Human Subthalamic Nucleus in Movement Error Detection and Its Evaluation during Visuomotor Adaptation

Monitoring and evaluating movement errors to guide subsequent movements is a critical feature of normal motor control. Previously, we showed that the postmovement increase in electroencephalographic (EEG) beta power over the sensorimotor cortex reflects neural processes that evaluate motor errors co...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of neuroscience Vol. 34; no. 50; pp. 16744 - 16754
Main Authors Tan, Huiling, Zavala, Baltazar, Pogosyan, Alek, Ashkan, Keyoumars, Zrinzo, Ludvic, Foltynie, Thomas, Limousin, Patricia, Brown, Peter
Format Journal Article
LanguageEnglish
Published United States Society for Neuroscience 10.12.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Monitoring and evaluating movement errors to guide subsequent movements is a critical feature of normal motor control. Previously, we showed that the postmovement increase in electroencephalographic (EEG) beta power over the sensorimotor cortex reflects neural processes that evaluate motor errors consistent with Bayesian inference (Tan et al., 2014). Whether such neural processes are limited to this cortical region or involve the basal ganglia is unclear. Here, we recorded EEG over the cortex and local field potential (LFP) activity in the subthalamic nucleus (STN) from electrodes implanted in patients with Parkinson's disease, while they moved a joystick-controlled cursor to visual targets displayed on a computer screen. After movement offsets, we found increased beta activity in both local STN LFP and sensorimotor cortical EEG and in the coupling between the two, which was affected by both error magnitude and its contextual saliency. The postmovement increase in the coupling between STN and cortex was dominated by information flow from sensorimotor cortex to STN. However, an information drive appeared from STN to sensorimotor cortex in the first phase of the adaptation, when a constant rotation was applied between joystick inputs and cursor outputs. The strength of the STN to cortex drive correlated with the degree of adaption achieved across subjects. These results suggest that oscillatory activity in the beta band may dynamically couple the sensorimotor cortex and basal ganglia after movements. In particular, beta activity driven from the STN to cortex indicates task-relevant movement errors, information that may be important in modifying subsequent motor responses.
AbstractList Monitoring and evaluating movement errors to guide subsequent movements is a critical feature of normal motor control. Previously, we showed that the postmovement increase in electroencephalographic (EEG) beta power over the sensorimotor cortex reflects neural processes that evaluate motor errors consistent with Bayesian inference (Tan et al., 2014). Whether such neural processes are limited to this cortical region or involve the basal ganglia is unclear. Here, we recorded EEG over the cortex and local field potential (LFP) activity in the subthalamic nucleus (STN) from electrodes implanted in patients with Parkinson's disease, while they moved a joystick-controlled cursor to visual targets displayed on a computer screen. After movement offsets, we found increased beta activity in both local STN LFP and sensorimotor cortical EEG and in the coupling between the two, which was affected by both error magnitude and its contextual saliency. The postmovement increase in the coupling between STN and cortex was dominated by information flow from sensorimotor cortex to STN. However, an information drive appeared from STN to sensorimotor cortex in the first phase of the adaptation, when a constant rotation was applied between joystick inputs and cursor outputs. The strength of the STN to cortex drive correlated with the degree of adaption achieved across subjects. These results suggest that oscillatory activity in the beta band may dynamically couple the sensorimotor cortex and basal ganglia after movements. In particular, beta activity driven from the STN to cortex indicates task-relevant movement errors, information that may be important in modifying subsequent motor responses.Monitoring and evaluating movement errors to guide subsequent movements is a critical feature of normal motor control. Previously, we showed that the postmovement increase in electroencephalographic (EEG) beta power over the sensorimotor cortex reflects neural processes that evaluate motor errors consistent with Bayesian inference (Tan et al., 2014). Whether such neural processes are limited to this cortical region or involve the basal ganglia is unclear. Here, we recorded EEG over the cortex and local field potential (LFP) activity in the subthalamic nucleus (STN) from electrodes implanted in patients with Parkinson's disease, while they moved a joystick-controlled cursor to visual targets displayed on a computer screen. After movement offsets, we found increased beta activity in both local STN LFP and sensorimotor cortical EEG and in the coupling between the two, which was affected by both error magnitude and its contextual saliency. The postmovement increase in the coupling between STN and cortex was dominated by information flow from sensorimotor cortex to STN. However, an information drive appeared from STN to sensorimotor cortex in the first phase of the adaptation, when a constant rotation was applied between joystick inputs and cursor outputs. The strength of the STN to cortex drive correlated with the degree of adaption achieved across subjects. These results suggest that oscillatory activity in the beta band may dynamically couple the sensorimotor cortex and basal ganglia after movements. In particular, beta activity driven from the STN to cortex indicates task-relevant movement errors, information that may be important in modifying subsequent motor responses.
Monitoring and evaluating movement errors to guide subsequent movements is a critical feature of normal motor control. Previously, we showed that the postmovement increase in electroencephalographic (EEG) beta power over the sensorimotor cortex reflects neural processes that evaluate motor errors consistent with Bayesian inference (Tan et al., 2014). Whether such neural processes are limited to this cortical region or involve the basal ganglia is unclear. Here, we recorded EEG over the cortex and local field potential (LFP) activity in the subthalamic nucleus (STN) from electrodes implanted in patients with Parkinson's disease, while they moved a joystick-controlled cursor to visual targets displayed on a computer screen. After movement offsets, we found increased beta activity in both local STN LFP and sensorimotor cortical EEG and in the coupling between the two, which was affected by both error magnitude and its contextual saliency. The postmovement increase in the coupling between STN and cortex was dominated by information flow from sensorimotor cortex to STN. However, an information drive appeared from STN to sensorimotor cortex in the first phase of the adaptation, when a constant rotation was applied between joystick inputs and cursor outputs. The strength of the STN to cortex drive correlated with the degree of adaption achieved across subjects. These results suggest that oscillatory activity in the beta band may dynamically couple the sensorimotor cortex and basal ganglia after movements. In particular, beta activity driven from the STN to cortex indicates task-relevant movement errors, information that may be important in modifying subsequent motor responses.
Monitoring and evaluating movement errors to guide subsequent movements is a critical feature of normal motor control. Previously, we showed that the postmovement increase in electroencephalographic (EEG) beta power over the sensorimotor cortex reflects neural processes that evaluate motor errors consistent with Bayesian inference ( Tan et al., 2014 ). Whether such neural processes are limited to this cortical region or involve the basal ganglia is unclear. Here, we recorded EEG over the cortex and local field potential (LFP) activity in the subthalamic nucleus (STN) from electrodes implanted in patients with Parkinson's disease, while they moved a joystick-controlled cursor to visual targets displayed on a computer screen. After movement offsets, we found increased beta activity in both local STN LFP and sensorimotor cortical EEG and in the coupling between the two, which was affected by both error magnitude and its contextual saliency. The postmovement increase in the coupling between STN and cortex was dominated by information flow from sensorimotor cortex to STN. However, an information drive appeared from STN to sensorimotor cortex in the first phase of the adaptation, when a constant rotation was applied between joystick inputs and cursor outputs. The strength of the STN to cortex drive correlated with the degree of adaption achieved across subjects. These results suggest that oscillatory activity in the beta band may dynamically couple the sensorimotor cortex and basal ganglia after movements. In particular, beta activity driven from the STN to cortex indicates task-relevant movement errors, information that may be important in modifying subsequent motor responses.
Author Pogosyan, Alek
Zrinzo, Ludvic
Limousin, Patricia
Brown, Peter
Zavala, Baltazar
Tan, Huiling
Foltynie, Thomas
Ashkan, Keyoumars
Author_xml – sequence: 1
  givenname: Huiling
  surname: Tan
  fullname: Tan, Huiling
– sequence: 2
  givenname: Baltazar
  orcidid: 0000-0002-7284-7994
  surname: Zavala
  fullname: Zavala, Baltazar
– sequence: 3
  givenname: Alek
  surname: Pogosyan
  fullname: Pogosyan, Alek
– sequence: 4
  givenname: Keyoumars
  surname: Ashkan
  fullname: Ashkan, Keyoumars
– sequence: 5
  givenname: Ludvic
  surname: Zrinzo
  fullname: Zrinzo, Ludvic
– sequence: 6
  givenname: Thomas
  surname: Foltynie
  fullname: Foltynie, Thomas
– sequence: 7
  givenname: Patricia
  surname: Limousin
  fullname: Limousin, Patricia
– sequence: 8
  givenname: Peter
  surname: Brown
  fullname: Brown, Peter
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25505327$$D View this record in MEDLINE/PubMed
BookMark eNqFUVtrFDEYDVKx2-pfKHn0ZdbcswMilHW1K7UFa30NmSTTRmaSNZks-O_N7rZFfSkEPpJzyeE7J-AoxOAAOMNojjmh775crW6_Xd8s13PKMGswmxOE2Qswq2jbEIbwEZghIlEjmGTH4CTnnwghibB8BY4J54hTImfAXZRRB3hTuuleD3r0Bl4VM7iSoQ_wa9y60YUJrlKKCX50kzOTjwHqYOF6ynC11UPR-ydbkg938IfPJY5xqvRzqzfTHnwNXvZ6yO7NwzwFt59W35cXzeX15_Xy_LIxjMmpxqbGuL7rzcIIbI3glGrZWu2wtQuDXWf3N4p5zwiy2vamYy0X0lJkHKen4MPBd1O60VlToyc9qE3yo06_VdRe_YsEf6_u4lYxIjBq22rw9sEgxV_F5UmNPhs3DDq4WLLCUvB2gQilz1MFlVyIRbujnv0d6ynPYw2V8P5AMCnmnFyvjD9srqb0g8JI7VpXT62rXeuqnl3rVS7-kz_-8IzwD8ortUI
CitedBy_id crossref_primary_10_1523_JNEUROSCI_0208_20_2020
crossref_primary_10_1093_brain_awae184
crossref_primary_10_1016_j_neuroimage_2022_119389
crossref_primary_10_15446_revfacmed_v64n1_50473
crossref_primary_10_1073_pnas_1517629112
crossref_primary_10_3390_s24092875
crossref_primary_10_1152_jn_00238_2020
crossref_primary_10_1523_ENEURO_0009_21_2021
crossref_primary_10_1523_JNEUROSCI_1314_18_2018
crossref_primary_10_1016_j_nbd_2019_03_004
crossref_primary_10_3389_fnsys_2020_00061
crossref_primary_10_1016_j_neuroimage_2020_117447
crossref_primary_10_1038_s41531_023_00567_0
crossref_primary_10_3389_fnsys_2016_00017
crossref_primary_10_1080_00222895_2023_2213198
crossref_primary_10_1007_s11055_019_00824_x
crossref_primary_10_1523_JNEUROSCI_1090_15_2015
crossref_primary_10_1093_brain_awy266
crossref_primary_10_3389_fnhum_2020_00354
crossref_primary_10_1152_jn_00547_2016
crossref_primary_10_3389_fnins_2017_00646
crossref_primary_10_7554_eLife_51956
crossref_primary_10_1016_j_neuroimage_2019_06_034
crossref_primary_10_1016_j_neubiorev_2021_104520
crossref_primary_10_1093_cercor_bhae037
crossref_primary_10_1016_j_neuroimage_2018_06_032
crossref_primary_10_1016_j_nbd_2018_06_007
crossref_primary_10_1016_j_neuron_2015_07_019
crossref_primary_10_1523_JNEUROSCI_3596_17_2018
crossref_primary_10_1016_j_nbd_2019_104716
crossref_primary_10_1016_j_nicl_2015_08_018
crossref_primary_10_1111_ejn_13328
crossref_primary_10_1038_s41598_017_17849_2
crossref_primary_10_1038_s41467_020_18435_3
crossref_primary_10_1038_s41598_021_97004_0
crossref_primary_10_1111_ejn_14494
crossref_primary_10_1016_j_neuroimage_2021_118645
crossref_primary_10_1016_j_cortex_2023_05_002
crossref_primary_10_1371_journal_pbio_3002140
crossref_primary_10_3390_brainsci8040074
crossref_primary_10_1016_j_nicl_2018_05_001
crossref_primary_10_1038_s42003_023_04531_9
crossref_primary_10_1523_JNEUROSCI_3204_15_2016
crossref_primary_10_3389_fneur_2020_00794
crossref_primary_10_1002_mds_27996
crossref_primary_10_1088_1741_2552_abaca3
Cites_doi 10.1126/science.8091209
10.1371/journal.pone.0089443
10.1016/j.neuroimage.2013.05.084
10.1016/j.bbr.2008.11.012
10.1016/j.neuroimage.2012.09.036
10.1093/brain/awh053
10.1016/j.conb.2010.02.015
10.7551/mitpress/4708.003.0020
10.1093/cercor/bht002
10.1152/jn.00675.2003
10.1523/JNEUROSCI.5295-07.2008
10.1016/j.tics.2012.07.007
10.1523/JNEUROSCI.0282-08.2008
10.1073/pnas.1113158108
10.1523/JNEUROSCI.4739-13.2014
10.1126/science.1105370
10.1007/BF00198091
10.1007/PL00007990
10.1126/science.1102941
10.1162/jocn_a_00659
10.1152/jn.00266.2007
10.1016/j.conb.2005.03.004
10.1002/(SICI)1097-0193(1998)6:1<59::AID-HBM5>3.0.CO;2-K
10.1093/brain/awf135
10.1093/brain/awf042
10.1093/brain/awf156
10.1016/j.neuroimage.2012.11.036
10.1523/JNEUROSCI.1036-13.2013
10.1038/35092560
10.1016/j.jneumeth.2009.11.020
10.1016/j.neuroimage.2011.07.072
10.1007/s00221-006-0571-y
10.1586/ern.10.68
10.1016/j.conb.2010.08.022
10.1016/S0893-6080(96)00035-4
10.1016/j.neuron.2005.05.020
10.1097/00001756-200108080-00057
10.1152/ajpregu.2000.279.1.R1
10.1016/S0896-6273(03)00869-9
10.1007/s004229900137
10.1093/brain/awh480
10.1038/nature02169
10.1523/JNEUROSCI.0767-12.2012
10.1162/jocn_a_00543
10.1007/s12311-008-0072-6
10.1016/j.conb.2007.12.001
10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C
10.3109/00207454.2013.813509
10.1097/00001756-200105080-00013
10.1007/s00221-008-1280-5
10.1016/j.neuroscience.2014.06.008
ContentType Journal Article
Copyright Copyright © 2014 Tan et al.
Copyright © 2014 Tan et al. 2014
Copyright_xml – notice: Copyright © 2014 Tan et al.
– notice: Copyright © 2014 Tan et al. 2014
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
5PM
DOI 10.1523/JNEUROSCI.3414-14.2014
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList MEDLINE - Academic
MEDLINE
CrossRef
Neurosciences Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1529-2401
EndPage 16754
ExternalDocumentID PMC4261099
25505327
10_1523_JNEUROSCI_3414_14_2014
Genre Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Medical Research Council
  grantid: G0901503
GroupedDBID ---
-DZ
-~X
.55
18M
2WC
34G
39C
53G
5GY
5RE
5VS
AAFWJ
AAJMC
AAYXX
ABBAR
ABIVO
ACGUR
ACNCT
ADBBV
ADCOW
ADHGD
AENEX
AETEA
AFCFT
AFOSN
AFSQR
AHWXS
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
H13
HYE
H~9
KQ8
L7B
OK1
P0W
P2P
QZG
R.V
RHI
RPM
TFN
TR2
W8F
WH7
WOQ
X7M
XJT
YBU
YHG
YKV
YNH
YSK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
5PM
ID FETCH-LOGICAL-c447t-243ccefbfc8c61dc6533a79dae1dd8c1ebd79dae315f420dadfcb49567d30ce53
ISSN 0270-6474
1529-2401
IngestDate Thu Aug 21 14:28:35 EDT 2025
Sun Aug 24 03:20:57 EDT 2025
Fri Jul 11 15:07:19 EDT 2025
Sat May 31 02:10:27 EDT 2025
Tue Jul 01 03:47:18 EDT 2025
Thu Apr 24 22:53:49 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 50
Keywords information flow
adaptation
movement error
sensorimotor cortex
subthalamic nucleus
effective connectivity
Language English
License https://creativecommons.org/licenses/by-nc-sa/4.0
Copyright © 2014 Tan et al.
This article is freely available online through the J Neurosci Author Open Choice option.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c447t-243ccefbfc8c61dc6533a79dae1dd8c1ebd79dae315f420dadfcb49567d30ce53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
Author contributions: H.T. and P.B. designed research; H.T. and B.Z. performed research; H.T., B.Z., A.P., K.A., L.Z., T.F., and P.L. contributed unpublished reagents/analytic tools; H.T. and P.B. analyzed data; H.T., B.Z., A.P., and P.B. wrote the paper.
ORCID 0000-0002-7284-7994
OpenAccessLink https://www.jneurosci.org/content/jneuro/34/50/16744.full.pdf
PMID 25505327
PQID 1637566893
PQPubID 23479
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4261099
proquest_miscellaneous_1765980233
proquest_miscellaneous_1637566893
pubmed_primary_25505327
crossref_citationtrail_10_1523_JNEUROSCI_3414_14_2014
crossref_primary_10_1523_JNEUROSCI_3414_14_2014
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-12-10
2014-Dec-10
20141210
PublicationDateYYYYMMDD 2014-12-10
PublicationDate_xml – month: 12
  year: 2014
  text: 2014-12-10
  day: 10
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of neuroscience
PublicationTitleAlternate J Neurosci
PublicationYear 2014
Publisher Society for Neuroscience
Publisher_xml – name: Society for Neuroscience
References 2023041304144225000_34.50.16744.25
2023041304144225000_34.50.16744.26
2023041304144225000_34.50.16744.27
2023041304144225000_34.50.16744.28
2023041304144225000_34.50.16744.29
2023041304144225000_34.50.16744.30
Curran-Everett (2023041304144225000_34.50.16744.8) 2000; 279
2023041304144225000_34.50.16744.31
2023041304144225000_34.50.16744.32
2023041304144225000_34.50.16744.33
2023041304144225000_34.50.16744.34
2023041304144225000_34.50.16744.9
2023041304144225000_34.50.16744.7
2023041304144225000_34.50.16744.6
2023041304144225000_34.50.16744.5
2023041304144225000_34.50.16744.13
2023041304144225000_34.50.16744.4
2023041304144225000_34.50.16744.14
2023041304144225000_34.50.16744.3
2023041304144225000_34.50.16744.15
2023041304144225000_34.50.16744.2
2023041304144225000_34.50.16744.16
2023041304144225000_34.50.16744.1
2023041304144225000_34.50.16744.17
2023041304144225000_34.50.16744.18
2023041304144225000_34.50.16744.19
2023041304144225000_34.50.16744.20
2023041304144225000_34.50.16744.21
2023041304144225000_34.50.16744.22
2023041304144225000_34.50.16744.23
Korenberg (2023041304144225000_34.50.16744.24) 2002; 21
2023041304144225000_34.50.16744.46
2023041304144225000_34.50.16744.47
2023041304144225000_34.50.16744.48
2023041304144225000_34.50.16744.49
2023041304144225000_34.50.16744.50
2023041304144225000_34.50.16744.51
2023041304144225000_34.50.16744.52
2023041304144225000_34.50.16744.10
2023041304144225000_34.50.16744.11
2023041304144225000_34.50.16744.12
2023041304144225000_34.50.16744.35
2023041304144225000_34.50.16744.36
2023041304144225000_34.50.16744.37
2023041304144225000_34.50.16744.38
2023041304144225000_34.50.16744.39
2023041304144225000_34.50.16744.40
2023041304144225000_34.50.16744.41
2023041304144225000_34.50.16744.42
2023041304144225000_34.50.16744.43
2023041304144225000_34.50.16744.44
2023041304144225000_34.50.16744.45
References_xml – ident: 2023041304144225000_34.50.16744.16
  doi: 10.1126/science.8091209
– ident: 2023041304144225000_34.50.16744.37
  doi: 10.1371/journal.pone.0089443
– ident: 2023041304144225000_34.50.16744.3
  doi: 10.1016/j.neuroimage.2013.05.084
– ident: 2023041304144225000_34.50.16744.12
  doi: 10.1016/j.bbr.2008.11.012
– ident: 2023041304144225000_34.50.16744.17
  doi: 10.1016/j.neuroimage.2012.09.036
– ident: 2023041304144225000_34.50.16744.9
  doi: 10.1093/brain/awh053
– ident: 2023041304144225000_34.50.16744.13
  doi: 10.1016/j.conb.2010.02.015
– ident: 2023041304144225000_34.50.16744.20
  doi: 10.7551/mitpress/4708.003.0020
– ident: 2023041304144225000_34.50.16744.18
  doi: 10.1093/cercor/bht002
– volume: 21
  start-page: 537
  year: 2002
  ident: 2023041304144225000_34.50.16744.24
  article-title: A Bayesian view of motor adaptation
  publication-title: Curr Psychol Cogn
– ident: 2023041304144225000_34.50.16744.25
  doi: 10.1152/jn.00675.2003
– ident: 2023041304144225000_34.50.16744.29
  doi: 10.1523/JNEUROSCI.5295-07.2008
– ident: 2023041304144225000_34.50.16744.30
  doi: 10.1016/j.tics.2012.07.007
– ident: 2023041304144225000_34.50.16744.27
  doi: 10.1523/JNEUROSCI.0282-08.2008
– ident: 2023041304144225000_34.50.16744.21
  doi: 10.1073/pnas.1113158108
– ident: 2023041304144225000_34.50.16744.46
  doi: 10.1523/JNEUROSCI.4739-13.2014
– ident: 2023041304144225000_34.50.16744.47
  doi: 10.1126/science.1105370
– ident: 2023041304144225000_34.50.16744.22
  doi: 10.1007/BF00198091
– ident: 2023041304144225000_34.50.16744.1
  doi: 10.1007/PL00007990
– ident: 2023041304144225000_34.50.16744.15
  doi: 10.1126/science.1102941
– ident: 2023041304144225000_34.50.16744.7
  doi: 10.1162/jocn_a_00659
– ident: 2023041304144225000_34.50.16744.48
  doi: 10.1152/jn.00266.2007
– ident: 2023041304144225000_34.50.16744.11
  doi: 10.1016/j.conb.2005.03.004
– ident: 2023041304144225000_34.50.16744.26
  doi: 10.1002/(SICI)1097-0193(1998)6:1<59::AID-HBM5>3.0.CO;2-K
– ident: 2023041304144225000_34.50.16744.6
  doi: 10.1093/brain/awf135
– ident: 2023041304144225000_34.50.16744.40
  doi: 10.1093/brain/awf042
– ident: 2023041304144225000_34.50.16744.50
  doi: 10.1093/brain/awf156
– ident: 2023041304144225000_34.50.16744.19
  doi: 10.1016/j.neuroimage.2012.11.036
– ident: 2023041304144225000_34.50.16744.52
  doi: 10.1523/JNEUROSCI.1036-13.2013
– ident: 2023041304144225000_34.50.16744.39
  doi: 10.1038/35092560
– ident: 2023041304144225000_34.50.16744.43
  doi: 10.1016/j.jneumeth.2009.11.020
– ident: 2023041304144225000_34.50.16744.41
  doi: 10.1016/j.neuroimage.2011.07.072
– ident: 2023041304144225000_34.50.16744.42
  doi: 10.1007/s00221-006-0571-y
– ident: 2023041304144225000_34.50.16744.14
  doi: 10.1586/ern.10.68
– ident: 2023041304144225000_34.50.16744.49
  doi: 10.1016/j.conb.2010.08.022
– ident: 2023041304144225000_34.50.16744.51
  doi: 10.1016/S0893-6080(96)00035-4
– ident: 2023041304144225000_34.50.16744.2
  doi: 10.1016/j.neuron.2005.05.020
– ident: 2023041304144225000_34.50.16744.5
  doi: 10.1097/00001756-200108080-00057
– volume: 279
  start-page: R1
  year: 2000
  ident: 2023041304144225000_34.50.16744.8
  article-title: Multiple comparisons: philosophies and illustrations
  publication-title: Am J Physiol Regul Integr Comp Physiol
  doi: 10.1152/ajpregu.2000.279.1.R1
– ident: 2023041304144225000_34.50.16744.35
  doi: 10.1016/S0896-6273(03)00869-9
– ident: 2023041304144225000_34.50.16744.10
  doi: 10.1007/s004229900137
– ident: 2023041304144225000_34.50.16744.45
  doi: 10.1093/brain/awh480
– ident: 2023041304144225000_34.50.16744.23
  doi: 10.1038/nature02169
– ident: 2023041304144225000_34.50.16744.31
  doi: 10.1523/JNEUROSCI.0767-12.2012
– ident: 2023041304144225000_34.50.16744.32
  doi: 10.1162/jocn_a_00543
– ident: 2023041304144225000_34.50.16744.34
  doi: 10.1007/s12311-008-0072-6
– ident: 2023041304144225000_34.50.16744.4
  doi: 10.1016/j.conb.2007.12.001
– ident: 2023041304144225000_34.50.16744.28
  doi: 10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C
– ident: 2023041304144225000_34.50.16744.36
  doi: 10.3109/00207454.2013.813509
– ident: 2023041304144225000_34.50.16744.33
  doi: 10.1097/00001756-200105080-00013
– ident: 2023041304144225000_34.50.16744.44
  doi: 10.1007/s00221-008-1280-5
– ident: 2023041304144225000_34.50.16744.38
  doi: 10.1016/j.neuroscience.2014.06.008
SSID ssj0007017
Score 2.3676815
Snippet Monitoring and evaluating movement errors to guide subsequent movements is a critical feature of normal motor control. Previously, we showed that the...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 16744
SubjectTerms Adaptation, Physiological - physiology
Aged
Deep Brain Stimulation - methods
Female
Humans
Male
Middle Aged
Motion Perception - physiology
Movement - physiology
Photic Stimulation - methods
Psychomotor Performance - physiology
Subthalamic Nucleus - physiology
Title Human Subthalamic Nucleus in Movement Error Detection and Its Evaluation during Visuomotor Adaptation
URI https://www.ncbi.nlm.nih.gov/pubmed/25505327
https://www.proquest.com/docview/1637566893
https://www.proquest.com/docview/1765980233
https://pubmed.ncbi.nlm.nih.gov/PMC4261099
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKeOEFAeOjfMlIiBfULt9uH6NpqGzaBKJDe4sc21kLIZna5KH7n_gfubMTJ92mwXiJGsdxkt7PZ__O5ztC3nMh_EkIHVByEEOgZDjiMDEB1pqJCOiDnHA06B-fRLPT4PAsPBsMfve8luoqHYvLG_eV_I9UoQzkirtk7yBZ2ygUwG-QLxxBwnD8JxkbCzz0_WrBc0wsD-QfqtTax_W41KHAK1B1q3IFiqVSTVpw9ACu1h8PbKDvdrPi9-W6Ru88qB5LftFbpf_Rgao3he0Fw7T4mBuL6qxe5u2oiHZpDg8zWZ55XvFLbn2Cv5Tn5XpjbopzZTcOxevFT1N6pDYlOoJvWShcHQex8VU1isxjQFEDk41nrBpF6-mVHbeviRuzpkGciUfb6FXcKxH0Bmk4N7Gnr40AoY5EcXiCjpDf9j-PYZSGF0LrmRt0Y167zn9lKLQOikiNoKXEtpNgO8CTEmznHrnvAStBtXr0tQtOzxyd4Nl-brMhHdrZu_l9tudC1wjOVT_d3sRn_og8bMRNYwO_x2SgiidkNy54Vf7a0A9U-xDrxZldojQiaQ-RtEEkXRa0RSTViKQWkRQQSQGRtEMkNYikHSJph8in5PTTwXx_NmoSeYxEELAK5OwLobI0ExMRuVJEwDE4m0quXCknwlWp1Ge-G2aB50guM5Eic2fSd4QK_WdkpygL9YJQuBqlUSp8Hopgypx04vnClyyTU89RUTokYfuXJqKJco_JVvLkdpEOyZ6978LEefnrHe9aiSWgknGdjReqrNcJUBwGLAmYwC11WBROMfgi1HlupGyf66HVwPfYkLAt-dsKGBJ--0qxXOjQ8GgQAc738s5f84o86Lrua7JTrWr1BqbbVfpWg_wPTwzWaw
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+Subthalamic+Nucleus+in+Movement+Error+Detection+and+Its+Evaluation+during+Visuomotor+Adaptation&rft.jtitle=The+Journal+of+neuroscience&rft.au=Tan%2C+Huiling&rft.au=Zavala%2C+Baltazar&rft.au=Pogosyan%2C+Alek&rft.au=Ashkan%2C+Keyoumars&rft.date=2014-12-10&rft.issn=0270-6474&rft.eissn=1529-2401&rft.volume=34&rft.issue=50&rft.spage=16744&rft.epage=16754&rft_id=info:doi/10.1523%2FJNEUROSCI.3414-14.2014&rft.externalDBID=n%2Fa&rft.externalDocID=10_1523_JNEUROSCI_3414_14_2014
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon