Batch-Fabricated α-Si Assisted Nanogap Tunneling Junctions

This paper details the design, fabrication, and characterization of highly uniform batch-fabricated sidewall etched vertical nanogap tunneling junctions for bio-sensing applications. The device consists of two vertically stacked gold electrodes separated by a partially etched sacrificial spacer laye...

Full description

Saved in:
Bibliographic Details
Published inNanomaterials (Basel, Switzerland) Vol. 9; no. 5; p. 727
Main Authors Banerjee, Aishwaryadev, Khan, Shakir-Ul Haque, Broadbent, Samuel, Likhite, Rugved, Looper, Ryan, Kim, Hanseup, Mastrangelo, Carlos H.
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 10.05.2019
MDPI AG
Subjects
Online AccessGet full text
ISSN2079-4991
2079-4991
DOI10.3390/nano9050727

Cover

Loading…
Abstract This paper details the design, fabrication, and characterization of highly uniform batch-fabricated sidewall etched vertical nanogap tunneling junctions for bio-sensing applications. The device consists of two vertically stacked gold electrodes separated by a partially etched sacrificial spacer layer of sputtered α-Si and Atomic Layer Deposited (ALD) SiO2. A ~10 nm wide air-gap is formed along the sidewall by a controlled dry etch of the spacer. The thickness of the spacer layer can be tuned by adjusting the number of ALD cycles. The rigorous statistical characterization of the ultra-thin spacer films has also been performed. We fabricated nanogap electrodes under two design layouts with different overlap areas and spacer gaps, from ~4.0 nm to ~9.0 nm. Optical measurements reported an average non-uniformity of 0.46 nm (~8%) and 0.56 nm (~30%) in SiO2 and α-Si film thickness respectively. Direct tunneling and Fowler–Nordheim tunneling measurements were done and the barrier potential of the spacer stack was determined to be ~3.5 eV. I–V measurements showed a maximum resistance of 46 × 103 GΩ and the average dielectric breakdown field of the spacer stack was experimentally determined to be ~11 MV/cm.
AbstractList This paper details the design, fabrication, and characterization of highly uniform batch-fabricated sidewall etched vertical nanogap tunneling junctions for bio-sensing applications. The device consists of two vertically stacked gold electrodes separated by a partially etched sacrificial spacer layer of sputtered α-Si and Atomic Layer Deposited (ALD) SiO . A ~10 nm wide air-gap is formed along the sidewall by a controlled dry etch of the spacer. The thickness of the spacer layer can be tuned by adjusting the number of ALD cycles. The rigorous statistical characterization of the ultra-thin spacer films has also been performed. We fabricated nanogap electrodes under two design layouts with different overlap areas and spacer gaps, from ~4.0 nm to ~9.0 nm. Optical measurements reported an average non-uniformity of 0.46 nm (~8%) and 0.56 nm (~30%) in SiO and α-Si film thickness respectively. Direct tunneling and Fowler-Nordheim tunneling measurements were done and the barrier potential of the spacer stack was determined to be ~3.5 eV. I-V measurements showed a maximum resistance of 46 × 10 GΩ and the average dielectric breakdown field of the spacer stack was experimentally determined to be ~11 MV/cm.
This paper details the design, fabrication, and characterization of highly uniform batch-fabricated sidewall etched vertical nanogap tunneling junctions for bio-sensing applications. The device consists of two vertically stacked gold electrodes separated by a partially etched sacrificial spacer layer of sputtered α-Si and Atomic Layer Deposited (ALD) SiO2. A ~10 nm wide air-gap is formed along the sidewall by a controlled dry etch of the spacer. The thickness of the spacer layer can be tuned by adjusting the number of ALD cycles. The rigorous statistical characterization of the ultra-thin spacer films has also been performed. We fabricated nanogap electrodes under two design layouts with different overlap areas and spacer gaps, from ~4.0 nm to ~9.0 nm. Optical measurements reported an average non-uniformity of 0.46 nm (~8%) and 0.56 nm (~30%) in SiO2 and α-Si film thickness respectively. Direct tunneling and Fowler-Nordheim tunneling measurements were done and the barrier potential of the spacer stack was determined to be ~3.5 eV. I-V measurements showed a maximum resistance of 46 × 103 GΩ and the average dielectric breakdown field of the spacer stack was experimentally determined to be ~11 MV/cm.This paper details the design, fabrication, and characterization of highly uniform batch-fabricated sidewall etched vertical nanogap tunneling junctions for bio-sensing applications. The device consists of two vertically stacked gold electrodes separated by a partially etched sacrificial spacer layer of sputtered α-Si and Atomic Layer Deposited (ALD) SiO2. A ~10 nm wide air-gap is formed along the sidewall by a controlled dry etch of the spacer. The thickness of the spacer layer can be tuned by adjusting the number of ALD cycles. The rigorous statistical characterization of the ultra-thin spacer films has also been performed. We fabricated nanogap electrodes under two design layouts with different overlap areas and spacer gaps, from ~4.0 nm to ~9.0 nm. Optical measurements reported an average non-uniformity of 0.46 nm (~8%) and 0.56 nm (~30%) in SiO2 and α-Si film thickness respectively. Direct tunneling and Fowler-Nordheim tunneling measurements were done and the barrier potential of the spacer stack was determined to be ~3.5 eV. I-V measurements showed a maximum resistance of 46 × 103 GΩ and the average dielectric breakdown field of the spacer stack was experimentally determined to be ~11 MV/cm.
This paper details the design, fabrication, and characterization of highly uniform batch-fabricated sidewall etched vertical nanogap tunneling junctions for bio-sensing applications. The device consists of two vertically stacked gold electrodes separated by a partially etched sacrificial spacer layer of sputtered α-Si and Atomic Layer Deposited (ALD) SiO2. A ~10 nm wide air-gap is formed along the sidewall by a controlled dry etch of the spacer. The thickness of the spacer layer can be tuned by adjusting the number of ALD cycles. The rigorous statistical characterization of the ultra-thin spacer films has also been performed. We fabricated nanogap electrodes under two design layouts with different overlap areas and spacer gaps, from ~4.0 nm to ~9.0 nm. Optical measurements reported an average non-uniformity of 0.46 nm (~8%) and 0.56 nm (~30%) in SiO2 and α-Si film thickness respectively. Direct tunneling and Fowler-Nordheim tunneling measurements were done and the barrier potential of the spacer stack was determined to be ~3.5 eV. I-V measurements showed a maximum resistance of 46 × 103 GΩ and the average dielectric breakdown field of the spacer stack was experimentally determined to be ~11 MV/cm.
This paper details the design, fabrication, and characterization of highly uniform batch-fabricated sidewall etched vertical nanogap tunneling junctions for bio-sensing applications. The device consists of two vertically stacked gold electrodes separated by a partially etched sacrificial spacer layer of sputtered α-Si and Atomic Layer Deposited (ALD) SiO 2 . A ~10 nm wide air-gap is formed along the sidewall by a controlled dry etch of the spacer. The thickness of the spacer layer can be tuned by adjusting the number of ALD cycles. The rigorous statistical characterization of the ultra-thin spacer films has also been performed. We fabricated nanogap electrodes under two design layouts with different overlap areas and spacer gaps, from ~4.0 nm to ~9.0 nm. Optical measurements reported an average non-uniformity of 0.46 nm (~8%) and 0.56 nm (~30%) in SiO 2 and α-Si film thickness respectively. Direct tunneling and Fowler–Nordheim tunneling measurements were done and the barrier potential of the spacer stack was determined to be ~3.5 eV. I–V measurements showed a maximum resistance of 46 × 10 3 GΩ and the average dielectric breakdown field of the spacer stack was experimentally determined to be ~11 MV/cm.
Author Banerjee, Aishwaryadev
Looper, Ryan
Broadbent, Samuel
Mastrangelo, Carlos H.
Khan, Shakir-Ul Haque
Likhite, Rugved
Kim, Hanseup
AuthorAffiliation 1 Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT 84112, USA; devaash88@gmail.com (A.B.); khanshakirul@gmail.com (S.-U.H.K.); rugved.likhite@utah.edu (R.L.); hanseup@gmail.com (H.K.)
2 Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA; samuelbroadbentnj@gmail.com (S.B.); r.looper@utah.edu (R.L.)
AuthorAffiliation_xml – name: 2 Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA; samuelbroadbentnj@gmail.com (S.B.); r.looper@utah.edu (R.L.)
– name: 1 Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT 84112, USA; devaash88@gmail.com (A.B.); khanshakirul@gmail.com (S.-U.H.K.); rugved.likhite@utah.edu (R.L.); hanseup@gmail.com (H.K.)
Author_xml – sequence: 1
  givenname: Aishwaryadev
  surname: Banerjee
  fullname: Banerjee, Aishwaryadev
– sequence: 2
  givenname: Shakir-Ul Haque
  surname: Khan
  fullname: Khan, Shakir-Ul Haque
– sequence: 3
  givenname: Samuel
  surname: Broadbent
  fullname: Broadbent, Samuel
– sequence: 4
  givenname: Rugved
  orcidid: 0000-0002-3138-118X
  surname: Likhite
  fullname: Likhite, Rugved
– sequence: 5
  givenname: Ryan
  surname: Looper
  fullname: Looper, Ryan
– sequence: 6
  givenname: Hanseup
  surname: Kim
  fullname: Kim, Hanseup
– sequence: 7
  givenname: Carlos H.
  surname: Mastrangelo
  fullname: Mastrangelo, Carlos H.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31083457$$D View this record in MEDLINE/PubMed
BookMark eNptkV1rFDEUhoO02Fp75b3spSCj-ZwkCEItVitFL6zX4SRzZpsym6zJTKE_yz_ib3K2W8tWzE2-nvO8IecZ2Us5ISEvGH0jhKVvE6RsqaKa6yfkkFNtG2kt29tZH5DjWq_pPCwTRomn5EAwaoRU-pC8-wBjuGrOwJcYYMRu8ftX8z0uTmqNdbP9OgcsYb24nFLCIabl4suUwhhzqs_Jfg9DxeP7-Yj8OPt4efq5ufj26fz05KIJUuqx4ch6gNYq31MbGOcSQ89aVExYrQIDwwUapY0WHcPeawXSWMZ06AACUHFEzrfeLsO1W5e4gnLrMkR3d5DL0kEZYxjQgTdeG4EdsyC9t162VqDV0CNvKeLser91rSe_wi5gGgsMj6SPb1K8cst841rVasbMLHh1Lyj554R1dKtYAw4DJMxTdZwLZm2rhJzRl7tZDyF_f38GXm-BUHKtBfsHhFG3aa_bae9Ms3_oEEfYdGJ-aBz-W_MH_zCo-Q
CitedBy_id crossref_primary_10_1016_j_snb_2020_127817
crossref_primary_10_1021_acsnano_4c17223
crossref_primary_10_1021_acsaelm_2c00328
crossref_primary_10_1007_s12206_021_0243_7
crossref_primary_10_1002_smtd_202300376
crossref_primary_10_3390_micro2040046
crossref_primary_10_1109_JMEMS_2022_3189926
crossref_primary_10_3390_s19183954
crossref_primary_10_1002_apxr_202300123
crossref_primary_10_1038_s41378_021_00252_3
crossref_primary_10_1002_adfm_201908514
crossref_primary_10_1016_j_jece_2024_114380
crossref_primary_10_3390_s21041253
Cites_doi 10.1109/ICSENS.2018.8589579
10.1126/science.1120986
10.1088/0957-4484/21/44/445304
10.1109/ICSENS.2016.7808784
10.1063/1.3610486
10.1126/science.286.5444.1550
10.1016/j.cap.2011.07.045
10.1063/1.89690
10.1002/smll.201002103
10.1109/ICSENS.2015.7370441
10.1021/ja065789d
10.1063/1.1899251
10.1002/adma.200900864
10.1039/b615538c
10.1039/c3nr33727h
10.1149/MA2005-01/9/404
10.1109/ICSENS.2016.7808637
10.1039/c0jm03291c
10.1109/ICSENS.2015.7370582
10.1109/ICSENS.2017.8234278
10.1088/0957-4484/16/6/022
10.1016/0026-2692(95)00104-2
10.1038/nature04699
10.1016/j.actamat.2013.09.003
10.1088/0957-4484/13/1/302
10.1126/science.1057553
10.1116/1.576863
10.1063/1.1702682
ContentType Journal Article
Copyright 2019 by the authors. 2019
Copyright_xml – notice: 2019 by the authors. 2019
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3390/nano9050727
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-4991
ExternalDocumentID oai_doaj_org_article_ab8b783ed19a4bb9b4693e97afe260ee
PMC6567118
31083457
10_3390_nano9050727
Genre Journal Article
GrantInformation_xml – fundername: Defense Sciences Office, DARPA
  grantid: HR0011-15-2-0049
GroupedDBID 53G
5VS
8FE
8FG
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ABJCF
ADBBV
ADMLS
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
D1I
GROUPED_DOAJ
HCIFZ
HYE
I-F
KB.
KQ8
LK8
M7P
MODMG
M~E
OK1
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
NPM
7X8
PQGLB
5PM
PUEGO
ID FETCH-LOGICAL-c447t-2e1faa695bf09c1224ecf16e513975c1a823e857873d1efb75a489117cdaaca03
IEDL.DBID DOA
ISSN 2079-4991
IngestDate Wed Aug 27 01:13:04 EDT 2025
Thu Aug 21 18:14:34 EDT 2025
Thu Jul 10 22:44:37 EDT 2025
Wed Feb 19 02:34:15 EST 2025
Tue Jul 01 01:16:43 EDT 2025
Thu Apr 24 22:55:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords bio-sensing
gold adhesion
nanogap electrodes
quantum tunneling
molecular junctions
batch fabrication
protein detection
α-Si
IOT
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c447t-2e1faa695bf09c1224ecf16e513975c1a823e857873d1efb75a489117cdaaca03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3138-118X
OpenAccessLink https://doaj.org/article/ab8b783ed19a4bb9b4693e97afe260ee
PMID 31083457
PQID 2231996534
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_ab8b783ed19a4bb9b4693e97afe260ee
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6567118
proquest_miscellaneous_2231996534
pubmed_primary_31083457
crossref_primary_10_3390_nano9050727
crossref_citationtrail_10_3390_nano9050727
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190510
PublicationDateYYYYMMDD 2019-05-10
PublicationDate_xml – month: 5
  year: 2019
  text: 20190510
  day: 10
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Nanomaterials (Basel, Switzerland)
PublicationTitleAlternate Nanomaterials (Basel)
PublicationYear 2019
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References Guo (ref_12) 2006; 311
Kim (ref_7) 2011; 7
George (ref_24) 1990; 8
Chen (ref_4) 1999; 286
Han (ref_23) 2012; 12
Valitova (ref_25) 2013; 5
Tyagi (ref_2) 2007; 129
Ashwell (ref_3) 2007; 12
Dolan (ref_8) 1977; 31
ref_19
ref_18
ref_17
ref_16
ref_15
Verweij (ref_30) 1996; 27
Akkerman (ref_5) 2006; 441
Cui (ref_6) 2001; 13
Tyagi (ref_14) 2011; 21
Horiuchi (ref_11) 2005; 86
ref_22
ref_21
ref_20
Felix (ref_9) 2010; 21
Li (ref_13) 2010; 22
Usui (ref_31) 2013; 61
Howell (ref_1) 2005; 16
ref_29
ref_27
Simmons (ref_28) 1963; 34
Hatzor (ref_10) 2001; 291
Ikuno (ref_26) 2011; 99
References_xml – ident: ref_20
  doi: 10.1109/ICSENS.2018.8589579
– volume: 311
  start-page: 356
  year: 2006
  ident: ref_12
  article-title: Covalently bridging gaps in single-walled carbon nanotubes with conducting molecules
  publication-title: Science
  doi: 10.1126/science.1120986
– volume: 21
  start-page: 445304
  year: 2010
  ident: ref_9
  article-title: Controlled electroplating and electromigration in nickel electrodes for nanogap formation
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/21/44/445304
– ident: ref_21
  doi: 10.1109/ICSENS.2016.7808784
– volume: 99
  start-page: 023107
  year: 2011
  ident: ref_26
  article-title: Electron transport properties of Si nanosheets: Transition from direct tunneling to Fowler-Nordheim tunneling
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3610486
– volume: 286
  start-page: 1550
  year: 1999
  ident: ref_4
  article-title: Large on-off ratios and negative differential resistance in a molecular electronic device
  publication-title: Science
  doi: 10.1126/science.286.5444.1550
– volume: 12
  start-page: 434
  year: 2012
  ident: ref_23
  article-title: The electrical properties of dielectric stacks of SiO2 and Al2O3 prepared by atomic layer deposition method
  publication-title: Curr. Appl. Phys.
  doi: 10.1016/j.cap.2011.07.045
– volume: 31
  start-page: 337
  year: 1977
  ident: ref_8
  article-title: Offset masks for lift-off photoprocessing
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.89690
– ident: ref_18
– volume: 7
  start-page: 2210
  year: 2011
  ident: ref_7
  article-title: Nanogap electrode fabrication for a nanoscale device by volume-expanding electrochemical synthesis
  publication-title: Small
  doi: 10.1002/smll.201002103
– ident: ref_19
  doi: 10.1109/ICSENS.2015.7370441
– volume: 129
  start-page: 4929
  year: 2007
  ident: ref_2
  article-title: Molecular electrodes at the exposed edge of metal/insulator/metal trilayer structures
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja065789d
– volume: 86
  start-page: 153108
  year: 2005
  ident: ref_11
  article-title: Fabrication of nanoscale C60 field-effect transistors with carbon nanotubes
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1899251
– volume: 22
  start-page: 286
  year: 2010
  ident: ref_13
  article-title: Nanogap electrodes: Nanogap electrodes
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200900864
– volume: 12
  start-page: 1254
  year: 2007
  ident: ref_3
  article-title: Molecular electronics: Connection across nano-sized electrode gaps
  publication-title: Chem. Commun.
  doi: 10.1039/b615538c
– ident: ref_27
– volume: 5
  start-page: 4638
  year: 2013
  ident: ref_25
  article-title: Carbon nanotube electrodes in organic transistors
  publication-title: Nanoscale
  doi: 10.1039/c3nr33727h
– ident: ref_29
  doi: 10.1149/MA2005-01/9/404
– ident: ref_15
  doi: 10.1109/ICSENS.2016.7808637
– volume: 21
  start-page: 4733
  year: 2011
  ident: ref_14
  article-title: Multilayer edge molecular electronics devices: A review
  publication-title: J. Mater. Chem.
  doi: 10.1039/c0jm03291c
– ident: ref_22
  doi: 10.1109/ICSENS.2015.7370582
– ident: ref_16
  doi: 10.1109/ICSENS.2017.8234278
– volume: 16
  start-page: 754
  year: 2005
  ident: ref_1
  article-title: Mass-fabricated one-dimensional silicon nanogaps for hybrid organic/nanoparticle arrays
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/16/6/022
– volume: 27
  start-page: 611
  year: 1996
  ident: ref_30
  article-title: Dielectric breakdown I: A review of oxide breakdown
  publication-title: Microelectr. J.
  doi: 10.1016/0026-2692(95)00104-2
– ident: ref_17
– volume: 441
  start-page: 69
  year: 2006
  ident: ref_5
  article-title: Towards molecular electronics with large-area molecular junctions
  publication-title: Nature
  doi: 10.1038/nature04699
– volume: 61
  start-page: 7660
  year: 2013
  ident: ref_31
  article-title: Approaching the limits of dielectric breakdown for SiO2 films deposited by plasma-enhanced atomic layer deposition
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2013.09.003
– volume: 13
  start-page: 5
  year: 2001
  ident: ref_6
  article-title: Making electrical contacts to molecular monolayers
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/13/1/302
– volume: 291
  start-page: 1019
  year: 2001
  ident: ref_10
  article-title: Molecular rulers for scaling down nanostructures
  publication-title: Science
  doi: 10.1126/science.1057553
– volume: 8
  start-page: 1491
  year: 1990
  ident: ref_24
  article-title: Thermally induced changes in the resistance, microstructure, and adhesion of thin gold films on Si/SiO2 substrates
  publication-title: J. Vac. Sci. Technol. A
  doi: 10.1116/1.576863
– volume: 34
  start-page: 1793
  year: 1963
  ident: ref_28
  article-title: Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1702682
SSID ssj0000913853
Score 2.2049477
Snippet This paper details the design, fabrication, and characterization of highly uniform batch-fabricated sidewall etched vertical nanogap tunneling junctions for...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 727
SubjectTerms batch fabrication
bio-sensing
gold adhesion
IOT
molecular junctions
nanogap electrodes
protein detection
quantum tunneling
α-Si
Title Batch-Fabricated α-Si Assisted Nanogap Tunneling Junctions
URI https://www.ncbi.nlm.nih.gov/pubmed/31083457
https://www.proquest.com/docview/2231996534
https://pubmed.ncbi.nlm.nih.gov/PMC6567118
https://doaj.org/article/ab8b783ed19a4bb9b4693e97afe260ee
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NThsxELYoXOgB8VNKCo22Eicki2xsr21xIoiAOKCqBYnbyj_jgoQ2CJIH64v0mTrjDdGmQuqF6-6sdjRjz3wjj79h7DBqH02SiSO0d1ymYeAWouQCqiooK0H4zPZ5XV3eyqs7ddcZ9UU9YS09cGu4Y-eN10ZALK2T3luP9ZwAq10ChOIAFH0x53WKqRyDbSkwEbUX8gTW9ceNayZ2gOiH5sd0UlBm6n8LXv7bJdlJO-NNtjHHi8Vpq-cWW4Fmm33ssAjusJMRhtN7PnY-j_yBWPz5zX8-FGh58mEsMIJOfrmn4mZGTS34TXGF2SwvuE_sdnx-c3bJ5zMReJBST_kQyuRcZZVPAxvoWAxCKitQhORUKJ0ZCjC0DUUsIXmtnDQY0HSIzgU3ELtstZk0sEdNTRHBDwi6OivLpJ2g_iqTqkqJQbSix45ezVSHOWE4za14rLFwIJvWHZv22OFC-KnlyXhbbET2XogQuXV-gC6v5y6v_-fyHvv26q0aNwOdcLgGJrOXGrEOdVUrIXvsc-u9xa8QxxohFaqgl_y6pMvym-bhPhNuI-bVWIh9eQ_l99k6Yi7LMwHsAVudPs_gK-Kaqe-zD2Z80Wdro_Pr7z_6eUH_BaYX-2Q
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Batch-Fabricated+%CE%B1-Si+Assisted+Nanogap+Tunneling+Junctions&rft.jtitle=Nanomaterials+%28Basel%2C+Switzerland%29&rft.au=Aishwaryadev+Banerjee&rft.au=Shakir-Ul+Haque+Khan&rft.au=Samuel+Broadbent&rft.au=Rugved+Likhite&rft.date=2019-05-10&rft.pub=MDPI+AG&rft.eissn=2079-4991&rft.volume=9&rft.issue=5&rft.spage=727&rft_id=info:doi/10.3390%2Fnano9050727&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ab8b783ed19a4bb9b4693e97afe260ee
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-4991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-4991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-4991&client=summon