Spatial-Temporal Dependency Modeling and Network Hub Detection for Functional MRI Analysis via Convolutional-Recurrent Network

Early identification of dementia at the stage of mild cognitive impairment (MCI) is crucial for timely diagnosis and intervention of Alzheimer's disease (AD). Although several pioneering studies have been devoted to automated AD diagnosis based on resting-state functional magnetic resonance ima...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 67; no. 8; pp. 2241 - 2252
Main Authors Wang, Mingliang, Lian, Chunfeng, Yao, Dongren, Zhang, Daoqiang, Liu, Mingxia, Shen, Dinggang
Format Journal Article
LanguageEnglish
Published United States IEEE 01.08.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Early identification of dementia at the stage of mild cognitive impairment (MCI) is crucial for timely diagnosis and intervention of Alzheimer's disease (AD). Although several pioneering studies have been devoted to automated AD diagnosis based on resting-state functional magnetic resonance imaging (rs-fMRI), their performance is somewhat limited due to non-effective mining of spatial-temporal dependency. Besides, few of these existing approaches consider the explicit detection and modeling of discriminative brain regions (i.e., network hubs) that are sensitive to AD progression. In this paper, we propose a unique Spatial-Temporal convolutional-recurrent neural Network (STNet) for automated prediction of AD progression and network hub detection from rs-fMRI time series. Our STNet incorporates the spatial-temporal information mining and AD-related hub detection into an end-to-end deep learning model. Specifically, we first partition rs-fMRI time series into a sequence of overlapping sliding windows. A sequence of convolutional components are then designed to capture the local-to-global spatially-dependent patterns within each sliding window, based on which we are able to identify discriminative hubs and characterize their unique contributions to disease diagnosis. A recurrent component with long short-term memory (LSTM) units is further employed to model the whole-brain temporal dependency from the spatially-dependent pattern sequences, thus capturing the temporal dynamics along time. We evaluate the proposed method on 174 subjects with 563 rs-fMRI scans from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, with results suggesting the effectiveness of our method in both tasks of disease progression prediction and AD-related hub detection.
AbstractList Early identification of dementia at the stage of mild cognitive impairment (MCI) is crucial for timely diagnosis and intervention of Alzheimer's disease (AD). Although several pioneering studies have been devoted to automated AD diagnosis based on resting-state functional magnetic resonance imaging (rs-fMRI), their performance is somewhat limited due to non-effective mining of spatial-temporal dependency. Besides, few of these existing approaches consider the explicit detection and modeling of discriminative brain regions (i.e., network hubs) that are sensitive to AD progression. In this paper, we propose a unique Spatial-Temporal convolutional-recurrent neural Network (STNet) for automated prediction of AD progression and network hub detection from rs-fMRI time series. Our STNet incorporates the spatial-temporal information mining and AD-related hub detection into an end-to-end deep learning model. Specifically, we first partition rs-fMRI time series into a sequence of overlapping sliding windows. A sequence of convolutional components are then designed to capture the local-to-global spatially-dependent patterns within each sliding window, based on which we are able to identify discriminative hubs and characterize their unique contributions to disease diagnosis. A recurrent component with long short-term memory (LSTM) units is further employed to model the whole-brain temporal dependency from the spatially-dependent pattern sequences, thus capturing the temporal dynamics along time. We evaluate the proposed method on 174 subjects with 563 rs-fMRI scans from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, with results suggesting the effectiveness of our method in both tasks of disease progression prediction and AD-related hub detection.
Early identification of dementia at the stage of mild cognitive impairment (MCI) is crucial for timely diagnosis and intervention of Alzheimer's disease (AD). Although several pioneering studies have been devoted to automated AD diagnosis based on resting-state functional magnetic resonance imaging (rs-fMRI), their performance is somewhat limited due to non-effective mining of spatial-temporal dependency. Besides, few of these existing approaches consider the explicit detection and modeling of discriminative brain regions (i.e., network hubs) that are sensitive to AD progression. In this paper, we propose a unique Spatial-Temporal convolutional-recurrent neural Network (STNet) for automated prediction of AD progression and network hub detection from rs-fMRI time series. Our STNet incorporates the spatial-temporal information mining and AD-related hub detection into an end-to-end deep learning model. Specifically, we first partition rs-fMRI time series into a sequence of overlapping sliding windows. A sequence of convolutional components are then designed to capture the local-to-global spatially-dependent patterns within each sliding window, based on which we are able to identify discriminative hubs and characterize their unique contributions to disease diagnosis. A recurrent component with long short-term memory (LSTM) units is further employed to model the whole-brain temporal dependency from the spatially-dependent pattern sequences, thus capturing the temporal dynamics along time. We evaluate the proposed method on 174 subjects with 563 rs-fMRI scans from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, with results suggesting the effectiveness of our method in both tasks of disease progression prediction and AD-related hub detection.Early identification of dementia at the stage of mild cognitive impairment (MCI) is crucial for timely diagnosis and intervention of Alzheimer's disease (AD). Although several pioneering studies have been devoted to automated AD diagnosis based on resting-state functional magnetic resonance imaging (rs-fMRI), their performance is somewhat limited due to non-effective mining of spatial-temporal dependency. Besides, few of these existing approaches consider the explicit detection and modeling of discriminative brain regions (i.e., network hubs) that are sensitive to AD progression. In this paper, we propose a unique Spatial-Temporal convolutional-recurrent neural Network (STNet) for automated prediction of AD progression and network hub detection from rs-fMRI time series. Our STNet incorporates the spatial-temporal information mining and AD-related hub detection into an end-to-end deep learning model. Specifically, we first partition rs-fMRI time series into a sequence of overlapping sliding windows. A sequence of convolutional components are then designed to capture the local-to-global spatially-dependent patterns within each sliding window, based on which we are able to identify discriminative hubs and characterize their unique contributions to disease diagnosis. A recurrent component with long short-term memory (LSTM) units is further employed to model the whole-brain temporal dependency from the spatially-dependent pattern sequences, thus capturing the temporal dynamics along time. We evaluate the proposed method on 174 subjects with 563 rs-fMRI scans from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, with results suggesting the effectiveness of our method in both tasks of disease progression prediction and AD-related hub detection.
Early identification of dementia at the stage of mild cognitive impairment (MCI) is crucial for timely diagnosis and intervention of Alzheimer’s disease (AD). Although several pioneering studies have been devoted to automated AD diagnosis based on resting-state functional magnetic resonance imaging (rs-fMRI), their performance is somewhat limited due to non-effective mining of spatial-temporal dependency. Besides, few of these existing approaches consider the explicit detection and modeling of discriminative brain regions ( i.e ., network hubs) that are sensitive to AD progression. In this paper, we propose a unique Spatial-Temporal convolutional-recurrent neural Network (STNet) for automated prediction of AD progression and network hub detection from rs-fMRI time series. Our STNet incorporates the spatial-temporal information mining and AD-related hub detection into an end-to-end deep learning model. Specifically, we first partition rs-fMRI time series into a sequence of overlapping sliding windows. A sequence of convolutional components are then designed to capture the local-to-global spatially-dependent patterns within each sliding window, based on which we are able to identify discriminative hubs and characterize their unique contributions to disease diagnosis. A recurrent component with long short-term memory (LSTM) units is further employed to model the whole-brain temporal dependency from the spatially-dependent pattern sequences, thus capturing the temporal dynamics along time. We evaluate the proposed method on 174 subjects with 563 rs-fMRI scans from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database, with results suggesting the effectiveness of our method in both tasks of disease progression prediction and AD-related hub detection.
Author Liu, Mingxia
Zhang, Daoqiang
Shen, Dinggang
Wang, Mingliang
Lian, Chunfeng
Yao, Dongren
Author_xml – sequence: 1
  givenname: Mingliang
  orcidid: 0000-0002-0567-9492
  surname: Wang
  fullname: Wang, Mingliang
  email: wml489@nuaa.edu.cn
  organization: MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, College of Computer Science and TechnologyNanjing University of Aeronautics and Astronautics
– sequence: 2
  givenname: Chunfeng
  orcidid: 0000-0002-9319-6633
  surname: Lian
  fullname: Lian, Chunfeng
  organization: Department of Radiology and BRICUniversity of North Carolina at Chapel Hill
– sequence: 3
  givenname: Dongren
  surname: Yao
  fullname: Yao, Dongren
  organization: Brainnetome Center and National Laboratory of Pattern Recognition, Institute of AutomationChinese Academy of Sciences
– sequence: 4
  givenname: Daoqiang
  surname: Zhang
  fullname: Zhang, Daoqiang
  email: dqzhang@nuaa.edu.cn
  organization: MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
– sequence: 5
  givenname: Mingxia
  surname: Liu
  fullname: Liu, Mingxia
  email: mxliu@med.unc.edu
  organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
– sequence: 6
  givenname: Dinggang
  surname: Shen
  fullname: Shen, Dinggang
  email: dgshen@med.unc.edu
  organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31825859$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFvEzEQhS1URNPCD0BIaCUuXDbYXnvXviCV0NJKDUglnC2vPVtcNnawd4Ny4bfjNGkEPXCyrfne88y8E3TkgweEXhI8JQTLd4sP8_MpxUROqeSNpOQJmhDORUl5RY7QBGMiSkklO0YnKd3lJxOsfoaOKyIoF1xO0O-vKz043ZcLWK5C1H3xEVbgLXizKebBQu_8baG9LT7D8CvEH8Xl2GZmADO44IsuxOJi9PePLJ7fXBVn-bJJLhVrp4tZ8OvQj7tyeQNmjBH88OD2HD3tdJ_gxf48Rd8uzhezy_L6y6er2dl1aRhrhpIJYSUVnWUtYZxApSm2lggmOyqN1ZVh1hjJWNtYq3nd6s62ra7qDteaAKtO0fud72psl2BNbiHPqlbRLXXcqKCd-rfi3Xd1G9aqYZWkjcwGb_cGMfwcIQ1q6ZKBvtcewpgUrfLOcVNTnNE3j9C7MMY8fqYY5VxKeU-9_rujQysP0WSA7AATQ0oRugNCsNrGr7bxq238ah9_1jSPNMYNerv8PJTr_6t8tVM6ADj8JCStK0arP4G8v98
CODEN IEBEAX
CitedBy_id crossref_primary_10_3389_fnagi_2022_893250
crossref_primary_10_1016_j_bspc_2024_107263
crossref_primary_10_3389_fnins_2023_1227491
crossref_primary_10_3389_fpsyt_2020_551299
crossref_primary_10_1109_TAI_2024_3416420
crossref_primary_10_3389_fnins_2024_1394234
crossref_primary_10_1109_JBHI_2024_3395611
crossref_primary_10_1016_j_bspc_2022_104312
crossref_primary_10_1016_j_knosys_2022_109466
crossref_primary_10_1109_JBHI_2023_3274531
crossref_primary_10_1016_j_bspc_2024_107466
crossref_primary_10_3389_fnins_2023_1322967
crossref_primary_10_1109_TMI_2022_3187141
crossref_primary_10_3390_brainsci12101348
crossref_primary_10_53941_aim_2024_100002
crossref_primary_10_3389_fnins_2022_1081788
crossref_primary_10_1063_5_0011697
crossref_primary_10_3389_fnins_2021_696639
crossref_primary_10_3390_make6010019
crossref_primary_10_1016_j_eswa_2024_124780
crossref_primary_10_1002_hbm_26396
crossref_primary_10_3390_electronics12041031
crossref_primary_10_1109_TMI_2024_3421360
crossref_primary_10_1007_s11517_022_02558_4
crossref_primary_10_1016_j_media_2021_101977
crossref_primary_10_3390_info14120646
crossref_primary_10_1186_s12877_025_05771_6
crossref_primary_10_1016_j_eswa_2022_119389
crossref_primary_10_1016_j_neunet_2024_106945
crossref_primary_10_1109_TMI_2022_3201974
crossref_primary_10_3389_fnins_2025_1518984
crossref_primary_10_3389_fnimg_2022_952084
crossref_primary_10_1007_s11517_024_03097_w
crossref_primary_10_1016_j_neucom_2024_128871
crossref_primary_10_1016_j_media_2021_102063
crossref_primary_10_3389_fnagi_2023_1101879
crossref_primary_10_32604_iasc_2023_036628
crossref_primary_10_3389_fninf_2021_802305
crossref_primary_10_1016_j_bspc_2022_104092
crossref_primary_10_3389_fnins_2022_933660
crossref_primary_10_3390_s25010156
crossref_primary_10_1093_cercor_bhae098
crossref_primary_10_1016_j_compbiomed_2024_108762
crossref_primary_10_1109_JBHI_2019_2962519
crossref_primary_10_1109_TPAMI_2023_3330795
crossref_primary_10_3390_a18030138
crossref_primary_10_1088_1741_2552_acabe7
crossref_primary_10_1109_JBHI_2024_3472609
crossref_primary_10_1109_JBHI_2021_3107305
crossref_primary_10_3389_fnins_2020_00779
crossref_primary_10_1109_TNSRE_2022_3202713
crossref_primary_10_1111_jon_13063
crossref_primary_10_1016_j_media_2021_102279
crossref_primary_10_1186_s12911_022_01826_5
crossref_primary_10_1109_TMI_2021_3051604
crossref_primary_10_1016_j_cmpb_2022_106825
crossref_primary_10_1109_TETCI_2024_3377551
crossref_primary_10_1109_JSEN_2024_3387103
crossref_primary_10_1109_TBME_2021_3049199
crossref_primary_10_1016_j_media_2022_102707
crossref_primary_10_1038_s41598_024_74508_z
crossref_primary_10_1109_TIM_2023_3324338
crossref_primary_10_1007_s10462_023_10415_5
crossref_primary_10_1109_TBME_2021_3129459
crossref_primary_10_3389_fnins_2021_720909
crossref_primary_10_1016_j_artmed_2024_102928
crossref_primary_10_1007_s12539_023_00592_w
crossref_primary_10_1109_TNSRE_2023_3309847
crossref_primary_10_1109_ACCESS_2024_3454709
crossref_primary_10_1007_s11704_021_0587_2
crossref_primary_10_1109_TIM_2022_3232670
crossref_primary_10_1016_j_jneumeth_2022_109478
crossref_primary_10_1002_alz_13412
crossref_primary_10_1016_j_compbiomed_2022_106521
crossref_primary_10_3389_fninf_2022_856175
crossref_primary_10_3390_make5020035
crossref_primary_10_1016_j_neuroimage_2021_118586
crossref_primary_10_1109_TNSRE_2024_3450443
crossref_primary_10_55525_tjst_1396312
crossref_primary_10_1109_TMI_2021_3063421
Cites_doi 10.1136/jnnp.73.6.665
10.1016/j.neuroimage.2008.11.007
10.1016/S0197-4580(99)00107-4
10.1016/j.jalz.2015.05.005
10.1371/journal.pone.0194479
10.3390/e21030300
10.1007/s00429-013-0524-8
10.1371/journal.pone.0173426
10.1109/TBME.2013.2284195
10.1109/TBME.2018.2869989
10.1016/j.euroneuro.2010.03.008
10.1136/bmj.h3029
10.1093/brain/aww143
10.1016/j.biopsych.2012.03.026
10.1109/TIP.2018.2799706
10.1155/2015/865265
10.1109/ICDM.2017.123
10.1101/cshperspect.a006148
10.1162/neco.1989.1.4.541
10.1007/978-0-387-21606-5
10.1016/j.neuroimage.2007.04.009
10.1016/j.brainres.2009.09.028
10.1016/j.tics.2013.09.012
10.1016/j.neuroimage.2009.04.023
10.1109/JBHI.2018.2791863
10.1142/S0129065716500258
10.3389/fneur.2018.01178
10.1371/journal.pone.0001049
10.1609/aaai.v33i01.33011198
10.1142/S0218488598000094
10.1109/TMI.2019.2933160
10.1093/cercor/bhu246
10.1109/TMI.2016.2515021
10.1016/j.media.2018.02.009
10.1007/s11682-015-9408-2
10.1162/neco.1997.9.8.1735
10.1109/ISBI.2017.7950647
10.1016/S0304-3940(01)01636-6
10.1016/j.neuroimage.2011.09.069
10.1109/TPAMI.2018.2889096
10.1186/alzrt106
10.1016/j.jalz.2016.03.001
10.1016/j.cger.2013.07.009
10.1002/hbm.22353
10.1523/JNEUROSCI.5062-08.2009
10.1016/j.media.2018.03.013
10.1038/nrn3801
10.1016/j.neuroimage.2013.05.079
10.1212/01.WNL.0000079052.01016.78
10.1109/ISBI.2014.6868045
10.1016/j.media.2019.01.007
10.1016/j.neuroimage.2011.10.015
10.1111/cns.12407
10.1002/hbm.21140
10.1007/978-3-319-51237-2_2
10.1371/journal.pone.0115573
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
5PM
DOI 10.1109/TBME.2019.2957921
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList PubMed

Materials Research Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 2252
ExternalDocumentID PMC7439279
31825859
10_1109_TBME_2019_2957921
8926342
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Royal Society-Academy of Medical Sciences Newton Advanced Fellowship
  grantid: NAF\R1\180371
– fundername: Fundamental Research Funds for the Central Universities
  grantid: NP2018104
  funderid: 10.13039/501100012226
– fundername: National Key R&D Program of China
  grantid: 2018YFC2001600; 2018YFC2001602
– fundername: National Natural Science Foundation of China
  grantid: 61732006; 61876082; 61861130366; 61703301
  funderid: 10.13039/501100001809
– fundername: National Institutes of Health
  grantid: AG041721; EB022880
  funderid: 10.13039/100000002
– fundername: NIBIB NIH HHS
  grantid: R01 EB022880
– fundername: NIA NIH HHS
  grantid: R01 AG041721
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
RIG
NPM
PKN
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
5PM
ID FETCH-LOGICAL-c447t-488d928fd4b1451e3a20dd1849f29cda3c4dcc944b7dda56bafdbba36f06a1e43
IEDL.DBID RIE
ISSN 0018-9294
1558-2531
IngestDate Thu Aug 21 18:20:15 EDT 2025
Fri Jul 11 08:42:03 EDT 2025
Mon Jun 30 08:40:16 EDT 2025
Wed Feb 19 02:30:02 EST 2025
Tue Jul 01 03:28:32 EDT 2025
Thu Apr 24 23:01:43 EDT 2025
Wed Aug 27 02:35:19 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c447t-488d928fd4b1451e3a20dd1849f29cda3c4dcc944b7dda56bafdbba36f06a1e43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0567-9492
0000-0002-9319-6633
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7439279
PMID 31825859
PQID 2425599920
PQPubID 85474
PageCount 12
ParticipantIDs proquest_miscellaneous_2325307620
crossref_citationtrail_10_1109_TBME_2019_2957921
crossref_primary_10_1109_TBME_2019_2957921
pubmed_primary_31825859
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7439279
proquest_journals_2425599920
ieee_primary_8926342
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-08-01
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref59
ref15
ref58
ref14
ref53
ref52
ref55
ref11
ref54
ref10
ref17
ref16
ref19
ref18
anderson (ref5) 2012
ref51
ref50
ref46
ref48
ref47
ref42
ref41
ref44
ref49
fletcher (ref43) 2012
ref8
ref7
ref9
ref4
ref3
ref6
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
haan (ref26) 2012; 8
ref24
ref23
ref25
xiang (ref45) 2013; 8
ref20
ref22
ref21
ref28
ref27
ref29
ref60
References_xml – ident: ref11
  doi: 10.1136/jnnp.73.6.665
– ident: ref42
  doi: 10.1016/j.neuroimage.2008.11.007
– ident: ref57
  doi: 10.1016/S0197-4580(99)00107-4
– year: 2012
  ident: ref5
  publication-title: Living With Mild Cognitive Impairment A Guide to Maximizing Brain Health and Reducing Risk of Dementia
– ident: ref4
  doi: 10.1016/j.jalz.2015.05.005
– ident: ref29
  doi: 10.1371/journal.pone.0194479
– ident: ref20
  doi: 10.3390/e21030300
– volume: 8
  year: 2012
  ident: ref26
  article-title: Activity dependent degeneration explains hub vulnerability in Alzheimer's disease
  publication-title: PLoS Comput Biol
– ident: ref15
  doi: 10.1007/s00429-013-0524-8
– ident: ref44
  doi: 10.1371/journal.pone.0173426
– ident: ref14
  doi: 10.1109/TBME.2013.2284195
– ident: ref6
  doi: 10.1109/TBME.2018.2869989
– ident: ref27
  doi: 10.1016/j.euroneuro.2010.03.008
– ident: ref8
  doi: 10.1136/bmj.h3029
– ident: ref18
  doi: 10.1093/brain/aww143
– ident: ref59
  doi: 10.1016/j.biopsych.2012.03.026
– ident: ref16
  doi: 10.1109/TIP.2018.2799706
– ident: ref53
  doi: 10.1155/2015/865265
– ident: ref34
  doi: 10.1109/ICDM.2017.123
– ident: ref1
  doi: 10.1101/cshperspect.a006148
– ident: ref41
  doi: 10.1162/neco.1989.1.4.541
– ident: ref40
  doi: 10.1007/978-0-387-21606-5
– ident: ref3
  doi: 10.1016/j.neuroimage.2007.04.009
– ident: ref30
  doi: 10.1016/j.brainres.2009.09.028
– ident: ref21
  doi: 10.1016/j.tics.2013.09.012
– ident: ref56
  doi: 10.1016/j.neuroimage.2009.04.023
– ident: ref7
  doi: 10.1109/JBHI.2018.2791863
– ident: ref49
  doi: 10.1142/S0129065716500258
– ident: ref55
  doi: 10.3389/fneur.2018.01178
– ident: ref36
  doi: 10.1371/journal.pone.0001049
– ident: ref35
  doi: 10.1609/aaai.v33i01.33011198
– ident: ref38
  doi: 10.1142/S0218488598000094
– ident: ref17
  doi: 10.1109/TMI.2019.2933160
– ident: ref25
  doi: 10.1093/cercor/bhu246
– ident: ref10
  doi: 10.1109/TMI.2016.2515021
– ident: ref9
  doi: 10.1016/j.media.2018.02.009
– ident: ref32
  doi: 10.1007/s11682-015-9408-2
– ident: ref37
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref50
  doi: 10.1109/ISBI.2017.7950647
– ident: ref47
  doi: 10.1016/S0304-3940(01)01636-6
– ident: ref60
  doi: 10.1016/j.neuroimage.2011.09.069
– year: 2012
  ident: ref43
  publication-title: Clinical Epidemiology The Essentials
– ident: ref58
  doi: 10.1109/TPAMI.2018.2889096
– ident: ref12
  doi: 10.1186/alzrt106
– ident: ref2
  doi: 10.1016/j.jalz.2016.03.001
– ident: ref31
  doi: 10.1016/j.cger.2013.07.009
– ident: ref28
  doi: 10.1002/hbm.22353
– ident: ref24
  doi: 10.1523/JNEUROSCI.5062-08.2009
– ident: ref33
  doi: 10.1016/j.media.2018.03.013
– ident: ref23
  doi: 10.1038/nrn3801
– ident: ref19
  doi: 10.1016/j.neuroimage.2013.05.079
– volume: 8
  start-page: 2789
  year: 2013
  ident: ref45
  article-title: An abnormal resting-state functional brain network indicates progression towards Alzheimer's disease
  publication-title: Neural Regeneration Res
– ident: ref13
  doi: 10.1212/01.WNL.0000079052.01016.78
– ident: ref52
  doi: 10.1109/ISBI.2014.6868045
– ident: ref54
  doi: 10.1016/j.media.2019.01.007
– ident: ref39
  doi: 10.1016/j.neuroimage.2011.10.015
– ident: ref22
  doi: 10.1111/cns.12407
– ident: ref48
  doi: 10.1002/hbm.21140
– ident: ref51
  doi: 10.1007/978-3-319-51237-2_2
– ident: ref46
  doi: 10.1371/journal.pone.0115573
SSID ssj0014846
Score 2.5890903
Snippet Early identification of dementia at the stage of mild cognitive impairment (MCI) is crucial for timely diagnosis and intervention of Alzheimer's disease (AD)....
Early identification of dementia at the stage of mild cognitive impairment (MCI) is crucial for timely diagnosis and intervention of Alzheimer’s disease (AD)....
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2241
SubjectTerms Alzheimer's disease
Automation
Brain
Brain mapping
Brain modeling
Cognitive ability
Convolution
Dementia
Dementia disorders
Dependence
Diagnosis
Feature extraction
Functional magnetic resonance imaging
hub detection
Hubs
Long short-term memory
Machine learning
Magnetic resonance imaging
Medical imaging
Modelling
Network hubs
neural network
Neural networks
Neurodegenerative diseases
Neuroimaging
Recurrent neural networks
resting-state functional MRI
Sequences
Sliding
Spatial-temporal dependency
Time series
Time series analysis
Title Spatial-Temporal Dependency Modeling and Network Hub Detection for Functional MRI Analysis via Convolutional-Recurrent Network
URI https://ieeexplore.ieee.org/document/8926342
https://www.ncbi.nlm.nih.gov/pubmed/31825859
https://www.proquest.com/docview/2425599920
https://www.proquest.com/docview/2325307620
https://pubmed.ncbi.nlm.nih.gov/PMC7439279
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKDwgOFFoe2xZkJE6IbB3befhYSlcLUnqotlJvkZ-iosoiSCrBgd_OTOJE3apC3CJ54sSaGXvGM_MNIe9MEeDgcn1zF5FI5VVisuBAr7RgusxKbrE4uTrLlxfyy2V2uUU-TLUw3vs--czP8bGP5bu17fCq7KhUPBcSNtwH4LgNtVpTxECWQ1EOS0GBuZIxgpkydbT6WJ1iEpeacwxK8XTjDOqbqtxnX95Nk7x17ix2SDX-8ZBu8m3etWZuf98Bc_zfJT0lT6IBSo8HiXlGtnyzSx7fgiXcJQ-rGHDfI3-wZTGIaLIaIKyu6afYNdf-othHDavZqW4cPRvyyemyM0DT9hleDQWTmC7g6BxuHGl1_pmOMCj05krTk3VzE4UfPnKOl_8IFzXO9pxcLE5XJ8sktmxIrJRFm8B24BQvg5MGWwB7oTlzDrxIFbiyTgsrnbVKSlM4p7Pc6OCM0SIPLNepl-IF2W7WjX9FaAgmDUqIIvNg00lldFEYnRqlHFMuVTPCRibWNuKZY1uN67r3a5iqke818r2OfJ-R99Mr3wcwj38R7yG7JsLIqRk5HCWljur-s0a_LQNTm7MZeTsNg6Ji9EU3ft0BjeAZbKg50rwcBGuaGzZWDn4brKnYELmJAEHAN0eaq689GDg6lLxQ-_f_7QF5xPGCoM9YPCTb7Y_OvwYrqjVvevX5C5aCHA4
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9NAEB6VIkE58Gh5BAosElyQnNrr9WMPHKBtlNAmhyqVejO73rWoWjmI2kXlwC_hr_DfmLHXVlNV3Cpxi-TJJtl8szOzM_MNwFudFGi4TDPcJfSEtNLTUWFQr1ToqzRKeU7NydNZPD4Un4-ioxX43ffCWGub4jM7pJdNLt8s8pquyrZSyeNQcFdCuWcvfmCAdvZhsoP_5jvOR7vz7bHnZgh4uRBJ5SE-jeRpYYSmmbQ2VNw3BsMaWXCZGxXmwuS5FEInxqgo1qowWqswLvxYBVaEuO4tuI1-RsTb7rA-RyHStg3ID_DI4FK4nGngy635p-kulY3JIac0GA-WrF4zxuU6j_ZqYeYlSzd6AH-6PWoLXE6GdaWH-c8r9JH_6yY-hPvOxWYfW514BCu2XId7l4gX1-HO1JUUbMAvGsqMSujNW5KuU7bj5gLnF4wmxVG_PlOlYbO2Yp6Na40yVVPDVjJ0-tkInYP2TpVNDyasI3ph58eKbS_Kc6fe-CEHlN4gQqxutcdweCN78QRWy0VpnwErCh0UMgyTyKLXKqRWSaJVoKU0vjSBHIDfgSbLHWM7DQ45zZrIzZcZ4SwjnGUOZwN437_lW0tX8i_hDYJHL-iQMYDNDpmZO9DOMopMIwwmuD-AN_1jPIoov6RKu6hRJuQRmoyYZJ62QO7XRtPBMTLF35QsQbwXIJrz5Sfl8deG7pxCZp7I59d_29dwdzyf7mf7k9neC1jjdB3S1Gduwmr1vbYv0Wes9KtGdRl8uWmY_wVH43yH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial-Temporal+Dependency+Modeling+and+Network+Hub+Detection+for+Functional+MRI+Analysis+via+Convolutional-Recurrent+Network&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Wang%2C+Mingliang&rft.au=Lian%2C+Chunfeng&rft.au=Yao%2C+Dongren&rft.au=Zhang%2C+Daoqiang&rft.date=2020-08-01&rft.issn=1558-2531&rft.eissn=1558-2531&rft.volume=67&rft.issue=8&rft.spage=2241&rft_id=info:doi/10.1109%2FTBME.2019.2957921&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon