Biomarker Identification Through Integrating fMRI and Epigenetics
Objective: Integration of multiple datasets is a hot topic in many fields. When studying complex mental disorders, great effort has been dedicated to fusing genetic and brain imaging data. However, an increasing number of studies have pointed out the importance of epigenetic factors in the cause of...
Saved in:
Published in | IEEE transactions on biomedical engineering Vol. 67; no. 4; pp. 1186 - 1196 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9294 1558-2531 1558-2531 |
DOI | 10.1109/TBME.2019.2932895 |
Cover
Abstract | Objective: Integration of multiple datasets is a hot topic in many fields. When studying complex mental disorders, great effort has been dedicated to fusing genetic and brain imaging data. However, an increasing number of studies have pointed out the importance of epigenetic factors in the cause of psychiatric diseases. In this study, we endeavor to fill the gap by combining epigenetics (e.g., DNA methylation) with imaging data (e.g., fMRI) to identify biomarkers for schizophrenia (SZ). Methods: We propose to combine linear regression with canonical correlation analysis (CCA) in a relaxed yet coupled manner to extract discriminative features for SZ that are co-expressed in the fMRI and DNA methylation data. Result: After validation through simulations, we applied our method to real imaging epigenetics data of 184 subjects from the Mental Illness and Neuroscience Discovery Clinical Imaging Consortium. After significance test, we identified 14 brain regions and 44 cytosine-phosphate-guanine(CpG) sites. Average classification accuracy is \text{88.89}\%. By linking the CpG sites to genes, we identified pathways Guanosine ribonucleotides de novo biosynthesis and Guanosine nucleotides de novo biosynthesis, and a GO term Perikaryon. Conclusion: This imaging epigenetics study has identified both brain regions and genes that are associated with neuron development and memory processing. These biomarkers contribute to a good understanding of the mechanism underlying SZ but are overlooked by previous imaging genetics studies. Significance: Our study sheds light on the understanding and diagnosis of SZ with a imaging epigenetics approach, which is demonstrated to be effective in extracting novel biomarkers associated with SZ. |
---|---|
AbstractList | Integration of multiple datasets is a hot topic in many fields. When studying complex mental disorders, great effort has been dedicated to fusing genetic and brain imaging data. However, an increasing number of studies have pointed out the importance of epigenetic factors in the cause of psychiatric diseases. In this study, we endeavor to fill the gap by combining epigenetics (e.g., DNA methylation) with imaging data (e.g., fMRI) to identify biomarkers for schizophrenia (SZ).OBJECTIVEIntegration of multiple datasets is a hot topic in many fields. When studying complex mental disorders, great effort has been dedicated to fusing genetic and brain imaging data. However, an increasing number of studies have pointed out the importance of epigenetic factors in the cause of psychiatric diseases. In this study, we endeavor to fill the gap by combining epigenetics (e.g., DNA methylation) with imaging data (e.g., fMRI) to identify biomarkers for schizophrenia (SZ).We propose to combine linear regression with canonical correlation analysis (CCA) in a relaxed yet coupled manner to extract discriminative features for SZ that are co-expressed in the fMRI and DNA methylation data.METHODSWe propose to combine linear regression with canonical correlation analysis (CCA) in a relaxed yet coupled manner to extract discriminative features for SZ that are co-expressed in the fMRI and DNA methylation data.After validation through simulations, we applied our method to real imaging epigenetics data of 184 subjects from the Mental Illness and Neuroscience Discovery Clinical Imaging Consortium. After significance test, we identified 14 brain regions and 44 cytosine-phosphate-guanine(CpG) sites. Average classification accuracy is [Formula: see text]. By linking the CpG sites to genes, we identified pathways Guanosine ribonucleotides de novo biosynthesis and Guanosine nucleotides de novo biosynthesis, and a GO term Perikaryon.RESULTAfter validation through simulations, we applied our method to real imaging epigenetics data of 184 subjects from the Mental Illness and Neuroscience Discovery Clinical Imaging Consortium. After significance test, we identified 14 brain regions and 44 cytosine-phosphate-guanine(CpG) sites. Average classification accuracy is [Formula: see text]. By linking the CpG sites to genes, we identified pathways Guanosine ribonucleotides de novo biosynthesis and Guanosine nucleotides de novo biosynthesis, and a GO term Perikaryon.This imaging epigenetics study has identified both brain regions and genes that are associated with neuron development and memory processing. These biomarkers contribute to a good understanding of the mechanism underlying SZ but are overlooked by previous imaging genetics studies.CONCLUSIONThis imaging epigenetics study has identified both brain regions and genes that are associated with neuron development and memory processing. These biomarkers contribute to a good understanding of the mechanism underlying SZ but are overlooked by previous imaging genetics studies.Our study sheds light on the understanding and diagnosis of SZ with a imaging epigenetics approach, which is demonstrated to be effective in extracting novel biomarkers associated with SZ.SIGNIFICANCEOur study sheds light on the understanding and diagnosis of SZ with a imaging epigenetics approach, which is demonstrated to be effective in extracting novel biomarkers associated with SZ. Objective: Integration of multiple datasets is a hot topic in many fields. When studying complex mental disorders, great effort has been dedicated to fusing genetic and brain imaging data. However, an increasing number of studies have pointed out the importance of epigenetic factors in the cause of psychiatric diseases. In this study, we endeavor to fill the gap by combining epigenetics (e.g., DNA methylation) with imaging data (e.g., fMRI) to identify biomarkers for schizophrenia (SZ). Methods: We propose to combine linear regression with canonical correlation analysis (CCA) in a relaxed yet coupled manner to extract discriminative features for SZ that are co-expressed in the fMRI and DNA methylation data. Result: After validation through simulations, we applied our method to real imaging epigenetics data of 184 subjects from the Mental Illness and Neuroscience Discovery Clinical Imaging Consortium. After significance test, we identified 14 brain regions and 44 cytosine-phosphate-guanine(CpG) sites. Average classification accuracy is [Formula Omitted]. By linking the CpG sites to genes, we identified pathways Guanosine ribonucleotides de novo biosynthesis and Guanosine nucleotides de novo biosynthesis, and a GO term Perikaryon. Conclusion: This imaging epigenetics study has identified both brain regions and genes that are associated with neuron development and memory processing. These biomarkers contribute to a good understanding of the mechanism underlying SZ but are overlooked by previous imaging genetics studies. Significance: Our study sheds light on the understanding and diagnosis of SZ with a imaging epigenetics approach, which is demonstrated to be effective in extracting novel biomarkers associated with SZ. Integration of multiple datasets is a hot topic in many fields. When studying complex mental disorders, great effort has been dedicated to fusing genetic and brain imaging data. However, an increasing number of studies have pointed out the importance of epigenetic factors in the cause of psychiatric diseases. In this study, we endeavor to fill the gap by combining epigenetics (e.g., DNA methylation) with imaging data (e.g., fMRI) to identify biomarkers for schizophrenia (SZ). We propose to combine linear regression with canonical correlation analysis (CCA) in a relaxed yet coupled manner to extract discriminative features for SZ that are co-expressed in the fMRI and DNA methylation data. After validation through simulations, we applied our method to real imaging epigenetics data of 184 subjects from the Mental Illness and Neuroscience Discovery Clinical Imaging Consortium. After significance test, we identified 14 brain regions and 44 cytosine-phosphate-guanine(CpG) sites. Average classification accuracy is [Formula: see text]. By linking the CpG sites to genes, we identified pathways Guanosine ribonucleotides de novo biosynthesis and Guanosine nucleotides de novo biosynthesis, and a GO term Perikaryon. This imaging epigenetics study has identified both brain regions and genes that are associated with neuron development and memory processing. These biomarkers contribute to a good understanding of the mechanism underlying SZ but are overlooked by previous imaging genetics studies. Our study sheds light on the understanding and diagnosis of SZ with a imaging epigenetics approach, which is demonstrated to be effective in extracting novel biomarkers associated with SZ. Objective: Integration of multiple datasets is a hot topic in many fields. When studying complex mental disorders, great effort has been dedicated to fusing genetic and brain imaging data. However, an increasing number of studies have pointed out the importance of epigenetic factors in the cause of psychiatric diseases. In this study, we endeavor to fill the gap by combining epigenetics (e.g., DNA methylation) with imaging data (e.g., fMRI) to identify biomarkers for schizophrenia (SZ). Methods: We propose to combine linear regression with canonical correlation analysis (CCA) in a relaxed yet coupled manner to extract discriminative features for SZ that are co-expressed in the fMRI and DNA methylation data. Result: After validation through simulations, we applied our method to real imaging epigenetics data of 184 subjects from the Mental Illness and Neuroscience Discovery Clinical Imaging Consortium. After significance test, we identified 14 brain regions and 44 cytosine-phosphate-guanine(CpG) sites. Average classification accuracy is \text{88.89}\%. By linking the CpG sites to genes, we identified pathways Guanosine ribonucleotides de novo biosynthesis and Guanosine nucleotides de novo biosynthesis, and a GO term Perikaryon. Conclusion: This imaging epigenetics study has identified both brain regions and genes that are associated with neuron development and memory processing. These biomarkers contribute to a good understanding of the mechanism underlying SZ but are overlooked by previous imaging genetics studies. Significance: Our study sheds light on the understanding and diagnosis of SZ with a imaging epigenetics approach, which is demonstrated to be effective in extracting novel biomarkers associated with SZ. |
Author | Hu, Wenxing Pascal, Zille Bai, Yuntong Calhoun, Vince D. Wang, Yu-Ping |
Author_xml | – sequence: 1 givenname: Yuntong orcidid: 0000-0002-8916-3679 surname: Bai fullname: Bai, Yuntong organization: Biomedical Engineering DepartmentTulane University – sequence: 2 givenname: Zille orcidid: 0000-0002-8802-1230 surname: Pascal fullname: Pascal, Zille organization: Biomedical Engineering DepartmentTulane University – sequence: 3 givenname: Wenxing orcidid: 0000-0003-2477-6383 surname: Hu fullname: Hu, Wenxing organization: Biomedical Engineering DepartmentTulane University – sequence: 4 givenname: Vince D. orcidid: 0000-0001-9058-0747 surname: Calhoun fullname: Calhoun, Vince D. organization: Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)Georgia State University – sequence: 5 givenname: Yu-Ping orcidid: 0000-0001-9340-5864 surname: Wang fullname: Wang, Yu-Ping email: wyp@tulane.edu organization: Biomedical Engineering Department, Tulane University, New Orleans, LA, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31395533$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UU1r3DAUFCWl2aT9AaVQDLnk4o0-belSSMK2XUgIlO1ZyPKzV6lX2kp2of8-2u4mJDlUl4f0ZobRzAk68sEDQh8JnhOC1cXq6nYxp5ioOVWMSiXeoBkRQpZUMHKEZhgTWSqq-DE6Sek-X7nk1Tt0zAhTQjA2Q5dXLmxM_AWxWLbgR9c5a0YXfLFaxzD162LpR-hjfvN90d3-WBbGt8Vi63rwMDqb3qO3nRkSfDjMU_Tz62J1_b28ufu2vL68KS3n9VhSC5YIq_KxykqglbBCUEEUUdQ0tRRt0_C2qa2qBMcCKMedNIybjlZdjdkp-rLX3U7NBlqbzUYz6G102f9fHYzTLzferXUf_miZg-GEZoHzg0AMvydIo964ZGEYjIcwJU1pjTEWOaQMPXsFvQ9T9Pl7mjJJJOaC7wQ_P3f0ZOUx3Qyo9wAbQ0oROm3d-C_dbNANmmC961HvetS7HvWhx8wkr5iP4v_jfNpzHAA84WUtK0okewDCRqeO |
CODEN | IEBEAX |
CitedBy_id | crossref_primary_10_1109_TCYB_2024_3353549 crossref_primary_10_1109_TCBB_2022_3143900 crossref_primary_10_1109_TCBB_2022_3172289 crossref_primary_10_1109_TMI_2020_3042786 crossref_primary_10_1109_TMI_2019_2958256 crossref_primary_10_1007_s12561_024_09459_0 crossref_primary_10_1016_j_csbj_2021_10_019 crossref_primary_10_1002_hbm_25090 crossref_primary_10_1109_TBME_2020_3048594 |
Cites_doi | 10.1016/S0920-9964(01)00188-8 10.1055/s-0029-1237423 10.1016/j.neuropharm.2014.01.013 10.1503/jpn.130269 10.1007/s10334-010-0197-8 10.1016/S0893-133X(97)00201-7 10.1002/hbm.20204 10.4161/epi.1.2.2762 10.1016/S0920-9964(99)00083-3 10.1038/ng.886 10.1159/000130315 10.1523/JNEUROSCI.17-11-04302.1997 10.1016/S0140-6736(96)08258-X 10.1002/hipo.1068 10.1007/s00221-006-0503-x 10.1017/S1092852900021295 10.1007/s00213-003-1761-y 10.1093/schbul/sbr151 10.1016/j.sbspro.2013.08.537 10.1007/s12021-013-9184-3 10.1016/j.bspc.2016.02.009 10.1054/mehy.1999.0003 10.1109/TBME.2015.2496233 10.1016/S0006-3223(97)00339-9 10.1093/cercor/bhg107 10.1196/annals.1440.011 10.1016/j.biopsych.2005.01.035 10.1093/hmg/11.5.547 10.1109/TCBB.2019.2899568 10.1016/S0028-3932(03)00119-2 10.1093/schbul/sbn133 10.3389/fnhum.2010.00192 10.1038/nn.3261 10.1371/journal.pone.0068910 10.1038/223580a0 10.1016/j.biopsych.2008.03.031 10.1016/S0920-9964(00)00117-1 10.1016/j.cbpa.2006.08.005 10.1142/9789813207813_0011 10.1126/science.1111098 10.1038/tp.2013.111 10.1176/ajp.157.1.40 10.1016/bs.apcsb.2015.10.003 10.1016/j.neuroimage.2008.05.059 10.1001/archpsyc.59.9.775 10.1186/s13059-017-1215-1 10.1038/npp.2012.125 10.1093/biostatistics/kxu047 10.1371/journal.pone.0042165 10.1093/nar/gks1055 10.1016/j.biopsych.2009.07.027 10.1093/hmg/11.5.559 10.1017/S0022215100080233 10.1002/ajmg.b.20142 10.1001/archpsyc.60.4.349 10.1016/S0924-9338(99)80691-9 10.1176/appi.ajp.2009.09040456 10.1176/ajp.153.2.191 10.1016/S0140-6736(06)69740-7 10.1007/s12021-017-9338-9 10.1001/archpsyc.1987.01800230103016 10.1016/j.tics.2011.04.003 10.1117/12.2513024 10.1117/1.JMI.6.2.026501 10.1109/TBME.2017.2771483 10.1176/appi.ajp.160.1.156 10.1016/S0028-3932(02)00325-1 10.1111/j.2517-6161.1996.tb02080.x 10.1371/journal.pone.0009508 10.1038/sj.mp.4000783 10.1111/j.1467-9868.2010.00740.x 10.1002/ajmg.1320540414 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 5PM |
DOI | 10.1109/TBME.2019.2932895 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-2531 |
EndPage | 1196 |
ExternalDocumentID | PMC8895412 31395533 10_1109_TBME_2019_2932895 8786218 |
Genre | orig-research Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIH grantid: R01GM109068; R01MH104680; R01MH107354; R01MH103220; R01EB005846; R01EB020407 – fundername: NSF grantid: #1539067 – fundername: NIBIB NIH HHS grantid: R01 EB005846 – fundername: NIMH NIH HHS grantid: R56 MH124925 – fundername: NIGMS NIH HHS grantid: R01 GM109068 – fundername: NIBIB NIH HHS grantid: R01 EB020407 – fundername: NIMH NIH HHS grantid: R01 MH103220 – fundername: NIMH NIH HHS grantid: R01 MH104680 – fundername: NIMH NIH HHS grantid: R01 MH107354 – fundername: NIA NIH HHS grantid: U19 AG055373 |
GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 5PM |
ID | FETCH-LOGICAL-c447t-2cec15c9999c9c8e265c552519192ab785dbb4db7c965405e240f8a34af26f703 |
IEDL.DBID | RIE |
ISSN | 0018-9294 1558-2531 |
IngestDate | Thu Aug 21 18:35:50 EDT 2025 Thu Sep 04 23:07:03 EDT 2025 Mon Jun 30 08:49:49 EDT 2025 Mon Jul 21 05:54:18 EDT 2025 Thu Apr 24 23:01:40 EDT 2025 Tue Jul 01 03:28:32 EDT 2025 Wed Aug 27 02:30:43 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c447t-2cec15c9999c9c8e265c552519192ab785dbb4db7c965405e240f8a34af26f703 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9058-0747 0000-0001-9340-5864 0000-0002-8916-3679 0000-0002-8802-1230 0000-0003-2477-6383 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/8895412 |
PMID | 31395533 |
PQID | 2381804542 |
PQPubID | 85474 |
PageCount | 11 |
ParticipantIDs | pubmed_primary_31395533 crossref_citationtrail_10_1109_TBME_2019_2932895 crossref_primary_10_1109_TBME_2019_2932895 ieee_primary_8786218 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8895412 proquest_journals_2381804542 proquest_miscellaneous_2270005014 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-01 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on biomedical engineering |
PublicationTitleAbbrev | TBME |
PublicationTitleAlternate | IEEE Trans Biomed Eng |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref56 ref12 ref15 ref14 ref53 ref52 ref55 ref11 ref10 waddington (ref1) 1942; 1 ref17 ref16 ref19 ref18 gilman (ref58) 2012; 15 ref51 onitsuka (ref44) 2003; 60 ref45 hadland (ref54) 2003; 41 ref47 ref42 ref41 ref49 ref8 mairal (ref20) 2010; 11 ref7 buchsbaum (ref48) 1996; 153 ref9 ref4 ref3 ref6 ref5 ref40 ref35 réus (ref63) 2016; 103 ref34 ref37 ref36 ref75 ref31 ref74 ref30 ref33 ref32 ref2 ref39 ref38 ref71 ref70 ref73 ref72 kühn (ref46) 2011; 39 ref68 ref24 lee (ref43) 2002; 59 ref67 ref23 ref26 waller (ref64) 2017 ref69 ref25 ref66 ref22 ref65 ref21 ref28 ref27 ref29 tam (ref59) 2009; 66 gaser (ref50) 2004; 14 ref60 dehaene (ref57) 2011; 15 ref62 ref61 |
References_xml | – ident: ref35 doi: 10.1016/S0920-9964(01)00188-8 – ident: ref2 doi: 10.1055/s-0029-1237423 – ident: ref10 doi: 10.1016/j.neuropharm.2014.01.013 – ident: ref60 doi: 10.1503/jpn.130269 – ident: ref25 doi: 10.1007/s10334-010-0197-8 – ident: ref32 doi: 10.1016/S0893-133X(97)00201-7 – ident: ref23 doi: 10.1002/hbm.20204 – ident: ref6 doi: 10.4161/epi.1.2.2762 – ident: ref52 doi: 10.1016/S0920-9964(99)00083-3 – ident: ref61 doi: 10.1038/ng.886 – ident: ref5 doi: 10.1159/000130315 – ident: ref56 doi: 10.1523/JNEUROSCI.17-11-04302.1997 – volume: 1 start-page: 18 year: 1942 ident: ref1 article-title: The epigenotype publication-title: Endeavour – ident: ref31 doi: 10.1016/S0140-6736(96)08258-X – ident: ref38 doi: 10.1002/hipo.1068 – ident: ref33 doi: 10.1007/s00221-006-0503-x – ident: ref47 doi: 10.1017/S1092852900021295 – ident: ref36 doi: 10.1007/s00213-003-1761-y – volume: 39 start-page: 358 year: 2011 ident: ref46 article-title: Resting-state brain activity in schizophrenia and major depression: A quantitative meta-analysis publication-title: Schizophrenia Bulletin doi: 10.1093/schbul/sbr151 – ident: ref53 doi: 10.1016/j.sbspro.2013.08.537 – ident: ref27 doi: 10.1007/s12021-013-9184-3 – ident: ref26 doi: 10.1016/j.bspc.2016.02.009 – year: 2017 ident: ref64 publication-title: Medical Pharmacology and Therapeutics E-Book – ident: ref72 doi: 10.1054/mehy.1999.0003 – ident: ref11 doi: 10.1109/TBME.2015.2496233 – ident: ref49 doi: 10.1016/S0006-3223(97)00339-9 – volume: 14 start-page: 91 year: 2004 ident: ref50 article-title: Neuroanatomy of hearing voices: A frontotemporal brain structural abnormality associated with auditory hallucinations in schizophrenia publication-title: Cerebral Cortex doi: 10.1093/cercor/bhg107 – ident: ref55 doi: 10.1196/annals.1440.011 – ident: ref22 doi: 10.1016/j.biopsych.2005.01.035 – ident: ref66 doi: 10.1093/hmg/11.5.547 – ident: ref75 doi: 10.1109/TCBB.2019.2899568 – ident: ref42 doi: 10.1016/S0028-3932(03)00119-2 – ident: ref24 doi: 10.1093/schbul/sbn133 – ident: ref13 doi: 10.3389/fnhum.2010.00192 – volume: 15 start-page: 1723 year: 2012 ident: ref58 article-title: Diverse types of genetic variation converge on functional gene networks involved in schizophrenia publication-title: Nature Neurosci doi: 10.1038/nn.3261 – ident: ref30 doi: 10.1371/journal.pone.0068910 – ident: ref7 doi: 10.1038/223580a0 – ident: ref45 doi: 10.1016/j.biopsych.2008.03.031 – ident: ref28 doi: 10.1016/S0920-9964(00)00117-1 – ident: ref69 doi: 10.1016/j.cbpa.2006.08.005 – volume: 11 start-page: 19 year: 2010 ident: ref20 article-title: Online learning for matrix factorization and sparse coding publication-title: J Mach Learn Res – ident: ref19 doi: 10.1142/9789813207813_0011 – ident: ref4 doi: 10.1126/science.1111098 – ident: ref9 doi: 10.1038/tp.2013.111 – ident: ref39 doi: 10.1176/ajp.157.1.40 – volume: 103 start-page: 169 year: 2016 ident: ref63 article-title: Glutamatergic NMDA receptor as therapeutic target for depression publication-title: Advances in Protein Chemistry and Structural Biology doi: 10.1016/bs.apcsb.2015.10.003 – ident: ref34 doi: 10.1016/j.neuroimage.2008.05.059 – volume: 59 start-page: 775 year: 2002 ident: ref43 article-title: Fusiform gyrus volume reduction in first-episode schizophrenia: A magnetic resonance imaging study publication-title: Archives General Psychiatry doi: 10.1001/archpsyc.59.9.775 – ident: ref12 doi: 10.1186/s13059-017-1215-1 – ident: ref8 doi: 10.1038/npp.2012.125 – ident: ref18 doi: 10.1093/biostatistics/kxu047 – ident: ref73 doi: 10.1371/journal.pone.0042165 – ident: ref62 doi: 10.1093/nar/gks1055 – volume: 66 start-page: 1005 year: 2009 ident: ref59 article-title: The role of DNA copy number variation in schizophrenia publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2009.07.027 – ident: ref65 doi: 10.1093/hmg/11.5.559 – ident: ref68 doi: 10.1017/S0022215100080233 – ident: ref3 doi: 10.1002/ajmg.b.20142 – volume: 60 start-page: 349 year: 2003 ident: ref44 article-title: Fusiform gyrus volume reduction and facial recognition in chronic schizophrenia publication-title: Archives General Psychiatry doi: 10.1001/archpsyc.60.4.349 – ident: ref70 doi: 10.1016/S0924-9338(99)80691-9 – ident: ref40 doi: 10.1176/appi.ajp.2009.09040456 – volume: 153 start-page: 191 year: 1996 ident: ref48 article-title: PET and MRI of the thalamus in never-medicated patients with schizophrenia publication-title: Amer J Psychiatry doi: 10.1176/ajp.153.2.191 – ident: ref67 doi: 10.1016/S0140-6736(06)69740-7 – ident: ref21 doi: 10.1007/s12021-017-9338-9 – ident: ref41 doi: 10.1001/archpsyc.1987.01800230103016 – volume: 15 start-page: 254 year: 2011 ident: ref57 article-title: The unique role of the visual word form area in reading publication-title: Trends Cogn Sci doi: 10.1016/j.tics.2011.04.003 – ident: ref15 doi: 10.1117/12.2513024 – ident: ref14 doi: 10.1117/1.JMI.6.2.026501 – ident: ref17 doi: 10.1109/TBME.2017.2771483 – ident: ref51 doi: 10.1176/appi.ajp.160.1.156 – volume: 41 start-page: 919 year: 2003 ident: ref54 article-title: The effect of cingulate lesions on social behaviour and emotion publication-title: Neuropsychologia doi: 10.1016/S0028-3932(02)00325-1 – ident: ref16 doi: 10.1111/j.2517-6161.1996.tb02080.x – ident: ref74 doi: 10.1371/journal.pone.0009508 – ident: ref37 doi: 10.1038/sj.mp.4000783 – ident: ref29 doi: 10.1111/j.1467-9868.2010.00740.x – ident: ref71 doi: 10.1002/ajmg.1320540414 |
SSID | ssj0014846 |
Score | 2.3717656 |
Snippet | Objective: Integration of multiple datasets is a hot topic in many fields. When studying complex mental disorders, great effort has been dedicated to fusing... Integration of multiple datasets is a hot topic in many fields. When studying complex mental disorders, great effort has been dedicated to fusing genetic and... |
SourceID | pubmedcentral proquest pubmed crossref ieee |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1186 |
SubjectTerms | Biomarkers Biosynthesis Brain Brain mapping canonical correlation analysis collaborative learning Consortia Correlation Correlation analysis CpG islands Cytosine Deoxyribonucleic acid DNA DNA Methylation Epigenesis, Genetic - genetics Epigenetics Feature extraction feature selection Functional magnetic resonance imaging Genes Genetics Guanine Guanosine Humans Identification methods Imaging epigenetics Linear regression Magnetic Resonance Imaging Medical imaging Mental disorders Nervous system Neuroimaging Nucleotides Regression analysis Ribonucleotides Schizophrenia Schizophrenia - diagnostic imaging Schizophrenia - genetics |
Title | Biomarker Identification Through Integrating fMRI and Epigenetics |
URI | https://ieeexplore.ieee.org/document/8786218 https://www.ncbi.nlm.nih.gov/pubmed/31395533 https://www.proquest.com/docview/2381804542 https://www.proquest.com/docview/2270005014 https://pubmed.ncbi.nlm.nih.gov/PMC8895412 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB50D6IH34_6ooInsWubTdrkuMqKCvUgK3grTZqiqF3R3Yu_3pk2W1wR8VZIUtLMTPMlM_MNwHGBiiE1K4M4ljrgiPADaaUJLJUUCA3uoSVdDaS38dU9v3kQD3Nw2ubCWGvr4DPbpcfal1-MzISuys5kgvg7kvMwj2rW5Gq1HgMum6ScMEIDZoo7D2YUqrPheTqgIC7Vxb0NDxhiZg-qi6r8hi9_hkl-23cuVyCdzrgJN3nuTsa6az5_kDn-95NWYdkBUL_faMwazNlqHZa-0RKuw0LqHO4b0D9_Gr1SBM-736T0lu6Ozx82BX78a8c3gSP9Mr279vOq8AdvRPJJ-ZEfm3B_ORheXAWu6kJgOE_GATPWRMIgcFRGGWlZLIwQlOCKYDDXiRSF1rzQiVExwT2LmKCUeY_nJYtL_IFsQacaVXYHfKV01MtFgv8MzTWeRCXjRWJEgSi0MFJ6EE7lkBlHSU6VMV6y-mgSqoxEl5HoMic6D07aIW8NH8dfnTdoxduObrE92J8KO3MW-5HV0IX4CJkHR20z2ho5UPLKjibYh7z0IXliPdhudKN9dw-htEDs7EEyozVtB-Lxnm2pnh5rPm-JU-UR2_19tnuwyOiMX0cL7UNn_D6xBwiExvqwtoAvDrACsg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7xkEp74N025ZVKPSGym3jtxD4CWrQLhEO1SNyi2HEEos2ifVz66zuTeCMWoaq3SLYjxzPOfPbMfAPwo0DFkJqVQRxLHXBE-IG00gSWSgqEBm1oSVcD6V08uOfXD-JhBc7aXBhrbR18Zjv0WPvyi7GZ01VZVyaIvyO5Cuto97losrVanwGXTVpOGOEWZoo7H2YUqu7oIu1TGJfqoHXDI4ZYskJ1WZX3EObbQMlXludqC9LFnJuAk-fOfKY75s8bOsf__aht2HQQ1D9vdGYHVmy1C59eERPuwofUudz34PziafybYngmfpPUW7pbPn_UlPjxh45xAkf6Zfpz6OdV4fdfiOaTMiSn-3B_1R9dDgJXdyEwnCezgBlrImEQOiqjjLQsFkYISnFFOJjrRIpCa17oxKiYAJ9FVFDKvMfzksUl_kI-w1o1ruxX8JXSUS8XCf41NNd4FpWMF4kRBeLQwkjpQbiQQ2YcKTnVxviV1YeTUGUkuoxElznReXDaDnlpGDn-1XmPVrzt6Bbbg8OFsDO3Z6dZDV6IkZB58L1txt1GLpS8suM59iE_fUi-WA--NLrRvruHYFogevYgWdKatgMxeS-3VE-PNaO3xKnyiH17f7YnsDEYpbfZ7fDu5gA-Mjrx17FDh7A2m8ztEcKimT6ud8NfuaYF_w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biomarker+Identification+Through+Integrating+fMRI+and+Epigenetics&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Bai%2C+Yuntong&rft.au=Pascal%2C+Zille&rft.au=Hu%2C+Wenxing&rft.au=Calhoun%2C+Vince+D&rft.date=2020-04-01&rft.eissn=1558-2531&rft.volume=67&rft.issue=4&rft.spage=1186&rft_id=info:doi/10.1109%2FTBME.2019.2932895&rft_id=info%3Apmid%2F31395533&rft.externalDocID=31395533 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |