Graph convolutional networks for computational drug development and discovery

Abstract Despite the fact that deep learning has achieved remarkable success in various domains over the past decade, its application in molecular informatics and drug discovery is still limited. Recent advances in adapting deep architectures to structured data have opened a new paradigm for pharmac...

Full description

Saved in:
Bibliographic Details
Published inBriefings in bioinformatics Vol. 21; no. 3; pp. 919 - 935
Main Authors Sun, Mengying, Zhao, Sendong, Gilvary, Coryandar, Elemento, Olivier, Zhou, Jiayu, Wang, Fei
Format Journal Article
LanguageEnglish
Published England Oxford University Press 21.05.2020
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Despite the fact that deep learning has achieved remarkable success in various domains over the past decade, its application in molecular informatics and drug discovery is still limited. Recent advances in adapting deep architectures to structured data have opened a new paradigm for pharmaceutical research. In this survey, we provide a systematic review on the emerging field of graph convolutional networks and their applications in drug discovery and molecular informatics. Typically we are interested in why and how graph convolution networks can help in drug-related tasks. We elaborate the existing applications through four perspectives: molecular property and activity prediction, interaction prediction, synthesis prediction and de novo drug design. We briefly introduce the theoretical foundations behind graph convolutional networks and illustrate various architectures based on different formulations. Then we summarize the representative applications in drug-related problems. We also discuss the current challenges and future possibilities of applying graph convolutional networks to drug discovery.
AbstractList Despite the fact that deep learning has achieved remarkable success in various domains over the past decade, its application in molecular informatics and drug discovery is still limited. Recent advances in adapting deep architectures to structured data have opened a new paradigm for pharmaceutical research. In this survey, we provide a systematic review on the emerging field of graph convolutional networks and their applications in drug discovery and molecular informatics. Typically we are interested in why and how graph convolution networks can help in drug-related tasks. We elaborate the existing applications through four perspectives: molecular property and activity prediction, interaction prediction, synthesis prediction and de novo drug design. We briefly introduce the theoretical foundations behind graph convolutional networks and illustrate various architectures based on different formulations. Then we summarize the representative applications in drug-related problems. We also discuss the current challenges and future possibilities of applying graph convolutional networks to drug discovery.Despite the fact that deep learning has achieved remarkable success in various domains over the past decade, its application in molecular informatics and drug discovery is still limited. Recent advances in adapting deep architectures to structured data have opened a new paradigm for pharmaceutical research. In this survey, we provide a systematic review on the emerging field of graph convolutional networks and their applications in drug discovery and molecular informatics. Typically we are interested in why and how graph convolution networks can help in drug-related tasks. We elaborate the existing applications through four perspectives: molecular property and activity prediction, interaction prediction, synthesis prediction and de novo drug design. We briefly introduce the theoretical foundations behind graph convolutional networks and illustrate various architectures based on different formulations. Then we summarize the representative applications in drug-related problems. We also discuss the current challenges and future possibilities of applying graph convolutional networks to drug discovery.
Abstract Despite the fact that deep learning has achieved remarkable success in various domains over the past decade, its application in molecular informatics and drug discovery is still limited. Recent advances in adapting deep architectures to structured data have opened a new paradigm for pharmaceutical research. In this survey, we provide a systematic review on the emerging field of graph convolutional networks and their applications in drug discovery and molecular informatics. Typically we are interested in why and how graph convolution networks can help in drug-related tasks. We elaborate the existing applications through four perspectives: molecular property and activity prediction, interaction prediction, synthesis prediction and de novo drug design. We briefly introduce the theoretical foundations behind graph convolutional networks and illustrate various architectures based on different formulations. Then we summarize the representative applications in drug-related problems. We also discuss the current challenges and future possibilities of applying graph convolutional networks to drug discovery.
Despite the fact that deep learning has achieved remarkable success in various domains over the past decade, its application in molecular informatics and drug discovery is still limited. Recent advances in adapting deep architectures to structured data have opened a new paradigm for pharmaceutical research. In this survey, we provide a systematic review on the emerging field of graph convolutional networks and their applications in drug discovery and molecular informatics. Typically we are interested in why and how graph convolution networks can help in drug-related tasks. We elaborate the existing applications through four perspectives: molecular property and activity prediction, interaction prediction, synthesis prediction and de novo drug design. We briefly introduce the theoretical foundations behind graph convolutional networks and illustrate various architectures based on different formulations. Then we summarize the representative applications in drug-related problems. We also discuss the current challenges and future possibilities of applying graph convolutional networks to drug discovery.
Author Wang, Fei
Elemento, Olivier
Sun, Mengying
Zhou, Jiayu
Gilvary, Coryandar
Zhao, Sendong
Author_xml – sequence: 1
  givenname: Mengying
  surname: Sun
  fullname: Sun, Mengying
  organization: Department of Computer Science and Engineering, Michigan State University, East Lansing, MI USA
– sequence: 2
  givenname: Sendong
  surname: Zhao
  fullname: Zhao, Sendong
  organization: Department of Healthcare Policy and Research, Weill Cornell Medicine, New York, NY, USA
– sequence: 3
  givenname: Coryandar
  surname: Gilvary
  fullname: Gilvary, Coryandar
  organization: Institute for Computational Biomedicine and the Tri-I Program in Computational Biology & Medicine at Weill Cornell Medicine at Cornell University, New York, NY, USA
– sequence: 4
  givenname: Olivier
  surname: Elemento
  fullname: Elemento, Olivier
  organization: Department of Physiology and Biophysics, Weill Cornell Medicine, Weill Cornell Medicine, New York, NY, USA
– sequence: 5
  givenname: Jiayu
  surname: Zhou
  fullname: Zhou, Jiayu
  organization: Department of Computer Science and Engineering, Michigan State University, East Lansing, MI USA
– sequence: 6
  givenname: Fei
  surname: Wang
  fullname: Wang, Fei
  email: feiwang03@gmail.com
  organization: Department of Healthcare Policy and Research, Weill Cornell Medicine, New York, NY, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31155636$$D View this record in MEDLINE/PubMed
BookMark eNp9kV1LwzAUhoNM3Ife-AOkIIIIdUnz1V3K0ClMvNHrkqSpdrZNTZrJ_PVmdHoxxKtz4DznPR_vGAwa02gAThG8RnCGp7KUUym_IEkOwAgRzmMCKRlsc8ZjShgegrFzKwgTyFN0BIYYIUoZZiPwuLCifYuUadam8l1pGlFFje4-jX13UWFsKNWt78SulFv_GuV6rSvT1rrpItHkUV46Zdbabo7BYSEqp092cQJe7m6f5_fx8mnxML9ZxooQ3sWYUZxiJhhJeUJpIZmCqVRQk0JLiiGaMZQKqpXERcoRLXLMJE81I0jNICN4Ai573daaD69dl9VhBV1VotHGuyxJMCFhAscBPd9DV8bbcEqgSDKDCEG8FTzbUV7WOs9aW9bCbrKfRwXgqgeUNc5ZXfwiCGZbF7LgQta7EGC4B6uy_2BnRVn93XLRtxjf_if9DVqDlxk
CitedBy_id crossref_primary_10_1039_D1SC04471K
crossref_primary_10_1016_j_neucom_2025_130065
crossref_primary_10_1016_j_neunet_2024_107065
crossref_primary_10_1186_s12859_020_03724_x
crossref_primary_10_1007_s11704_023_3339_7
crossref_primary_10_1016_j_cmpb_2024_108524
crossref_primary_10_1080_02533839_2024_2407294
crossref_primary_10_3389_fchem_2022_982539
crossref_primary_10_3390_biomedinformatics4010020
crossref_primary_10_1089_genbio_2022_0017
crossref_primary_10_1039_D1SC02087K
crossref_primary_10_1002_pamm_202200306
crossref_primary_10_1371_journal_pone_0266088
crossref_primary_10_1039_D3PY00395G
crossref_primary_10_3390_biom12050644
crossref_primary_10_3389_fchem_2023_1292027
crossref_primary_10_1093_bib_bbab479
crossref_primary_10_1016_j_pmatsci_2022_101018
crossref_primary_10_1021_acsomega_3c05913
crossref_primary_10_1021_acsomega_3c10183
crossref_primary_10_3390_ijms22084023
crossref_primary_10_3390_molecules27093004
crossref_primary_10_1016_j_patter_2021_100390
crossref_primary_10_1021_acsomega_1c06274
crossref_primary_10_1093_bioinformatics_btaa896
crossref_primary_10_1093_bib_bbab391
crossref_primary_10_1093_bioinformatics_btac837
crossref_primary_10_3389_fgene_2021_690049
crossref_primary_10_1016_j_jmgm_2022_108283
crossref_primary_10_3390_pharmaceutics14102198
crossref_primary_10_1093_bib_bbab275
crossref_primary_10_1093_bib_bbab393
crossref_primary_10_1109_TCBB_2022_3204188
crossref_primary_10_1186_s12859_022_04798_5
crossref_primary_10_1007_s10822_022_00486_x
crossref_primary_10_1007_s00894_024_06051_7
crossref_primary_10_34133_2022_9814824
crossref_primary_10_1016_j_ailsci_2022_100055
crossref_primary_10_1186_s13321_020_00479_8
crossref_primary_10_1016_j_jconrel_2022_11_014
crossref_primary_10_2139_ssrn_4122110
crossref_primary_10_4103_jiag_jiag_33_22
crossref_primary_10_1021_acs_iecr_2c01302
crossref_primary_10_1093_bioinformatics_btac164
crossref_primary_10_1021_acsomega_1c06805
crossref_primary_10_1016_j_joi_2023_101402
crossref_primary_10_7717_peerj_16773
crossref_primary_10_1093_bib_bbac109
crossref_primary_10_1093_bib_bbac229
crossref_primary_10_1021_acs_jcim_9b01180
crossref_primary_10_1093_bib_bbab378
crossref_primary_10_1093_bib_bbae408
crossref_primary_10_1021_acs_jcim_2c01287
crossref_primary_10_1007_s12083_023_01472_2
crossref_primary_10_1021_acs_jctc_2c01227
crossref_primary_10_1097_JS9_0000000000001781
crossref_primary_10_1039_D3RA01363D
crossref_primary_10_1109_TKDE_2021_3115620
crossref_primary_10_3390_ijms22041676
crossref_primary_10_1016_j_ab_2022_114631
crossref_primary_10_1016_j_jmgm_2021_107965
crossref_primary_10_1109_TIT_2022_3145847
crossref_primary_10_1002_chem_202302837
crossref_primary_10_1109_TPAMI_2023_3324937
crossref_primary_10_1016_j_sbi_2021_102327
crossref_primary_10_1016_j_commatsci_2022_111894
crossref_primary_10_1016_j_aichem_2023_100039
crossref_primary_10_1109_TCBB_2023_3253862
crossref_primary_10_1145_3550075
crossref_primary_10_1021_acs_jcim_0c00568
crossref_primary_10_3390_electronics12092106
crossref_primary_10_1007_s11696_023_03004_x
crossref_primary_10_3390_molecules27144443
crossref_primary_10_1093_bioinformatics_btae365
crossref_primary_10_1093_bioinformatics_btab650
crossref_primary_10_1002_bkcs_12267
crossref_primary_10_1093_bioinformatics_btab651
crossref_primary_10_1021_acsami_2c14290
crossref_primary_10_1093_bioinformatics_btac192
crossref_primary_10_1109_JBHI_2024_3413146
crossref_primary_10_1109_JBHI_2021_3079302
crossref_primary_10_1111_coin_12640
crossref_primary_10_1146_annurev_environ_111522_102317
crossref_primary_10_1016_j_jksuci_2023_101631
crossref_primary_10_1039_D2TA03563D
crossref_primary_10_2174_1574892818666221018091415
crossref_primary_10_3390_app12147228
crossref_primary_10_1016_j_jpha_2025_101242
crossref_primary_10_1038_s42256_023_00609_5
crossref_primary_10_1021_acs_jmedchem_1c01830
crossref_primary_10_1093_bib_bbac560
crossref_primary_10_3390_healthcare11071031
crossref_primary_10_1093_bib_bbab346
crossref_primary_10_1109_ACCESS_2023_3302923
crossref_primary_10_1016_j_compbiomed_2024_108376
crossref_primary_10_1109_TASE_2023_3307890
crossref_primary_10_1016_j_cma_2024_117111
crossref_primary_10_1016_j_ymeth_2024_01_009
crossref_primary_10_1016_j_jbi_2021_103974
crossref_primary_10_1109_TNNLS_2023_3281716
crossref_primary_10_1002_qute_202400395
crossref_primary_10_1093_bib_bbab344
crossref_primary_10_1021_acs_iecr_4c03224
crossref_primary_10_1080_10095020_2023_2264337
crossref_primary_10_1093_bib_bbab340
crossref_primary_10_1093_bib_bbae294
crossref_primary_10_3390_molecules26154475
crossref_primary_10_1089_cmb_2021_0316
crossref_primary_10_1016_j_jmgm_2022_108401
crossref_primary_10_1093_bib_bbad516
crossref_primary_10_1016_j_compbiomed_2022_106289
crossref_primary_10_1109_TNNLS_2023_3250324
crossref_primary_10_1186_s12859_022_04913_6
crossref_primary_10_1016_j_compbiomed_2025_109874
crossref_primary_10_3389_fmed_2023_1086097
crossref_primary_10_1016_j_csbj_2022_07_049
crossref_primary_10_1016_j_csbj_2021_08_011
crossref_primary_10_1360_nso_20230037
crossref_primary_10_1186_s12859_021_04278_2
crossref_primary_10_1021_acsomega_3c00085
crossref_primary_10_3233_JCM_247139
crossref_primary_10_1002_aisy_202300784
crossref_primary_10_1088_2632_2153_abf856
crossref_primary_10_1186_s13321_021_00494_3
crossref_primary_10_1021_acsomega_1c05473
crossref_primary_10_1007_s13369_024_09342_6
crossref_primary_10_1016_j_cma_2024_117458
crossref_primary_10_1093_bioinformatics_btaa921
crossref_primary_10_1016_j_compbiomed_2024_108037
crossref_primary_10_1093_bib_bbac296
crossref_primary_10_1093_bib_bbad020
crossref_primary_10_1093_bib_bbac602
crossref_primary_10_3390_math11173680
crossref_primary_10_1021_acsomega_1c04017
crossref_primary_10_1109_TNNLS_2021_3084125
crossref_primary_10_1109_RBME_2021_3122522
crossref_primary_10_3390_math9070772
crossref_primary_10_1007_s10462_022_10306_1
crossref_primary_10_1186_s12915_024_02023_8
crossref_primary_10_3724_2096_7004_di_2024_0011
crossref_primary_10_1093_bioinformatics_btac675
crossref_primary_10_1371_journal_pone_0258628
crossref_primary_10_1080_17460441_2021_1929921
crossref_primary_10_1088_2632_2153_ace58c
crossref_primary_10_1186_s12859_022_04771_2
crossref_primary_10_1038_s41598_024_83090_3
crossref_primary_10_1186_s13321_023_00795_9
crossref_primary_10_1016_j_ymeth_2021_01_004
crossref_primary_10_4018_IJQSPR_313627
crossref_primary_10_1109_TCE_2023_3300534
crossref_primary_10_3390_cimb44050155
crossref_primary_10_1155_2022_4841387
crossref_primary_10_1021_acs_jcim_3c01030
crossref_primary_10_1016_j_eswa_2024_125403
crossref_primary_10_1016_j_drudis_2022_103373
crossref_primary_10_2174_1574893616666211214110625
crossref_primary_10_1093_bioinformatics_btab473
crossref_primary_10_1038_s41598_023_46382_8
crossref_primary_10_1038_s43246_022_00315_6
crossref_primary_10_1021_acsestwater_4c00963
crossref_primary_10_1093_bib_bbac077
crossref_primary_10_1186_s12859_022_04662_6
crossref_primary_10_1007_s00521_020_04908_5
crossref_primary_10_1109_JBHI_2024_3464674
crossref_primary_10_3390_cancers13092111
crossref_primary_10_3389_fphar_2024_1400136
crossref_primary_10_1016_j_compbiolchem_2022_107719
crossref_primary_10_1038_s42003_024_06734_0
crossref_primary_10_3390_ijms22189983
crossref_primary_10_1021_acs_jcim_0c00975
crossref_primary_10_1109_ACCESS_2023_3289002
crossref_primary_10_3389_fphar_2022_1085665
crossref_primary_10_1007_s10489_022_03839_z
crossref_primary_10_1109_ACCESS_2023_3345795
crossref_primary_10_1109_ACCESS_2020_3037086
crossref_primary_10_1111_cbdd_13750
crossref_primary_10_1186_s12859_020_03899_3
crossref_primary_10_3389_fphar_2024_1331062
crossref_primary_10_1186_s13321_022_00634_3
crossref_primary_10_1016_j_compeleceng_2024_109957
crossref_primary_10_1109_TKDE_2024_3523700
crossref_primary_10_1016_j_patcog_2022_108659
crossref_primary_10_1038_s42256_021_00301_6
crossref_primary_10_1093_gpbjnl_qzad008
crossref_primary_10_1016_j_csbj_2021_07_003
crossref_primary_10_1109_TCBB_2024_3404889
crossref_primary_10_1016_j_xcrm_2023_101379
crossref_primary_10_1016_j_isci_2023_108020
crossref_primary_10_1021_acs_cgd_2c00812
crossref_primary_10_3390_ijms24076573
crossref_primary_10_1021_acs_macromol_4c00508
crossref_primary_10_1186_s12859_023_05503_w
crossref_primary_10_53941_ijndi0201004
crossref_primary_10_1007_s10462_023_10669_z
crossref_primary_10_1002_jat_4477
crossref_primary_10_1016_j_patter_2023_100909
crossref_primary_10_3390_info13100462
crossref_primary_10_2174_1567201817999200728142023
crossref_primary_10_3390_ncrna10010009
crossref_primary_10_1039_D3CP05350D
crossref_primary_10_1109_TKDE_2023_3314502
crossref_primary_10_1038_s41524_023_01099_0
crossref_primary_10_1016_j_compbiomed_2023_107136
crossref_primary_10_1002_minf_202100200
crossref_primary_10_1002_imt2_45
crossref_primary_10_1021_acs_chemrestox_2c00375
crossref_primary_10_3390_cancers13133148
crossref_primary_10_1093_bib_bbae340
crossref_primary_10_1016_j_drudis_2022_02_023
crossref_primary_10_2174_0115748936276510231123121404
crossref_primary_10_1038_s41551_022_00942_x
crossref_primary_10_1016_j_ymeth_2024_08_008
crossref_primary_10_1093_bfgp_elaa030
crossref_primary_10_1093_bib_bbac288
crossref_primary_10_7717_peerj_17396
crossref_primary_10_1080_17460441_2022_2095368
crossref_primary_10_1093_bib_bbac159
crossref_primary_10_1007_s40747_021_00332_x
crossref_primary_10_3390_computation9100103
crossref_primary_10_3390_math10234586
crossref_primary_10_1093_bioinformatics_btab714
crossref_primary_10_3390_molecules27041226
crossref_primary_10_1002_pamm_202400205
crossref_primary_10_1016_j_bbrc_2021_03_159
crossref_primary_10_1016_j_polymer_2023_125866
crossref_primary_10_1016_j_artmed_2024_102805
crossref_primary_10_1093_bioinformatics_btae304
crossref_primary_10_1155_2022_9044793
crossref_primary_10_1109_ACCESS_2020_3022850
crossref_primary_10_1109_TCBBIO_2024_3522512
crossref_primary_10_1186_s12859_021_04292_4
crossref_primary_10_3390_biom13030503
crossref_primary_10_1587_transinf_2022DLP0023
crossref_primary_10_3390_biology11070967
Cites_doi 10.1093/bioinformatics/btu278
10.1109/MCI.2018.2840738
10.1021/acscentsci.7b00064
10.1093/nar/gkv1072
10.1186/s13321-017-0235-x
10.1093/nar/30.1.412
10.1136/amiajnl-2013-002512
10.1093/nar/gkv1277
10.1093/nar/gkv1075
10.1021/ci034243x
10.1039/C7SC02664A
10.1142/9789814749411_0008
10.1038/nature14539
10.1021/jz200866s
10.1103/PhysRevLett.108.058301
10.1007/BF00124387
10.1021/acscentsci.7b00512
10.1109/CVPR.2018.00275
10.1021/acs.jcim.5b00559
10.1016/j.drudis.2018.01.039
10.1093/nar/gkv1230
10.1021/ci900157k
10.1162/neco_a_00990
10.1038/ncomms13890
10.1021/ci3001277
10.1063/1.4928757
10.1038/nrd1799
10.1093/nar/gkr1132
10.1021/ci6003652
10.1126/science.1219021
10.1093/nar/gkr777
10.1093/nar/gkr797
10.1021/acscentsci.7b00572
10.1021/ci200615h
10.1007/s10822-016-9938-8
10.1186/s40360-017-0153-6
10.1208/s12248-012-9385-y
10.1021/jm300687e
10.1208/s12248-018-0210-0
10.1021/ja902302h
10.1038/nature25978
10.1126/scitranslmed.3003377
10.1021/acs.molpharmaceut.7b01134
10.1007/978-3-030-01418-6_41
10.1021/ci300415d
10.1016/j.jmb.2015.07.016
10.1093/nar/gkj067
10.1126/sciadv.1603015
10.1021/acscentsci.6b00219
10.1021/ci8002649
10.1002/minf.201000061
10.1093/nar/gku1003
10.1002/minf.201501008
10.1145/2623330.2623732
10.1021/ci034160g
10.1093/nar/gkx1037
10.1021/acscentsci.6b00367
10.1021/acs.chemrestox.6b00135
10.1007/s10822-014-9747-x
10.1038/sj.leu.2402464
10.1093/bioinformatics/btt234
10.1186/s12859-017-1702-0
10.1136/amiajnl-2012-000935
ContentType Journal Article
Copyright The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2019
The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Copyright_xml – notice: The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2019
– notice: The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
– notice: The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
DBID AAYXX
CITATION
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
DOI 10.1093/bib/bbz042
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Genetics Abstracts
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-4054
EndPage 935
ExternalDocumentID 31155636
10_1093_bib_bbz042
10.1093/bib/bbz042
Genre Journal Article
GroupedDBID ---
-E4
.2P
.I3
0R~
23N
2WC
36B
4.4
48X
53G
5GY
5VS
6J9
70D
8VB
AAHBH
AAIJN
AAIMJ
AAJKP
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUQX
AAVAP
AAVLN
ABDBF
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABPTD
ABQLI
ABWST
ABXVV
ABXZS
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACUHS
ACUXJ
ACYTK
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADQBN
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AEMOZ
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHQJS
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKVCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
AMNDL
ANAKG
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C45
CDBKE
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EAD
EAP
EAS
EBA
EBC
EBD
EBR
EBS
EBU
EE~
EMB
EMK
EMOBN
EST
ESX
F5P
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
K1G
KBUDW
KOP
KSI
KSN
M-Z
M49
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QWB
RD5
RPM
RUSNO
RW1
RXO
SV3
TEORI
TH9
TJP
TLC
TOX
TR2
TUS
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
AAYXX
AHGBF
CITATION
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
ID FETCH-LOGICAL-c447t-3653836a6487255fb6c08bc0e4feb53019618a5ecb3f8715fd36b78e641c90643
IEDL.DBID TOX
ISSN 1467-5463
1477-4054
IngestDate Fri Jul 11 08:29:03 EDT 2025
Mon Jun 30 09:09:58 EDT 2025
Mon Jul 21 06:05:00 EDT 2025
Tue Jul 01 03:39:27 EDT 2025
Thu Apr 24 22:58:08 EDT 2025
Wed Apr 02 07:02:00 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords computational drug development
graph convolution network
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c447t-3653836a6487255fb6c08bc0e4feb53019618a5ecb3f8715fd36b78e641c90643
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
OpenAccessLink https://academic.oup.com/bib/article-pdf/21/3/919/33227266/bbz042.pdf
PMID 31155636
PQID 2429011034
PQPubID 26846
PageCount 17
ParticipantIDs proquest_miscellaneous_2234483673
proquest_journals_2429011034
pubmed_primary_31155636
crossref_primary_10_1093_bib_bbz042
crossref_citationtrail_10_1093_bib_bbz042
oup_primary_10_1093_bib_bbz042
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-21
PublicationDateYYYYMMDD 2020-05-21
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-21
  day: 21
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Briefings in bioinformatics
PublicationTitleAlternate Brief Bioinform
PublicationYear 2020
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Vilar (2020060220100354000_ref62) 2012; 19
Sterling (2020060220100354000_ref84) 2015; 55
Tatonetti (2020060220100354000_ref98) 2012; 4
Delaney (2020060220100354000_ref89) 2004; 44
Böhm (2020060220100354000_ref76) 1992; 6
Chung (2020060220100354000_ref9) 1997
Rawat (2020060220100354000_ref3) 2017; 29
Wan (2020060220100354000_ref7) 2016
Chen (2020060220100354000_ref103) 2002; 30
Wishart (2020060220100354000_ref101) 2006; 34
Zitnik (2020060220100354000_ref40) 2018
Lowe (2020060220100354000_ref109) 2014
Dill (2020060220100354000_ref115) 2012; 338
Duvenaud (2020060220100354000_ref19) 2015
Vreven (2020060220100354000_ref107) 2015; 427
Young (2020060220100354000_ref2) 2018; 13
Polykovskiy (2020060220100354000_ref111) 2018
Zitnik (2020060220100354000_ref60) 2016
Li (2020060220100354000_ref114)
Asada (2020060220100354000_ref41) 2018
Wu (2020060220100354000_ref63) 2018; 9
Chen (2020060220100354000_ref51) 2012; 52
Vinyals (2020060220100354000_ref58) 2015
Szklarczyk (2020060220100354000_ref99) 2015; 44
Zhu (2020060220100354000_ref104) 2009; 38
Zhou (2020060220100354000_ref16) 2018
Monti (2020060220100354000_ref11) 2017
Monti (2020060220100354000_ref120) 2018
Ruifeng Liu (2020060220100354000_ref113) 2017; 18
Irwin (2020060220100354000_ref83) 2012; 52
Duvenaud (2020060220100354000_ref28) 2015
Zeng (2020060220100354000_ref69)
Dai (2020060220100354000_ref23) 2016
Simonovsky (2020060220100354000_ref44) 2018
Wallach (2020060220100354000_ref5) 2015
Gao (2020060220100354000_ref39) 2018
Olivecrona (2020060220100354000_ref49) 2017; 9
Neil (2020060220100354000_ref66) 2018
Zhu (2020060220100354000_ref105) 2011; 40
Gómez-Bombarelli (2020060220100354000_ref79) 2018; 4
Wishart (2020060220100354000_ref102) 2018; 46
Xu (2020060220100354000_ref25) 2018
Ruddigkeit (2020060220100354000_ref93) 2012; 52
Verma (2020060220100354000_ref118) 2018
Wang (2020060220100354000_ref54) 2011; 40
Gomes (2020060220100354000_ref64) 2017
Cheng (2020060220100354000_ref59) 2014; 21
Coley (2020060220100354000_ref72) 2017; 3
Jin (2020060220100354000_ref47) 2018
Chen (2020060220100354000_ref71) 2009; 49
Li (2020060220100354000_ref35)
Blum (2020060220100354000_ref91) 2009; 131
Altae-Tran (2020060220100354000_ref34) 2017; 3
Li (2020060220100354000_ref20) 2015
Davies (2020060220100354000_ref26) 2001
Gaulton (2020060220100354000_ref82) 2011; 40
Gawehn (2020060220100354000_ref12) 2016; 35
Li (2020060220100354000_ref32) 2017
Ramakrishnan (2020060220100354000_ref94) 2015; 143
Kipf (2020060220100354000_ref22) 2016
Chen (2020060220100354000_ref14) 2018; 23
Schneider (2020060220100354000_ref75) 2005; 4
Dai (2020060220100354000_ref81) 2018
Mobley (2020060220100354000_ref88) 2014; 28
Kusner (2020060220100354000_ref80)
Mayr (2020060220100354000_ref57) 2016; 3
Kuzminykh (2020060220100354000_ref116) 2018; 15
Richard (2020060220100354000_ref87) 2016; 29
Schutt (2020060220100354000_ref30) 2017; 8
Agrawal (2020060220100354000_ref119) 2018
Lau (2020060220100354000_ref65)
Monga (2020060220100354000_ref86) 2002; 16
Zhang (2020060220100354000_ref15) 2018
Battaglia (2020060220100354000_ref112) 2018
Weisfeiler (2020060220100354000_ref24) 1968; 2
Fout (2020060220100354000_ref67) 2017
National Cancer Institute (2020060220100354000_ref85) 1999
Chmiela (2020060220100354000_ref96) 2017; 3
Wang (2020060220100354000_ref6) 2013; 29
Niepert (2020060220100354000_ref27) 2016
Glen (2020060220100354000_ref53) 2006; 9
Torng (2020060220100354000_ref117) 2017; 18
Henaff (2020060220100354000_ref18) 2015
Kearnes (2020060220100354000_ref29) 2016; 30
Schutt (2020060220100354000_ref31) 2017
Ramakrishnan (2020060220100354000_ref95) 2014; 1
Kuhn (2020060220100354000_ref97) 2015; 44
Feng (2020060220100354000_ref48) 2018
Huang (2020060220100354000_ref61) 2014; 30
Li (2020060220100354000_ref45) 2018
LeCun (2020060220100354000_ref8) 1989
Defferrard (2020060220100354000_ref21) 2016
Hachmann (2020060220100354000_ref90) 2011; 2
Wei (2020060220100354000_ref73) 2016; 2
Segler (2020060220100354000_ref78) 2017; 4
Yang (2020060220100354000_ref106) 2015; 44
LeCun (2020060220100354000_ref1) 2015; 521
Shang (2020060220100354000_ref36) 2018
Jin (2020060220100354000_ref43) 2017
Li (2020060220100354000_ref46) 2018
Segler (2020060220100354000_ref74) 2018; 555
Rupp (2020060220100354000_ref92) 2012; 108
Ma (2020060220100354000_ref42) 2018
Segura-Bedmar (2020060220100354000_ref70) 2013
Mauser (2020060220100354000_ref77) 2007; 47
Szklarczyk (2020060220100354000_ref100) 2014; 43
Tropsha (2020060220100354000_ref52) 2010; 29
Gilson (2020060220100354000_ref108) 2015; 44
Pham (2020060220100354000_ref38)
Gilmer (2020060220100354000_ref10) 2017
Wang (2020060220100354000_ref4)
Perozzi (2020060220100354000_ref68) 2014
Rohrer (2020060220100354000_ref55) 2009; 49
Ryu (2020060220100354000_ref37) 2018
Jing (2020060220100354000_ref13) 2018; 20
Mysinger (2020060220100354000_ref56) 2012; 55
Brown (2020060220100354000_ref110) 2018
Vugmeyster (2020060220100354000_ref121) 2012; 14
Bruna (2020060220100354000_ref17) 2013
Liu (2020060220100354000_ref33) 2018
Svetnik (2020060220100354000_ref50) 2003; 43
References_xml – start-page: 2335
  volume-title: Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers 2014
  ident: 2020060220100354000_ref69
  article-title: Relation classification via convolutional deep neural network
– volume: 30
  start-page: i228
  issue: 12
  year: 2014
  ident: 2020060220100354000_ref61
  article-title: Drugcomboranker: drug combination discovery based on target network analysis
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu278
– year: 2018
  ident: 2020060220100354000_ref48
– volume: 13
  start-page: 55
  issue: 3
  year: 2018
  ident: 2020060220100354000_ref2
  article-title: Recent trends in deep learning based natural language processing
  publication-title: IEEE Computational Intelligence Magazine
  doi: 10.1109/MCI.2018.2840738
– volume: 3
  start-page: 434
  issue: 5
  year: 2017
  ident: 2020060220100354000_ref72
  article-title: Prediction of organic reaction outcomes using machine learning
  publication-title: ACS Cent Sci
  doi: 10.1021/acscentsci.7b00064
– volume: 44
  start-page: D1045
  issue: D1
  year: 2015
  ident: 2020060220100354000_ref108
  article-title: Bindingdb in 2015: a public database for medicinal chemistry, computational chemistry and systems pharmacology
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv1072
– year: 2018
  ident: 2020060220100354000_ref37
– year: 1999
  ident: 2020060220100354000_ref85
  article-title: NCI open database compounds
– year: 2018
  ident: 2020060220100354000_ref81
– volume: 9
  start-page: 48
  issue: 1
  year: 2017
  ident: 2020060220100354000_ref49
  article-title: Molecular de-novo design through deep reinforcement learning
  publication-title: J Chem
  doi: 10.1186/s13321-017-0235-x
– volume-title: Brendan: A Deep Convolutional Network for Representing Latent Features of Protein–Ligand Binding Poses
  ident: 2020060220100354000_ref65
– volume: 30
  start-page: 412
  issue: 1
  year: 2002
  ident: 2020060220100354000_ref103
  article-title: Ttd: therapeutic target database
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/30.1.412
– year: 2018
  ident: 2020060220100354000_ref25
– start-page: 143
  volume-title: Connectionism Perspect
  year: 1989
  ident: 2020060220100354000_ref8
  article-title: Generalization and network design strategies
– start-page: 2014
  volume-title: International Conference on Machine Learning
  year: 2016
  ident: 2020060220100354000_ref27
  article-title: Learning convolutional neural networks for graphs
– volume: 21
  start-page: e278
  issue: e2
  year: 2014
  ident: 2020060220100354000_ref59
  article-title: Machine learning-based prediction of drug–drug interactions by integrating drug phenotypic, therapeutic, chemical, and genomic properties
  publication-title: J Am Med Inform Assoc
  doi: 10.1136/amiajnl-2013-002512
– volume: 44
  start-page: D380
  issue: D1
  year: 2015
  ident: 2020060220100354000_ref99
  article-title: Stitch 5: augmenting protein–chemical interaction networks with tissue and affinity data
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv1277
– volume: 44
  start-page: D1075
  issue: D1
  year: 2015
  ident: 2020060220100354000_ref97
  article-title: The sider database of drugs and side effects
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv1075
– year: 2018
  ident: 2020060220100354000_ref36
– volume: 44
  start-page: 1000
  issue: 3
  year: 2004
  ident: 2020060220100354000_ref89
  article-title: Esol: estimating aqueous solubility directly from molecular structure
  publication-title: J Chem Inf Comput Sci
  doi: 10.1021/ci034243x
– year: 2018
  ident: 2020060220100354000_ref41
– volume: 9
  start-page: 513
  issue: 2
  year: 2018
  ident: 2020060220100354000_ref63
  article-title: Moleculenet: a benchmark for molecular machine learning
  publication-title: Chem Sci
  doi: 10.1039/C7SC02664A
– start-page: 81
  volume-title: Biocomputing 2016: Proceedings of the Pacific Symposium
  year: 2016
  ident: 2020060220100354000_ref60
  article-title: Collective pairwise classification for multi-way analysis of disease and drug data
  doi: 10.1142/9789814749411_0008
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 2020060220100354000_ref1
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– start-page: 51
  volume-title: Linear Algebra and its Applications
  year: 2001
  ident: 2020060220100354000_ref26
  article-title: Discrete nodal domain theorems
– start-page: 2702
  volume-title: International Conference on Machine Learning
  year: 2016
  ident: 2020060220100354000_ref23
  article-title: Discriminative embeddings of latent variable models for structured data
– volume: 2
  start-page: 2241
  issue: 17
  year: 2011
  ident: 2020060220100354000_ref90
  article-title: The Harvard clean energy project: large-scale computational screening and design of organic photovoltaics on the world community grid
  publication-title: J Phys Chem Lett
  doi: 10.1021/jz200866s
– year: 2018
  ident: 2020060220100354000_ref110
  article-title: Guacamol: benchmarking models for de novo molecular design
– start-page: 2224
  volume-title: Advances in Neural Information Processing Systems
  year: 2015
  ident: 2020060220100354000_ref19
  article-title: Convolutional networks on graphs for learning molecular fingerprints
– start-page: 67
  volume-title: Bioinformatics and Biomedicine (BIBM), 2014 IEEE International Conference on
  ident: 2020060220100354000_ref4
  article-title: Pairwise input neural network for target-ligand interaction prediction
– ident: 2020060220100354000_ref35
– year: 2017
  ident: 2020060220100354000_ref64
– year: 2013
  ident: 2020060220100354000_ref17
– volume: 108
  year: 2012
  ident: 2020060220100354000_ref92
  article-title: Fast and accurate modeling of molecular atomization energies with machine learning
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.108.058301
– volume: 6
  start-page: 61
  issue: 1
  year: 1992
  ident: 2020060220100354000_ref76
  article-title: The computer program ludi: a new method for the de novo design of enzyme inhibitors
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/BF00124387
– volume: 4
  start-page: 120
  issue: 1
  year: 2017
  ident: 2020060220100354000_ref78
  article-title: Generating focused molecule libraries for drug discovery with recurrent neural networks
  publication-title: ACS Cent Sci
  doi: 10.1021/acscentsci.7b00512
– volume-title: CVPR 2018-IEEE Conference on Computer Vision & Pattern Recognition
  year: 2018
  ident: 2020060220100354000_ref118
  article-title: Feastnet: feature-steered graph convolutions for 3d shape analysis
  doi: 10.1109/CVPR.2018.00275
– year: 2015
  ident: 2020060220100354000_ref20
– year: 2018
  ident: 2020060220100354000_ref111
  article-title: Molecular sets (moses): a benchmarking platform for molecular generation models
– volume: 55
  start-page: 2324
  issue: 11
  year: 2015
  ident: 2020060220100354000_ref84
  article-title: Zinc 15–ligand discovery for everyone
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.5b00559
– year: 2015
  ident: 2020060220100354000_ref58
– volume: 23
  start-page: 1241
  issue: 6
  year: 2018
  ident: 2020060220100354000_ref14
  article-title: The rise of deep learning in drug discovery
  publication-title: Drug Discov Today
  doi: 10.1016/j.drudis.2018.01.039
– volume: 38
  start-page: D787
  issue: Suppl 1
  year: 2009
  ident: 2020060220100354000_ref104
  article-title: Update of ttd: therapeutic target database
  publication-title: Nucleic Acids Res
– volume: 44
  start-page: D1069
  issue: D1
  year: 2015
  ident: 2020060220100354000_ref106
  article-title: Therapeutic target database update 2016: enriched resource for bench to clinical drug target and targeted pathway information
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv1230
– volume: 49
  start-page: 2034
  issue: 9
  year: 2009
  ident: 2020060220100354000_ref71
  article-title: No electron left behind: a rule-based expert system to predict chemical reactions and reaction mechanisms
  publication-title: J Chem Inf Model
  doi: 10.1021/ci900157k
– volume: 29
  start-page: 2352
  issue: 9
  year: 2017
  ident: 2020060220100354000_ref3
  article-title: Deep convolutional neural networks for image classification: a comprehensive review
  publication-title: Neural Comput
  doi: 10.1162/neco_a_00990
– volume: 8
  year: 2017
  ident: 2020060220100354000_ref30
  article-title: Quantum-chemical insights from deep tensor neural networks
  publication-title: Nat Commun
  doi: 10.1038/ncomms13890
– year: 2018
  ident: 2020060220100354000_ref112
  article-title: Relational inductive biases, deep learning, and graph networks
– volume: 52
  start-page: 1757
  issue: 7
  year: 2012
  ident: 2020060220100354000_ref83
  article-title: Zinc: a free tool to discover chemistry for biology
  publication-title: J Chem Inf Model
  doi: 10.1021/ci3001277
– volume: 143
  issue: 8
  year: 2015
  ident: 2020060220100354000_ref94
  article-title: Electronic spectra from tddft and machine learning in chemical space
  publication-title: J Chem Phys
  doi: 10.1063/1.4928757
– start-page: 2604
  volume-title: Advances in Neural Information Processing Systems
  year: 2017
  ident: 2020060220100354000_ref43
  article-title: Predicting organic reaction outcomes with Weisfeiler-Lehman network
– volume: 4
  start-page: 649
  issue: 8
  year: 2005
  ident: 2020060220100354000_ref75
  article-title: Computer-based de novo design of drug-like molecules
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd1799
– volume: 40
  start-page: D400
  issue: D1
  year: 2011
  ident: 2020060220100354000_ref54
  article-title: Pubchem’s bioassay database
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr1132
– volume: 47
  start-page: 318
  issue: 2
  year: 2007
  ident: 2020060220100354000_ref77
  article-title: Chemical fragment spaces for de novo design
  publication-title: J Chem Inf Model
  doi: 10.1021/ci6003652
– start-page: 639
  volume-title: 24th International Conference on Pattern Recognition (ICPR) 2018
  ident: 2020060220100354000_ref38
– volume: 338
  start-page: 1042
  issue: 6110
  year: 2012
  ident: 2020060220100354000_ref115
  article-title: The protein-folding problem, 50 years on
  publication-title: Science
  doi: 10.1126/science.1219021
– start-page: 992
  volume-title: Advances in Neural Information Processing Systems
  year: 2017
  ident: 2020060220100354000_ref31
  article-title: Schnet: a continuous-filter convolutional neural network for modeling quantum interactions
– volume: 40
  start-page: D1100
  issue: D1
  year: 2011
  ident: 2020060220100354000_ref82
  article-title: Chembl: a large-scale bioactivity database for drug discovery
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr777
– volume: 40
  start-page: D1128
  issue: D1
  year: 2011
  ident: 2020060220100354000_ref105
  article-title: Therapeutic target database update 2012: a resource for facilitating target-oriented drug discovery
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr797
– volume: 4
  start-page: 268
  issue: 2
  year: 2018
  ident: 2020060220100354000_ref79
  article-title: Automatic chemical design using a data-driven continuous representation of molecules
  publication-title: ACS Cent Sci
  doi: 10.1021/acscentsci.7b00572
– start-page: 1945
  volume-title: Proceedings of the 34th International Conference on Machine Learning 2017
  ident: 2020060220100354000_ref80
  article-title: Grammar variational autoencoder
– volume: 52
  start-page: 792
  issue: 3
  year: 2012
  ident: 2020060220100354000_ref51
  article-title: Comparison of random forest and pipeline pilot naive bayes in prospective qsar predictions
  publication-title: J Chem Inf Model
  doi: 10.1021/ci200615h
– year: 2018
  ident: 2020060220100354000_ref42
– year: 2015
  ident: 2020060220100354000_ref5
– year: 2017
  ident: 2020060220100354000_ref32
– volume: 30
  start-page: 595
  issue: 8
  year: 2016
  ident: 2020060220100354000_ref29
  article-title: Molecular graph convolutions: moving beyond fingerprints
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-016-9938-8
– volume-title: Spectral Graph Theory
  year: 1997
  ident: 2020060220100354000_ref9
– start-page: 111
  volume-title: Pacific Symposium on Biocomputing
  year: 2018
  ident: 2020060220100354000_ref119
  article-title: Large-scale analysis of disease pathways in the human interactome
– year: 2018
  ident: 2020060220100354000_ref66
– volume: 18
  start-page: 44
  issue: 1
  year: 2017
  ident: 2020060220100354000_ref113
  article-title: Data-driven prediction of adverse drug reactions induced by drug–drug interactions
  publication-title: BMC Pharmacol Toxicol
  doi: 10.1186/s40360-017-0153-6
– volume: 3
  issue: 80
  year: 2016
  ident: 2020060220100354000_ref57
  article-title: Deeptox: toxicity prediction using deep learning
  publication-title: Front Environ Sci
– start-page: 3371
  volume-title: IJCAI
  year: 2018
  ident: 2020060220100354000_ref39
  article-title: Interpretable drug target prediction using deep neural representation
– year: 2018
  ident: 2020060220100354000_ref33
– volume: 9
  start-page: 199
  issue: 3
  year: 2006
  ident: 2020060220100354000_ref53
  article-title: Circular fingerprints: flexible molecular descriptors with applications from physical chemistry to adme
  publication-title: IDrugs
– volume: 14
  start-page: 714
  issue: 4
  year: 2012
  ident: 2020060220100354000_ref121
  article-title: Absorption, distribution, metabolism, and excretion (adme) studies of biotherapeutics for autoimmune and inflammatory conditions
  publication-title: AAPS J
  doi: 10.1208/s12248-012-9385-y
– year: 2018
  ident: 2020060220100354000_ref15
  article-title: Deep learning on graphs: a survey
  publication-title: CoRR
– year: 2018
  ident: 2020060220100354000_ref16
– year: 2018
  ident: 2020060220100354000_ref47
– volume: 55
  start-page: 6582
  issue: 14
  year: 2012
  ident: 2020060220100354000_ref56
  article-title: Directory of useful decoys, enhanced (dud-e): better ligands and decoys for better benchmarking
  publication-title: J Med Chem
  doi: 10.1021/jm300687e
– volume: 20
  start-page: 58
  issue: 3
  year: 2018
  ident: 2020060220100354000_ref13
  article-title: Deep learning for drug design: an artificial intelligence paradigm for drug discovery in the big data era
  publication-title: AAPS J
  doi: 10.1208/s12248-018-0210-0
– volume: 131
  start-page: 8732
  year: 2009
  ident: 2020060220100354000_ref91
  article-title: 970 million druglike small molecules for virtual screening in the chemical universe database GDB-13
  publication-title: J Am Chem Soc
  doi: 10.1021/ja902302h
– volume: 555
  start-page: 604
  issue: 7698
  year: 2018
  ident: 2020060220100354000_ref74
  article-title: Planning chemical syntheses with deep neural networks and symbolic ai
  publication-title: Nature
  doi: 10.1038/nature25978
– volume: 4
  start-page: 125ra31
  issue: 125
  year: 2012
  ident: 2020060220100354000_ref98
  article-title: Data-driven prediction of drug effects and interactions
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.3003377
– start-page: 2224
  volume-title: Advances in Neural Information Processing Systems
  year: 2015
  ident: 2020060220100354000_ref28
  article-title: Convolutional networks on graphs for learning molecular fingerprints
– start-page: 1263
  volume-title: Proceedings of the 34th International Conference on Machine Learning
  year: 2017
  ident: 2020060220100354000_ref10
– year: 2014
  ident: 2020060220100354000_ref109
  article-title: USPTO patent reaction extractor
– volume: 15
  start-page: 4378
  issue: 10
  year: 2018
  ident: 2020060220100354000_ref116
  article-title: 3d molecular representations based on the wave transform for convolutional neural networks
  publication-title: Mol Pharm
  doi: 10.1021/acs.molpharmaceut.7b01134
– year: 2018
  ident: 2020060220100354000_ref44
  article-title: Graphvae: towards generation of small graphs using variational autoencoders.
  doi: 10.1007/978-3-030-01418-6_41
– year: 2018
  ident: 2020060220100354000_ref46
– start-page: 341
  volume-title: Second Joint Conference on Lexical and Computational Semantics (* SEM), Volume 2: Proceedings of the Seventh International Workshop on Semantic Evaluation (SemEval 2013)
  year: 2013
  ident: 2020060220100354000_ref70
  article-title: Semeval-2013 task 9: extraction of drug–drug interactions from biomedical texts (ddiextraction 2013)
– volume: 52
  start-page: 2864
  issue: 11
  year: 2012
  ident: 2020060220100354000_ref93
  article-title: Enumeration of 166 billion organic small molecules in the chemical universe database gdb-17
  publication-title: J Chem Inf Model
  doi: 10.1021/ci300415d
– volume: 427
  start-page: 3031
  issue: 19
  year: 2015
  ident: 2020060220100354000_ref107
  article-title: Updates to the integrated protein–protein interaction benchmarks: docking benchmark version 5 and affinity benchmark version 2
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2015.07.016
– volume: 1
  issue: 140022
  year: 2014
  ident: 2020060220100354000_ref95
  article-title: Quantum chemistry structures and properties of 134 kilo molecules
  publication-title: Sci Data
– volume: 34
  start-page: D668
  year: 2006
  ident: 2020060220100354000_ref101
  article-title: Drugbank: a comprehensive resource for in silico drug discovery and exploration
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkj067
– volume: 3
  issue: 5
  year: 2017
  ident: 2020060220100354000_ref96
  article-title: Machine learning of accurate energy-conserving molecular force fields
  publication-title: Sci Adv
  doi: 10.1126/sciadv.1603015
– start-page: 3
  volume-title: Proc. CVPR
  year: 2017
  ident: 2020060220100354000_ref11
  article-title: Geometric deep learning on graphs and manifolds using mixture model cnns
– volume: 2
  start-page: 725
  issue: 10
  year: 2016
  ident: 2020060220100354000_ref73
  article-title: Neural networks for the prediction of organic chemistry reactions
  publication-title: ACS Cent Sci
  doi: 10.1021/acscentsci.6b00219
– year: 2018
  ident: 2020060220100354000_ref45
– year: 2016
  ident: 2020060220100354000_ref22
– volume: 49
  start-page: 169
  issue: 2
  year: 2009
  ident: 2020060220100354000_ref55
  article-title: Maximum unbiased validation (muv) data sets for virtual screening based on pubchem bioactivity data
  publication-title: J Chem Inf Model
  doi: 10.1021/ci8002649
– volume: 29
  start-page: 476
  issue: 6–7
  year: 2010
  ident: 2020060220100354000_ref52
  article-title: Best practices for qsar model development, validation, and exploitation
  publication-title: Mol Inform
  doi: 10.1002/minf.201000061
– volume: 43
  start-page: D447
  issue: D1
  year: 2014
  ident: 2020060220100354000_ref100
  article-title: String v10: protein–protein interaction networks, integrated over the tree of life
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gku1003
– start-page: 6533
  volume-title: Advances in Neural Information Processing Systems
  year: 2017
  ident: 2020060220100354000_ref67
  article-title: Protein interface prediction using graph convolutional networks
– volume: 35
  start-page: 3
  issue: 1
  year: 2016
  ident: 2020060220100354000_ref12
  article-title: Deep learning in drug discovery
  publication-title: Mol Inform
  doi: 10.1002/minf.201501008
– start-page: 701
  volume-title: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge discovery and Data Mining
  year: 2014
  ident: 2020060220100354000_ref68
  article-title: Deepwalk: online learning of social representations
  doi: 10.1145/2623330.2623732
– volume: 43
  start-page: 1947
  issue: 6
  year: 2003
  ident: 2020060220100354000_ref50
  article-title: Forest random: a classification and regression tool for compound classification and qsar modeling
  publication-title: J Chem Inf Comput Sci
  doi: 10.1021/ci034160g
– volume: 46
  start-page: D1074
  issue: D1
  year: 2018
  ident: 2020060220100354000_ref102
  article-title: Drugbank 5.0: a major update to the drugbank database for
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx1037
– year: 2018
  ident: 2020060220100354000_ref120
– volume: 3
  start-page: 283
  issue: 4
  year: 2017
  ident: 2020060220100354000_ref34
  article-title: Low data drug discovery with one-shot learning
  publication-title: ACS Cent Sci
  doi: 10.1021/acscentsci.6b00367
– start-page: 086033
  volume-title: Deep learning with feature embedding for compound–protein interaction prediction. bioRxiv
  year: 2016
  ident: 2020060220100354000_ref7
– volume: 2
  start-page: 12
  issue: 9
  year: 1968
  ident: 2020060220100354000_ref24
  article-title: A reduction of a graph to a canonical form and an algebra arising during this reduction
  publication-title: Nauchno-Technicheskaya Informatsia
– start-page: 808
  volume-title: AMIA Annual Symposium Proceedings 2016
  ident: 2020060220100354000_ref114
  article-title: Data-driven prediction of beneficial drug combinations in spontaneous reporting systems
– start-page: i457
  volume-title: Bioinformatics
  year: 2018
  ident: 2020060220100354000_ref40
– volume: 29
  start-page: 1225
  issue: 8
  year: 2016
  ident: 2020060220100354000_ref87
  article-title: Toxcast chemical landscape: paving the road to 21st century toxicology
  publication-title: Chem Res Toxicol
  doi: 10.1021/acs.chemrestox.6b00135
– start-page: 3844
  volume-title: Advances in Neural Information Processing Systems
  year: 2016
  ident: 2020060220100354000_ref21
  article-title: Convolutional neural networks on graphs with fast localized spectral filtering
– year: 2015
  ident: 2020060220100354000_ref18
– volume: 28
  start-page: 711
  issue: 7
  year: 2014
  ident: 2020060220100354000_ref88
  article-title: Freesolv: a database of experimental and calculated hydration free energies, with input files
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-014-9747-x
– volume: 16
  start-page: 520
  issue: 4
  year: 2002
  ident: 2020060220100354000_ref86
  article-title: Developmental therapeutics program at the NCI: molecular target and drug discovery process
  publication-title: Leukemia
  doi: 10.1038/sj.leu.2402464
– volume: 29
  start-page: i126
  issue: 13
  year: 2013
  ident: 2020060220100354000_ref6
  article-title: Predicting drug–target interactions using restricted boltzmann machines
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt234
– volume: 18
  start-page: 302
  issue: 1
  year: 2017
  ident: 2020060220100354000_ref117
  article-title: 3d deep convolutional neural networks for amino acid environment similarity analysis
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-017-1702-0
– volume: 19
  start-page: 1066
  issue: 6
  year: 2012
  ident: 2020060220100354000_ref62
  article-title: Drug–drug interaction through molecular structure similarity analysis
  publication-title: J Am Med Inform Assoc
  doi: 10.1136/amiajnl-2012-000935
SSID ssj0020781
Score 2.6514947
SecondaryResourceType review_article
Snippet Abstract Despite the fact that deep learning has achieved remarkable success in various domains over the past decade, its application in molecular informatics...
Despite the fact that deep learning has achieved remarkable success in various domains over the past decade, its application in molecular informatics and drug...
SourceID proquest
pubmed
crossref
oup
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 919
SubjectTerms Artificial neural networks
Computer applications
Convolution
Drug development
Drug discovery
Informatics
Machine learning
Networks
Predictions
Title Graph convolutional networks for computational drug development and discovery
URI https://www.ncbi.nlm.nih.gov/pubmed/31155636
https://www.proquest.com/docview/2429011034
https://www.proquest.com/docview/2234483673
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3dS8MwEA8yEHwRv63OEdEXH8raXpJ2jyLOIUxfNthbSdJUBOlkHw_zr_eu7SrDoc-9Erjc5X6X3P2OsdtMy1jHCfiCvFCYKPa17qEt6yRLwAoHJePN8EUNxuJ5Iid1Ec18yxN-D7rm3XSN-ULrwpMWoy8x5I9eJ01aRXQ1VQ9R7BO5-5qEdOPXjbCz0cr2C1GWkaV_wPZrSMjvqz08ZDuuOGK71ZDI1TEbPhGnNKfy8NpMULioqrfnHDEnt-VkhvpWj2ez5RvPfmqBuC4yTs23VKy5OmHj_uPoYeDXQxB8K0S88EHhkQRKK8wsEP7nRtkgMTZwIndGAtHbhImWzhrIMfmReQbKxIlTIrQ9whunrFVMC3fOuLNgwkBLEFEgMkQqgUSfNiHNKkK3DT12t9ZRamuGcBpU8ZFWL9WQoj7TSp8eu2lkPytejK1SHVT1nwLt9S6ktfPMU0QN1BAbgPDYdfMZzZ7eMnThpkuUiQATS1AxeOys2r1mGSIQkgrUxX-rX7K9iNLnQPpR2GatxWzprhBjLEynNLFv_MDMzQ
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph+convolutional+networks+for+computational+drug+development+and+discovery&rft.jtitle=Briefings+in+bioinformatics&rft.au=Sun%2C+Mengying&rft.au=Zhao%2C+Sendong&rft.au=Gilvary%2C+Coryandar&rft.au=Elemento%2C+Olivier&rft.date=2020-05-21&rft.issn=1477-4054&rft.eissn=1477-4054&rft.volume=21&rft.issue=3&rft.spage=919&rft_id=info:doi/10.1093%2Fbib%2Fbbz042&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon