An Automatic Tool for Quantification of Nerve Fibers in Corneal Confocal Microscopy Images

We describe and evaluate an automated software tool for nerve-fiber detection and quantification in corneal confocal microscopy (CCM) images, combining sensitive nerve-fiber detection with morphological descriptors. Method: We have evaluated the tool for quantification of Diabetic Sensorimotor Polyn...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 64; no. 4; pp. 786 - 794
Main Authors Chen, Xin, Graham, Jim, Dabbah, Mohammad A., Petropoulos, Ioannis N., Tavakoli, Mitra, Malik, Rayaz A.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.04.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9294
1558-2531
1558-2531
DOI10.1109/TBME.2016.2573642

Cover

Loading…
Abstract We describe and evaluate an automated software tool for nerve-fiber detection and quantification in corneal confocal microscopy (CCM) images, combining sensitive nerve-fiber detection with morphological descriptors. Method: We have evaluated the tool for quantification of Diabetic Sensorimotor Polyneuropathy (DSPN) using both new and previously published morphological features. The evaluation used 888 images from 176 subjects (84 controls and 92 patients with type 1 diabetes). The patient group was further subdivided into those with (n = 63) and without (n = 29) DSPN. Results: We achieve improved nervefiber detection over previous results (91.7% sensitivity and specificity in identifying nerve-fiber pixels). Automatic quantification of nerve morphology shows a high correlation with previously reported, manually measured, features. Receiver Operating Characteristic (ROC) analysis of both manual and automatic measurement regimes resulted in similar results in distinguishing patients with DSPN from those without: AUC of about 0.77 and 72% sensitivity-specificity at the equal error rate point. Conclusion: Automated quantification of corneal nerves in CCM images provides a sensitive tool for identification of DSPN. Its performance is equivalent to manual quantification, while improving speed and repeatability. Significance: CCM is a novel in vivo imaging modality that has the potential to be a noninvasive and objective image biomarker for peripheral neuropathy. Automatic quantification of nerve morphology is a major step forward in the early diagnosis and assessment of progression, and, in particular, for use in clinical trials to establish therapeutic benefit in diabetic and other peripheral neuropathies.
AbstractList We describe and evaluate an automated software tool for nerve-fiber detection and quantification in corneal confocal microscopy (CCM) images, combining sensitive nerve- fiber detection with morphological descriptors. We have evaluated the tool for quantification of Diabetic Sensorimotor Polyneuropathy (DSPN) using both new and previously published morphological features. The evaluation used 888 images from 176 subjects (84 controls and 92 patients with type 1 diabetes). The patient group was further subdivided into those with ( n = 63) and without ( n = 29) DSPN. We achieve improved nerve- fiber detection over previous results (91.7% sensitivity and specificity in identifying nerve-fiber pixels). Automatic quantification of nerve morphology shows a high correlation with previously reported, manually measured, features. Receiver Operating Characteristic (ROC) analysis of both manual and automatic measurement regimes resulted in similar results in distinguishing patients with DSPN from those without: AUC of about 0.77 and 72% sensitivity-specificity at the equal error rate point. Automated quantification of corneal nerves in CCM images provides a sensitive tool for identification of DSPN. Its performance is equivalent to manual quantification, while improving speed and repeatability. CCM is a novel in vivo imaging modality that has the potential to be a noninvasive and objective image biomarker for peripheral neuropathy. Automatic quantification of nerve morphology is a major step forward in the early diagnosis and assessment of progression, and, in particular, for use in clinical trials to establish therapeutic benefit in diabetic and other peripheral neuropathies.
We describe and evaluate an automated software tool for nerve-fiber detection and quantification in corneal confocal microscopy (CCM) images, combining sensitive nerve- fiber detection with morphological descriptors.OBJECTIVEWe describe and evaluate an automated software tool for nerve-fiber detection and quantification in corneal confocal microscopy (CCM) images, combining sensitive nerve- fiber detection with morphological descriptors.We have evaluated the tool for quantification of Diabetic Sensorimotor Polyneuropathy (DSPN) using both new and previously published morphological features. The evaluation used 888 images from 176 subjects (84 controls and 92 patients with type 1 diabetes). The patient group was further subdivided into those with ( n = 63) and without ( n = 29) DSPN.METHODWe have evaluated the tool for quantification of Diabetic Sensorimotor Polyneuropathy (DSPN) using both new and previously published morphological features. The evaluation used 888 images from 176 subjects (84 controls and 92 patients with type 1 diabetes). The patient group was further subdivided into those with ( n = 63) and without ( n = 29) DSPN.We achieve improved nerve- fiber detection over previous results (91.7% sensitivity and specificity in identifying nerve-fiber pixels). Automatic quantification of nerve morphology shows a high correlation with previously reported, manually measured, features. Receiver Operating Characteristic (ROC) analysis of both manual and automatic measurement regimes resulted in similar results in distinguishing patients with DSPN from those without: AUC of about 0.77 and 72% sensitivity-specificity at the equal error rate point.RESULTSWe achieve improved nerve- fiber detection over previous results (91.7% sensitivity and specificity in identifying nerve-fiber pixels). Automatic quantification of nerve morphology shows a high correlation with previously reported, manually measured, features. Receiver Operating Characteristic (ROC) analysis of both manual and automatic measurement regimes resulted in similar results in distinguishing patients with DSPN from those without: AUC of about 0.77 and 72% sensitivity-specificity at the equal error rate point.Automated quantification of corneal nerves in CCM images provides a sensitive tool for identification of DSPN. Its performance is equivalent to manual quantification, while improving speed and repeatability.CONCLUSIONAutomated quantification of corneal nerves in CCM images provides a sensitive tool for identification of DSPN. Its performance is equivalent to manual quantification, while improving speed and repeatability.CCM is a novel in vivo imaging modality that has the potential to be a noninvasive and objective image biomarker for peripheral neuropathy. Automatic quantification of nerve morphology is a major step forward in the early diagnosis and assessment of progression, and, in particular, for use in clinical trials to establish therapeutic benefit in diabetic and other peripheral neuropathies.SIGNIFICANCECCM is a novel in vivo imaging modality that has the potential to be a noninvasive and objective image biomarker for peripheral neuropathy. Automatic quantification of nerve morphology is a major step forward in the early diagnosis and assessment of progression, and, in particular, for use in clinical trials to establish therapeutic benefit in diabetic and other peripheral neuropathies.
We describe and evaluate an automated software tool for nerve-fiber detection and quantification in corneal confocal microscopy (CCM) images, combining sensitive nerve-fiber detection with morphological descriptors. Method: We have evaluated the tool for quantification of Diabetic Sensorimotor Polyneuropathy (DSPN) using both new and previously published morphological features. The evaluation used 888 images from 176 subjects (84 controls and 92 patients with type 1 diabetes). The patient group was further subdivided into those with (n = 63) and without (n = 29) DSPN. Results: We achieve improved nervefiber detection over previous results (91.7% sensitivity and specificity in identifying nerve-fiber pixels). Automatic quantification of nerve morphology shows a high correlation with previously reported, manually measured, features. Receiver Operating Characteristic (ROC) analysis of both manual and automatic measurement regimes resulted in similar results in distinguishing patients with DSPN from those without: AUC of about 0.77 and 72% sensitivity-specificity at the equal error rate point. Conclusion: Automated quantification of corneal nerves in CCM images provides a sensitive tool for identification of DSPN. Its performance is equivalent to manual quantification, while improving speed and repeatability. Significance: CCM is a novel in vivo imaging modality that has the potential to be a noninvasive and objective image biomarker for peripheral neuropathy. Automatic quantification of nerve morphology is a major step forward in the early diagnosis and assessment of progression, and, in particular, for use in clinical trials to establish therapeutic benefit in diabetic and other peripheral neuropathies.
Author Petropoulos, Ioannis N.
Chen, Xin
Tavakoli, Mitra
Dabbah, Mohammad A.
Graham, Jim
Malik, Rayaz A.
Author_xml – sequence: 1
  givenname: Xin
  surname: Chen
  fullname: Chen, Xin
  email: xin.chen@kcl.ac.uk
  organization: Division of Imaging Sciences and Biomedical Engineering, King's College London, London, U.K
– sequence: 2
  givenname: Jim
  surname: Graham
  fullname: Graham, Jim
  organization: Centre for Imaging Sciences, University of Manchester
– sequence: 3
  givenname: Mohammad A.
  surname: Dabbah
  fullname: Dabbah, Mohammad A.
  organization: Roke Manor Research Ltd., Romsey
– sequence: 4
  givenname: Ioannis N.
  surname: Petropoulos
  fullname: Petropoulos, Ioannis N.
  organization: Centre for Endocrinology & DiabetesInstitute of Human Development
– sequence: 5
  givenname: Mitra
  surname: Tavakoli
  fullname: Tavakoli, Mitra
  organization: Centre for Endocrinology & DiabetesInstitute of Human Development
– sequence: 6
  givenname: Rayaz A.
  surname: Malik
  fullname: Malik, Rayaz A.
  organization: Centre for Endocrinology & DiabetesInstitute of Human Development
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27295646$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1vEzEQtVARTQs_ACEhS1y4bLC9_rwgpVELlVoQUk5cLK_XLq527WDvVuq_xyEhgh44jT1-b2bePJ-Bk5iiA-A1RkuMkfqwubi9XBKE-ZIw0XJKnoEFZkw2hLX4BCwQwrJRRNFTcFbKfb1SSfkLcEoEUYxTvgDfVxGu5imNZgoWblIaoE8ZfptNnIIPtqZThMnDLy4_OHgVOpcLDBGuU47ODDVGn2w93AabU7Fp-wivR3Pnykvw3JuhuFeHeA42V5eb9efm5uun6_XqprGUiqmhHZKtw7xrEeJWekYYw4xKQYwXEmHC-s4z5RUVfd8LjpSgbRXJrJKeqPYcfNyX3c7d6Hrr4pTNoLc5jCY_6mSC_vclhh_6Lj3o2oYwKmqB94cCOf2cXZn0GIp1w2CiS3PRWBIuUN0vqtB3T6D3ac6xqtME17FIyxCpqLd_T3Qc5c_WKwDvAbuNlez8EYKR3jmrd87qnbP64GzliCccG6bf7lRRYfgv882eGZxzx06ifgVR1f8CEmyu5Q
CODEN IEBEAX
CitedBy_id crossref_primary_10_1167_tvst_9_9_43
crossref_primary_10_1002_ana_25355
crossref_primary_10_1038_s41598_021_90594_9
crossref_primary_10_2337_dc21_0476
crossref_primary_10_1155_2022_4913031
crossref_primary_10_3390_jpm12040563
crossref_primary_10_1097_ICO_0000000000002312
crossref_primary_10_1111_dme_14306
crossref_primary_10_1111_jdi_13616
crossref_primary_10_1038_s41598_021_81398_y
crossref_primary_10_3389_fcell_2024_1484329
crossref_primary_10_3390_medicina55050214
crossref_primary_10_1016_j_jfo_2024_104242
crossref_primary_10_1007_s00125_018_4653_8
crossref_primary_10_1097_MD_0000000000039295
crossref_primary_10_1177_19322968211035375
crossref_primary_10_1007_s00125_019_05023_4
crossref_primary_10_1097_APO_0000000000000626
crossref_primary_10_3390_medicina55120753
crossref_primary_10_1016_j_actbio_2022_12_009
crossref_primary_10_1016_j_compbiomed_2025_110051
crossref_primary_10_1016_j_jtos_2016_09_004
crossref_primary_10_1007_s00417_018_04225_7
crossref_primary_10_1016_j_diabres_2019_03_039
crossref_primary_10_1371_journal_pone_0277086
crossref_primary_10_1210_jc_2019_01072
crossref_primary_10_1186_s12886_023_03181_z
crossref_primary_10_1007_s40135_019_00218_9
crossref_primary_10_1167_tvst_12_3_24
crossref_primary_10_1016_j_jtos_2021_06_007
crossref_primary_10_1097_ICO_0000000000003543
crossref_primary_10_1007_s40123_025_01112_3
crossref_primary_10_3390_pathophysiology29010001
crossref_primary_10_1097_OPX_0000000000001566
crossref_primary_10_1093_braincomms_fcae289
crossref_primary_10_3390_diagnostics11020165
crossref_primary_10_1097_ICO_0000000000003319
crossref_primary_10_1007_s40123_023_00861_3
crossref_primary_10_1016_j_exer_2022_109253
crossref_primary_10_3390_brainsci9110320
crossref_primary_10_1088_1361_6560_ac7b63
crossref_primary_10_1177_20552076251326223
crossref_primary_10_1002_mds_28602
crossref_primary_10_3390_jcm11206199
crossref_primary_10_1097_OPX_0000000000001955
crossref_primary_10_1038_s41598_020_76768_x
crossref_primary_10_1055_a_2307_0313
crossref_primary_10_1111_ene_14805
crossref_primary_10_1080_23808993_2022_2154146
crossref_primary_10_1080_02713683_2019_1705984
crossref_primary_10_1177_20552076241307573
crossref_primary_10_1080_08820538_2021_1893763
crossref_primary_10_3390_healthcare9020138
crossref_primary_10_1080_13506129_2019_1627312
crossref_primary_10_1177_1932296821996434
crossref_primary_10_4103_sjopt_sjopt_52_23
crossref_primary_10_1038_s41598_021_94605_7
crossref_primary_10_1016_j_jtos_2021_10_010
crossref_primary_10_1016_j_patrec_2019_02_011
crossref_primary_10_1111_jdi_14197
crossref_primary_10_1111_jdi_13381
crossref_primary_10_1097_ICO_0000000000002005
crossref_primary_10_1007_s11760_023_02790_x
crossref_primary_10_1038_s42003_023_05005_8
crossref_primary_10_1210_er_2018_00107
crossref_primary_10_1097_ICO_0000000000003571
crossref_primary_10_1186_s13023_022_02237_5
crossref_primary_10_1136_bjophthalmol_2019_315651
crossref_primary_10_1177_1120672120964126
crossref_primary_10_1007_s00125_017_4245_z
crossref_primary_10_1186_s12886_024_03294_z
crossref_primary_10_3389_fmed_2025_1509820
crossref_primary_10_3390_diagnostics14212399
crossref_primary_10_1097_ICO_0000000000002083
crossref_primary_10_1111_jmi_12581
crossref_primary_10_1007_s00415_024_12812_4
crossref_primary_10_1088_1361_6560_acccd0
crossref_primary_10_1136_bmjopen_2023_076932
crossref_primary_10_1016_j_media_2021_102188
crossref_primary_10_1167_tvst_11_6_24
crossref_primary_10_1167_tvst_9_2_32
crossref_primary_10_1038_s41598_018_32814_3
crossref_primary_10_1089_jop_2023_0098
crossref_primary_10_1177_19322968241279553
crossref_primary_10_1109_JBHI_2021_3094520
crossref_primary_10_1186_s12886_024_03771_5
crossref_primary_10_3389_fendo_2021_671257
crossref_primary_10_3390_diagnostics12123167
crossref_primary_10_1136_bjo_2023_323308
crossref_primary_10_1038_s41598_024_67967_x
crossref_primary_10_1016_j_jtos_2019_11_010
crossref_primary_10_1136_bjophthalmol_2019_315449
crossref_primary_10_1007_s00417_023_06324_6
crossref_primary_10_1038_s41598_021_02439_0
crossref_primary_10_12968_opti_2024_269_6941_29
crossref_primary_10_1080_02713683_2019_1666998
crossref_primary_10_3389_fmed_2023_1160499
crossref_primary_10_1186_s40662_020_00192_5
crossref_primary_10_1007_s00417_022_05623_8
crossref_primary_10_1161_STROKEAHA_117_018289
crossref_primary_10_1097_OPX_0000000000002178
crossref_primary_10_1097_ICL_0000000000001103
crossref_primary_10_1111_vop_13076
crossref_primary_10_1167_tvst_10_6_33
crossref_primary_10_1080_02713683_2019_1623899
crossref_primary_10_1097_ICO_0000000000002947
crossref_primary_10_1111_jns_12589
crossref_primary_10_3389_fmed_2023_1164188
crossref_primary_10_1097_ICO_0000000000002549
crossref_primary_10_1097_ICO_0000000000002661
crossref_primary_10_1167_tvst_10_1_24
crossref_primary_10_1097_IOP_0000000000002280
crossref_primary_10_3928_1081597X_20240514_05
crossref_primary_10_1007_s10072_021_05748_4
crossref_primary_10_3390_jcm11175130
crossref_primary_10_1097_CM9_0000000000002140
crossref_primary_10_3390_diagnostics14070694
crossref_primary_10_3928_1081597X_20230717_02
Cites_doi 10.1167/iovs.09-4108
10.1002/mus.21383
10.1046/j.1464-5491.2002.00819.x
10.1002/mus.23377
10.1167/iovs.13-13787
10.1002/mus.23765
10.1097/ICO.0b013e31825ab9e2
10.1007/BF00400697
10.2337/dc14-2422
10.1167/iovs.14-13959
10.1517/13543784.2014.892072
10.2337/dc14-2114
10.1016/j.media.2011.05.016
10.2337/dc06-2479
10.1097/ICO.0b013e3182749419
10.1007/978-3-642-22092-0_42
10.1016/S0140-6736(05)67546-0
10.1016/j.expneurol.2009.08.033
10.1002/mus.21661
10.1111/j.1464-5491.2004.01271.x
10.2337/dc14-1698
10.1080/01621459.1952.10483441
10.2337/db12-0574
10.1167/iovs.08-2061
10.1007/s00125-003-1086-8
10.2337/dc10-1303
10.2337/dc10-0253
10.2337/diaclin.23.1.9
10.1007/s10462-007-9052-3
10.1006/acha.2000.0343
10.2119/molmed.2014.00215
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
5PM
DOI 10.1109/TBME.2016.2573642
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 794
ExternalDocumentID PMC5512547
27295646
10_1109_TBME_2016_2573642
7484747
Genre orig-research
Evaluation Studies
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health
  grantid: R105991
  funderid: 10.13039/100000002
– fundername: Juvenile Diabetes Research Foundation International
  grantid: 27-2008-362
  funderid: 10.13039/100000901
– fundername: NIDDK NIH HHS
  grantid: R01 DK077903
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
5PM
ID FETCH-LOGICAL-c447t-4b083e16b3006c8f5255154872af780125dbf59f947ddd76097435585c98f293
IEDL.DBID RIE
ISSN 0018-9294
1558-2531
IngestDate Thu Aug 21 13:51:29 EDT 2025
Fri Jul 11 01:47:08 EDT 2025
Mon Jun 30 08:38:29 EDT 2025
Mon Jul 21 06:05:20 EDT 2025
Thu Apr 24 22:51:28 EDT 2025
Tue Jul 01 03:28:28 EDT 2025
Wed Aug 27 02:30:43 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
Personel use of this material is permitted. However, permission to use this material for any other purpose must be obtained from the IEEE by sending an email to pubs-permissions@ieee.org.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c447t-4b083e16b3006c8f5255154872af780125dbf59f947ddd76097435585c98f293
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
OpenAccessLink https://nottingham-repository.worktribe.com/file/796197/1/TBME2016.pdf
PMID 27295646
PQID 2174323502
PQPubID 85474
PageCount 9
ParticipantIDs crossref_primary_10_1109_TBME_2016_2573642
proquest_miscellaneous_1826707360
crossref_citationtrail_10_1109_TBME_2016_2573642
ieee_primary_7484747
proquest_journals_2174323502
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5512547
pubmed_primary_27295646
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-04-01
PublicationDateYYYYMMDD 2017-04-01
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref12
ref15
ref14
ref31
ref30
ref11
ref32
ref10
ref2
ref1
ref17
(ref34) 2015
ref19
ref18
ref24
ref23
ref26
ref25
ref20
(ref33) 2015
ref22
ref21
ref28
ref29
ref8
ref7
niemeijer (ref16) 2004; 5370
wallis (ref27) 1952; 47
ref4
ref3
ref6
ref5
brines (ref9) 2014; 6
20805570 - Invest Ophthalmol Vis Sci. 2010 Sep;51(9):4480-91
22996176 - Muscle Nerve. 2012 Nov;46(5):698-704
18614801 - Invest Ophthalmol Vis Sci. 2008 Nov;49(11):4801-7
24555851 - Expert Opin Investig Drugs. 2014 Apr;23(4):541-50
25573881 - Diabetes Care. 2015 Apr;38(4):671-5
20658599 - Muscle Nerve. 2010 Aug;42(2):157-64
24569580 - Invest Ophthalmol Vis Sci. 2014 Apr 03;55(4):2071-8
23002037 - Diabetes. 2013 Jan;62(1):254-60
20435796 - Diabetes Care. 2010 Aug;33(8):1792-7
19748505 - Exp Neurol. 2010 May;223(1):245-50
12421436 - Diabet Med. 2002 Nov;19(11):962-5
8458529 - Diabetologia. 1993 Feb;36(2):150-4
21761682 - Inf Process Med Imaging. 2011;22:510-24
23861198 - Muscle Nerve. 2013 Sep;48(3):369-74
15317601 - Diabet Med. 2004 Sep;21(9):976-82
19902546 - Muscle Nerve. 2009 Dec;40(6):976-84
17513707 - Diabetes Care. 2007 Oct;30(10):2619-25
24764058 - Invest Ophthalmol Vis Sci. 2014 Apr 24;55(5):3195-9
25387363 - Mol Med. 2015 Mar 13;20:658-66
21719344 - Med Image Anal. 2011 Oct;15(5):738-47
16226599 - Lancet. 2005 Oct 15-21;366(9494):1340-3
23172119 - Cornea. 2013 May;32(5):e83-9
23146928 - Cornea. 2013 Apr;32(4):460-5
12739016 - Diabetologia. 2003 May;46(5):683-8
20876709 - Diabetes Care. 2010 Oct;33(10):2285-93
25538321 - Diabetes Care. 2015 Jan;38(1):e3-4
25795415 - Diabetes Care. 2015 Jun;38(6):1138-44
References_xml – ident: ref19
  doi: 10.1167/iovs.09-4108
– ident: ref29
  doi: 10.1002/mus.21383
– ident: ref25
  doi: 10.1046/j.1464-5491.2002.00819.x
– ident: ref31
  doi: 10.1002/mus.23377
– ident: ref22
  doi: 10.1167/iovs.13-13787
– ident: ref4
  doi: 10.1002/mus.23765
– ident: ref20
  doi: 10.1097/ICO.0b013e31825ab9e2
– ident: ref26
  doi: 10.1007/BF00400697
– ident: ref35
  doi: 10.2337/dc14-2422
– ident: ref14
  doi: 10.1167/iovs.14-13959
– ident: ref32
  doi: 10.1517/13543784.2014.892072
– ident: ref8
  doi: 10.2337/dc14-2114
– ident: ref21
  doi: 10.1016/j.media.2011.05.016
– ident: ref5
  doi: 10.2337/dc06-2479
– ident: ref15
  doi: 10.1097/ICO.0b013e3182749419
– ident: ref17
  doi: 10.1007/978-3-642-22092-0_42
– ident: ref7
  doi: 10.1016/S0140-6736(05)67546-0
– year: 2015
  ident: ref34
– ident: ref30
  doi: 10.1016/j.expneurol.2009.08.033
– ident: ref3
  doi: 10.1002/mus.21661
– ident: ref28
  doi: 10.1167/iovs.09-4108
– ident: ref2
  doi: 10.1111/j.1464-5491.2004.01271.x
– ident: ref11
  doi: 10.2337/dc14-1698
– year: 2015
  ident: ref33
– volume: 47
  start-page: 583
  year: 1952
  ident: ref27
  article-title: Use of ranks in on-criterion variance analysis
  publication-title: J Amer Statist Assoc
  doi: 10.1080/01621459.1952.10483441
– ident: ref10
  doi: 10.2337/db12-0574
– ident: ref18
  doi: 10.1167/iovs.08-2061
– ident: ref13
  doi: 10.1007/s00125-003-1086-8
– ident: ref6
  doi: 10.2337/dc10-1303
– ident: ref12
  doi: 10.2337/dc10-0253
– ident: ref1
  doi: 10.2337/diaclin.23.1.9
– ident: ref24
  doi: 10.1007/s10462-007-9052-3
– ident: ref23
  doi: 10.1006/acha.2000.0343
– volume: 5370
  start-page: 648
  year: 2004
  ident: ref16
  article-title: Comparative study of retinal vessel segmentation methods on a new publicly available database
  publication-title: SPIE Med Imaging
– volume: 6
  start-page: 658
  year: 2014
  ident: ref9
  article-title: ARA 290, a non-erythropoietic peptide engineered from erythropoiethin, improves metabolic control and neuropathic symptoms in patients with type 2 diabetes
  publication-title: Mol Med
  doi: 10.2119/molmed.2014.00215
– reference: 20658599 - Muscle Nerve. 2010 Aug;42(2):157-64
– reference: 19748505 - Exp Neurol. 2010 May;223(1):245-50
– reference: 23861198 - Muscle Nerve. 2013 Sep;48(3):369-74
– reference: 18614801 - Invest Ophthalmol Vis Sci. 2008 Nov;49(11):4801-7
– reference: 21719344 - Med Image Anal. 2011 Oct;15(5):738-47
– reference: 23002037 - Diabetes. 2013 Jan;62(1):254-60
– reference: 8458529 - Diabetologia. 1993 Feb;36(2):150-4
– reference: 25538321 - Diabetes Care. 2015 Jan;38(1):e3-4
– reference: 25387363 - Mol Med. 2015 Mar 13;20:658-66
– reference: 25795415 - Diabetes Care. 2015 Jun;38(6):1138-44
– reference: 12739016 - Diabetologia. 2003 May;46(5):683-8
– reference: 23146928 - Cornea. 2013 Apr;32(4):460-5
– reference: 25573881 - Diabetes Care. 2015 Apr;38(4):671-5
– reference: 19902546 - Muscle Nerve. 2009 Dec;40(6):976-84
– reference: 16226599 - Lancet. 2005 Oct 15-21;366(9494):1340-3
– reference: 21761682 - Inf Process Med Imaging. 2011;22:510-24
– reference: 20805570 - Invest Ophthalmol Vis Sci. 2010 Sep;51(9):4480-91
– reference: 12421436 - Diabet Med. 2002 Nov;19(11):962-5
– reference: 20876709 - Diabetes Care. 2010 Oct;33(10):2285-93
– reference: 24764058 - Invest Ophthalmol Vis Sci. 2014 Apr 24;55(5):3195-9
– reference: 23172119 - Cornea. 2013 May;32(5):e83-9
– reference: 17513707 - Diabetes Care. 2007 Oct;30(10):2619-25
– reference: 15317601 - Diabet Med. 2004 Sep;21(9):976-82
– reference: 24555851 - Expert Opin Investig Drugs. 2014 Apr;23(4):541-50
– reference: 22996176 - Muscle Nerve. 2012 Nov;46(5):698-704
– reference: 20435796 - Diabetes Care. 2010 Aug;33(8):1792-7
– reference: 24569580 - Invest Ophthalmol Vis Sci. 2014 Apr 03;55(4):2071-8
SSID ssj0014846
Score 2.5561075
Snippet We describe and evaluate an automated software tool for nerve-fiber detection and quantification in corneal confocal microscopy (CCM) images, combining...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 786
SubjectTerms Algorithms
Automation
Biomarkers
Biomedical measurement
Clinical trials
Computer aided diagnosis
Confocal microscopy
Cornea
Cornea - diagnostic imaging
Cornea - innervation
Cornea - pathology
corneal confocal microscopy (CCM)
Correlation analysis
Diabetes
Diabetes mellitus
Diabetes mellitus (insulin dependent)
Diabetic Neuropathies - diagnostic imaging
Diabetic Neuropathies - pathology
diabetic sensorimotor polyneuropathy (DSPN)
Discrete wavelet transforms
Error detection
Feature extraction
Humans
image analysis
Image detection
Image Interpretation, Computer-Assisted - methods
Machine Learning
Medical imaging
Medical research
Microscopy
Microscopy, Confocal - methods
Morphology
Nerve Fibers - pathology
nerve-fiber quantification
Nerves
Patients
Pattern Recognition, Automated - methods
Peripheral neuropathy
Polyneuropathy
Reproducibility of Results
Sensitivity
Sensitivity and Specificity
Sensorimotor system
Software development tools
Training
Title An Automatic Tool for Quantification of Nerve Fibers in Corneal Confocal Microscopy Images
URI https://ieeexplore.ieee.org/document/7484747
https://www.ncbi.nlm.nih.gov/pubmed/27295646
https://www.proquest.com/docview/2174323502
https://www.proquest.com/docview/1826707360
https://pubmed.ncbi.nlm.nih.gov/PMC5512547
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS-RAEC3Ug-we_F6NjtILnpbN2JOP7unjODioEGFhBNlLSDodFDURJznor7eqkwmjiHgLdGdIpqq6X6VevQY4ThADSKkVVXWNGwg_dRPp-y7XXOVce1wMqTk5uhLn18HlTXizBH-7XhhjjCWfmT5d2lp-VuqaPpWdkO4lwt9lWMbErenV6ioGOCSaVRcD2FNBW8EccHUyPY3OiMQl-uifPgJuUgBGUBkKgr0L25E9X-UzqPmRMbmwBU3WIZo_fMM8ue_XVdrXrx90Hb_7dhuw1mJRNmqcZxOWTLEFPxcUCrdgNWpr79vwf1SwUV2VVuOVTcvygSHgZf_qpOEbWROzMmdXRKJkE6KizNhdwcblc4FwlFFzIe2cLCISILXDvLCLR1zPZjswnZxNx-duezKDq4NAVm6QInIzA5H6GLR6mIeYmNjcx0tySXtemKV5qHIVyCzLpOCYtZCOe6jVMEeA8QtWirIwe8BMiBhBDrQnEoPLiUqHdF6W5ydJaqT2fAf43D6xblXL6fCMh9hmL1zFZN2YrBu31nXgT3fLUyPZ8dXkbbJEN7E1ggO9uRPEbVDPYpu9eX7I8a7f3TCGI9VYksKU9SymdE3isim4A7uNz3S_Pfc5B-Q7b-omkNT3-5Hi7tZKfuPfi5m83P_8aQ_gh0dowxKKerBSPdfmELFSlR7ZIHkD9KcL3A
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB9qBbUPfrRqU1tdwScx17187N4-nqXHVZsDIULxZUk2GyzWRHrJQ_vXd2aTC9dSpG-B3Q1JZmbnN5mZ3wJ8yhADSGkUZXWtH4kw9zMZhj43XJXcBFxMqDk5WYj5z-jbWXy2AV-GXhhrrSs-syO6dLn8ojYt_So7JN5LhL-P4DH6_Uh13VpDzgAHRbfvogkHKupzmGOuDtOvyTGVcYkRamiIkJs4gBFWxoKA75pDcies3Ac279ZMrjmh2QtIVo_f1Z78GbVNPjLXd5gdH_p-L-F5j0bZtFOfV7Bhq23YWuMo3IYnSZ9934Ff04pN26Z2LK8sresLhpCX_WizruLICZnVJVtQGSWbUTHKkp1X7Ki-rBCQMmovJN_JEioDpIaYK3byF3e05WtIZ8fp0dzvz2bwTRTJxo9yxG52LPIQzdZMyhhDExf9BFkpyevFRV7GqlSRLIpCCo5xCzG5x0ZNSoQYb2Czqiu7C8zGiBLk2AQis7ihqHxCJ2YFYZblVpog9ICv5KNNz1tOx2dcaBe_cKVJupqkq3vpevB5WPKvI-343-QdksQwsReCB_srJdC9WS-1i9-CMOa46uMwjAZJWZassnW71BSwSdw4Bffgbaczw71XOueBvKVNwwQi-749Up3_dqTf-Hkxlpd79z_tB3g6T5NTfXqy-P4OngWEPVx50T5sNpetPUDk1OTvncHcACSgDyw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Automatic+Tool+for+Quantification+of+Nerve+Fibers+in+Corneal+Confocal+Microscopy+Images&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Chen%2C+Xin&rft.au=Graham%2C+Jim&rft.au=Dabbah%2C+Mohammad+A&rft.au=Petropoulos%2C+Ioannis+N&rft.date=2017-04-01&rft.issn=1558-2531&rft.eissn=1558-2531&rft.volume=64&rft.issue=4&rft.spage=786&rft_id=info:doi/10.1109%2FTBME.2016.2573642&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon