Biomarker Identification Through Integrating fMRI and Epigenetics

Objective: Integration of multiple datasets is a hot topic in many fields. When studying complex mental disorders, great effort has been dedicated to fusing genetic and brain imaging data. However, an increasing number of studies have pointed out the importance of epigenetic factors in the cause of...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 67; no. 4; pp. 1186 - 1196
Main Authors Bai, Yuntong, Pascal, Zille, Hu, Wenxing, Calhoun, Vince D., Wang, Yu-Ping
Format Journal Article
LanguageEnglish
Published United States IEEE 01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9294
1558-2531
1558-2531
DOI10.1109/TBME.2019.2932895

Cover

Abstract Objective: Integration of multiple datasets is a hot topic in many fields. When studying complex mental disorders, great effort has been dedicated to fusing genetic and brain imaging data. However, an increasing number of studies have pointed out the importance of epigenetic factors in the cause of psychiatric diseases. In this study, we endeavor to fill the gap by combining epigenetics (e.g., DNA methylation) with imaging data (e.g., fMRI) to identify biomarkers for schizophrenia (SZ). Methods: We propose to combine linear regression with canonical correlation analysis (CCA) in a relaxed yet coupled manner to extract discriminative features for SZ that are co-expressed in the fMRI and DNA methylation data. Result: After validation through simulations, we applied our method to real imaging epigenetics data of 184 subjects from the Mental Illness and Neuroscience Discovery Clinical Imaging Consortium. After significance test, we identified 14 brain regions and 44 cytosine-phosphate-guanine(CpG) sites. Average classification accuracy is \text{88.89}\%. By linking the CpG sites to genes, we identified pathways Guanosine ribonucleotides de novo biosynthesis and Guanosine nucleotides de novo biosynthesis, and a GO term Perikaryon. Conclusion: This imaging epigenetics study has identified both brain regions and genes that are associated with neuron development and memory processing. These biomarkers contribute to a good understanding of the mechanism underlying SZ but are overlooked by previous imaging genetics studies. Significance: Our study sheds light on the understanding and diagnosis of SZ with a imaging epigenetics approach, which is demonstrated to be effective in extracting novel biomarkers associated with SZ.
AbstractList Integration of multiple datasets is a hot topic in many fields. When studying complex mental disorders, great effort has been dedicated to fusing genetic and brain imaging data. However, an increasing number of studies have pointed out the importance of epigenetic factors in the cause of psychiatric diseases. In this study, we endeavor to fill the gap by combining epigenetics (e.g., DNA methylation) with imaging data (e.g., fMRI) to identify biomarkers for schizophrenia (SZ).OBJECTIVEIntegration of multiple datasets is a hot topic in many fields. When studying complex mental disorders, great effort has been dedicated to fusing genetic and brain imaging data. However, an increasing number of studies have pointed out the importance of epigenetic factors in the cause of psychiatric diseases. In this study, we endeavor to fill the gap by combining epigenetics (e.g., DNA methylation) with imaging data (e.g., fMRI) to identify biomarkers for schizophrenia (SZ).We propose to combine linear regression with canonical correlation analysis (CCA) in a relaxed yet coupled manner to extract discriminative features for SZ that are co-expressed in the fMRI and DNA methylation data.METHODSWe propose to combine linear regression with canonical correlation analysis (CCA) in a relaxed yet coupled manner to extract discriminative features for SZ that are co-expressed in the fMRI and DNA methylation data.After validation through simulations, we applied our method to real imaging epigenetics data of 184 subjects from the Mental Illness and Neuroscience Discovery Clinical Imaging Consortium. After significance test, we identified 14 brain regions and 44 cytosine-phosphate-guanine(CpG) sites. Average classification accuracy is [Formula: see text]. By linking the CpG sites to genes, we identified pathways Guanosine ribonucleotides de novo biosynthesis and Guanosine nucleotides de novo biosynthesis, and a GO term Perikaryon.RESULTAfter validation through simulations, we applied our method to real imaging epigenetics data of 184 subjects from the Mental Illness and Neuroscience Discovery Clinical Imaging Consortium. After significance test, we identified 14 brain regions and 44 cytosine-phosphate-guanine(CpG) sites. Average classification accuracy is [Formula: see text]. By linking the CpG sites to genes, we identified pathways Guanosine ribonucleotides de novo biosynthesis and Guanosine nucleotides de novo biosynthesis, and a GO term Perikaryon.This imaging epigenetics study has identified both brain regions and genes that are associated with neuron development and memory processing. These biomarkers contribute to a good understanding of the mechanism underlying SZ but are overlooked by previous imaging genetics studies.CONCLUSIONThis imaging epigenetics study has identified both brain regions and genes that are associated with neuron development and memory processing. These biomarkers contribute to a good understanding of the mechanism underlying SZ but are overlooked by previous imaging genetics studies.Our study sheds light on the understanding and diagnosis of SZ with a imaging epigenetics approach, which is demonstrated to be effective in extracting novel biomarkers associated with SZ.SIGNIFICANCEOur study sheds light on the understanding and diagnosis of SZ with a imaging epigenetics approach, which is demonstrated to be effective in extracting novel biomarkers associated with SZ.
Objective: Integration of multiple datasets is a hot topic in many fields. When studying complex mental disorders, great effort has been dedicated to fusing genetic and brain imaging data. However, an increasing number of studies have pointed out the importance of epigenetic factors in the cause of psychiatric diseases. In this study, we endeavor to fill the gap by combining epigenetics (e.g., DNA methylation) with imaging data (e.g., fMRI) to identify biomarkers for schizophrenia (SZ). Methods: We propose to combine linear regression with canonical correlation analysis (CCA) in a relaxed yet coupled manner to extract discriminative features for SZ that are co-expressed in the fMRI and DNA methylation data. Result: After validation through simulations, we applied our method to real imaging epigenetics data of 184 subjects from the Mental Illness and Neuroscience Discovery Clinical Imaging Consortium. After significance test, we identified 14 brain regions and 44 cytosine-phosphate-guanine(CpG) sites. Average classification accuracy is [Formula Omitted]. By linking the CpG sites to genes, we identified pathways Guanosine ribonucleotides de novo biosynthesis and Guanosine nucleotides de novo biosynthesis, and a GO term Perikaryon. Conclusion: This imaging epigenetics study has identified both brain regions and genes that are associated with neuron development and memory processing. These biomarkers contribute to a good understanding of the mechanism underlying SZ but are overlooked by previous imaging genetics studies. Significance: Our study sheds light on the understanding and diagnosis of SZ with a imaging epigenetics approach, which is demonstrated to be effective in extracting novel biomarkers associated with SZ.
Integration of multiple datasets is a hot topic in many fields. When studying complex mental disorders, great effort has been dedicated to fusing genetic and brain imaging data. However, an increasing number of studies have pointed out the importance of epigenetic factors in the cause of psychiatric diseases. In this study, we endeavor to fill the gap by combining epigenetics (e.g., DNA methylation) with imaging data (e.g., fMRI) to identify biomarkers for schizophrenia (SZ). We propose to combine linear regression with canonical correlation analysis (CCA) in a relaxed yet coupled manner to extract discriminative features for SZ that are co-expressed in the fMRI and DNA methylation data. After validation through simulations, we applied our method to real imaging epigenetics data of 184 subjects from the Mental Illness and Neuroscience Discovery Clinical Imaging Consortium. After significance test, we identified 14 brain regions and 44 cytosine-phosphate-guanine(CpG) sites. Average classification accuracy is [Formula: see text]. By linking the CpG sites to genes, we identified pathways Guanosine ribonucleotides de novo biosynthesis and Guanosine nucleotides de novo biosynthesis, and a GO term Perikaryon. This imaging epigenetics study has identified both brain regions and genes that are associated with neuron development and memory processing. These biomarkers contribute to a good understanding of the mechanism underlying SZ but are overlooked by previous imaging genetics studies. Our study sheds light on the understanding and diagnosis of SZ with a imaging epigenetics approach, which is demonstrated to be effective in extracting novel biomarkers associated with SZ.
Objective: Integration of multiple datasets is a hot topic in many fields. When studying complex mental disorders, great effort has been dedicated to fusing genetic and brain imaging data. However, an increasing number of studies have pointed out the importance of epigenetic factors in the cause of psychiatric diseases. In this study, we endeavor to fill the gap by combining epigenetics (e.g., DNA methylation) with imaging data (e.g., fMRI) to identify biomarkers for schizophrenia (SZ). Methods: We propose to combine linear regression with canonical correlation analysis (CCA) in a relaxed yet coupled manner to extract discriminative features for SZ that are co-expressed in the fMRI and DNA methylation data. Result: After validation through simulations, we applied our method to real imaging epigenetics data of 184 subjects from the Mental Illness and Neuroscience Discovery Clinical Imaging Consortium. After significance test, we identified 14 brain regions and 44 cytosine-phosphate-guanine(CpG) sites. Average classification accuracy is \text{88.89}\%. By linking the CpG sites to genes, we identified pathways Guanosine ribonucleotides de novo biosynthesis and Guanosine nucleotides de novo biosynthesis, and a GO term Perikaryon. Conclusion: This imaging epigenetics study has identified both brain regions and genes that are associated with neuron development and memory processing. These biomarkers contribute to a good understanding of the mechanism underlying SZ but are overlooked by previous imaging genetics studies. Significance: Our study sheds light on the understanding and diagnosis of SZ with a imaging epigenetics approach, which is demonstrated to be effective in extracting novel biomarkers associated with SZ.
Author Hu, Wenxing
Pascal, Zille
Bai, Yuntong
Calhoun, Vince D.
Wang, Yu-Ping
Author_xml – sequence: 1
  givenname: Yuntong
  orcidid: 0000-0002-8916-3679
  surname: Bai
  fullname: Bai, Yuntong
  organization: Biomedical Engineering DepartmentTulane University
– sequence: 2
  givenname: Zille
  orcidid: 0000-0002-8802-1230
  surname: Pascal
  fullname: Pascal, Zille
  organization: Biomedical Engineering DepartmentTulane University
– sequence: 3
  givenname: Wenxing
  orcidid: 0000-0003-2477-6383
  surname: Hu
  fullname: Hu, Wenxing
  organization: Biomedical Engineering DepartmentTulane University
– sequence: 4
  givenname: Vince D.
  orcidid: 0000-0001-9058-0747
  surname: Calhoun
  fullname: Calhoun, Vince D.
  organization: Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)Georgia State University
– sequence: 5
  givenname: Yu-Ping
  orcidid: 0000-0001-9340-5864
  surname: Wang
  fullname: Wang, Yu-Ping
  email: wyp@tulane.edu
  organization: Biomedical Engineering Department, Tulane University, New Orleans, LA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31395533$$D View this record in MEDLINE/PubMed
BookMark eNp9UU1r3DAUFCWl2aT9AaVQDLnk4o0-belSSMK2XUgIlO1ZyPKzV6lX2kp2of8-2u4mJDlUl4f0ZobRzAk68sEDQh8JnhOC1cXq6nYxp5ioOVWMSiXeoBkRQpZUMHKEZhgTWSqq-DE6Sek-X7nk1Tt0zAhTQjA2Q5dXLmxM_AWxWLbgR9c5a0YXfLFaxzD162LpR-hjfvN90d3-WBbGt8Vi63rwMDqb3qO3nRkSfDjMU_Tz62J1_b28ufu2vL68KS3n9VhSC5YIq_KxykqglbBCUEEUUdQ0tRRt0_C2qa2qBMcCKMedNIybjlZdjdkp-rLX3U7NBlqbzUYz6G102f9fHYzTLzferXUf_miZg-GEZoHzg0AMvydIo964ZGEYjIcwJU1pjTEWOaQMPXsFvQ9T9Pl7mjJJJOaC7wQ_P3f0ZOUx3Qyo9wAbQ0oROm3d-C_dbNANmmC961HvetS7HvWhx8wkr5iP4v_jfNpzHAA84WUtK0okewDCRqeO
CODEN IEBEAX
CitedBy_id crossref_primary_10_1109_TCYB_2024_3353549
crossref_primary_10_1109_TCBB_2022_3143900
crossref_primary_10_1109_TCBB_2022_3172289
crossref_primary_10_1109_TMI_2020_3042786
crossref_primary_10_1109_TMI_2019_2958256
crossref_primary_10_1007_s12561_024_09459_0
crossref_primary_10_1016_j_csbj_2021_10_019
crossref_primary_10_1002_hbm_25090
crossref_primary_10_1109_TBME_2020_3048594
Cites_doi 10.1016/S0920-9964(01)00188-8
10.1055/s-0029-1237423
10.1016/j.neuropharm.2014.01.013
10.1503/jpn.130269
10.1007/s10334-010-0197-8
10.1016/S0893-133X(97)00201-7
10.1002/hbm.20204
10.4161/epi.1.2.2762
10.1016/S0920-9964(99)00083-3
10.1038/ng.886
10.1159/000130315
10.1523/JNEUROSCI.17-11-04302.1997
10.1016/S0140-6736(96)08258-X
10.1002/hipo.1068
10.1007/s00221-006-0503-x
10.1017/S1092852900021295
10.1007/s00213-003-1761-y
10.1093/schbul/sbr151
10.1016/j.sbspro.2013.08.537
10.1007/s12021-013-9184-3
10.1016/j.bspc.2016.02.009
10.1054/mehy.1999.0003
10.1109/TBME.2015.2496233
10.1016/S0006-3223(97)00339-9
10.1093/cercor/bhg107
10.1196/annals.1440.011
10.1016/j.biopsych.2005.01.035
10.1093/hmg/11.5.547
10.1109/TCBB.2019.2899568
10.1016/S0028-3932(03)00119-2
10.1093/schbul/sbn133
10.3389/fnhum.2010.00192
10.1038/nn.3261
10.1371/journal.pone.0068910
10.1038/223580a0
10.1016/j.biopsych.2008.03.031
10.1016/S0920-9964(00)00117-1
10.1016/j.cbpa.2006.08.005
10.1142/9789813207813_0011
10.1126/science.1111098
10.1038/tp.2013.111
10.1176/ajp.157.1.40
10.1016/bs.apcsb.2015.10.003
10.1016/j.neuroimage.2008.05.059
10.1001/archpsyc.59.9.775
10.1186/s13059-017-1215-1
10.1038/npp.2012.125
10.1093/biostatistics/kxu047
10.1371/journal.pone.0042165
10.1093/nar/gks1055
10.1016/j.biopsych.2009.07.027
10.1093/hmg/11.5.559
10.1017/S0022215100080233
10.1002/ajmg.b.20142
10.1001/archpsyc.60.4.349
10.1016/S0924-9338(99)80691-9
10.1176/appi.ajp.2009.09040456
10.1176/ajp.153.2.191
10.1016/S0140-6736(06)69740-7
10.1007/s12021-017-9338-9
10.1001/archpsyc.1987.01800230103016
10.1016/j.tics.2011.04.003
10.1117/12.2513024
10.1117/1.JMI.6.2.026501
10.1109/TBME.2017.2771483
10.1176/appi.ajp.160.1.156
10.1016/S0028-3932(02)00325-1
10.1111/j.2517-6161.1996.tb02080.x
10.1371/journal.pone.0009508
10.1038/sj.mp.4000783
10.1111/j.1467-9868.2010.00740.x
10.1002/ajmg.1320540414
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
5PM
DOI 10.1109/TBME.2019.2932895
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 1196
ExternalDocumentID PMC8895412
31395533
10_1109_TBME_2019_2932895
8786218
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIH
  grantid: R01GM109068; R01MH104680; R01MH107354; R01MH103220; R01EB005846; R01EB020407
– fundername: NSF
  grantid: #1539067
– fundername: NIBIB NIH HHS
  grantid: R01 EB005846
– fundername: NIMH NIH HHS
  grantid: R56 MH124925
– fundername: NIGMS NIH HHS
  grantid: R01 GM109068
– fundername: NIBIB NIH HHS
  grantid: R01 EB020407
– fundername: NIMH NIH HHS
  grantid: R01 MH103220
– fundername: NIMH NIH HHS
  grantid: R01 MH104680
– fundername: NIMH NIH HHS
  grantid: R01 MH107354
– fundername: NIA NIH HHS
  grantid: U19 AG055373
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
5PM
ID FETCH-LOGICAL-c447t-2cec15c9999c9c8e265c552519192ab785dbb4db7c965405e240f8a34af26f703
IEDL.DBID RIE
ISSN 0018-9294
1558-2531
IngestDate Thu Aug 21 18:35:50 EDT 2025
Thu Sep 04 23:07:03 EDT 2025
Mon Jun 30 08:49:49 EDT 2025
Mon Jul 21 05:54:18 EDT 2025
Thu Apr 24 23:01:40 EDT 2025
Tue Jul 01 03:28:32 EDT 2025
Wed Aug 27 02:30:43 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c447t-2cec15c9999c9c8e265c552519192ab785dbb4db7c965405e240f8a34af26f703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9058-0747
0000-0001-9340-5864
0000-0002-8916-3679
0000-0002-8802-1230
0000-0003-2477-6383
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/8895412
PMID 31395533
PQID 2381804542
PQPubID 85474
PageCount 11
ParticipantIDs pubmed_primary_31395533
crossref_citationtrail_10_1109_TBME_2019_2932895
crossref_primary_10_1109_TBME_2019_2932895
ieee_primary_8786218
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8895412
proquest_journals_2381804542
proquest_miscellaneous_2270005014
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref56
ref12
ref15
ref14
ref53
ref52
ref55
ref11
ref10
waddington (ref1) 1942; 1
ref17
ref16
ref19
ref18
gilman (ref58) 2012; 15
ref51
onitsuka (ref44) 2003; 60
ref45
hadland (ref54) 2003; 41
ref47
ref42
ref41
ref49
ref8
mairal (ref20) 2010; 11
ref7
buchsbaum (ref48) 1996; 153
ref9
ref4
ref3
ref6
ref5
ref40
ref35
réus (ref63) 2016; 103
ref34
ref37
ref36
ref75
ref31
ref74
ref30
ref33
ref32
ref2
ref39
ref38
ref71
ref70
ref73
ref72
kühn (ref46) 2011; 39
ref68
ref24
lee (ref43) 2002; 59
ref67
ref23
ref26
waller (ref64) 2017
ref69
ref25
ref66
ref22
ref65
ref21
ref28
ref27
ref29
tam (ref59) 2009; 66
gaser (ref50) 2004; 14
ref60
dehaene (ref57) 2011; 15
ref62
ref61
References_xml – ident: ref35
  doi: 10.1016/S0920-9964(01)00188-8
– ident: ref2
  doi: 10.1055/s-0029-1237423
– ident: ref10
  doi: 10.1016/j.neuropharm.2014.01.013
– ident: ref60
  doi: 10.1503/jpn.130269
– ident: ref25
  doi: 10.1007/s10334-010-0197-8
– ident: ref32
  doi: 10.1016/S0893-133X(97)00201-7
– ident: ref23
  doi: 10.1002/hbm.20204
– ident: ref6
  doi: 10.4161/epi.1.2.2762
– ident: ref52
  doi: 10.1016/S0920-9964(99)00083-3
– ident: ref61
  doi: 10.1038/ng.886
– ident: ref5
  doi: 10.1159/000130315
– ident: ref56
  doi: 10.1523/JNEUROSCI.17-11-04302.1997
– volume: 1
  start-page: 18
  year: 1942
  ident: ref1
  article-title: The epigenotype
  publication-title: Endeavour
– ident: ref31
  doi: 10.1016/S0140-6736(96)08258-X
– ident: ref38
  doi: 10.1002/hipo.1068
– ident: ref33
  doi: 10.1007/s00221-006-0503-x
– ident: ref47
  doi: 10.1017/S1092852900021295
– ident: ref36
  doi: 10.1007/s00213-003-1761-y
– volume: 39
  start-page: 358
  year: 2011
  ident: ref46
  article-title: Resting-state brain activity in schizophrenia and major depression: A quantitative meta-analysis
  publication-title: Schizophrenia Bulletin
  doi: 10.1093/schbul/sbr151
– ident: ref53
  doi: 10.1016/j.sbspro.2013.08.537
– ident: ref27
  doi: 10.1007/s12021-013-9184-3
– ident: ref26
  doi: 10.1016/j.bspc.2016.02.009
– year: 2017
  ident: ref64
  publication-title: Medical Pharmacology and Therapeutics E-Book
– ident: ref72
  doi: 10.1054/mehy.1999.0003
– ident: ref11
  doi: 10.1109/TBME.2015.2496233
– ident: ref49
  doi: 10.1016/S0006-3223(97)00339-9
– volume: 14
  start-page: 91
  year: 2004
  ident: ref50
  article-title: Neuroanatomy of hearing voices: A frontotemporal brain structural abnormality associated with auditory hallucinations in schizophrenia
  publication-title: Cerebral Cortex
  doi: 10.1093/cercor/bhg107
– ident: ref55
  doi: 10.1196/annals.1440.011
– ident: ref22
  doi: 10.1016/j.biopsych.2005.01.035
– ident: ref66
  doi: 10.1093/hmg/11.5.547
– ident: ref75
  doi: 10.1109/TCBB.2019.2899568
– ident: ref42
  doi: 10.1016/S0028-3932(03)00119-2
– ident: ref24
  doi: 10.1093/schbul/sbn133
– ident: ref13
  doi: 10.3389/fnhum.2010.00192
– volume: 15
  start-page: 1723
  year: 2012
  ident: ref58
  article-title: Diverse types of genetic variation converge on functional gene networks involved in schizophrenia
  publication-title: Nature Neurosci
  doi: 10.1038/nn.3261
– ident: ref30
  doi: 10.1371/journal.pone.0068910
– ident: ref7
  doi: 10.1038/223580a0
– ident: ref45
  doi: 10.1016/j.biopsych.2008.03.031
– ident: ref28
  doi: 10.1016/S0920-9964(00)00117-1
– ident: ref69
  doi: 10.1016/j.cbpa.2006.08.005
– volume: 11
  start-page: 19
  year: 2010
  ident: ref20
  article-title: Online learning for matrix factorization and sparse coding
  publication-title: J Mach Learn Res
– ident: ref19
  doi: 10.1142/9789813207813_0011
– ident: ref4
  doi: 10.1126/science.1111098
– ident: ref9
  doi: 10.1038/tp.2013.111
– ident: ref39
  doi: 10.1176/ajp.157.1.40
– volume: 103
  start-page: 169
  year: 2016
  ident: ref63
  article-title: Glutamatergic NMDA receptor as therapeutic target for depression
  publication-title: Advances in Protein Chemistry and Structural Biology
  doi: 10.1016/bs.apcsb.2015.10.003
– ident: ref34
  doi: 10.1016/j.neuroimage.2008.05.059
– volume: 59
  start-page: 775
  year: 2002
  ident: ref43
  article-title: Fusiform gyrus volume reduction in first-episode schizophrenia: A magnetic resonance imaging study
  publication-title: Archives General Psychiatry
  doi: 10.1001/archpsyc.59.9.775
– ident: ref12
  doi: 10.1186/s13059-017-1215-1
– ident: ref8
  doi: 10.1038/npp.2012.125
– ident: ref18
  doi: 10.1093/biostatistics/kxu047
– ident: ref73
  doi: 10.1371/journal.pone.0042165
– ident: ref62
  doi: 10.1093/nar/gks1055
– volume: 66
  start-page: 1005
  year: 2009
  ident: ref59
  article-title: The role of DNA copy number variation in schizophrenia
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2009.07.027
– ident: ref65
  doi: 10.1093/hmg/11.5.559
– ident: ref68
  doi: 10.1017/S0022215100080233
– ident: ref3
  doi: 10.1002/ajmg.b.20142
– volume: 60
  start-page: 349
  year: 2003
  ident: ref44
  article-title: Fusiform gyrus volume reduction and facial recognition in chronic schizophrenia
  publication-title: Archives General Psychiatry
  doi: 10.1001/archpsyc.60.4.349
– ident: ref70
  doi: 10.1016/S0924-9338(99)80691-9
– ident: ref40
  doi: 10.1176/appi.ajp.2009.09040456
– volume: 153
  start-page: 191
  year: 1996
  ident: ref48
  article-title: PET and MRI of the thalamus in never-medicated patients with schizophrenia
  publication-title: Amer J Psychiatry
  doi: 10.1176/ajp.153.2.191
– ident: ref67
  doi: 10.1016/S0140-6736(06)69740-7
– ident: ref21
  doi: 10.1007/s12021-017-9338-9
– ident: ref41
  doi: 10.1001/archpsyc.1987.01800230103016
– volume: 15
  start-page: 254
  year: 2011
  ident: ref57
  article-title: The unique role of the visual word form area in reading
  publication-title: Trends Cogn Sci
  doi: 10.1016/j.tics.2011.04.003
– ident: ref15
  doi: 10.1117/12.2513024
– ident: ref14
  doi: 10.1117/1.JMI.6.2.026501
– ident: ref17
  doi: 10.1109/TBME.2017.2771483
– ident: ref51
  doi: 10.1176/appi.ajp.160.1.156
– volume: 41
  start-page: 919
  year: 2003
  ident: ref54
  article-title: The effect of cingulate lesions on social behaviour and emotion
  publication-title: Neuropsychologia
  doi: 10.1016/S0028-3932(02)00325-1
– ident: ref16
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: ref74
  doi: 10.1371/journal.pone.0009508
– ident: ref37
  doi: 10.1038/sj.mp.4000783
– ident: ref29
  doi: 10.1111/j.1467-9868.2010.00740.x
– ident: ref71
  doi: 10.1002/ajmg.1320540414
SSID ssj0014846
Score 2.3717656
Snippet Objective: Integration of multiple datasets is a hot topic in many fields. When studying complex mental disorders, great effort has been dedicated to fusing...
Integration of multiple datasets is a hot topic in many fields. When studying complex mental disorders, great effort has been dedicated to fusing genetic and...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1186
SubjectTerms Biomarkers
Biosynthesis
Brain
Brain mapping
canonical correlation analysis
collaborative learning
Consortia
Correlation
Correlation analysis
CpG islands
Cytosine
Deoxyribonucleic acid
DNA
DNA Methylation
Epigenesis, Genetic - genetics
Epigenetics
Feature extraction
feature selection
Functional magnetic resonance imaging
Genes
Genetics
Guanine
Guanosine
Humans
Identification methods
Imaging epigenetics
Linear regression
Magnetic Resonance Imaging
Medical imaging
Mental disorders
Nervous system
Neuroimaging
Nucleotides
Regression analysis
Ribonucleotides
Schizophrenia
Schizophrenia - diagnostic imaging
Schizophrenia - genetics
Title Biomarker Identification Through Integrating fMRI and Epigenetics
URI https://ieeexplore.ieee.org/document/8786218
https://www.ncbi.nlm.nih.gov/pubmed/31395533
https://www.proquest.com/docview/2381804542
https://www.proquest.com/docview/2270005014
https://pubmed.ncbi.nlm.nih.gov/PMC8895412
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB50D6IH34_6ooInsWubTdrkuMqKCvUgK3grTZqiqF3R3Yu_3pk2W1wR8VZIUtLMTPMlM_MNwHGBiiE1K4M4ljrgiPADaaUJLJUUCA3uoSVdDaS38dU9v3kQD3Nw2ubCWGvr4DPbpcfal1-MzISuys5kgvg7kvMwj2rW5Gq1HgMum6ScMEIDZoo7D2YUqrPheTqgIC7Vxb0NDxhiZg-qi6r8hi9_hkl-23cuVyCdzrgJN3nuTsa6az5_kDn-95NWYdkBUL_faMwazNlqHZa-0RKuw0LqHO4b0D9_Gr1SBM-736T0lu6Ozx82BX78a8c3gSP9Mr279vOq8AdvRPJJ-ZEfm3B_ORheXAWu6kJgOE_GATPWRMIgcFRGGWlZLIwQlOCKYDDXiRSF1rzQiVExwT2LmKCUeY_nJYtL_IFsQacaVXYHfKV01MtFgv8MzTWeRCXjRWJEgSi0MFJ6EE7lkBlHSU6VMV6y-mgSqoxEl5HoMic6D07aIW8NH8dfnTdoxduObrE92J8KO3MW-5HV0IX4CJkHR20z2ho5UPLKjibYh7z0IXliPdhudKN9dw-htEDs7EEyozVtB-Lxnm2pnh5rPm-JU-UR2_19tnuwyOiMX0cL7UNn_D6xBwiExvqwtoAvDrACsg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7xkEp74N025ZVKPSGym3jtxD4CWrQLhEO1SNyi2HEEos2ifVz66zuTeCMWoaq3SLYjxzPOfPbMfAPwo0DFkJqVQRxLHXBE-IG00gSWSgqEBm1oSVcD6V08uOfXD-JhBc7aXBhrbR18Zjv0WPvyi7GZ01VZVyaIvyO5Cuto97losrVanwGXTVpOGOEWZoo7H2YUqu7oIu1TGJfqoHXDI4ZYskJ1WZX3EObbQMlXludqC9LFnJuAk-fOfKY75s8bOsf__aht2HQQ1D9vdGYHVmy1C59eERPuwofUudz34PziafybYngmfpPUW7pbPn_UlPjxh45xAkf6Zfpz6OdV4fdfiOaTMiSn-3B_1R9dDgJXdyEwnCezgBlrImEQOiqjjLQsFkYISnFFOJjrRIpCa17oxKiYAJ9FVFDKvMfzksUl_kI-w1o1ruxX8JXSUS8XCf41NNd4FpWMF4kRBeLQwkjpQbiQQ2YcKTnVxviV1YeTUGUkuoxElznReXDaDnlpGDn-1XmPVrzt6Bbbg8OFsDO3Z6dZDV6IkZB58L1txt1GLpS8suM59iE_fUi-WA--NLrRvruHYFogevYgWdKatgMxeS-3VE-PNaO3xKnyiH17f7YnsDEYpbfZ7fDu5gA-Mjrx17FDh7A2m8ztEcKimT6ud8NfuaYF_w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biomarker+Identification+Through+Integrating+fMRI+and+Epigenetics&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Bai%2C+Yuntong&rft.au=Pascal%2C+Zille&rft.au=Hu%2C+Wenxing&rft.au=Calhoun%2C+Vince+D&rft.date=2020-04-01&rft.eissn=1558-2531&rft.volume=67&rft.issue=4&rft.spage=1186&rft_id=info:doi/10.1109%2FTBME.2019.2932895&rft_id=info%3Apmid%2F31395533&rft.externalDocID=31395533
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon