Graph convolutional networks for computational drug development and discovery
Abstract Despite the fact that deep learning has achieved remarkable success in various domains over the past decade, its application in molecular informatics and drug discovery is still limited. Recent advances in adapting deep architectures to structured data have opened a new paradigm for pharmac...
Saved in:
Published in | Briefings in bioinformatics Vol. 21; no. 3; pp. 919 - 935 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
21.05.2020
Oxford Publishing Limited (England) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Despite the fact that deep learning has achieved remarkable success in various domains over the past decade, its application in molecular informatics and drug discovery is still limited. Recent advances in adapting deep architectures to structured data have opened a new paradigm for pharmaceutical research. In this survey, we provide a systematic review on the emerging field of graph convolutional networks and their applications in drug discovery and molecular informatics. Typically we are interested in why and how graph convolution networks can help in drug-related tasks. We elaborate the existing applications through four perspectives: molecular property and activity prediction, interaction prediction, synthesis prediction and de novo drug design. We briefly introduce the theoretical foundations behind graph convolutional networks and illustrate various architectures based on different formulations. Then we summarize the representative applications in drug-related problems. We also discuss the current challenges and future possibilities of applying graph convolutional networks to drug discovery. |
---|---|
AbstractList | Despite the fact that deep learning has achieved remarkable success in various domains over the past decade, its application in molecular informatics and drug discovery is still limited. Recent advances in adapting deep architectures to structured data have opened a new paradigm for pharmaceutical research. In this survey, we provide a systematic review on the emerging field of graph convolutional networks and their applications in drug discovery and molecular informatics. Typically we are interested in why and how graph convolution networks can help in drug-related tasks. We elaborate the existing applications through four perspectives: molecular property and activity prediction, interaction prediction, synthesis prediction and de novo drug design. We briefly introduce the theoretical foundations behind graph convolutional networks and illustrate various architectures based on different formulations. Then we summarize the representative applications in drug-related problems. We also discuss the current challenges and future possibilities of applying graph convolutional networks to drug discovery.Despite the fact that deep learning has achieved remarkable success in various domains over the past decade, its application in molecular informatics and drug discovery is still limited. Recent advances in adapting deep architectures to structured data have opened a new paradigm for pharmaceutical research. In this survey, we provide a systematic review on the emerging field of graph convolutional networks and their applications in drug discovery and molecular informatics. Typically we are interested in why and how graph convolution networks can help in drug-related tasks. We elaborate the existing applications through four perspectives: molecular property and activity prediction, interaction prediction, synthesis prediction and de novo drug design. We briefly introduce the theoretical foundations behind graph convolutional networks and illustrate various architectures based on different formulations. Then we summarize the representative applications in drug-related problems. We also discuss the current challenges and future possibilities of applying graph convolutional networks to drug discovery. Abstract Despite the fact that deep learning has achieved remarkable success in various domains over the past decade, its application in molecular informatics and drug discovery is still limited. Recent advances in adapting deep architectures to structured data have opened a new paradigm for pharmaceutical research. In this survey, we provide a systematic review on the emerging field of graph convolutional networks and their applications in drug discovery and molecular informatics. Typically we are interested in why and how graph convolution networks can help in drug-related tasks. We elaborate the existing applications through four perspectives: molecular property and activity prediction, interaction prediction, synthesis prediction and de novo drug design. We briefly introduce the theoretical foundations behind graph convolutional networks and illustrate various architectures based on different formulations. Then we summarize the representative applications in drug-related problems. We also discuss the current challenges and future possibilities of applying graph convolutional networks to drug discovery. Despite the fact that deep learning has achieved remarkable success in various domains over the past decade, its application in molecular informatics and drug discovery is still limited. Recent advances in adapting deep architectures to structured data have opened a new paradigm for pharmaceutical research. In this survey, we provide a systematic review on the emerging field of graph convolutional networks and their applications in drug discovery and molecular informatics. Typically we are interested in why and how graph convolution networks can help in drug-related tasks. We elaborate the existing applications through four perspectives: molecular property and activity prediction, interaction prediction, synthesis prediction and de novo drug design. We briefly introduce the theoretical foundations behind graph convolutional networks and illustrate various architectures based on different formulations. Then we summarize the representative applications in drug-related problems. We also discuss the current challenges and future possibilities of applying graph convolutional networks to drug discovery. |
Author | Wang, Fei Elemento, Olivier Sun, Mengying Zhou, Jiayu Gilvary, Coryandar Zhao, Sendong |
Author_xml | – sequence: 1 givenname: Mengying surname: Sun fullname: Sun, Mengying organization: Department of Computer Science and Engineering, Michigan State University, East Lansing, MI USA – sequence: 2 givenname: Sendong surname: Zhao fullname: Zhao, Sendong organization: Department of Healthcare Policy and Research, Weill Cornell Medicine, New York, NY, USA – sequence: 3 givenname: Coryandar surname: Gilvary fullname: Gilvary, Coryandar organization: Institute for Computational Biomedicine and the Tri-I Program in Computational Biology & Medicine at Weill Cornell Medicine at Cornell University, New York, NY, USA – sequence: 4 givenname: Olivier surname: Elemento fullname: Elemento, Olivier organization: Department of Physiology and Biophysics, Weill Cornell Medicine, Weill Cornell Medicine, New York, NY, USA – sequence: 5 givenname: Jiayu surname: Zhou fullname: Zhou, Jiayu organization: Department of Computer Science and Engineering, Michigan State University, East Lansing, MI USA – sequence: 6 givenname: Fei surname: Wang fullname: Wang, Fei email: feiwang03@gmail.com organization: Department of Healthcare Policy and Research, Weill Cornell Medicine, New York, NY, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31155636$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kV1LwzAUhoNM3Ife-AOkIIIIdUnz1V3K0ClMvNHrkqSpdrZNTZrJ_PVmdHoxxKtz4DznPR_vGAwa02gAThG8RnCGp7KUUym_IEkOwAgRzmMCKRlsc8ZjShgegrFzKwgTyFN0BIYYIUoZZiPwuLCifYuUadam8l1pGlFFje4-jX13UWFsKNWt78SulFv_GuV6rSvT1rrpItHkUV46Zdbabo7BYSEqp092cQJe7m6f5_fx8mnxML9ZxooQ3sWYUZxiJhhJeUJpIZmCqVRQk0JLiiGaMZQKqpXERcoRLXLMJE81I0jNICN4Ai573daaD69dl9VhBV1VotHGuyxJMCFhAscBPd9DV8bbcEqgSDKDCEG8FTzbUV7WOs9aW9bCbrKfRwXgqgeUNc5ZXfwiCGZbF7LgQta7EGC4B6uy_2BnRVn93XLRtxjf_if9DVqDlxk |
CitedBy_id | crossref_primary_10_1039_D1SC04471K crossref_primary_10_1016_j_neucom_2025_130065 crossref_primary_10_1016_j_neunet_2024_107065 crossref_primary_10_1186_s12859_020_03724_x crossref_primary_10_1007_s11704_023_3339_7 crossref_primary_10_1016_j_cmpb_2024_108524 crossref_primary_10_1080_02533839_2024_2407294 crossref_primary_10_3389_fchem_2022_982539 crossref_primary_10_3390_biomedinformatics4010020 crossref_primary_10_1089_genbio_2022_0017 crossref_primary_10_1039_D1SC02087K crossref_primary_10_1002_pamm_202200306 crossref_primary_10_1371_journal_pone_0266088 crossref_primary_10_1039_D3PY00395G crossref_primary_10_3390_biom12050644 crossref_primary_10_3389_fchem_2023_1292027 crossref_primary_10_1093_bib_bbab479 crossref_primary_10_1016_j_pmatsci_2022_101018 crossref_primary_10_1021_acsomega_3c05913 crossref_primary_10_1021_acsomega_3c10183 crossref_primary_10_3390_ijms22084023 crossref_primary_10_3390_molecules27093004 crossref_primary_10_1016_j_patter_2021_100390 crossref_primary_10_1021_acsomega_1c06274 crossref_primary_10_1093_bioinformatics_btaa896 crossref_primary_10_1093_bib_bbab391 crossref_primary_10_1093_bioinformatics_btac837 crossref_primary_10_3389_fgene_2021_690049 crossref_primary_10_1016_j_jmgm_2022_108283 crossref_primary_10_3390_pharmaceutics14102198 crossref_primary_10_1093_bib_bbab275 crossref_primary_10_1093_bib_bbab393 crossref_primary_10_1109_TCBB_2022_3204188 crossref_primary_10_1186_s12859_022_04798_5 crossref_primary_10_1007_s10822_022_00486_x crossref_primary_10_1007_s00894_024_06051_7 crossref_primary_10_34133_2022_9814824 crossref_primary_10_1016_j_ailsci_2022_100055 crossref_primary_10_1186_s13321_020_00479_8 crossref_primary_10_1016_j_jconrel_2022_11_014 crossref_primary_10_2139_ssrn_4122110 crossref_primary_10_4103_jiag_jiag_33_22 crossref_primary_10_1021_acs_iecr_2c01302 crossref_primary_10_1093_bioinformatics_btac164 crossref_primary_10_1021_acsomega_1c06805 crossref_primary_10_1016_j_joi_2023_101402 crossref_primary_10_7717_peerj_16773 crossref_primary_10_1093_bib_bbac109 crossref_primary_10_1093_bib_bbac229 crossref_primary_10_1021_acs_jcim_9b01180 crossref_primary_10_1093_bib_bbab378 crossref_primary_10_1093_bib_bbae408 crossref_primary_10_1021_acs_jcim_2c01287 crossref_primary_10_1007_s12083_023_01472_2 crossref_primary_10_1021_acs_jctc_2c01227 crossref_primary_10_1097_JS9_0000000000001781 crossref_primary_10_1039_D3RA01363D crossref_primary_10_1109_TKDE_2021_3115620 crossref_primary_10_3390_ijms22041676 crossref_primary_10_1016_j_ab_2022_114631 crossref_primary_10_1016_j_jmgm_2021_107965 crossref_primary_10_1109_TIT_2022_3145847 crossref_primary_10_1002_chem_202302837 crossref_primary_10_1109_TPAMI_2023_3324937 crossref_primary_10_1016_j_sbi_2021_102327 crossref_primary_10_1016_j_commatsci_2022_111894 crossref_primary_10_1016_j_aichem_2023_100039 crossref_primary_10_1109_TCBB_2023_3253862 crossref_primary_10_1145_3550075 crossref_primary_10_1021_acs_jcim_0c00568 crossref_primary_10_3390_electronics12092106 crossref_primary_10_1007_s11696_023_03004_x crossref_primary_10_3390_molecules27144443 crossref_primary_10_1093_bioinformatics_btae365 crossref_primary_10_1093_bioinformatics_btab650 crossref_primary_10_1002_bkcs_12267 crossref_primary_10_1093_bioinformatics_btab651 crossref_primary_10_1021_acsami_2c14290 crossref_primary_10_1093_bioinformatics_btac192 crossref_primary_10_1109_JBHI_2024_3413146 crossref_primary_10_1109_JBHI_2021_3079302 crossref_primary_10_1111_coin_12640 crossref_primary_10_1146_annurev_environ_111522_102317 crossref_primary_10_1016_j_jksuci_2023_101631 crossref_primary_10_1039_D2TA03563D crossref_primary_10_2174_1574892818666221018091415 crossref_primary_10_3390_app12147228 crossref_primary_10_1016_j_jpha_2025_101242 crossref_primary_10_1038_s42256_023_00609_5 crossref_primary_10_1021_acs_jmedchem_1c01830 crossref_primary_10_1093_bib_bbac560 crossref_primary_10_3390_healthcare11071031 crossref_primary_10_1093_bib_bbab346 crossref_primary_10_1109_ACCESS_2023_3302923 crossref_primary_10_1016_j_compbiomed_2024_108376 crossref_primary_10_1109_TASE_2023_3307890 crossref_primary_10_1016_j_cma_2024_117111 crossref_primary_10_1016_j_ymeth_2024_01_009 crossref_primary_10_1016_j_jbi_2021_103974 crossref_primary_10_1109_TNNLS_2023_3281716 crossref_primary_10_1002_qute_202400395 crossref_primary_10_1093_bib_bbab344 crossref_primary_10_1021_acs_iecr_4c03224 crossref_primary_10_1080_10095020_2023_2264337 crossref_primary_10_1093_bib_bbab340 crossref_primary_10_1093_bib_bbae294 crossref_primary_10_3390_molecules26154475 crossref_primary_10_1089_cmb_2021_0316 crossref_primary_10_1016_j_jmgm_2022_108401 crossref_primary_10_1093_bib_bbad516 crossref_primary_10_1016_j_compbiomed_2022_106289 crossref_primary_10_1109_TNNLS_2023_3250324 crossref_primary_10_1186_s12859_022_04913_6 crossref_primary_10_1016_j_compbiomed_2025_109874 crossref_primary_10_3389_fmed_2023_1086097 crossref_primary_10_1016_j_csbj_2022_07_049 crossref_primary_10_1016_j_csbj_2021_08_011 crossref_primary_10_1360_nso_20230037 crossref_primary_10_1186_s12859_021_04278_2 crossref_primary_10_1021_acsomega_3c00085 crossref_primary_10_3233_JCM_247139 crossref_primary_10_1002_aisy_202300784 crossref_primary_10_1088_2632_2153_abf856 crossref_primary_10_1186_s13321_021_00494_3 crossref_primary_10_1021_acsomega_1c05473 crossref_primary_10_1007_s13369_024_09342_6 crossref_primary_10_1016_j_cma_2024_117458 crossref_primary_10_1093_bioinformatics_btaa921 crossref_primary_10_1016_j_compbiomed_2024_108037 crossref_primary_10_1093_bib_bbac296 crossref_primary_10_1093_bib_bbad020 crossref_primary_10_1093_bib_bbac602 crossref_primary_10_3390_math11173680 crossref_primary_10_1021_acsomega_1c04017 crossref_primary_10_1109_TNNLS_2021_3084125 crossref_primary_10_1109_RBME_2021_3122522 crossref_primary_10_3390_math9070772 crossref_primary_10_1007_s10462_022_10306_1 crossref_primary_10_1186_s12915_024_02023_8 crossref_primary_10_3724_2096_7004_di_2024_0011 crossref_primary_10_1093_bioinformatics_btac675 crossref_primary_10_1371_journal_pone_0258628 crossref_primary_10_1080_17460441_2021_1929921 crossref_primary_10_1088_2632_2153_ace58c crossref_primary_10_1186_s12859_022_04771_2 crossref_primary_10_1038_s41598_024_83090_3 crossref_primary_10_1186_s13321_023_00795_9 crossref_primary_10_1016_j_ymeth_2021_01_004 crossref_primary_10_4018_IJQSPR_313627 crossref_primary_10_1109_TCE_2023_3300534 crossref_primary_10_3390_cimb44050155 crossref_primary_10_1155_2022_4841387 crossref_primary_10_1021_acs_jcim_3c01030 crossref_primary_10_1016_j_eswa_2024_125403 crossref_primary_10_1016_j_drudis_2022_103373 crossref_primary_10_2174_1574893616666211214110625 crossref_primary_10_1093_bioinformatics_btab473 crossref_primary_10_1038_s41598_023_46382_8 crossref_primary_10_1038_s43246_022_00315_6 crossref_primary_10_1021_acsestwater_4c00963 crossref_primary_10_1093_bib_bbac077 crossref_primary_10_1186_s12859_022_04662_6 crossref_primary_10_1007_s00521_020_04908_5 crossref_primary_10_1109_JBHI_2024_3464674 crossref_primary_10_3390_cancers13092111 crossref_primary_10_3389_fphar_2024_1400136 crossref_primary_10_1016_j_compbiolchem_2022_107719 crossref_primary_10_1038_s42003_024_06734_0 crossref_primary_10_3390_ijms22189983 crossref_primary_10_1021_acs_jcim_0c00975 crossref_primary_10_1109_ACCESS_2023_3289002 crossref_primary_10_3389_fphar_2022_1085665 crossref_primary_10_1007_s10489_022_03839_z crossref_primary_10_1109_ACCESS_2023_3345795 crossref_primary_10_1109_ACCESS_2020_3037086 crossref_primary_10_1111_cbdd_13750 crossref_primary_10_1186_s12859_020_03899_3 crossref_primary_10_3389_fphar_2024_1331062 crossref_primary_10_1186_s13321_022_00634_3 crossref_primary_10_1016_j_compeleceng_2024_109957 crossref_primary_10_1109_TKDE_2024_3523700 crossref_primary_10_1016_j_patcog_2022_108659 crossref_primary_10_1038_s42256_021_00301_6 crossref_primary_10_1093_gpbjnl_qzad008 crossref_primary_10_1016_j_csbj_2021_07_003 crossref_primary_10_1109_TCBB_2024_3404889 crossref_primary_10_1016_j_xcrm_2023_101379 crossref_primary_10_1016_j_isci_2023_108020 crossref_primary_10_1021_acs_cgd_2c00812 crossref_primary_10_3390_ijms24076573 crossref_primary_10_1021_acs_macromol_4c00508 crossref_primary_10_1186_s12859_023_05503_w crossref_primary_10_53941_ijndi0201004 crossref_primary_10_1007_s10462_023_10669_z crossref_primary_10_1002_jat_4477 crossref_primary_10_1016_j_patter_2023_100909 crossref_primary_10_3390_info13100462 crossref_primary_10_2174_1567201817999200728142023 crossref_primary_10_3390_ncrna10010009 crossref_primary_10_1039_D3CP05350D crossref_primary_10_1109_TKDE_2023_3314502 crossref_primary_10_1038_s41524_023_01099_0 crossref_primary_10_1016_j_compbiomed_2023_107136 crossref_primary_10_1002_minf_202100200 crossref_primary_10_1002_imt2_45 crossref_primary_10_1021_acs_chemrestox_2c00375 crossref_primary_10_3390_cancers13133148 crossref_primary_10_1093_bib_bbae340 crossref_primary_10_1016_j_drudis_2022_02_023 crossref_primary_10_2174_0115748936276510231123121404 crossref_primary_10_1038_s41551_022_00942_x crossref_primary_10_1016_j_ymeth_2024_08_008 crossref_primary_10_1093_bfgp_elaa030 crossref_primary_10_1093_bib_bbac288 crossref_primary_10_7717_peerj_17396 crossref_primary_10_1080_17460441_2022_2095368 crossref_primary_10_1093_bib_bbac159 crossref_primary_10_1007_s40747_021_00332_x crossref_primary_10_3390_computation9100103 crossref_primary_10_3390_math10234586 crossref_primary_10_1093_bioinformatics_btab714 crossref_primary_10_3390_molecules27041226 crossref_primary_10_1002_pamm_202400205 crossref_primary_10_1016_j_bbrc_2021_03_159 crossref_primary_10_1016_j_polymer_2023_125866 crossref_primary_10_1016_j_artmed_2024_102805 crossref_primary_10_1093_bioinformatics_btae304 crossref_primary_10_1155_2022_9044793 crossref_primary_10_1109_ACCESS_2020_3022850 crossref_primary_10_1109_TCBBIO_2024_3522512 crossref_primary_10_1186_s12859_021_04292_4 crossref_primary_10_3390_biom13030503 crossref_primary_10_1587_transinf_2022DLP0023 crossref_primary_10_3390_biology11070967 |
Cites_doi | 10.1093/bioinformatics/btu278 10.1109/MCI.2018.2840738 10.1021/acscentsci.7b00064 10.1093/nar/gkv1072 10.1186/s13321-017-0235-x 10.1093/nar/30.1.412 10.1136/amiajnl-2013-002512 10.1093/nar/gkv1277 10.1093/nar/gkv1075 10.1021/ci034243x 10.1039/C7SC02664A 10.1142/9789814749411_0008 10.1038/nature14539 10.1021/jz200866s 10.1103/PhysRevLett.108.058301 10.1007/BF00124387 10.1021/acscentsci.7b00512 10.1109/CVPR.2018.00275 10.1021/acs.jcim.5b00559 10.1016/j.drudis.2018.01.039 10.1093/nar/gkv1230 10.1021/ci900157k 10.1162/neco_a_00990 10.1038/ncomms13890 10.1021/ci3001277 10.1063/1.4928757 10.1038/nrd1799 10.1093/nar/gkr1132 10.1021/ci6003652 10.1126/science.1219021 10.1093/nar/gkr777 10.1093/nar/gkr797 10.1021/acscentsci.7b00572 10.1021/ci200615h 10.1007/s10822-016-9938-8 10.1186/s40360-017-0153-6 10.1208/s12248-012-9385-y 10.1021/jm300687e 10.1208/s12248-018-0210-0 10.1021/ja902302h 10.1038/nature25978 10.1126/scitranslmed.3003377 10.1021/acs.molpharmaceut.7b01134 10.1007/978-3-030-01418-6_41 10.1021/ci300415d 10.1016/j.jmb.2015.07.016 10.1093/nar/gkj067 10.1126/sciadv.1603015 10.1021/acscentsci.6b00219 10.1021/ci8002649 10.1002/minf.201000061 10.1093/nar/gku1003 10.1002/minf.201501008 10.1145/2623330.2623732 10.1021/ci034160g 10.1093/nar/gkx1037 10.1021/acscentsci.6b00367 10.1021/acs.chemrestox.6b00135 10.1007/s10822-014-9747-x 10.1038/sj.leu.2402464 10.1093/bioinformatics/btt234 10.1186/s12859-017-1702-0 10.1136/amiajnl-2012-000935 |
ContentType | Journal Article |
Copyright | The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2019 The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com |
Copyright_xml | – notice: The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2019 – notice: The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. – notice: The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com |
DBID | AAYXX CITATION NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 |
DOI | 10.1093/bib/bbz042 |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Genetics Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1477-4054 |
EndPage | 935 |
ExternalDocumentID | 31155636 10_1093_bib_bbz042 10.1093/bib/bbz042 |
Genre | Journal Article |
GroupedDBID | --- -E4 .2P .I3 0R~ 23N 2WC 36B 4.4 48X 53G 5GY 5VS 6J9 70D 8VB AAHBH AAIJN AAIMJ AAJKP AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAUQX AAVAP AAVLN ABDBF ABEJV ABEUO ABGNP ABIXL ABNKS ABPQP ABPTD ABQLI ABWST ABXVV ABXZS ABZBJ ACGFO ACGFS ACGOD ACIWK ACPRK ACUFI ACUHS ACUXJ ACYTK ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADOCK ADPDF ADQBN ADRDM ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AELWJ AEMDU AEMOZ AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHMBA AHQJS AHXPO AIAGR AIJHB AJEEA AJEUX AKHUL AKVCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX AMNDL ANAKG APIBT APWMN ARIXL AXUDD AYOIW AZVOD BAWUL BAYMD BEYMZ BHONS BQDIO BQUQU BSWAC BTQHN C45 CDBKE CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EAD EAP EAS EBA EBC EBD EBR EBS EBU EE~ EMB EMK EMOBN EST ESX F5P F9B FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ K1G KBUDW KOP KSI KSN M-Z M49 MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y QWB RD5 RPM RUSNO RW1 RXO SV3 TEORI TH9 TJP TLC TOX TR2 TUS W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ZL0 ~91 AAYXX AHGBF CITATION NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 |
ID | FETCH-LOGICAL-c447t-3653836a6487255fb6c08bc0e4feb53019618a5ecb3f8715fd36b78e641c90643 |
IEDL.DBID | TOX |
ISSN | 1467-5463 1477-4054 |
IngestDate | Fri Jul 11 08:29:03 EDT 2025 Mon Jun 30 09:09:58 EDT 2025 Mon Jul 21 06:05:00 EDT 2025 Tue Jul 01 03:39:27 EDT 2025 Thu Apr 24 22:58:08 EDT 2025 Wed Apr 02 07:02:00 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | computational drug development graph convolution network |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c447t-3653836a6487255fb6c08bc0e4feb53019618a5ecb3f8715fd36b78e641c90643 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Undefined-3 |
OpenAccessLink | https://academic.oup.com/bib/article-pdf/21/3/919/33227266/bbz042.pdf |
PMID | 31155636 |
PQID | 2429011034 |
PQPubID | 26846 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_2234483673 proquest_journals_2429011034 pubmed_primary_31155636 crossref_primary_10_1093_bib_bbz042 crossref_citationtrail_10_1093_bib_bbz042 oup_primary_10_1093_bib_bbz042 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-21 |
PublicationDateYYYYMMDD | 2020-05-21 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Briefings in bioinformatics |
PublicationTitleAlternate | Brief Bioinform |
PublicationYear | 2020 |
Publisher | Oxford University Press Oxford Publishing Limited (England) |
Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England) |
References | Vilar (2020060220100354000_ref62) 2012; 19 Sterling (2020060220100354000_ref84) 2015; 55 Tatonetti (2020060220100354000_ref98) 2012; 4 Delaney (2020060220100354000_ref89) 2004; 44 Böhm (2020060220100354000_ref76) 1992; 6 Chung (2020060220100354000_ref9) 1997 Rawat (2020060220100354000_ref3) 2017; 29 Wan (2020060220100354000_ref7) 2016 Chen (2020060220100354000_ref103) 2002; 30 Wishart (2020060220100354000_ref101) 2006; 34 Zitnik (2020060220100354000_ref40) 2018 Lowe (2020060220100354000_ref109) 2014 Dill (2020060220100354000_ref115) 2012; 338 Duvenaud (2020060220100354000_ref19) 2015 Vreven (2020060220100354000_ref107) 2015; 427 Young (2020060220100354000_ref2) 2018; 13 Polykovskiy (2020060220100354000_ref111) 2018 Zitnik (2020060220100354000_ref60) 2016 Li (2020060220100354000_ref114) Asada (2020060220100354000_ref41) 2018 Wu (2020060220100354000_ref63) 2018; 9 Chen (2020060220100354000_ref51) 2012; 52 Vinyals (2020060220100354000_ref58) 2015 Szklarczyk (2020060220100354000_ref99) 2015; 44 Zhu (2020060220100354000_ref104) 2009; 38 Zhou (2020060220100354000_ref16) 2018 Monti (2020060220100354000_ref11) 2017 Monti (2020060220100354000_ref120) 2018 Ruifeng Liu (2020060220100354000_ref113) 2017; 18 Irwin (2020060220100354000_ref83) 2012; 52 Duvenaud (2020060220100354000_ref28) 2015 Zeng (2020060220100354000_ref69) Dai (2020060220100354000_ref23) 2016 Simonovsky (2020060220100354000_ref44) 2018 Wallach (2020060220100354000_ref5) 2015 Gao (2020060220100354000_ref39) 2018 Olivecrona (2020060220100354000_ref49) 2017; 9 Neil (2020060220100354000_ref66) 2018 Zhu (2020060220100354000_ref105) 2011; 40 Gómez-Bombarelli (2020060220100354000_ref79) 2018; 4 Wishart (2020060220100354000_ref102) 2018; 46 Xu (2020060220100354000_ref25) 2018 Ruddigkeit (2020060220100354000_ref93) 2012; 52 Verma (2020060220100354000_ref118) 2018 Wang (2020060220100354000_ref54) 2011; 40 Gomes (2020060220100354000_ref64) 2017 Cheng (2020060220100354000_ref59) 2014; 21 Coley (2020060220100354000_ref72) 2017; 3 Jin (2020060220100354000_ref47) 2018 Chen (2020060220100354000_ref71) 2009; 49 Li (2020060220100354000_ref35) Blum (2020060220100354000_ref91) 2009; 131 Altae-Tran (2020060220100354000_ref34) 2017; 3 Li (2020060220100354000_ref20) 2015 Davies (2020060220100354000_ref26) 2001 Gaulton (2020060220100354000_ref82) 2011; 40 Gawehn (2020060220100354000_ref12) 2016; 35 Li (2020060220100354000_ref32) 2017 Ramakrishnan (2020060220100354000_ref94) 2015; 143 Kipf (2020060220100354000_ref22) 2016 Chen (2020060220100354000_ref14) 2018; 23 Schneider (2020060220100354000_ref75) 2005; 4 Dai (2020060220100354000_ref81) 2018 Mobley (2020060220100354000_ref88) 2014; 28 Kusner (2020060220100354000_ref80) Mayr (2020060220100354000_ref57) 2016; 3 Kuzminykh (2020060220100354000_ref116) 2018; 15 Richard (2020060220100354000_ref87) 2016; 29 Schutt (2020060220100354000_ref30) 2017; 8 Agrawal (2020060220100354000_ref119) 2018 Lau (2020060220100354000_ref65) Monga (2020060220100354000_ref86) 2002; 16 Zhang (2020060220100354000_ref15) 2018 Battaglia (2020060220100354000_ref112) 2018 Weisfeiler (2020060220100354000_ref24) 1968; 2 Fout (2020060220100354000_ref67) 2017 National Cancer Institute (2020060220100354000_ref85) 1999 Chmiela (2020060220100354000_ref96) 2017; 3 Wang (2020060220100354000_ref6) 2013; 29 Niepert (2020060220100354000_ref27) 2016 Glen (2020060220100354000_ref53) 2006; 9 Torng (2020060220100354000_ref117) 2017; 18 Henaff (2020060220100354000_ref18) 2015 Kearnes (2020060220100354000_ref29) 2016; 30 Schutt (2020060220100354000_ref31) 2017 Ramakrishnan (2020060220100354000_ref95) 2014; 1 Kuhn (2020060220100354000_ref97) 2015; 44 Feng (2020060220100354000_ref48) 2018 Huang (2020060220100354000_ref61) 2014; 30 Li (2020060220100354000_ref45) 2018 LeCun (2020060220100354000_ref8) 1989 Defferrard (2020060220100354000_ref21) 2016 Hachmann (2020060220100354000_ref90) 2011; 2 Wei (2020060220100354000_ref73) 2016; 2 Segler (2020060220100354000_ref78) 2017; 4 Yang (2020060220100354000_ref106) 2015; 44 LeCun (2020060220100354000_ref1) 2015; 521 Shang (2020060220100354000_ref36) 2018 Jin (2020060220100354000_ref43) 2017 Li (2020060220100354000_ref46) 2018 Segler (2020060220100354000_ref74) 2018; 555 Rupp (2020060220100354000_ref92) 2012; 108 Ma (2020060220100354000_ref42) 2018 Segura-Bedmar (2020060220100354000_ref70) 2013 Mauser (2020060220100354000_ref77) 2007; 47 Szklarczyk (2020060220100354000_ref100) 2014; 43 Tropsha (2020060220100354000_ref52) 2010; 29 Gilson (2020060220100354000_ref108) 2015; 44 Pham (2020060220100354000_ref38) Gilmer (2020060220100354000_ref10) 2017 Wang (2020060220100354000_ref4) Perozzi (2020060220100354000_ref68) 2014 Rohrer (2020060220100354000_ref55) 2009; 49 Ryu (2020060220100354000_ref37) 2018 Jing (2020060220100354000_ref13) 2018; 20 Mysinger (2020060220100354000_ref56) 2012; 55 Brown (2020060220100354000_ref110) 2018 Vugmeyster (2020060220100354000_ref121) 2012; 14 Bruna (2020060220100354000_ref17) 2013 Liu (2020060220100354000_ref33) 2018 Svetnik (2020060220100354000_ref50) 2003; 43 |
References_xml | – start-page: 2335 volume-title: Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers 2014 ident: 2020060220100354000_ref69 article-title: Relation classification via convolutional deep neural network – volume: 30 start-page: i228 issue: 12 year: 2014 ident: 2020060220100354000_ref61 article-title: Drugcomboranker: drug combination discovery based on target network analysis publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu278 – year: 2018 ident: 2020060220100354000_ref48 – volume: 13 start-page: 55 issue: 3 year: 2018 ident: 2020060220100354000_ref2 article-title: Recent trends in deep learning based natural language processing publication-title: IEEE Computational Intelligence Magazine doi: 10.1109/MCI.2018.2840738 – volume: 3 start-page: 434 issue: 5 year: 2017 ident: 2020060220100354000_ref72 article-title: Prediction of organic reaction outcomes using machine learning publication-title: ACS Cent Sci doi: 10.1021/acscentsci.7b00064 – volume: 44 start-page: D1045 issue: D1 year: 2015 ident: 2020060220100354000_ref108 article-title: Bindingdb in 2015: a public database for medicinal chemistry, computational chemistry and systems pharmacology publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv1072 – year: 2018 ident: 2020060220100354000_ref37 – year: 1999 ident: 2020060220100354000_ref85 article-title: NCI open database compounds – year: 2018 ident: 2020060220100354000_ref81 – volume: 9 start-page: 48 issue: 1 year: 2017 ident: 2020060220100354000_ref49 article-title: Molecular de-novo design through deep reinforcement learning publication-title: J Chem doi: 10.1186/s13321-017-0235-x – volume-title: Brendan: A Deep Convolutional Network for Representing Latent Features of Protein–Ligand Binding Poses ident: 2020060220100354000_ref65 – volume: 30 start-page: 412 issue: 1 year: 2002 ident: 2020060220100354000_ref103 article-title: Ttd: therapeutic target database publication-title: Nucleic Acids Res doi: 10.1093/nar/30.1.412 – year: 2018 ident: 2020060220100354000_ref25 – start-page: 143 volume-title: Connectionism Perspect year: 1989 ident: 2020060220100354000_ref8 article-title: Generalization and network design strategies – start-page: 2014 volume-title: International Conference on Machine Learning year: 2016 ident: 2020060220100354000_ref27 article-title: Learning convolutional neural networks for graphs – volume: 21 start-page: e278 issue: e2 year: 2014 ident: 2020060220100354000_ref59 article-title: Machine learning-based prediction of drug–drug interactions by integrating drug phenotypic, therapeutic, chemical, and genomic properties publication-title: J Am Med Inform Assoc doi: 10.1136/amiajnl-2013-002512 – volume: 44 start-page: D380 issue: D1 year: 2015 ident: 2020060220100354000_ref99 article-title: Stitch 5: augmenting protein–chemical interaction networks with tissue and affinity data publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv1277 – volume: 44 start-page: D1075 issue: D1 year: 2015 ident: 2020060220100354000_ref97 article-title: The sider database of drugs and side effects publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv1075 – year: 2018 ident: 2020060220100354000_ref36 – volume: 44 start-page: 1000 issue: 3 year: 2004 ident: 2020060220100354000_ref89 article-title: Esol: estimating aqueous solubility directly from molecular structure publication-title: J Chem Inf Comput Sci doi: 10.1021/ci034243x – year: 2018 ident: 2020060220100354000_ref41 – volume: 9 start-page: 513 issue: 2 year: 2018 ident: 2020060220100354000_ref63 article-title: Moleculenet: a benchmark for molecular machine learning publication-title: Chem Sci doi: 10.1039/C7SC02664A – start-page: 81 volume-title: Biocomputing 2016: Proceedings of the Pacific Symposium year: 2016 ident: 2020060220100354000_ref60 article-title: Collective pairwise classification for multi-way analysis of disease and drug data doi: 10.1142/9789814749411_0008 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 2020060220100354000_ref1 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – start-page: 51 volume-title: Linear Algebra and its Applications year: 2001 ident: 2020060220100354000_ref26 article-title: Discrete nodal domain theorems – start-page: 2702 volume-title: International Conference on Machine Learning year: 2016 ident: 2020060220100354000_ref23 article-title: Discriminative embeddings of latent variable models for structured data – volume: 2 start-page: 2241 issue: 17 year: 2011 ident: 2020060220100354000_ref90 article-title: The Harvard clean energy project: large-scale computational screening and design of organic photovoltaics on the world community grid publication-title: J Phys Chem Lett doi: 10.1021/jz200866s – year: 2018 ident: 2020060220100354000_ref110 article-title: Guacamol: benchmarking models for de novo molecular design – start-page: 2224 volume-title: Advances in Neural Information Processing Systems year: 2015 ident: 2020060220100354000_ref19 article-title: Convolutional networks on graphs for learning molecular fingerprints – start-page: 67 volume-title: Bioinformatics and Biomedicine (BIBM), 2014 IEEE International Conference on ident: 2020060220100354000_ref4 article-title: Pairwise input neural network for target-ligand interaction prediction – ident: 2020060220100354000_ref35 – year: 2017 ident: 2020060220100354000_ref64 – year: 2013 ident: 2020060220100354000_ref17 – volume: 108 year: 2012 ident: 2020060220100354000_ref92 article-title: Fast and accurate modeling of molecular atomization energies with machine learning publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.108.058301 – volume: 6 start-page: 61 issue: 1 year: 1992 ident: 2020060220100354000_ref76 article-title: The computer program ludi: a new method for the de novo design of enzyme inhibitors publication-title: J Comput Aided Mol Des doi: 10.1007/BF00124387 – volume: 4 start-page: 120 issue: 1 year: 2017 ident: 2020060220100354000_ref78 article-title: Generating focused molecule libraries for drug discovery with recurrent neural networks publication-title: ACS Cent Sci doi: 10.1021/acscentsci.7b00512 – volume-title: CVPR 2018-IEEE Conference on Computer Vision & Pattern Recognition year: 2018 ident: 2020060220100354000_ref118 article-title: Feastnet: feature-steered graph convolutions for 3d shape analysis doi: 10.1109/CVPR.2018.00275 – year: 2015 ident: 2020060220100354000_ref20 – year: 2018 ident: 2020060220100354000_ref111 article-title: Molecular sets (moses): a benchmarking platform for molecular generation models – volume: 55 start-page: 2324 issue: 11 year: 2015 ident: 2020060220100354000_ref84 article-title: Zinc 15–ligand discovery for everyone publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.5b00559 – year: 2015 ident: 2020060220100354000_ref58 – volume: 23 start-page: 1241 issue: 6 year: 2018 ident: 2020060220100354000_ref14 article-title: The rise of deep learning in drug discovery publication-title: Drug Discov Today doi: 10.1016/j.drudis.2018.01.039 – volume: 38 start-page: D787 issue: Suppl 1 year: 2009 ident: 2020060220100354000_ref104 article-title: Update of ttd: therapeutic target database publication-title: Nucleic Acids Res – volume: 44 start-page: D1069 issue: D1 year: 2015 ident: 2020060220100354000_ref106 article-title: Therapeutic target database update 2016: enriched resource for bench to clinical drug target and targeted pathway information publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv1230 – volume: 49 start-page: 2034 issue: 9 year: 2009 ident: 2020060220100354000_ref71 article-title: No electron left behind: a rule-based expert system to predict chemical reactions and reaction mechanisms publication-title: J Chem Inf Model doi: 10.1021/ci900157k – volume: 29 start-page: 2352 issue: 9 year: 2017 ident: 2020060220100354000_ref3 article-title: Deep convolutional neural networks for image classification: a comprehensive review publication-title: Neural Comput doi: 10.1162/neco_a_00990 – volume: 8 year: 2017 ident: 2020060220100354000_ref30 article-title: Quantum-chemical insights from deep tensor neural networks publication-title: Nat Commun doi: 10.1038/ncomms13890 – year: 2018 ident: 2020060220100354000_ref112 article-title: Relational inductive biases, deep learning, and graph networks – volume: 52 start-page: 1757 issue: 7 year: 2012 ident: 2020060220100354000_ref83 article-title: Zinc: a free tool to discover chemistry for biology publication-title: J Chem Inf Model doi: 10.1021/ci3001277 – volume: 143 issue: 8 year: 2015 ident: 2020060220100354000_ref94 article-title: Electronic spectra from tddft and machine learning in chemical space publication-title: J Chem Phys doi: 10.1063/1.4928757 – start-page: 2604 volume-title: Advances in Neural Information Processing Systems year: 2017 ident: 2020060220100354000_ref43 article-title: Predicting organic reaction outcomes with Weisfeiler-Lehman network – volume: 4 start-page: 649 issue: 8 year: 2005 ident: 2020060220100354000_ref75 article-title: Computer-based de novo design of drug-like molecules publication-title: Nat Rev Drug Discov doi: 10.1038/nrd1799 – volume: 40 start-page: D400 issue: D1 year: 2011 ident: 2020060220100354000_ref54 article-title: Pubchem’s bioassay database publication-title: Nucleic Acids Res doi: 10.1093/nar/gkr1132 – volume: 47 start-page: 318 issue: 2 year: 2007 ident: 2020060220100354000_ref77 article-title: Chemical fragment spaces for de novo design publication-title: J Chem Inf Model doi: 10.1021/ci6003652 – start-page: 639 volume-title: 24th International Conference on Pattern Recognition (ICPR) 2018 ident: 2020060220100354000_ref38 – volume: 338 start-page: 1042 issue: 6110 year: 2012 ident: 2020060220100354000_ref115 article-title: The protein-folding problem, 50 years on publication-title: Science doi: 10.1126/science.1219021 – start-page: 992 volume-title: Advances in Neural Information Processing Systems year: 2017 ident: 2020060220100354000_ref31 article-title: Schnet: a continuous-filter convolutional neural network for modeling quantum interactions – volume: 40 start-page: D1100 issue: D1 year: 2011 ident: 2020060220100354000_ref82 article-title: Chembl: a large-scale bioactivity database for drug discovery publication-title: Nucleic Acids Res doi: 10.1093/nar/gkr777 – volume: 40 start-page: D1128 issue: D1 year: 2011 ident: 2020060220100354000_ref105 article-title: Therapeutic target database update 2012: a resource for facilitating target-oriented drug discovery publication-title: Nucleic Acids Res doi: 10.1093/nar/gkr797 – volume: 4 start-page: 268 issue: 2 year: 2018 ident: 2020060220100354000_ref79 article-title: Automatic chemical design using a data-driven continuous representation of molecules publication-title: ACS Cent Sci doi: 10.1021/acscentsci.7b00572 – start-page: 1945 volume-title: Proceedings of the 34th International Conference on Machine Learning 2017 ident: 2020060220100354000_ref80 article-title: Grammar variational autoencoder – volume: 52 start-page: 792 issue: 3 year: 2012 ident: 2020060220100354000_ref51 article-title: Comparison of random forest and pipeline pilot naive bayes in prospective qsar predictions publication-title: J Chem Inf Model doi: 10.1021/ci200615h – year: 2018 ident: 2020060220100354000_ref42 – year: 2015 ident: 2020060220100354000_ref5 – year: 2017 ident: 2020060220100354000_ref32 – volume: 30 start-page: 595 issue: 8 year: 2016 ident: 2020060220100354000_ref29 article-title: Molecular graph convolutions: moving beyond fingerprints publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-016-9938-8 – volume-title: Spectral Graph Theory year: 1997 ident: 2020060220100354000_ref9 – start-page: 111 volume-title: Pacific Symposium on Biocomputing year: 2018 ident: 2020060220100354000_ref119 article-title: Large-scale analysis of disease pathways in the human interactome – year: 2018 ident: 2020060220100354000_ref66 – volume: 18 start-page: 44 issue: 1 year: 2017 ident: 2020060220100354000_ref113 article-title: Data-driven prediction of adverse drug reactions induced by drug–drug interactions publication-title: BMC Pharmacol Toxicol doi: 10.1186/s40360-017-0153-6 – volume: 3 issue: 80 year: 2016 ident: 2020060220100354000_ref57 article-title: Deeptox: toxicity prediction using deep learning publication-title: Front Environ Sci – start-page: 3371 volume-title: IJCAI year: 2018 ident: 2020060220100354000_ref39 article-title: Interpretable drug target prediction using deep neural representation – year: 2018 ident: 2020060220100354000_ref33 – volume: 9 start-page: 199 issue: 3 year: 2006 ident: 2020060220100354000_ref53 article-title: Circular fingerprints: flexible molecular descriptors with applications from physical chemistry to adme publication-title: IDrugs – volume: 14 start-page: 714 issue: 4 year: 2012 ident: 2020060220100354000_ref121 article-title: Absorption, distribution, metabolism, and excretion (adme) studies of biotherapeutics for autoimmune and inflammatory conditions publication-title: AAPS J doi: 10.1208/s12248-012-9385-y – year: 2018 ident: 2020060220100354000_ref15 article-title: Deep learning on graphs: a survey publication-title: CoRR – year: 2018 ident: 2020060220100354000_ref16 – year: 2018 ident: 2020060220100354000_ref47 – volume: 55 start-page: 6582 issue: 14 year: 2012 ident: 2020060220100354000_ref56 article-title: Directory of useful decoys, enhanced (dud-e): better ligands and decoys for better benchmarking publication-title: J Med Chem doi: 10.1021/jm300687e – volume: 20 start-page: 58 issue: 3 year: 2018 ident: 2020060220100354000_ref13 article-title: Deep learning for drug design: an artificial intelligence paradigm for drug discovery in the big data era publication-title: AAPS J doi: 10.1208/s12248-018-0210-0 – volume: 131 start-page: 8732 year: 2009 ident: 2020060220100354000_ref91 article-title: 970 million druglike small molecules for virtual screening in the chemical universe database GDB-13 publication-title: J Am Chem Soc doi: 10.1021/ja902302h – volume: 555 start-page: 604 issue: 7698 year: 2018 ident: 2020060220100354000_ref74 article-title: Planning chemical syntheses with deep neural networks and symbolic ai publication-title: Nature doi: 10.1038/nature25978 – volume: 4 start-page: 125ra31 issue: 125 year: 2012 ident: 2020060220100354000_ref98 article-title: Data-driven prediction of drug effects and interactions publication-title: Sci Transl Med doi: 10.1126/scitranslmed.3003377 – start-page: 2224 volume-title: Advances in Neural Information Processing Systems year: 2015 ident: 2020060220100354000_ref28 article-title: Convolutional networks on graphs for learning molecular fingerprints – start-page: 1263 volume-title: Proceedings of the 34th International Conference on Machine Learning year: 2017 ident: 2020060220100354000_ref10 – year: 2014 ident: 2020060220100354000_ref109 article-title: USPTO patent reaction extractor – volume: 15 start-page: 4378 issue: 10 year: 2018 ident: 2020060220100354000_ref116 article-title: 3d molecular representations based on the wave transform for convolutional neural networks publication-title: Mol Pharm doi: 10.1021/acs.molpharmaceut.7b01134 – year: 2018 ident: 2020060220100354000_ref44 article-title: Graphvae: towards generation of small graphs using variational autoencoders. doi: 10.1007/978-3-030-01418-6_41 – year: 2018 ident: 2020060220100354000_ref46 – start-page: 341 volume-title: Second Joint Conference on Lexical and Computational Semantics (* SEM), Volume 2: Proceedings of the Seventh International Workshop on Semantic Evaluation (SemEval 2013) year: 2013 ident: 2020060220100354000_ref70 article-title: Semeval-2013 task 9: extraction of drug–drug interactions from biomedical texts (ddiextraction 2013) – volume: 52 start-page: 2864 issue: 11 year: 2012 ident: 2020060220100354000_ref93 article-title: Enumeration of 166 billion organic small molecules in the chemical universe database gdb-17 publication-title: J Chem Inf Model doi: 10.1021/ci300415d – volume: 427 start-page: 3031 issue: 19 year: 2015 ident: 2020060220100354000_ref107 article-title: Updates to the integrated protein–protein interaction benchmarks: docking benchmark version 5 and affinity benchmark version 2 publication-title: J Mol Biol doi: 10.1016/j.jmb.2015.07.016 – volume: 1 issue: 140022 year: 2014 ident: 2020060220100354000_ref95 article-title: Quantum chemistry structures and properties of 134 kilo molecules publication-title: Sci Data – volume: 34 start-page: D668 year: 2006 ident: 2020060220100354000_ref101 article-title: Drugbank: a comprehensive resource for in silico drug discovery and exploration publication-title: Nucleic Acids Res doi: 10.1093/nar/gkj067 – volume: 3 issue: 5 year: 2017 ident: 2020060220100354000_ref96 article-title: Machine learning of accurate energy-conserving molecular force fields publication-title: Sci Adv doi: 10.1126/sciadv.1603015 – start-page: 3 volume-title: Proc. CVPR year: 2017 ident: 2020060220100354000_ref11 article-title: Geometric deep learning on graphs and manifolds using mixture model cnns – volume: 2 start-page: 725 issue: 10 year: 2016 ident: 2020060220100354000_ref73 article-title: Neural networks for the prediction of organic chemistry reactions publication-title: ACS Cent Sci doi: 10.1021/acscentsci.6b00219 – year: 2018 ident: 2020060220100354000_ref45 – year: 2016 ident: 2020060220100354000_ref22 – volume: 49 start-page: 169 issue: 2 year: 2009 ident: 2020060220100354000_ref55 article-title: Maximum unbiased validation (muv) data sets for virtual screening based on pubchem bioactivity data publication-title: J Chem Inf Model doi: 10.1021/ci8002649 – volume: 29 start-page: 476 issue: 6–7 year: 2010 ident: 2020060220100354000_ref52 article-title: Best practices for qsar model development, validation, and exploitation publication-title: Mol Inform doi: 10.1002/minf.201000061 – volume: 43 start-page: D447 issue: D1 year: 2014 ident: 2020060220100354000_ref100 article-title: String v10: protein–protein interaction networks, integrated over the tree of life publication-title: Nucleic Acids Res doi: 10.1093/nar/gku1003 – start-page: 6533 volume-title: Advances in Neural Information Processing Systems year: 2017 ident: 2020060220100354000_ref67 article-title: Protein interface prediction using graph convolutional networks – volume: 35 start-page: 3 issue: 1 year: 2016 ident: 2020060220100354000_ref12 article-title: Deep learning in drug discovery publication-title: Mol Inform doi: 10.1002/minf.201501008 – start-page: 701 volume-title: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge discovery and Data Mining year: 2014 ident: 2020060220100354000_ref68 article-title: Deepwalk: online learning of social representations doi: 10.1145/2623330.2623732 – volume: 43 start-page: 1947 issue: 6 year: 2003 ident: 2020060220100354000_ref50 article-title: Forest random: a classification and regression tool for compound classification and qsar modeling publication-title: J Chem Inf Comput Sci doi: 10.1021/ci034160g – volume: 46 start-page: D1074 issue: D1 year: 2018 ident: 2020060220100354000_ref102 article-title: Drugbank 5.0: a major update to the drugbank database for publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx1037 – year: 2018 ident: 2020060220100354000_ref120 – volume: 3 start-page: 283 issue: 4 year: 2017 ident: 2020060220100354000_ref34 article-title: Low data drug discovery with one-shot learning publication-title: ACS Cent Sci doi: 10.1021/acscentsci.6b00367 – start-page: 086033 volume-title: Deep learning with feature embedding for compound–protein interaction prediction. bioRxiv year: 2016 ident: 2020060220100354000_ref7 – volume: 2 start-page: 12 issue: 9 year: 1968 ident: 2020060220100354000_ref24 article-title: A reduction of a graph to a canonical form and an algebra arising during this reduction publication-title: Nauchno-Technicheskaya Informatsia – start-page: 808 volume-title: AMIA Annual Symposium Proceedings 2016 ident: 2020060220100354000_ref114 article-title: Data-driven prediction of beneficial drug combinations in spontaneous reporting systems – start-page: i457 volume-title: Bioinformatics year: 2018 ident: 2020060220100354000_ref40 – volume: 29 start-page: 1225 issue: 8 year: 2016 ident: 2020060220100354000_ref87 article-title: Toxcast chemical landscape: paving the road to 21st century toxicology publication-title: Chem Res Toxicol doi: 10.1021/acs.chemrestox.6b00135 – start-page: 3844 volume-title: Advances in Neural Information Processing Systems year: 2016 ident: 2020060220100354000_ref21 article-title: Convolutional neural networks on graphs with fast localized spectral filtering – year: 2015 ident: 2020060220100354000_ref18 – volume: 28 start-page: 711 issue: 7 year: 2014 ident: 2020060220100354000_ref88 article-title: Freesolv: a database of experimental and calculated hydration free energies, with input files publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-014-9747-x – volume: 16 start-page: 520 issue: 4 year: 2002 ident: 2020060220100354000_ref86 article-title: Developmental therapeutics program at the NCI: molecular target and drug discovery process publication-title: Leukemia doi: 10.1038/sj.leu.2402464 – volume: 29 start-page: i126 issue: 13 year: 2013 ident: 2020060220100354000_ref6 article-title: Predicting drug–target interactions using restricted boltzmann machines publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt234 – volume: 18 start-page: 302 issue: 1 year: 2017 ident: 2020060220100354000_ref117 article-title: 3d deep convolutional neural networks for amino acid environment similarity analysis publication-title: BMC Bioinformatics doi: 10.1186/s12859-017-1702-0 – volume: 19 start-page: 1066 issue: 6 year: 2012 ident: 2020060220100354000_ref62 article-title: Drug–drug interaction through molecular structure similarity analysis publication-title: J Am Med Inform Assoc doi: 10.1136/amiajnl-2012-000935 |
SSID | ssj0020781 |
Score | 2.6514947 |
SecondaryResourceType | review_article |
Snippet | Abstract
Despite the fact that deep learning has achieved remarkable success in various domains over the past decade, its application in molecular informatics... Despite the fact that deep learning has achieved remarkable success in various domains over the past decade, its application in molecular informatics and drug... |
SourceID | proquest pubmed crossref oup |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 919 |
SubjectTerms | Artificial neural networks Computer applications Convolution Drug development Drug discovery Informatics Machine learning Networks Predictions |
Title | Graph convolutional networks for computational drug development and discovery |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31155636 https://www.proquest.com/docview/2429011034 https://www.proquest.com/docview/2234483673 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3dS8MwEA8yEHwRv63OEdEXH8raXpJ2jyLOIUxfNthbSdJUBOlkHw_zr_eu7SrDoc-9Erjc5X6X3P2OsdtMy1jHCfiCvFCYKPa17qEt6yRLwAoHJePN8EUNxuJ5Iid1Ec18yxN-D7rm3XSN-ULrwpMWoy8x5I9eJ01aRXQ1VQ9R7BO5-5qEdOPXjbCz0cr2C1GWkaV_wPZrSMjvqz08ZDuuOGK71ZDI1TEbPhGnNKfy8NpMULioqrfnHDEnt-VkhvpWj2ez5RvPfmqBuC4yTs23VKy5OmHj_uPoYeDXQxB8K0S88EHhkQRKK8wsEP7nRtkgMTZwIndGAtHbhImWzhrIMfmReQbKxIlTIrQ9whunrFVMC3fOuLNgwkBLEFEgMkQqgUSfNiHNKkK3DT12t9ZRamuGcBpU8ZFWL9WQoj7TSp8eu2lkPytejK1SHVT1nwLt9S6ktfPMU0QN1BAbgPDYdfMZzZ7eMnThpkuUiQATS1AxeOys2r1mGSIQkgrUxX-rX7K9iNLnQPpR2GatxWzprhBjLEynNLFv_MDMzQ |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph+convolutional+networks+for+computational+drug+development+and+discovery&rft.jtitle=Briefings+in+bioinformatics&rft.au=Sun%2C+Mengying&rft.au=Zhao%2C+Sendong&rft.au=Gilvary%2C+Coryandar&rft.au=Elemento%2C+Olivier&rft.date=2020-05-21&rft.issn=1477-4054&rft.eissn=1477-4054&rft.volume=21&rft.issue=3&rft.spage=919&rft_id=info:doi/10.1093%2Fbib%2Fbbz042&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon |