The number of maximal independent sets in a connected graph
We determine the maximum number of maximal independent sets which a connected graph on n vertices can have, and we completely characterize the extremal graphs, thereby answering a question of Wilf.
Saved in:
Published in | Discrete mathematics Vol. 68; no. 2; pp. 211 - 220 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
1988
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We determine the maximum number of maximal independent sets which a connected graph on
n vertices can have, and we completely characterize the extremal graphs, thereby answering a question of Wilf. |
---|---|
AbstractList | We determine the maximum number of maximal independent sets which a connected graph on
n vertices can have, and we completely characterize the extremal graphs, thereby answering a question of Wilf. |
Author | Griggs, Jerrold R. Guichard, David R. Grinstead, Charles M. |
Author_xml | – sequence: 1 givenname: Jerrold R. surname: Griggs fullname: Griggs, Jerrold R. organization: Department of Mathematics, University of South Carolina, Columbia, SC 29208, U.S.A – sequence: 2 givenname: Charles M. surname: Grinstead fullname: Grinstead, Charles M. organization: Department of Mathematics, Swarthmore College, Swarthmore, PA 19081, U.S.A – sequence: 3 givenname: David R. surname: Guichard fullname: Guichard, David R. organization: Department of Mathematics, Whitman College, Walla Walla, WA 99362, U.S.A |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7561643$$DView record in Pascal Francis |
BookMark | eNp9j01LAzEQhoNUsFb_gYccPOhhNdl8jQiCFL-g4KWH3kI2O7ErbbYkq-i_N7XSo5cZZnjfmfc5JqPYRyTkjLMrzri-ZozXldBqcQFwecM4lxUckDEHU1ca-GJExnvJETnO-Z2VWQsYk9v5Emn8WDeYaB_o2n11a7eiXWxxg6XEgWYccllQR30fI_oBW_qW3GZ5Qg6DW2U8_esTMn98mE-fq9nr08v0flZ5Kc1QCRFcLRRIx4G3QZdUKGQLKrSu1sqo0BgQYLQG5ZSXDSpeMyGDMN40tZgQuTvrU59zwmA3qYRM35Yzu-W3Wzi7hbMA9pffQrGd72wbl71bheSi7_Lea5TmWooiu9vJsBB8dphs9h1Gj22XCqtt--7_Pz8-QW83 |
CODEN | DSMHA4 |
CitedBy_id | crossref_primary_10_1111_itor_12291 crossref_primary_10_1002_jgt_3190150208 crossref_primary_10_1016_j_ejc_2022_103575 crossref_primary_10_1016_j_disc_2017_08_015 crossref_primary_10_1016_S0012_365X_99_90057_2 crossref_primary_10_1002_jgt_20186 crossref_primary_10_1007_s10998_024_00586_1 crossref_primary_10_1002_jgt_20185 crossref_primary_10_1137_0401012 crossref_primary_10_1002_jgt_3190180211 crossref_primary_10_1016_j_dam_2006_10_010 crossref_primary_10_4213_dm1515 crossref_primary_10_1016_j_disc_2007_07_024 crossref_primary_10_1016_j_dam_2007_02_010 crossref_primary_10_4213_dm1554 crossref_primary_10_4213_dm1357 crossref_primary_10_1137_0406022 crossref_primary_10_1016_j_disc_2024_113910 crossref_primary_10_1016_j_jcss_2014_04_025 crossref_primary_10_1007_BF01858464 crossref_primary_10_1142_S0218196721500375 crossref_primary_10_1016_j_amc_2024_128711 crossref_primary_10_1109_JIOT_2022_3228863 crossref_primary_10_1007_BF01098364 crossref_primary_10_1002_net_3230230308 crossref_primary_10_1007_BF02896409 crossref_primary_10_1002_jgt_22042 crossref_primary_10_1002_jgt_23122 crossref_primary_10_1002_jgt_3190170407 crossref_primary_10_1016_j_dam_2011_10_024 crossref_primary_10_1016_j_disc_2007_07_079 crossref_primary_10_1016_j_endm_2004_06_030 crossref_primary_10_1007_s12190_011_0517_9 crossref_primary_10_1016_j_disc_2005_11_074 crossref_primary_10_1016_S0012_365X_97_81813_4 crossref_primary_10_1016_j_ipl_2008_10_013 crossref_primary_10_1515_dma_2021_0012 crossref_primary_10_1515_dma_2020_0006 crossref_primary_10_1134_S1990478924010149 crossref_primary_10_1007_s00373_017_1825_0 crossref_primary_10_1016_j_artint_2016_09_004 crossref_primary_10_1002_jgt_22422 crossref_primary_10_1016_j_disc_2007_10_032 crossref_primary_10_1002_jgt_22627 crossref_primary_10_1002_jgt_22629 crossref_primary_10_1016_j_amc_2022_127107 crossref_primary_10_1016_j_dam_2022_03_012 crossref_primary_10_11650_twjm_1500405548 crossref_primary_10_1515_dma_2016_0028 crossref_primary_10_1007_s12065_021_00696_6 crossref_primary_10_1007_s10878_023_01076_9 crossref_primary_10_1016_j_endm_2017_07_053 crossref_primary_10_1016_j_dam_2023_06_023 crossref_primary_10_1109_TVT_2017_2771416 crossref_primary_10_11650_twjm_1500404576 crossref_primary_10_1002_jgt_22971 crossref_primary_10_1016_S0166_218X_97_00033_4 crossref_primary_10_1016_j_tcs_2019_08_008 crossref_primary_10_1109_TBME_2014_2375360 |
Cites_doi | 10.1007/BF02760024 10.1137/0607015 |
ContentType | Journal Article |
Copyright | 1988 1988 INIST-CNRS |
Copyright_xml | – notice: 1988 – notice: 1988 INIST-CNRS |
DBID | 6I. AAFTH IQODW AAYXX CITATION |
DOI | 10.1016/0012-365X(88)90114-8 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access Pascal-Francis CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1872-681X |
EndPage | 220 |
ExternalDocumentID | 10_1016_0012_365X_88_90114_8 7561643 0012365X88901148 |
GroupedDBID | --K --M -DZ -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29G 4.4 41~ 457 4G. 5GY 5VS 6I. 6OB 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AASFE AAXUO ABAOU ABEFU ABFNM ABJNI ABMAC ABTAH ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE ADIYS ADMUD AEBSH AEKER AENEX AEXQZ AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE IXB J1W KOM M26 M41 MHUIS MO0 MVM N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSW SSZ T5K TN5 UPT VH1 WH7 WUQ XJT XOL XPP ZCG ZMT ZY4 ~G- AAPBV ABPIF ABPTK IQODW 0SF AAXKI AAYXX ADVLN AFJKZ AKRWK CITATION |
ID | FETCH-LOGICAL-c447t-33fa23584a181df6872e34d85fda26575fb783876685a5c4be512034f37c7b23 |
IEDL.DBID | IXB |
ISSN | 0012-365X |
IngestDate | Thu Sep 26 17:34:30 EDT 2024 Sun Oct 29 17:09:40 EDT 2023 Fri Feb 23 02:29:26 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Connected graph Graph theory Clique graph Extremum problem |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c447t-33fa23584a181df6872e34d85fda26575fb783876685a5c4be512034f37c7b23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/0012365X88901148 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1016_0012_365X_88_90114_8 pascalfrancis_primary_7561643 elsevier_sciencedirect_doi_10_1016_0012_365X_88_90114_8 |
PublicationCentury | 1900 |
PublicationDate | 1988-00-00 |
PublicationDateYYYYMMDD | 1988-01-01 |
PublicationDate_xml | – year: 1988 text: 1988-00-00 |
PublicationDecade | 1980 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Discrete mathematics |
PublicationYear | 1988 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | B.E. Sagan, Independent sets in trees, preprint. Z. Fűredi, The number of maximal independent sets in connected graphs, preprint. Moon, Moser (BIB3) 1965; 3 Wilf (BIB5) 1986; 7 Harary (BIB2) 1969 10.1016/0012-365X(88)90114-8_BIB1 Wilf (10.1016/0012-365X(88)90114-8_BIB5) 1986; 7 10.1016/0012-365X(88)90114-8_BIB4 Moon (10.1016/0012-365X(88)90114-8_BIB3) 1965; 3 Harary (10.1016/0012-365X(88)90114-8_BIB2) 1969 |
References_xml | – volume: 7 start-page: 125 year: 1986 end-page: 130 ident: BIB5 article-title: The number of maximal independent sets in a tree publication-title: SIAM J. Alg. Discrete Methods contributor: fullname: Wilf – year: 1969 ident: BIB2 article-title: Graph Theory contributor: fullname: Harary – volume: 3 start-page: 23 year: 1965 end-page: 28 ident: BIB3 article-title: On cliques in graphs publication-title: Israel J. Math. contributor: fullname: Moser – volume: 3 start-page: 23 issue: 1 year: 1965 ident: 10.1016/0012-365X(88)90114-8_BIB3 article-title: On cliques in graphs publication-title: Israel J. Math. doi: 10.1007/BF02760024 contributor: fullname: Moon – volume: 7 start-page: 125 year: 1986 ident: 10.1016/0012-365X(88)90114-8_BIB5 article-title: The number of maximal independent sets in a tree publication-title: SIAM J. Alg. Discrete Methods doi: 10.1137/0607015 contributor: fullname: Wilf – year: 1969 ident: 10.1016/0012-365X(88)90114-8_BIB2 contributor: fullname: Harary – ident: 10.1016/0012-365X(88)90114-8_BIB4 – ident: 10.1016/0012-365X(88)90114-8_BIB1 |
SSID | ssj0001638 |
Score | 1.5188603 |
Snippet | We determine the maximum number of maximal independent sets which a connected graph on
n vertices can have, and we completely characterize the extremal graphs,... |
SourceID | crossref pascalfrancis elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 211 |
SubjectTerms | Combinatorics Combinatorics. Ordered structures Exact sciences and technology Graph theory Mathematics Sciences and techniques of general use |
Title | The number of maximal independent sets in a connected graph |
URI | https://dx.doi.org/10.1016/0012-365X(88)90114-8 |
Volume | 68 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA4yL4qIP3HqRg4e9BC6Nm3ziqdNHMM5DzK1t5KmCeywH9gK_vm-tF3ZDiJ4KoQmLV_a731p875HyA1GyEgo6TIXbEpOFCkmwyhgkFo3KhPJrHTXn7yEozf_KQ7ijVwYu62y5v6K00u2rlucGk1nNZs5lftYEANEpahHGuYYnG0OXzxoyNjKjYqMPWbPXmfPuaHTtN0C3JVjMPgtOh2sZI6YmarYxUYEGh6Rw1o60n51d8dkRy9OyP6k8V3NT8k9zjqtinzQpaFz-T2bY5dZU-u2oLkucmygkiq7x0Wh4qSla_UZmQ4fpw8jVpdHYMr3RcE4N9ImuvoSo3RmQhCe5n4GgcmkZ_-nmFQAR7YLIZCB8lONwb3HfcOFEqnHz0lrsVzoC0KNSXs61Frg8sL3rHmp4rhyAren8PXN3DZha1SSVWWCkax3h1kUE4tiApCUKCbQJmINXbI1mQny9B89O1tIN5cTqPNQPF3-e-QrsudGANXXk2vSKj6_dAf1RJF2yW5_8D5-tsfx68e4Wz5BP4vexKw |
link.rule.ids | 315,783,787,3515,4033,27583,27937,27938,27939,45677,45888 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWgPQBCiFUUKPjAAQ5WmtUTcQJEVehyKqg3y3FsqYcuokHi8xlnU3tASFwt2YmekzfPycwbQm4xQsZcSZe5YEty4lgxGcUhg8S6UZlYprm7_nAU9d6Dt0k4WauFsWmVJfcXnJ6zdTnilGg6y-nUKdzHwglAnIv6bdJEMcDxANZ8fProD2o-toqj4GOP2QlVAZ0bOfXYHcB9vgyD3wLU_lKuEDZT9LtYC0LdQ3JQqkf6WNzgEdnS82OyN6ytV1cn5AE3nhZ9PujC0Jn8ns5wyrRud5vRlc5WOEAlVTbNRaHopLlx9SkZd1_Gzz1WdkhgKgh4xnzfSFvrGkgM1KmJgHvaD1IITSo9-0vFJBx8JLwIQhmqINEY3zt-YHyueOL5Z6QxX8z1OaHGJB0dac3xhBF41r9U-Xh4Arej8A1O3RZhFSpiWfhgiCpBzKIoLIoCQOQoCmgRXkEnNvZTIFX_MbO9gXR9OY5SD_XTxb9XviE7vfFwIAavo_4l2XVjgOJjyhVpZJ9fuo3yIkuuy-fnB1U7xb4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+number+of+maximal+independent+sets+in+a+connected+graph&rft.jtitle=Discrete+mathematics&rft.au=GRIGGS%2C+J.+R&rft.au=GRINSTEAD%2C+C.+M&rft.au=GUICHARD%2C+D.+R&rft.date=1988&rft.pub=Elsevier&rft.issn=0012-365X&rft.eissn=1872-681X&rft.volume=68&rft.issue=2-3&rft.spage=211&rft.epage=220&rft_id=info:doi/10.1016%2F0012-365X%2888%2990114-8&rft.externalDBID=n%2Fa&rft.externalDocID=7561643 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-365X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-365X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-365X&client=summon |