPN. Its performance is equivalent to manual quantification, while improving speed and repeatability.
CCM is a novel in vivo imaging modality that has the potential to be a noninvasive and objective image biomarker for peripheral neuropathy. Automatic quantification of nerve morphology is a major step forward in the early diagnosis and assessment of progression, and, in particular, for use in clinical trials to establish therapeutic benefit in diabetic and other peripheral neuropathies. We describe and evaluate an automated software tool for nerve-fiber detection and quantification in corneal confocal microscopy (CCM) images, combining sensitive nerve- fiber detection with morphological descriptors.OBJECTIVEWe describe and evaluate an automated software tool for nerve-fiber detection and quantification in corneal confocal microscopy (CCM) images, combining sensitive nerve- fiber detection with morphological descriptors.We have evaluated the tool for quantification of Diabetic Sensorimotor Polyneuropathy (DSPN) using both new and previously published morphological features. The evaluation used 888 images from 176 subjects (84 controls and 92 patients with type 1 diabetes). The patient group was further subdivided into those with ( n = 63) and without ( n = 29) DSPN.METHODWe have evaluated the tool for quantification of Diabetic Sensorimotor Polyneuropathy (DSPN) using both new and previously published morphological features. The evaluation used 888 images from 176 subjects (84 controls and 92 patients with type 1 diabetes). The patient group was further subdivided into those with ( n = 63) and without ( n = 29) DSPN.We achieve improved nerve- fiber detection over previous results (91.7% sensitivity and specificity in identifying nerve-fiber pixels). Automatic quantification of nerve morphology shows a high correlation with previously reported, manually measured, features. Receiver Operating Characteristic (ROC) analysis of both manual and automatic measurement regimes resulted in similar results in distinguishing patients with DSPN from those without: AUC of about 0.77 and 72% sensitivity-specificity at the equal error rate point.RESULTSWe achieve improved nerve- fiber detection over previous results (91.7% sensitivity and specificity in identifying nerve-fiber pixels). Automatic quantification of nerve morphology shows a high correlation with previously reported, manually measured, features. Receiver Operating Characteristic (ROC) analysis of both manual and automatic measurement regimes resulted in similar results in distinguishing patients with DSPN from those without: AUC of about 0.77 and 72% sensitivity-specificity at the equal error rate point.Automated quantification of corneal nerves in CCM images provides a sensitive tool for identification of DSPN. Its performance is equivalent to manual quantification, while improving speed and repeatability.CONCLUSIONAutomated quantification of corneal nerves in CCM images provides a sensitive tool for identification of DSPN. Its performance is equivalent to manual quantification, while improving speed and repeatability.CCM is a novel in vivo imaging modality that has the potential to be a noninvasive and objective image biomarker for peripheral neuropathy. Automatic quantification of nerve morphology is a major step forward in the early diagnosis and assessment of progression, and, in particular, for use in clinical trials to establish therapeutic benefit in diabetic and other peripheral neuropathies.SIGNIFICANCECCM is a novel in vivo imaging modality that has the potential to be a noninvasive and objective image biomarker for peripheral neuropathy. Automatic quantification of nerve morphology is a major step forward in the early diagnosis and assessment of progression, and, in particular, for use in clinical trials to establish therapeutic benefit in diabetic and other peripheral neuropathies. We describe and evaluate an automated software tool for nerve-fiber detection and quantification in corneal confocal microscopy (CCM) images, combining sensitive nerve-fiber detection with morphological descriptors. Method: We have evaluated the tool for quantification of Diabetic Sensorimotor Polyneuropathy (DSPN) using both new and previously published morphological features. The evaluation used 888 images from 176 subjects (84 controls and 92 patients with type 1 diabetes). The patient group was further subdivided into those with (n = 63) and without (n = 29) DSPN. Results: We achieve improved nervefiber detection over previous results (91.7% sensitivity and specificity in identifying nerve-fiber pixels). Automatic quantification of nerve morphology shows a high correlation with previously reported, manually measured, features. Receiver Operating Characteristic (ROC) analysis of both manual and automatic measurement regimes resulted in similar results in distinguishing patients with DSPN from those without: AUC of about 0.77 and 72% sensitivity-specificity at the equal error rate point. Conclusion: Automated quantification of corneal nerves in CCM images provides a sensitive tool for identification of DSPN. Its performance is equivalent to manual quantification, while improving speed and repeatability. Significance: CCM is a novel in vivo imaging modality that has the potential to be a noninvasive and objective image biomarker for peripheral neuropathy. Automatic quantification of nerve morphology is a major step forward in the early diagnosis and assessment of progression, and, in particular, for use in clinical trials to establish therapeutic benefit in diabetic and other peripheral neuropathies. |
Author | Petropoulos, Ioannis N. Chen, Xin Tavakoli, Mitra Dabbah, Mohammad A. Graham, Jim Malik, Rayaz A. |
Author_xml | – sequence: 1 givenname: Xin surname: Chen fullname: Chen, Xin email: xin.chen@kcl.ac.uk organization: Division of Imaging Sciences and Biomedical Engineering, King's College London, London, U.K – sequence: 2 givenname: Jim surname: Graham fullname: Graham, Jim organization: Centre for Imaging Sciences, University of Manchester – sequence: 3 givenname: Mohammad A. surname: Dabbah fullname: Dabbah, Mohammad A. organization: Roke Manor Research Ltd., Romsey – sequence: 4 givenname: Ioannis N. surname: Petropoulos fullname: Petropoulos, Ioannis N. organization: Centre for Endocrinology & DiabetesInstitute of Human Development – sequence: 5 givenname: Mitra surname: Tavakoli fullname: Tavakoli, Mitra organization: Centre for Endocrinology & DiabetesInstitute of Human Development – sequence: 6 givenname: Rayaz A. surname: Malik fullname: Malik, Rayaz A. organization: Centre for Endocrinology & DiabetesInstitute of Human Development |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27295646$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1vEzEQtVARTQs_ACEhS1y4bLC9_rwgpVELlVoQUk5cLK_XLq527WDvVuq_xyEhgh44jT1-b2bePJ-Bk5iiA-A1RkuMkfqwubi9XBKE-ZIw0XJKnoEFZkw2hLX4BCwQwrJRRNFTcFbKfb1SSfkLcEoEUYxTvgDfVxGu5imNZgoWblIaoE8ZfptNnIIPtqZThMnDLy4_OHgVOpcLDBGuU47ODDVGn2w93AabU7Fp-wivR3Pnykvw3JuhuFeHeA42V5eb9efm5uun6_XqprGUiqmhHZKtw7xrEeJWekYYw4xKQYwXEmHC-s4z5RUVfd8LjpSgbRXJrJKeqPYcfNyX3c7d6Hrr4pTNoLc5jCY_6mSC_vclhh_6Lj3o2oYwKmqB94cCOf2cXZn0GIp1w2CiS3PRWBIuUN0vqtB3T6D3ac6xqtME17FIyxCpqLd_T3Qc5c_WKwDvAbuNlez8EYKR3jmrd87qnbP64GzliCccG6bf7lRRYfgv882eGZxzx06ifgVR1f8CEmyu5Q |
CODEN | IEBEAX |
CitedBy_id | crossref_primary_10_1167_tvst_9_9_43 crossref_primary_10_1002_ana_25355 crossref_primary_10_1038_s41598_021_90594_9 crossref_primary_10_2337_dc21_0476 crossref_primary_10_1155_2022_4913031 crossref_primary_10_3390_jpm12040563 crossref_primary_10_1097_ICO_0000000000002312 crossref_primary_10_1111_dme_14306 crossref_primary_10_1111_jdi_13616 crossref_primary_10_1038_s41598_021_81398_y crossref_primary_10_3389_fcell_2024_1484329 crossref_primary_10_3390_medicina55050214 crossref_primary_10_1016_j_jfo_2024_104242 crossref_primary_10_1007_s00125_018_4653_8 crossref_primary_10_1097_MD_0000000000039295 crossref_primary_10_1177_19322968211035375 crossref_primary_10_1007_s00125_019_05023_4 crossref_primary_10_1097_APO_0000000000000626 crossref_primary_10_3390_medicina55120753 crossref_primary_10_1016_j_actbio_2022_12_009 crossref_primary_10_1016_j_compbiomed_2025_110051 crossref_primary_10_1016_j_jtos_2016_09_004 crossref_primary_10_1007_s00417_018_04225_7 crossref_primary_10_1016_j_diabres_2019_03_039 crossref_primary_10_1371_journal_pone_0277086 crossref_primary_10_1210_jc_2019_01072 crossref_primary_10_1186_s12886_023_03181_z crossref_primary_10_1007_s40135_019_00218_9 crossref_primary_10_1167_tvst_12_3_24 crossref_primary_10_1016_j_jtos_2021_06_007 crossref_primary_10_1097_ICO_0000000000003543 crossref_primary_10_1007_s40123_025_01112_3 crossref_primary_10_3390_pathophysiology29010001 crossref_primary_10_1097_OPX_0000000000001566 crossref_primary_10_1093_braincomms_fcae289 crossref_primary_10_3390_diagnostics11020165 crossref_primary_10_1097_ICO_0000000000003319 crossref_primary_10_1007_s40123_023_00861_3 crossref_primary_10_1016_j_exer_2022_109253 crossref_primary_10_3390_brainsci9110320 crossref_primary_10_1088_1361_6560_ac7b63 crossref_primary_10_1177_20552076251326223 crossref_primary_10_1002_mds_28602 crossref_primary_10_3390_jcm11206199 crossref_primary_10_1097_OPX_0000000000001955 crossref_primary_10_1038_s41598_020_76768_x crossref_primary_10_1055_a_2307_0313 crossref_primary_10_1111_ene_14805 crossref_primary_10_1080_23808993_2022_2154146 crossref_primary_10_1080_02713683_2019_1705984 crossref_primary_10_1177_20552076241307573 crossref_primary_10_1080_08820538_2021_1893763 crossref_primary_10_3390_healthcare9020138 crossref_primary_10_1080_13506129_2019_1627312 crossref_primary_10_1177_1932296821996434 crossref_primary_10_4103_sjopt_sjopt_52_23 crossref_primary_10_1038_s41598_021_94605_7 crossref_primary_10_1016_j_jtos_2021_10_010 crossref_primary_10_1016_j_patrec_2019_02_011 crossref_primary_10_1111_jdi_14197 crossref_primary_10_1111_jdi_13381 crossref_primary_10_1097_ICO_0000000000002005 crossref_primary_10_1007_s11760_023_02790_x crossref_primary_10_1038_s42003_023_05005_8 crossref_primary_10_1210_er_2018_00107 crossref_primary_10_1097_ICO_0000000000003571 crossref_primary_10_1186_s13023_022_02237_5 crossref_primary_10_1136_bjophthalmol_2019_315651 crossref_primary_10_1177_1120672120964126 crossref_primary_10_1007_s00125_017_4245_z crossref_primary_10_1186_s12886_024_03294_z crossref_primary_10_3389_fmed_2025_1509820 crossref_primary_10_3390_diagnostics14212399 crossref_primary_10_1097_ICO_0000000000002083 crossref_primary_10_1111_jmi_12581 crossref_primary_10_1007_s00415_024_12812_4 crossref_primary_10_1088_1361_6560_acccd0 crossref_primary_10_1136_bmjopen_2023_076932 crossref_primary_10_1016_j_media_2021_102188 crossref_primary_10_1167_tvst_11_6_24 crossref_primary_10_1167_tvst_9_2_32 crossref_primary_10_1038_s41598_018_32814_3 crossref_primary_10_1089_jop_2023_0098 crossref_primary_10_1177_19322968241279553 crossref_primary_10_1109_JBHI_2021_3094520 crossref_primary_10_1186_s12886_024_03771_5 crossref_primary_10_3389_fendo_2021_671257 crossref_primary_10_3390_diagnostics12123167 crossref_primary_10_1136_bjo_2023_323308 crossref_primary_10_1038_s41598_024_67967_x crossref_primary_10_1016_j_jtos_2019_11_010 crossref_primary_10_1136_bjophthalmol_2019_315449 crossref_primary_10_1007_s00417_023_06324_6 crossref_primary_10_1038_s41598_021_02439_0 crossref_primary_10_12968_opti_2024_269_6941_29 crossref_primary_10_1080_02713683_2019_1666998 crossref_primary_10_3389_fmed_2023_1160499 crossref_primary_10_1186_s40662_020_00192_5 crossref_primary_10_1007_s00417_022_05623_8 crossref_primary_10_1161_STROKEAHA_117_018289 crossref_primary_10_1097_OPX_0000000000002178 crossref_primary_10_1097_ICL_0000000000001103 crossref_primary_10_1111_vop_13076 crossref_primary_10_1167_tvst_10_6_33 crossref_primary_10_1080_02713683_2019_1623899 crossref_primary_10_1097_ICO_0000000000002947 crossref_primary_10_1111_jns_12589 crossref_primary_10_3389_fmed_2023_1164188 crossref_primary_10_1097_ICO_0000000000002549 crossref_primary_10_1097_ICO_0000000000002661 crossref_primary_10_1167_tvst_10_1_24 crossref_primary_10_1097_IOP_0000000000002280 crossref_primary_10_3928_1081597X_20240514_05 crossref_primary_10_1007_s10072_021_05748_4 crossref_primary_10_3390_jcm11175130 crossref_primary_10_1097_CM9_0000000000002140 crossref_primary_10_3390_diagnostics14070694 crossref_primary_10_3928_1081597X_20230717_02 |
Cites_doi | 10.1167/iovs.09-4108 10.1002/mus.21383 10.1046/j.1464-5491.2002.00819.x 10.1002/mus.23377 10.1167/iovs.13-13787 10.1002/mus.23765 10.1097/ICO.0b013e31825ab9e2 10.1007/BF00400697 10.2337/dc14-2422 10.1167/iovs.14-13959 10.1517/13543784.2014.892072 10.2337/dc14-2114 10.1016/j.media.2011.05.016 10.2337/dc06-2479 10.1097/ICO.0b013e3182749419 10.1007/978-3-642-22092-0_42 10.1016/S0140-6736(05)67546-0 10.1016/j.expneurol.2009.08.033 10.1002/mus.21661 10.1111/j.1464-5491.2004.01271.x 10.2337/dc14-1698 10.1080/01621459.1952.10483441 10.2337/db12-0574 10.1167/iovs.08-2061 10.1007/s00125-003-1086-8 10.2337/dc10-1303 10.2337/dc10-0253 10.2337/diaclin.23.1.9 10.1007/s10462-007-9052-3 10.1006/acha.2000.0343 10.2119/molmed.2014.00215 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 5PM |
DOI | 10.1109/TBME.2016.2573642 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-2531 |
EndPage | 794 |
ExternalDocumentID | PMC5512547 27295646 10_1109_TBME_2016_2573642 7484747 |
Genre | orig-research Evaluation Studies Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institutes of Health grantid: R105991 funderid: 10.13039/100000002 – fundername: Juvenile Diabetes Research Foundation International grantid: 27-2008-362 funderid: 10.13039/100000901 – fundername: NIDDK NIH HHS grantid: R01 DK077903 |
GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 5PM |
ID | FETCH-LOGICAL-c447t-4b083e16b3006c8f5255154872af780125dbf59f947ddd76097435585c98f293 |
IEDL.DBID | RIE |
ISSN | 0018-9294 1558-2531 |
IngestDate | Thu Aug 21 13:51:29 EDT 2025 Fri Jul 11 01:47:08 EDT 2025 Mon Jun 30 08:38:29 EDT 2025 Mon Jul 21 06:05:20 EDT 2025 Thu Apr 24 22:51:28 EDT 2025 Tue Jul 01 03:28:28 EDT 2025 Wed Aug 27 02:30:43 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html Personel use of this material is permitted. However, permission to use this material for any other purpose must be obtained from the IEEE by sending an email to pubs-permissions@ieee.org. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c447t-4b083e16b3006c8f5255154872af780125dbf59f947ddd76097435585c98f293 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 |
OpenAccessLink | https://nottingham-repository.worktribe.com/file/796197/1/TBME2016.pdf |
PMID | 27295646 |
PQID | 2174323502 |
PQPubID | 85474 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1109_TBME_2016_2573642 proquest_miscellaneous_1826707360 crossref_citationtrail_10_1109_TBME_2016_2573642 ieee_primary_7484747 proquest_journals_2174323502 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5512547 pubmed_primary_27295646 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-04-01 |
PublicationDateYYYYMMDD | 2017-04-01 |
PublicationDate_xml | – month: 04 year: 2017 text: 2017-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on biomedical engineering |
PublicationTitleAbbrev | TBME |
PublicationTitleAlternate | IEEE Trans Biomed Eng |
PublicationYear | 2017 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref12 ref15 ref14 ref31 ref30 ref11 ref32 ref10 ref2 ref1 ref17 (ref34) 2015 ref19 ref18 ref24 ref23 ref26 ref25 ref20 (ref33) 2015 ref22 ref21 ref28 ref29 ref8 ref7 niemeijer (ref16) 2004; 5370 wallis (ref27) 1952; 47 ref4 ref3 ref6 ref5 brines (ref9) 2014; 6 20805570 - Invest Ophthalmol Vis Sci. 2010 Sep;51(9):4480-91 22996176 - Muscle Nerve. 2012 Nov;46(5):698-704 18614801 - Invest Ophthalmol Vis Sci. 2008 Nov;49(11):4801-7 24555851 - Expert Opin Investig Drugs. 2014 Apr;23(4):541-50 25573881 - Diabetes Care. 2015 Apr;38(4):671-5 20658599 - Muscle Nerve. 2010 Aug;42(2):157-64 24569580 - Invest Ophthalmol Vis Sci. 2014 Apr 03;55(4):2071-8 23002037 - Diabetes. 2013 Jan;62(1):254-60 20435796 - Diabetes Care. 2010 Aug;33(8):1792-7 19748505 - Exp Neurol. 2010 May;223(1):245-50 12421436 - Diabet Med. 2002 Nov;19(11):962-5 8458529 - Diabetologia. 1993 Feb;36(2):150-4 21761682 - Inf Process Med Imaging. 2011;22:510-24 23861198 - Muscle Nerve. 2013 Sep;48(3):369-74 15317601 - Diabet Med. 2004 Sep;21(9):976-82 19902546 - Muscle Nerve. 2009 Dec;40(6):976-84 17513707 - Diabetes Care. 2007 Oct;30(10):2619-25 24764058 - Invest Ophthalmol Vis Sci. 2014 Apr 24;55(5):3195-9 25387363 - Mol Med. 2015 Mar 13;20:658-66 21719344 - Med Image Anal. 2011 Oct;15(5):738-47 16226599 - Lancet. 2005 Oct 15-21;366(9494):1340-3 23172119 - Cornea. 2013 May;32(5):e83-9 23146928 - Cornea. 2013 Apr;32(4):460-5 12739016 - Diabetologia. 2003 May;46(5):683-8 20876709 - Diabetes Care. 2010 Oct;33(10):2285-93 25538321 - Diabetes Care. 2015 Jan;38(1):e3-4 25795415 - Diabetes Care. 2015 Jun;38(6):1138-44 |
References_xml | – ident: ref19 doi: 10.1167/iovs.09-4108 – ident: ref29 doi: 10.1002/mus.21383 – ident: ref25 doi: 10.1046/j.1464-5491.2002.00819.x – ident: ref31 doi: 10.1002/mus.23377 – ident: ref22 doi: 10.1167/iovs.13-13787 – ident: ref4 doi: 10.1002/mus.23765 – ident: ref20 doi: 10.1097/ICO.0b013e31825ab9e2 – ident: ref26 doi: 10.1007/BF00400697 – ident: ref35 doi: 10.2337/dc14-2422 – ident: ref14 doi: 10.1167/iovs.14-13959 – ident: ref32 doi: 10.1517/13543784.2014.892072 – ident: ref8 doi: 10.2337/dc14-2114 – ident: ref21 doi: 10.1016/j.media.2011.05.016 – ident: ref5 doi: 10.2337/dc06-2479 – ident: ref15 doi: 10.1097/ICO.0b013e3182749419 – ident: ref17 doi: 10.1007/978-3-642-22092-0_42 – ident: ref7 doi: 10.1016/S0140-6736(05)67546-0 – year: 2015 ident: ref34 – ident: ref30 doi: 10.1016/j.expneurol.2009.08.033 – ident: ref3 doi: 10.1002/mus.21661 – ident: ref28 doi: 10.1167/iovs.09-4108 – ident: ref2 doi: 10.1111/j.1464-5491.2004.01271.x – ident: ref11 doi: 10.2337/dc14-1698 – year: 2015 ident: ref33 – volume: 47 start-page: 583 year: 1952 ident: ref27 article-title: Use of ranks in on-criterion variance analysis publication-title: J Amer Statist Assoc doi: 10.1080/01621459.1952.10483441 – ident: ref10 doi: 10.2337/db12-0574 – ident: ref18 doi: 10.1167/iovs.08-2061 – ident: ref13 doi: 10.1007/s00125-003-1086-8 – ident: ref6 doi: 10.2337/dc10-1303 – ident: ref12 doi: 10.2337/dc10-0253 – ident: ref1 doi: 10.2337/diaclin.23.1.9 – ident: ref24 doi: 10.1007/s10462-007-9052-3 – ident: ref23 doi: 10.1006/acha.2000.0343 – volume: 5370 start-page: 648 year: 2004 ident: ref16 article-title: Comparative study of retinal vessel segmentation methods on a new publicly available database publication-title: SPIE Med Imaging – volume: 6 start-page: 658 year: 2014 ident: ref9 article-title: ARA 290, a non-erythropoietic peptide engineered from erythropoiethin, improves metabolic control and neuropathic symptoms in patients with type 2 diabetes publication-title: Mol Med doi: 10.2119/molmed.2014.00215 – reference: 20658599 - Muscle Nerve. 2010 Aug;42(2):157-64 – reference: 19748505 - Exp Neurol. 2010 May;223(1):245-50 – reference: 23861198 - Muscle Nerve. 2013 Sep;48(3):369-74 – reference: 18614801 - Invest Ophthalmol Vis Sci. 2008 Nov;49(11):4801-7 – reference: 21719344 - Med Image Anal. 2011 Oct;15(5):738-47 – reference: 23002037 - Diabetes. 2013 Jan;62(1):254-60 – reference: 8458529 - Diabetologia. 1993 Feb;36(2):150-4 – reference: 25538321 - Diabetes Care. 2015 Jan;38(1):e3-4 – reference: 25387363 - Mol Med. 2015 Mar 13;20:658-66 – reference: 25795415 - Diabetes Care. 2015 Jun;38(6):1138-44 – reference: 12739016 - Diabetologia. 2003 May;46(5):683-8 – reference: 23146928 - Cornea. 2013 Apr;32(4):460-5 – reference: 25573881 - Diabetes Care. 2015 Apr;38(4):671-5 – reference: 19902546 - Muscle Nerve. 2009 Dec;40(6):976-84 – reference: 16226599 - Lancet. 2005 Oct 15-21;366(9494):1340-3 – reference: 21761682 - Inf Process Med Imaging. 2011;22:510-24 – reference: 20805570 - Invest Ophthalmol Vis Sci. 2010 Sep;51(9):4480-91 – reference: 12421436 - Diabet Med. 2002 Nov;19(11):962-5 – reference: 20876709 - Diabetes Care. 2010 Oct;33(10):2285-93 – reference: 24764058 - Invest Ophthalmol Vis Sci. 2014 Apr 24;55(5):3195-9 – reference: 23172119 - Cornea. 2013 May;32(5):e83-9 – reference: 17513707 - Diabetes Care. 2007 Oct;30(10):2619-25 – reference: 15317601 - Diabet Med. 2004 Sep;21(9):976-82 – reference: 24555851 - Expert Opin Investig Drugs. 2014 Apr;23(4):541-50 – reference: 22996176 - Muscle Nerve. 2012 Nov;46(5):698-704 – reference: 20435796 - Diabetes Care. 2010 Aug;33(8):1792-7 – reference: 24569580 - Invest Ophthalmol Vis Sci. 2014 Apr 03;55(4):2071-8 |
SSID | ssj0014846 |
Score | 2.5561075 |
Snippet | We describe and evaluate an automated software tool for nerve-fiber detection and quantification in corneal confocal microscopy (CCM) images, combining... |
SourceID | pubmedcentral proquest pubmed crossref ieee |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 786 |
SubjectTerms | Algorithms Automation Biomarkers Biomedical measurement Clinical trials Computer aided diagnosis Confocal microscopy Cornea Cornea - diagnostic imaging Cornea - innervation Cornea - pathology corneal confocal microscopy (CCM) Correlation analysis Diabetes Diabetes mellitus Diabetes mellitus (insulin dependent) Diabetic Neuropathies - diagnostic imaging Diabetic Neuropathies - pathology diabetic sensorimotor polyneuropathy (DSPN) Discrete wavelet transforms Error detection Feature extraction Humans image analysis Image detection Image Interpretation, Computer-Assisted - methods Machine Learning Medical imaging Medical research Microscopy Microscopy, Confocal - methods Morphology Nerve Fibers - pathology nerve-fiber quantification Nerves Patients Pattern Recognition, Automated - methods Peripheral neuropathy Polyneuropathy Reproducibility of Results Sensitivity Sensitivity and Specificity Sensorimotor system Software development tools Training |
Title | An Automatic Tool for Quantification of Nerve Fibers in Corneal Confocal Microscopy Images |
URI | https://ieeexplore.ieee.org/document/7484747 https://www.ncbi.nlm.nih.gov/pubmed/27295646 https://www.proquest.com/docview/2174323502 https://www.proquest.com/docview/1826707360 https://pubmed.ncbi.nlm.nih.gov/PMC5512547 |
Volume | 64 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS-RAEC3Ug-we_F6NjtILnpbN2JOP7unjODioEGFhBNlLSDodFDURJznor7eqkwmjiHgLdGdIpqq6X6VevQY4ThADSKkVVXWNGwg_dRPp-y7XXOVce1wMqTk5uhLn18HlTXizBH-7XhhjjCWfmT5d2lp-VuqaPpWdkO4lwt9lWMbErenV6ioGOCSaVRcD2FNBW8EccHUyPY3OiMQl-uifPgJuUgBGUBkKgr0L25E9X-UzqPmRMbmwBU3WIZo_fMM8ue_XVdrXrx90Hb_7dhuw1mJRNmqcZxOWTLEFPxcUCrdgNWpr79vwf1SwUV2VVuOVTcvygSHgZf_qpOEbWROzMmdXRKJkE6KizNhdwcblc4FwlFFzIe2cLCISILXDvLCLR1zPZjswnZxNx-duezKDq4NAVm6QInIzA5H6GLR6mIeYmNjcx0tySXtemKV5qHIVyCzLpOCYtZCOe6jVMEeA8QtWirIwe8BMiBhBDrQnEoPLiUqHdF6W5ydJaqT2fAf43D6xblXL6fCMh9hmL1zFZN2YrBu31nXgT3fLUyPZ8dXkbbJEN7E1ggO9uRPEbVDPYpu9eX7I8a7f3TCGI9VYksKU9SymdE3isim4A7uNz3S_Pfc5B-Q7b-omkNT3-5Hi7tZKfuPfi5m83P_8aQ_gh0dowxKKerBSPdfmELFSlR7ZIHkD9KcL3A |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB9qBbUPfrRqU1tdwScx17187N4-nqXHVZsDIULxZUk2GyzWRHrJQ_vXd2aTC9dSpG-B3Q1JZmbnN5mZ3wJ8yhADSGkUZXWtH4kw9zMZhj43XJXcBFxMqDk5WYj5z-jbWXy2AV-GXhhrrSs-syO6dLn8ojYt_So7JN5LhL-P4DH6_Uh13VpDzgAHRbfvogkHKupzmGOuDtOvyTGVcYkRamiIkJs4gBFWxoKA75pDcies3Ac279ZMrjmh2QtIVo_f1Z78GbVNPjLXd5gdH_p-L-F5j0bZtFOfV7Bhq23YWuMo3IYnSZ9934Ff04pN26Z2LK8sresLhpCX_WizruLICZnVJVtQGSWbUTHKkp1X7Ki-rBCQMmovJN_JEioDpIaYK3byF3e05WtIZ8fp0dzvz2bwTRTJxo9yxG52LPIQzdZMyhhDExf9BFkpyevFRV7GqlSRLIpCCo5xCzG5x0ZNSoQYb2Czqiu7C8zGiBLk2AQis7ihqHxCJ2YFYZblVpog9ICv5KNNz1tOx2dcaBe_cKVJupqkq3vpevB5WPKvI-343-QdksQwsReCB_srJdC9WS-1i9-CMOa46uMwjAZJWZassnW71BSwSdw4Bffgbaczw71XOueBvKVNwwQi-749Up3_dqTf-Hkxlpd79z_tB3g6T5NTfXqy-P4OngWEPVx50T5sNpetPUDk1OTvncHcACSgDyw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Automatic+Tool+for+Quantification+of+Nerve+Fibers+in+Corneal+Confocal+Microscopy+Images&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Chen%2C+Xin&rft.au=Graham%2C+Jim&rft.au=Dabbah%2C+Mohammad+A&rft.au=Petropoulos%2C+Ioannis+N&rft.date=2017-04-01&rft.issn=1558-2531&rft.eissn=1558-2531&rft.volume=64&rft.issue=4&rft.spage=786&rft_id=info:doi/10.1109%2FTBME.2016.2573642&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |