Spatial-Temporal Dependency Modeling and Network Hub Detection for Functional MRI Analysis via Convolutional-Recurrent Network
Early identification of dementia at the stage of mild cognitive impairment (MCI) is crucial for timely diagnosis and intervention of Alzheimer's disease (AD). Although several pioneering studies have been devoted to automated AD diagnosis based on resting-state functional magnetic resonance ima...
Saved in:
Published in | IEEE transactions on biomedical engineering Vol. 67; no. 8; pp. 2241 - 2252 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.08.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Early identification of dementia at the stage of mild cognitive impairment (MCI) is crucial for timely diagnosis and intervention of Alzheimer's disease (AD). Although several pioneering studies have been devoted to automated AD diagnosis based on resting-state functional magnetic resonance imaging (rs-fMRI), their performance is somewhat limited due to non-effective mining of spatial-temporal dependency. Besides, few of these existing approaches consider the explicit detection and modeling of discriminative brain regions (i.e., network hubs) that are sensitive to AD progression. In this paper, we propose a unique Spatial-Temporal convolutional-recurrent neural Network (STNet) for automated prediction of AD progression and network hub detection from rs-fMRI time series. Our STNet incorporates the spatial-temporal information mining and AD-related hub detection into an end-to-end deep learning model. Specifically, we first partition rs-fMRI time series into a sequence of overlapping sliding windows. A sequence of convolutional components are then designed to capture the local-to-global spatially-dependent patterns within each sliding window, based on which we are able to identify discriminative hubs and characterize their unique contributions to disease diagnosis. A recurrent component with long short-term memory (LSTM) units is further employed to model the whole-brain temporal dependency from the spatially-dependent pattern sequences, thus capturing the temporal dynamics along time. We evaluate the proposed method on 174 subjects with 563 rs-fMRI scans from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, with results suggesting the effectiveness of our method in both tasks of disease progression prediction and AD-related hub detection. |
---|---|
AbstractList | Early identification of dementia at the stage of mild cognitive impairment (MCI) is crucial for timely diagnosis and intervention of Alzheimer's disease (AD). Although several pioneering studies have been devoted to automated AD diagnosis based on resting-state functional magnetic resonance imaging (rs-fMRI), their performance is somewhat limited due to non-effective mining of spatial-temporal dependency. Besides, few of these existing approaches consider the explicit detection and modeling of discriminative brain regions (i.e., network hubs) that are sensitive to AD progression. In this paper, we propose a unique Spatial-Temporal convolutional-recurrent neural Network (STNet) for automated prediction of AD progression and network hub detection from rs-fMRI time series. Our STNet incorporates the spatial-temporal information mining and AD-related hub detection into an end-to-end deep learning model. Specifically, we first partition rs-fMRI time series into a sequence of overlapping sliding windows. A sequence of convolutional components are then designed to capture the local-to-global spatially-dependent patterns within each sliding window, based on which we are able to identify discriminative hubs and characterize their unique contributions to disease diagnosis. A recurrent component with long short-term memory (LSTM) units is further employed to model the whole-brain temporal dependency from the spatially-dependent pattern sequences, thus capturing the temporal dynamics along time. We evaluate the proposed method on 174 subjects with 563 rs-fMRI scans from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, with results suggesting the effectiveness of our method in both tasks of disease progression prediction and AD-related hub detection. Early identification of dementia at the stage of mild cognitive impairment (MCI) is crucial for timely diagnosis and intervention of Alzheimer's disease (AD). Although several pioneering studies have been devoted to automated AD diagnosis based on resting-state functional magnetic resonance imaging (rs-fMRI), their performance is somewhat limited due to non-effective mining of spatial-temporal dependency. Besides, few of these existing approaches consider the explicit detection and modeling of discriminative brain regions (i.e., network hubs) that are sensitive to AD progression. In this paper, we propose a unique Spatial-Temporal convolutional-recurrent neural Network (STNet) for automated prediction of AD progression and network hub detection from rs-fMRI time series. Our STNet incorporates the spatial-temporal information mining and AD-related hub detection into an end-to-end deep learning model. Specifically, we first partition rs-fMRI time series into a sequence of overlapping sliding windows. A sequence of convolutional components are then designed to capture the local-to-global spatially-dependent patterns within each sliding window, based on which we are able to identify discriminative hubs and characterize their unique contributions to disease diagnosis. A recurrent component with long short-term memory (LSTM) units is further employed to model the whole-brain temporal dependency from the spatially-dependent pattern sequences, thus capturing the temporal dynamics along time. We evaluate the proposed method on 174 subjects with 563 rs-fMRI scans from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, with results suggesting the effectiveness of our method in both tasks of disease progression prediction and AD-related hub detection.Early identification of dementia at the stage of mild cognitive impairment (MCI) is crucial for timely diagnosis and intervention of Alzheimer's disease (AD). Although several pioneering studies have been devoted to automated AD diagnosis based on resting-state functional magnetic resonance imaging (rs-fMRI), their performance is somewhat limited due to non-effective mining of spatial-temporal dependency. Besides, few of these existing approaches consider the explicit detection and modeling of discriminative brain regions (i.e., network hubs) that are sensitive to AD progression. In this paper, we propose a unique Spatial-Temporal convolutional-recurrent neural Network (STNet) for automated prediction of AD progression and network hub detection from rs-fMRI time series. Our STNet incorporates the spatial-temporal information mining and AD-related hub detection into an end-to-end deep learning model. Specifically, we first partition rs-fMRI time series into a sequence of overlapping sliding windows. A sequence of convolutional components are then designed to capture the local-to-global spatially-dependent patterns within each sliding window, based on which we are able to identify discriminative hubs and characterize their unique contributions to disease diagnosis. A recurrent component with long short-term memory (LSTM) units is further employed to model the whole-brain temporal dependency from the spatially-dependent pattern sequences, thus capturing the temporal dynamics along time. We evaluate the proposed method on 174 subjects with 563 rs-fMRI scans from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, with results suggesting the effectiveness of our method in both tasks of disease progression prediction and AD-related hub detection. Early identification of dementia at the stage of mild cognitive impairment (MCI) is crucial for timely diagnosis and intervention of Alzheimer’s disease (AD). Although several pioneering studies have been devoted to automated AD diagnosis based on resting-state functional magnetic resonance imaging (rs-fMRI), their performance is somewhat limited due to non-effective mining of spatial-temporal dependency. Besides, few of these existing approaches consider the explicit detection and modeling of discriminative brain regions ( i.e ., network hubs) that are sensitive to AD progression. In this paper, we propose a unique Spatial-Temporal convolutional-recurrent neural Network (STNet) for automated prediction of AD progression and network hub detection from rs-fMRI time series. Our STNet incorporates the spatial-temporal information mining and AD-related hub detection into an end-to-end deep learning model. Specifically, we first partition rs-fMRI time series into a sequence of overlapping sliding windows. A sequence of convolutional components are then designed to capture the local-to-global spatially-dependent patterns within each sliding window, based on which we are able to identify discriminative hubs and characterize their unique contributions to disease diagnosis. A recurrent component with long short-term memory (LSTM) units is further employed to model the whole-brain temporal dependency from the spatially-dependent pattern sequences, thus capturing the temporal dynamics along time. We evaluate the proposed method on 174 subjects with 563 rs-fMRI scans from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database, with results suggesting the effectiveness of our method in both tasks of disease progression prediction and AD-related hub detection. |
Author | Liu, Mingxia Zhang, Daoqiang Shen, Dinggang Wang, Mingliang Lian, Chunfeng Yao, Dongren |
Author_xml | – sequence: 1 givenname: Mingliang orcidid: 0000-0002-0567-9492 surname: Wang fullname: Wang, Mingliang email: wml489@nuaa.edu.cn organization: MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, College of Computer Science and TechnologyNanjing University of Aeronautics and Astronautics – sequence: 2 givenname: Chunfeng orcidid: 0000-0002-9319-6633 surname: Lian fullname: Lian, Chunfeng organization: Department of Radiology and BRICUniversity of North Carolina at Chapel Hill – sequence: 3 givenname: Dongren surname: Yao fullname: Yao, Dongren organization: Brainnetome Center and National Laboratory of Pattern Recognition, Institute of AutomationChinese Academy of Sciences – sequence: 4 givenname: Daoqiang surname: Zhang fullname: Zhang, Daoqiang email: dqzhang@nuaa.edu.cn organization: MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China – sequence: 5 givenname: Mingxia surname: Liu fullname: Liu, Mingxia email: mxliu@med.unc.edu organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA – sequence: 6 givenname: Dinggang surname: Shen fullname: Shen, Dinggang email: dgshen@med.unc.edu organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31825859$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUFvEzEQhS1URNPCD0BIaCUuXDbYXnvXviCV0NJKDUglnC2vPVtcNnawd4Ny4bfjNGkEPXCyrfne88y8E3TkgweEXhI8JQTLd4sP8_MpxUROqeSNpOQJmhDORUl5RY7QBGMiSkklO0YnKd3lJxOsfoaOKyIoF1xO0O-vKz043ZcLWK5C1H3xEVbgLXizKebBQu_8baG9LT7D8CvEH8Xl2GZmADO44IsuxOJi9PePLJ7fXBVn-bJJLhVrp4tZ8OvQj7tyeQNmjBH88OD2HD3tdJ_gxf48Rd8uzhezy_L6y6er2dl1aRhrhpIJYSUVnWUtYZxApSm2lggmOyqN1ZVh1hjJWNtYq3nd6s62ra7qDteaAKtO0fud72psl2BNbiHPqlbRLXXcqKCd-rfi3Xd1G9aqYZWkjcwGb_cGMfwcIQ1q6ZKBvtcewpgUrfLOcVNTnNE3j9C7MMY8fqYY5VxKeU-9_rujQysP0WSA7AATQ0oRugNCsNrGr7bxq238ah9_1jSPNMYNerv8PJTr_6t8tVM6ADj8JCStK0arP4G8v98 |
CODEN | IEBEAX |
CitedBy_id | crossref_primary_10_3389_fnagi_2022_893250 crossref_primary_10_1016_j_bspc_2024_107263 crossref_primary_10_3389_fnins_2023_1227491 crossref_primary_10_3389_fpsyt_2020_551299 crossref_primary_10_1109_TAI_2024_3416420 crossref_primary_10_3389_fnins_2024_1394234 crossref_primary_10_1109_JBHI_2024_3395611 crossref_primary_10_1016_j_bspc_2022_104312 crossref_primary_10_1016_j_knosys_2022_109466 crossref_primary_10_1109_JBHI_2023_3274531 crossref_primary_10_1016_j_bspc_2024_107466 crossref_primary_10_3389_fnins_2023_1322967 crossref_primary_10_1109_TMI_2022_3187141 crossref_primary_10_3390_brainsci12101348 crossref_primary_10_53941_aim_2024_100002 crossref_primary_10_3389_fnins_2022_1081788 crossref_primary_10_1063_5_0011697 crossref_primary_10_3389_fnins_2021_696639 crossref_primary_10_3390_make6010019 crossref_primary_10_1016_j_eswa_2024_124780 crossref_primary_10_1002_hbm_26396 crossref_primary_10_3390_electronics12041031 crossref_primary_10_1109_TMI_2024_3421360 crossref_primary_10_1007_s11517_022_02558_4 crossref_primary_10_1016_j_media_2021_101977 crossref_primary_10_3390_info14120646 crossref_primary_10_1186_s12877_025_05771_6 crossref_primary_10_1016_j_eswa_2022_119389 crossref_primary_10_1016_j_neunet_2024_106945 crossref_primary_10_1109_TMI_2022_3201974 crossref_primary_10_3389_fnins_2025_1518984 crossref_primary_10_3389_fnimg_2022_952084 crossref_primary_10_1007_s11517_024_03097_w crossref_primary_10_1016_j_neucom_2024_128871 crossref_primary_10_1016_j_media_2021_102063 crossref_primary_10_3389_fnagi_2023_1101879 crossref_primary_10_32604_iasc_2023_036628 crossref_primary_10_3389_fninf_2021_802305 crossref_primary_10_1016_j_bspc_2022_104092 crossref_primary_10_3389_fnins_2022_933660 crossref_primary_10_3390_s25010156 crossref_primary_10_1093_cercor_bhae098 crossref_primary_10_1016_j_compbiomed_2024_108762 crossref_primary_10_1109_JBHI_2019_2962519 crossref_primary_10_1109_TPAMI_2023_3330795 crossref_primary_10_3390_a18030138 crossref_primary_10_1088_1741_2552_acabe7 crossref_primary_10_1109_JBHI_2024_3472609 crossref_primary_10_1109_JBHI_2021_3107305 crossref_primary_10_3389_fnins_2020_00779 crossref_primary_10_1109_TNSRE_2022_3202713 crossref_primary_10_1111_jon_13063 crossref_primary_10_1016_j_media_2021_102279 crossref_primary_10_1186_s12911_022_01826_5 crossref_primary_10_1109_TMI_2021_3051604 crossref_primary_10_1016_j_cmpb_2022_106825 crossref_primary_10_1109_TETCI_2024_3377551 crossref_primary_10_1109_JSEN_2024_3387103 crossref_primary_10_1109_TBME_2021_3049199 crossref_primary_10_1016_j_media_2022_102707 crossref_primary_10_1038_s41598_024_74508_z crossref_primary_10_1109_TIM_2023_3324338 crossref_primary_10_1007_s10462_023_10415_5 crossref_primary_10_1109_TBME_2021_3129459 crossref_primary_10_3389_fnins_2021_720909 crossref_primary_10_1016_j_artmed_2024_102928 crossref_primary_10_1007_s12539_023_00592_w crossref_primary_10_1109_TNSRE_2023_3309847 crossref_primary_10_1109_ACCESS_2024_3454709 crossref_primary_10_1007_s11704_021_0587_2 crossref_primary_10_1109_TIM_2022_3232670 crossref_primary_10_1016_j_jneumeth_2022_109478 crossref_primary_10_1002_alz_13412 crossref_primary_10_1016_j_compbiomed_2022_106521 crossref_primary_10_3389_fninf_2022_856175 crossref_primary_10_3390_make5020035 crossref_primary_10_1016_j_neuroimage_2021_118586 crossref_primary_10_1109_TNSRE_2024_3450443 crossref_primary_10_55525_tjst_1396312 crossref_primary_10_1109_TMI_2021_3063421 |
Cites_doi | 10.1136/jnnp.73.6.665 10.1016/j.neuroimage.2008.11.007 10.1016/S0197-4580(99)00107-4 10.1016/j.jalz.2015.05.005 10.1371/journal.pone.0194479 10.3390/e21030300 10.1007/s00429-013-0524-8 10.1371/journal.pone.0173426 10.1109/TBME.2013.2284195 10.1109/TBME.2018.2869989 10.1016/j.euroneuro.2010.03.008 10.1136/bmj.h3029 10.1093/brain/aww143 10.1016/j.biopsych.2012.03.026 10.1109/TIP.2018.2799706 10.1155/2015/865265 10.1109/ICDM.2017.123 10.1101/cshperspect.a006148 10.1162/neco.1989.1.4.541 10.1007/978-0-387-21606-5 10.1016/j.neuroimage.2007.04.009 10.1016/j.brainres.2009.09.028 10.1016/j.tics.2013.09.012 10.1016/j.neuroimage.2009.04.023 10.1109/JBHI.2018.2791863 10.1142/S0129065716500258 10.3389/fneur.2018.01178 10.1371/journal.pone.0001049 10.1609/aaai.v33i01.33011198 10.1142/S0218488598000094 10.1109/TMI.2019.2933160 10.1093/cercor/bhu246 10.1109/TMI.2016.2515021 10.1016/j.media.2018.02.009 10.1007/s11682-015-9408-2 10.1162/neco.1997.9.8.1735 10.1109/ISBI.2017.7950647 10.1016/S0304-3940(01)01636-6 10.1016/j.neuroimage.2011.09.069 10.1109/TPAMI.2018.2889096 10.1186/alzrt106 10.1016/j.jalz.2016.03.001 10.1016/j.cger.2013.07.009 10.1002/hbm.22353 10.1523/JNEUROSCI.5062-08.2009 10.1016/j.media.2018.03.013 10.1038/nrn3801 10.1016/j.neuroimage.2013.05.079 10.1212/01.WNL.0000079052.01016.78 10.1109/ISBI.2014.6868045 10.1016/j.media.2019.01.007 10.1016/j.neuroimage.2011.10.015 10.1111/cns.12407 10.1002/hbm.21140 10.1007/978-3-319-51237-2_2 10.1371/journal.pone.0115573 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 5PM |
DOI | 10.1109/TBME.2019.2957921 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-2531 |
EndPage | 2252 |
ExternalDocumentID | PMC7439279 31825859 10_1109_TBME_2019_2957921 8926342 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Royal Society-Academy of Medical Sciences Newton Advanced Fellowship grantid: NAF\R1\180371 – fundername: Fundamental Research Funds for the Central Universities grantid: NP2018104 funderid: 10.13039/501100012226 – fundername: National Key R&D Program of China grantid: 2018YFC2001600; 2018YFC2001602 – fundername: National Natural Science Foundation of China grantid: 61732006; 61876082; 61861130366; 61703301 funderid: 10.13039/501100001809 – fundername: National Institutes of Health grantid: AG041721; EB022880 funderid: 10.13039/100000002 – fundername: NIBIB NIH HHS grantid: R01 EB022880 – fundername: NIA NIH HHS grantid: R01 AG041721 |
GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION RIG NPM PKN 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 5PM |
ID | FETCH-LOGICAL-c447t-488d928fd4b1451e3a20dd1849f29cda3c4dcc944b7dda56bafdbba36f06a1e43 |
IEDL.DBID | RIE |
ISSN | 0018-9294 1558-2531 |
IngestDate | Thu Aug 21 18:20:15 EDT 2025 Fri Jul 11 08:42:03 EDT 2025 Mon Jun 30 08:40:16 EDT 2025 Wed Feb 19 02:30:02 EST 2025 Tue Jul 01 03:28:32 EDT 2025 Thu Apr 24 23:01:43 EDT 2025 Wed Aug 27 02:35:19 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c447t-488d928fd4b1451e3a20dd1849f29cda3c4dcc944b7dda56bafdbba36f06a1e43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0567-9492 0000-0002-9319-6633 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/7439279 |
PMID | 31825859 |
PQID | 2425599920 |
PQPubID | 85474 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2325307620 crossref_citationtrail_10_1109_TBME_2019_2957921 crossref_primary_10_1109_TBME_2019_2957921 pubmed_primary_31825859 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7439279 proquest_journals_2425599920 ieee_primary_8926342 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-08-01 |
PublicationDateYYYYMMDD | 2020-08-01 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on biomedical engineering |
PublicationTitleAbbrev | TBME |
PublicationTitleAlternate | IEEE Trans Biomed Eng |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 ref56 ref12 ref59 ref15 ref58 ref14 ref53 ref52 ref55 ref11 ref54 ref10 ref17 ref16 ref19 ref18 anderson (ref5) 2012 ref51 ref50 ref46 ref48 ref47 ref42 ref41 ref44 ref49 fletcher (ref43) 2012 ref8 ref7 ref9 ref4 ref3 ref6 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 haan (ref26) 2012; 8 ref24 ref23 ref25 xiang (ref45) 2013; 8 ref20 ref22 ref21 ref28 ref27 ref29 ref60 |
References_xml | – ident: ref11 doi: 10.1136/jnnp.73.6.665 – ident: ref42 doi: 10.1016/j.neuroimage.2008.11.007 – ident: ref57 doi: 10.1016/S0197-4580(99)00107-4 – year: 2012 ident: ref5 publication-title: Living With Mild Cognitive Impairment A Guide to Maximizing Brain Health and Reducing Risk of Dementia – ident: ref4 doi: 10.1016/j.jalz.2015.05.005 – ident: ref29 doi: 10.1371/journal.pone.0194479 – ident: ref20 doi: 10.3390/e21030300 – volume: 8 year: 2012 ident: ref26 article-title: Activity dependent degeneration explains hub vulnerability in Alzheimer's disease publication-title: PLoS Comput Biol – ident: ref15 doi: 10.1007/s00429-013-0524-8 – ident: ref44 doi: 10.1371/journal.pone.0173426 – ident: ref14 doi: 10.1109/TBME.2013.2284195 – ident: ref6 doi: 10.1109/TBME.2018.2869989 – ident: ref27 doi: 10.1016/j.euroneuro.2010.03.008 – ident: ref8 doi: 10.1136/bmj.h3029 – ident: ref18 doi: 10.1093/brain/aww143 – ident: ref59 doi: 10.1016/j.biopsych.2012.03.026 – ident: ref16 doi: 10.1109/TIP.2018.2799706 – ident: ref53 doi: 10.1155/2015/865265 – ident: ref34 doi: 10.1109/ICDM.2017.123 – ident: ref1 doi: 10.1101/cshperspect.a006148 – ident: ref41 doi: 10.1162/neco.1989.1.4.541 – ident: ref40 doi: 10.1007/978-0-387-21606-5 – ident: ref3 doi: 10.1016/j.neuroimage.2007.04.009 – ident: ref30 doi: 10.1016/j.brainres.2009.09.028 – ident: ref21 doi: 10.1016/j.tics.2013.09.012 – ident: ref56 doi: 10.1016/j.neuroimage.2009.04.023 – ident: ref7 doi: 10.1109/JBHI.2018.2791863 – ident: ref49 doi: 10.1142/S0129065716500258 – ident: ref55 doi: 10.3389/fneur.2018.01178 – ident: ref36 doi: 10.1371/journal.pone.0001049 – ident: ref35 doi: 10.1609/aaai.v33i01.33011198 – ident: ref38 doi: 10.1142/S0218488598000094 – ident: ref17 doi: 10.1109/TMI.2019.2933160 – ident: ref25 doi: 10.1093/cercor/bhu246 – ident: ref10 doi: 10.1109/TMI.2016.2515021 – ident: ref9 doi: 10.1016/j.media.2018.02.009 – ident: ref32 doi: 10.1007/s11682-015-9408-2 – ident: ref37 doi: 10.1162/neco.1997.9.8.1735 – ident: ref50 doi: 10.1109/ISBI.2017.7950647 – ident: ref47 doi: 10.1016/S0304-3940(01)01636-6 – ident: ref60 doi: 10.1016/j.neuroimage.2011.09.069 – year: 2012 ident: ref43 publication-title: Clinical Epidemiology The Essentials – ident: ref58 doi: 10.1109/TPAMI.2018.2889096 – ident: ref12 doi: 10.1186/alzrt106 – ident: ref2 doi: 10.1016/j.jalz.2016.03.001 – ident: ref31 doi: 10.1016/j.cger.2013.07.009 – ident: ref28 doi: 10.1002/hbm.22353 – ident: ref24 doi: 10.1523/JNEUROSCI.5062-08.2009 – ident: ref33 doi: 10.1016/j.media.2018.03.013 – ident: ref23 doi: 10.1038/nrn3801 – ident: ref19 doi: 10.1016/j.neuroimage.2013.05.079 – volume: 8 start-page: 2789 year: 2013 ident: ref45 article-title: An abnormal resting-state functional brain network indicates progression towards Alzheimer's disease publication-title: Neural Regeneration Res – ident: ref13 doi: 10.1212/01.WNL.0000079052.01016.78 – ident: ref52 doi: 10.1109/ISBI.2014.6868045 – ident: ref54 doi: 10.1016/j.media.2019.01.007 – ident: ref39 doi: 10.1016/j.neuroimage.2011.10.015 – ident: ref22 doi: 10.1111/cns.12407 – ident: ref48 doi: 10.1002/hbm.21140 – ident: ref51 doi: 10.1007/978-3-319-51237-2_2 – ident: ref46 doi: 10.1371/journal.pone.0115573 |
SSID | ssj0014846 |
Score | 2.5890903 |
Snippet | Early identification of dementia at the stage of mild cognitive impairment (MCI) is crucial for timely diagnosis and intervention of Alzheimer's disease (AD).... Early identification of dementia at the stage of mild cognitive impairment (MCI) is crucial for timely diagnosis and intervention of Alzheimer’s disease (AD).... |
SourceID | pubmedcentral proquest pubmed crossref ieee |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2241 |
SubjectTerms | Alzheimer's disease Automation Brain Brain mapping Brain modeling Cognitive ability Convolution Dementia Dementia disorders Dependence Diagnosis Feature extraction Functional magnetic resonance imaging hub detection Hubs Long short-term memory Machine learning Magnetic resonance imaging Medical imaging Modelling Network hubs neural network Neural networks Neurodegenerative diseases Neuroimaging Recurrent neural networks resting-state functional MRI Sequences Sliding Spatial-temporal dependency Time series Time series analysis |
Title | Spatial-Temporal Dependency Modeling and Network Hub Detection for Functional MRI Analysis via Convolutional-Recurrent Network |
URI | https://ieeexplore.ieee.org/document/8926342 https://www.ncbi.nlm.nih.gov/pubmed/31825859 https://www.proquest.com/docview/2425599920 https://www.proquest.com/docview/2325307620 https://pubmed.ncbi.nlm.nih.gov/PMC7439279 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKDwgOFFoe2xZkJE6IbB3befhYSlcLUnqotlJvkZ-iosoiSCrBgd_OTOJE3apC3CJ54sSaGXvGM_MNIe9MEeDgcn1zF5FI5VVisuBAr7RgusxKbrE4uTrLlxfyy2V2uUU-TLUw3vs--czP8bGP5bu17fCq7KhUPBcSNtwH4LgNtVpTxECWQ1EOS0GBuZIxgpkydbT6WJ1iEpeacwxK8XTjDOqbqtxnX95Nk7x17ix2SDX-8ZBu8m3etWZuf98Bc_zfJT0lT6IBSo8HiXlGtnyzSx7fgiXcJQ-rGHDfI3-wZTGIaLIaIKyu6afYNdf-othHDavZqW4cPRvyyemyM0DT9hleDQWTmC7g6BxuHGl1_pmOMCj05krTk3VzE4UfPnKOl_8IFzXO9pxcLE5XJ8sktmxIrJRFm8B24BQvg5MGWwB7oTlzDrxIFbiyTgsrnbVKSlM4p7Pc6OCM0SIPLNepl-IF2W7WjX9FaAgmDUqIIvNg00lldFEYnRqlHFMuVTPCRibWNuKZY1uN67r3a5iqke818r2OfJ-R99Mr3wcwj38R7yG7JsLIqRk5HCWljur-s0a_LQNTm7MZeTsNg6Ji9EU3ft0BjeAZbKg50rwcBGuaGzZWDn4brKnYELmJAEHAN0eaq689GDg6lLxQ-_f_7QF5xPGCoM9YPCTb7Y_OvwYrqjVvevX5C5aCHA4 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9NAEB6VIkE58Gh5BAosElyQnNrr9WMPHKBtlNAmhyqVejO73rWoWjmI2kXlwC_hr_DfmLHXVlNV3Cpxi-TJJtl8szOzM_MNwFudFGi4TDPcJfSEtNLTUWFQr1ToqzRKeU7NydNZPD4Un4-ioxX43ffCWGub4jM7pJdNLt8s8pquyrZSyeNQcFdCuWcvfmCAdvZhsoP_5jvOR7vz7bHnZgh4uRBJ5SE-jeRpYYSmmbQ2VNw3BsMaWXCZGxXmwuS5FEInxqgo1qowWqswLvxYBVaEuO4tuI1-RsTb7rA-RyHStg3ID_DI4FK4nGngy635p-kulY3JIac0GA-WrF4zxuU6j_ZqYeYlSzd6AH-6PWoLXE6GdaWH-c8r9JH_6yY-hPvOxWYfW514BCu2XId7l4gX1-HO1JUUbMAvGsqMSujNW5KuU7bj5gLnF4wmxVG_PlOlYbO2Yp6Na40yVVPDVjJ0-tkInYP2TpVNDyasI3ph58eKbS_Kc6fe-CEHlN4gQqxutcdweCN78QRWy0VpnwErCh0UMgyTyKLXKqRWSaJVoKU0vjSBHIDfgSbLHWM7DQ45zZrIzZcZ4SwjnGUOZwN437_lW0tX8i_hDYJHL-iQMYDNDpmZO9DOMopMIwwmuD-AN_1jPIoov6RKu6hRJuQRmoyYZJ62QO7XRtPBMTLF35QsQbwXIJrz5Sfl8deG7pxCZp7I59d_29dwdzyf7mf7k9neC1jjdB3S1Gduwmr1vbYv0Wes9KtGdRl8uWmY_wVH43yH |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial-Temporal+Dependency+Modeling+and+Network+Hub+Detection+for+Functional+MRI+Analysis+via+Convolutional-Recurrent+Network&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Wang%2C+Mingliang&rft.au=Lian%2C+Chunfeng&rft.au=Yao%2C+Dongren&rft.au=Zhang%2C+Daoqiang&rft.date=2020-08-01&rft.issn=1558-2531&rft.eissn=1558-2531&rft.volume=67&rft.issue=8&rft.spage=2241&rft_id=info:doi/10.1109%2FTBME.2019.2957921&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |