The number of maximal independent sets in a connected graph

We determine the maximum number of maximal independent sets which a connected graph on n vertices can have, and we completely characterize the extremal graphs, thereby answering a question of Wilf.

Saved in:
Bibliographic Details
Published inDiscrete mathematics Vol. 68; no. 2; pp. 211 - 220
Main Authors Griggs, Jerrold R., Grinstead, Charles M., Guichard, David R.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 1988
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We determine the maximum number of maximal independent sets which a connected graph on n vertices can have, and we completely characterize the extremal graphs, thereby answering a question of Wilf.
AbstractList We determine the maximum number of maximal independent sets which a connected graph on n vertices can have, and we completely characterize the extremal graphs, thereby answering a question of Wilf.
Author Griggs, Jerrold R.
Guichard, David R.
Grinstead, Charles M.
Author_xml – sequence: 1
  givenname: Jerrold R.
  surname: Griggs
  fullname: Griggs, Jerrold R.
  organization: Department of Mathematics, University of South Carolina, Columbia, SC 29208, U.S.A
– sequence: 2
  givenname: Charles M.
  surname: Grinstead
  fullname: Grinstead, Charles M.
  organization: Department of Mathematics, Swarthmore College, Swarthmore, PA 19081, U.S.A
– sequence: 3
  givenname: David R.
  surname: Guichard
  fullname: Guichard, David R.
  organization: Department of Mathematics, Whitman College, Walla Walla, WA 99362, U.S.A
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7561643$$DView record in Pascal Francis
BookMark eNp9j01LAzEQhoNUsFb_gYccPOhhNdl8jQiCFL-g4KWH3kI2O7ErbbYkq-i_N7XSo5cZZnjfmfc5JqPYRyTkjLMrzri-ZozXldBqcQFwecM4lxUckDEHU1ca-GJExnvJETnO-Z2VWQsYk9v5Emn8WDeYaB_o2n11a7eiXWxxg6XEgWYccllQR30fI_oBW_qW3GZ5Qg6DW2U8_esTMn98mE-fq9nr08v0flZ5Kc1QCRFcLRRIx4G3QZdUKGQLKrSu1sqo0BgQYLQG5ZSXDSpeMyGDMN40tZgQuTvrU59zwmA3qYRM35Yzu-W3Wzi7hbMA9pffQrGd72wbl71bheSi7_Lea5TmWooiu9vJsBB8dphs9h1Gj22XCqtt--7_Pz8-QW83
CODEN DSMHA4
CitedBy_id crossref_primary_10_1111_itor_12291
crossref_primary_10_1002_jgt_3190150208
crossref_primary_10_1016_j_ejc_2022_103575
crossref_primary_10_1016_j_disc_2017_08_015
crossref_primary_10_1016_S0012_365X_99_90057_2
crossref_primary_10_1002_jgt_20186
crossref_primary_10_1007_s10998_024_00586_1
crossref_primary_10_1002_jgt_20185
crossref_primary_10_1137_0401012
crossref_primary_10_1002_jgt_3190180211
crossref_primary_10_1016_j_dam_2006_10_010
crossref_primary_10_4213_dm1515
crossref_primary_10_1016_j_disc_2007_07_024
crossref_primary_10_1016_j_dam_2007_02_010
crossref_primary_10_4213_dm1554
crossref_primary_10_4213_dm1357
crossref_primary_10_1137_0406022
crossref_primary_10_1016_j_disc_2024_113910
crossref_primary_10_1016_j_jcss_2014_04_025
crossref_primary_10_1007_BF01858464
crossref_primary_10_1142_S0218196721500375
crossref_primary_10_1016_j_amc_2024_128711
crossref_primary_10_1109_JIOT_2022_3228863
crossref_primary_10_1007_BF01098364
crossref_primary_10_1002_net_3230230308
crossref_primary_10_1007_BF02896409
crossref_primary_10_1002_jgt_22042
crossref_primary_10_1002_jgt_23122
crossref_primary_10_1002_jgt_3190170407
crossref_primary_10_1016_j_dam_2011_10_024
crossref_primary_10_1016_j_disc_2007_07_079
crossref_primary_10_1016_j_endm_2004_06_030
crossref_primary_10_1007_s12190_011_0517_9
crossref_primary_10_1016_j_disc_2005_11_074
crossref_primary_10_1016_S0012_365X_97_81813_4
crossref_primary_10_1016_j_ipl_2008_10_013
crossref_primary_10_1515_dma_2021_0012
crossref_primary_10_1515_dma_2020_0006
crossref_primary_10_1134_S1990478924010149
crossref_primary_10_1007_s00373_017_1825_0
crossref_primary_10_1016_j_artint_2016_09_004
crossref_primary_10_1002_jgt_22422
crossref_primary_10_1016_j_disc_2007_10_032
crossref_primary_10_1002_jgt_22627
crossref_primary_10_1002_jgt_22629
crossref_primary_10_1016_j_amc_2022_127107
crossref_primary_10_1016_j_dam_2022_03_012
crossref_primary_10_11650_twjm_1500405548
crossref_primary_10_1515_dma_2016_0028
crossref_primary_10_1007_s12065_021_00696_6
crossref_primary_10_1007_s10878_023_01076_9
crossref_primary_10_1016_j_endm_2017_07_053
crossref_primary_10_1016_j_dam_2023_06_023
crossref_primary_10_1109_TVT_2017_2771416
crossref_primary_10_11650_twjm_1500404576
crossref_primary_10_1002_jgt_22971
crossref_primary_10_1016_S0166_218X_97_00033_4
crossref_primary_10_1016_j_tcs_2019_08_008
crossref_primary_10_1109_TBME_2014_2375360
Cites_doi 10.1007/BF02760024
10.1137/0607015
ContentType Journal Article
Copyright 1988
1988 INIST-CNRS
Copyright_xml – notice: 1988
– notice: 1988 INIST-CNRS
DBID 6I.
AAFTH
IQODW
AAYXX
CITATION
DOI 10.1016/0012-365X(88)90114-8
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
Pascal-Francis
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1872-681X
EndPage 220
ExternalDocumentID 10_1016_0012_365X_88_90114_8
7561643
0012365X88901148
GroupedDBID --K
--M
-DZ
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29G
4.4
41~
457
4G.
5GY
5VS
6I.
6OB
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
KOM
M26
M41
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
TN5
UPT
VH1
WH7
WUQ
XJT
XOL
XPP
ZCG
ZMT
ZY4
~G-
AAPBV
ABPIF
ABPTK
IQODW
0SF
AAXKI
AAYXX
ADVLN
AFJKZ
AKRWK
CITATION
ID FETCH-LOGICAL-c447t-33fa23584a181df6872e34d85fda26575fb783876685a5c4be512034f37c7b23
IEDL.DBID IXB
ISSN 0012-365X
IngestDate Thu Sep 26 17:34:30 EDT 2024
Sun Oct 29 17:09:40 EDT 2023
Fri Feb 23 02:29:26 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Connected graph
Graph theory
Clique graph
Extremum problem
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c447t-33fa23584a181df6872e34d85fda26575fb783876685a5c4be512034f37c7b23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/0012365X88901148
PageCount 10
ParticipantIDs crossref_primary_10_1016_0012_365X_88_90114_8
pascalfrancis_primary_7561643
elsevier_sciencedirect_doi_10_1016_0012_365X_88_90114_8
PublicationCentury 1900
PublicationDate 1988-00-00
PublicationDateYYYYMMDD 1988-01-01
PublicationDate_xml – year: 1988
  text: 1988-00-00
PublicationDecade 1980
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Discrete mathematics
PublicationYear 1988
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References B.E. Sagan, Independent sets in trees, preprint.
Z. Fűredi, The number of maximal independent sets in connected graphs, preprint.
Moon, Moser (BIB3) 1965; 3
Wilf (BIB5) 1986; 7
Harary (BIB2) 1969
10.1016/0012-365X(88)90114-8_BIB1
Wilf (10.1016/0012-365X(88)90114-8_BIB5) 1986; 7
10.1016/0012-365X(88)90114-8_BIB4
Moon (10.1016/0012-365X(88)90114-8_BIB3) 1965; 3
Harary (10.1016/0012-365X(88)90114-8_BIB2) 1969
References_xml – volume: 7
  start-page: 125
  year: 1986
  end-page: 130
  ident: BIB5
  article-title: The number of maximal independent sets in a tree
  publication-title: SIAM J. Alg. Discrete Methods
  contributor:
    fullname: Wilf
– year: 1969
  ident: BIB2
  article-title: Graph Theory
  contributor:
    fullname: Harary
– volume: 3
  start-page: 23
  year: 1965
  end-page: 28
  ident: BIB3
  article-title: On cliques in graphs
  publication-title: Israel J. Math.
  contributor:
    fullname: Moser
– volume: 3
  start-page: 23
  issue: 1
  year: 1965
  ident: 10.1016/0012-365X(88)90114-8_BIB3
  article-title: On cliques in graphs
  publication-title: Israel J. Math.
  doi: 10.1007/BF02760024
  contributor:
    fullname: Moon
– volume: 7
  start-page: 125
  year: 1986
  ident: 10.1016/0012-365X(88)90114-8_BIB5
  article-title: The number of maximal independent sets in a tree
  publication-title: SIAM J. Alg. Discrete Methods
  doi: 10.1137/0607015
  contributor:
    fullname: Wilf
– year: 1969
  ident: 10.1016/0012-365X(88)90114-8_BIB2
  contributor:
    fullname: Harary
– ident: 10.1016/0012-365X(88)90114-8_BIB4
– ident: 10.1016/0012-365X(88)90114-8_BIB1
SSID ssj0001638
Score 1.5188603
Snippet We determine the maximum number of maximal independent sets which a connected graph on n vertices can have, and we completely characterize the extremal graphs,...
SourceID crossref
pascalfrancis
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 211
SubjectTerms Combinatorics
Combinatorics. Ordered structures
Exact sciences and technology
Graph theory
Mathematics
Sciences and techniques of general use
Title The number of maximal independent sets in a connected graph
URI https://dx.doi.org/10.1016/0012-365X(88)90114-8
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA4yL4qIP3HqRg4e9BC6Nm3ziqdNHMM5DzK1t5KmCeywH9gK_vm-tF3ZDiJ4KoQmLV_a731p875HyA1GyEgo6TIXbEpOFCkmwyhgkFo3KhPJrHTXn7yEozf_KQ7ijVwYu62y5v6K00u2rlucGk1nNZs5lftYEANEpahHGuYYnG0OXzxoyNjKjYqMPWbPXmfPuaHTtN0C3JVjMPgtOh2sZI6YmarYxUYEGh6Rw1o60n51d8dkRy9OyP6k8V3NT8k9zjqtinzQpaFz-T2bY5dZU-u2oLkucmygkiq7x0Wh4qSla_UZmQ4fpw8jVpdHYMr3RcE4N9ImuvoSo3RmQhCe5n4GgcmkZ_-nmFQAR7YLIZCB8lONwb3HfcOFEqnHz0lrsVzoC0KNSXs61Frg8sL3rHmp4rhyAren8PXN3DZha1SSVWWCkax3h1kUE4tiApCUKCbQJmINXbI1mQny9B89O1tIN5cTqPNQPF3-e-QrsudGANXXk2vSKj6_dAf1RJF2yW5_8D5-tsfx68e4Wz5BP4vexKw
link.rule.ids 315,783,787,3515,4033,27583,27937,27938,27939,45677,45888
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWgPQBCiFUUKPjAAQ5WmtUTcQJEVehyKqg3y3FsqYcuokHi8xlnU3tASFwt2YmekzfPycwbQm4xQsZcSZe5YEty4lgxGcUhg8S6UZlYprm7_nAU9d6Dt0k4WauFsWmVJfcXnJ6zdTnilGg6y-nUKdzHwglAnIv6bdJEMcDxANZ8fProD2o-toqj4GOP2QlVAZ0bOfXYHcB9vgyD3wLU_lKuEDZT9LtYC0LdQ3JQqkf6WNzgEdnS82OyN6ytV1cn5AE3nhZ9PujC0Jn8ns5wyrRud5vRlc5WOEAlVTbNRaHopLlx9SkZd1_Gzz1WdkhgKgh4xnzfSFvrGkgM1KmJgHvaD1IITSo9-0vFJBx8JLwIQhmqINEY3zt-YHyueOL5Z6QxX8z1OaHGJB0dac3xhBF41r9U-Xh4Arej8A1O3RZhFSpiWfhgiCpBzKIoLIoCQOQoCmgRXkEnNvZTIFX_MbO9gXR9OY5SD_XTxb9XviE7vfFwIAavo_4l2XVjgOJjyhVpZJ9fuo3yIkuuy-fnB1U7xb4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+number+of+maximal+independent+sets+in+a+connected+graph&rft.jtitle=Discrete+mathematics&rft.au=GRIGGS%2C+J.+R&rft.au=GRINSTEAD%2C+C.+M&rft.au=GUICHARD%2C+D.+R&rft.date=1988&rft.pub=Elsevier&rft.issn=0012-365X&rft.eissn=1872-681X&rft.volume=68&rft.issue=2-3&rft.spage=211&rft.epage=220&rft_id=info:doi/10.1016%2F0012-365X%2888%2990114-8&rft.externalDBID=n%2Fa&rft.externalDocID=7561643
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-365X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-365X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-365X&client=summon