Human Subthalamic Nucleus in Movement Error Detection and Its Evaluation during Visuomotor Adaptation
Monitoring and evaluating movement errors to guide subsequent movements is a critical feature of normal motor control. Previously, we showed that the postmovement increase in electroencephalographic (EEG) beta power over the sensorimotor cortex reflects neural processes that evaluate motor errors co...
Saved in:
Published in | The Journal of neuroscience Vol. 34; no. 50; pp. 16744 - 16754 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Society for Neuroscience
10.12.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Monitoring and evaluating movement errors to guide subsequent movements is a critical feature of normal motor control. Previously, we showed that the postmovement increase in electroencephalographic (EEG) beta power over the sensorimotor cortex reflects neural processes that evaluate motor errors consistent with Bayesian inference (Tan et al., 2014). Whether such neural processes are limited to this cortical region or involve the basal ganglia is unclear. Here, we recorded EEG over the cortex and local field potential (LFP) activity in the subthalamic nucleus (STN) from electrodes implanted in patients with Parkinson's disease, while they moved a joystick-controlled cursor to visual targets displayed on a computer screen. After movement offsets, we found increased beta activity in both local STN LFP and sensorimotor cortical EEG and in the coupling between the two, which was affected by both error magnitude and its contextual saliency. The postmovement increase in the coupling between STN and cortex was dominated by information flow from sensorimotor cortex to STN. However, an information drive appeared from STN to sensorimotor cortex in the first phase of the adaptation, when a constant rotation was applied between joystick inputs and cursor outputs. The strength of the STN to cortex drive correlated with the degree of adaption achieved across subjects. These results suggest that oscillatory activity in the beta band may dynamically couple the sensorimotor cortex and basal ganglia after movements. In particular, beta activity driven from the STN to cortex indicates task-relevant movement errors, information that may be important in modifying subsequent motor responses. |
---|---|
AbstractList | Monitoring and evaluating movement errors to guide subsequent movements is a critical feature of normal motor control. Previously, we showed that the postmovement increase in electroencephalographic (EEG) beta power over the sensorimotor cortex reflects neural processes that evaluate motor errors consistent with Bayesian inference (Tan et al., 2014). Whether such neural processes are limited to this cortical region or involve the basal ganglia is unclear. Here, we recorded EEG over the cortex and local field potential (LFP) activity in the subthalamic nucleus (STN) from electrodes implanted in patients with Parkinson's disease, while they moved a joystick-controlled cursor to visual targets displayed on a computer screen. After movement offsets, we found increased beta activity in both local STN LFP and sensorimotor cortical EEG and in the coupling between the two, which was affected by both error magnitude and its contextual saliency. The postmovement increase in the coupling between STN and cortex was dominated by information flow from sensorimotor cortex to STN. However, an information drive appeared from STN to sensorimotor cortex in the first phase of the adaptation, when a constant rotation was applied between joystick inputs and cursor outputs. The strength of the STN to cortex drive correlated with the degree of adaption achieved across subjects. These results suggest that oscillatory activity in the beta band may dynamically couple the sensorimotor cortex and basal ganglia after movements. In particular, beta activity driven from the STN to cortex indicates task-relevant movement errors, information that may be important in modifying subsequent motor responses.Monitoring and evaluating movement errors to guide subsequent movements is a critical feature of normal motor control. Previously, we showed that the postmovement increase in electroencephalographic (EEG) beta power over the sensorimotor cortex reflects neural processes that evaluate motor errors consistent with Bayesian inference (Tan et al., 2014). Whether such neural processes are limited to this cortical region or involve the basal ganglia is unclear. Here, we recorded EEG over the cortex and local field potential (LFP) activity in the subthalamic nucleus (STN) from electrodes implanted in patients with Parkinson's disease, while they moved a joystick-controlled cursor to visual targets displayed on a computer screen. After movement offsets, we found increased beta activity in both local STN LFP and sensorimotor cortical EEG and in the coupling between the two, which was affected by both error magnitude and its contextual saliency. The postmovement increase in the coupling between STN and cortex was dominated by information flow from sensorimotor cortex to STN. However, an information drive appeared from STN to sensorimotor cortex in the first phase of the adaptation, when a constant rotation was applied between joystick inputs and cursor outputs. The strength of the STN to cortex drive correlated with the degree of adaption achieved across subjects. These results suggest that oscillatory activity in the beta band may dynamically couple the sensorimotor cortex and basal ganglia after movements. In particular, beta activity driven from the STN to cortex indicates task-relevant movement errors, information that may be important in modifying subsequent motor responses. Monitoring and evaluating movement errors to guide subsequent movements is a critical feature of normal motor control. Previously, we showed that the postmovement increase in electroencephalographic (EEG) beta power over the sensorimotor cortex reflects neural processes that evaluate motor errors consistent with Bayesian inference (Tan et al., 2014). Whether such neural processes are limited to this cortical region or involve the basal ganglia is unclear. Here, we recorded EEG over the cortex and local field potential (LFP) activity in the subthalamic nucleus (STN) from electrodes implanted in patients with Parkinson's disease, while they moved a joystick-controlled cursor to visual targets displayed on a computer screen. After movement offsets, we found increased beta activity in both local STN LFP and sensorimotor cortical EEG and in the coupling between the two, which was affected by both error magnitude and its contextual saliency. The postmovement increase in the coupling between STN and cortex was dominated by information flow from sensorimotor cortex to STN. However, an information drive appeared from STN to sensorimotor cortex in the first phase of the adaptation, when a constant rotation was applied between joystick inputs and cursor outputs. The strength of the STN to cortex drive correlated with the degree of adaption achieved across subjects. These results suggest that oscillatory activity in the beta band may dynamically couple the sensorimotor cortex and basal ganglia after movements. In particular, beta activity driven from the STN to cortex indicates task-relevant movement errors, information that may be important in modifying subsequent motor responses. Monitoring and evaluating movement errors to guide subsequent movements is a critical feature of normal motor control. Previously, we showed that the postmovement increase in electroencephalographic (EEG) beta power over the sensorimotor cortex reflects neural processes that evaluate motor errors consistent with Bayesian inference ( Tan et al., 2014 ). Whether such neural processes are limited to this cortical region or involve the basal ganglia is unclear. Here, we recorded EEG over the cortex and local field potential (LFP) activity in the subthalamic nucleus (STN) from electrodes implanted in patients with Parkinson's disease, while they moved a joystick-controlled cursor to visual targets displayed on a computer screen. After movement offsets, we found increased beta activity in both local STN LFP and sensorimotor cortical EEG and in the coupling between the two, which was affected by both error magnitude and its contextual saliency. The postmovement increase in the coupling between STN and cortex was dominated by information flow from sensorimotor cortex to STN. However, an information drive appeared from STN to sensorimotor cortex in the first phase of the adaptation, when a constant rotation was applied between joystick inputs and cursor outputs. The strength of the STN to cortex drive correlated with the degree of adaption achieved across subjects. These results suggest that oscillatory activity in the beta band may dynamically couple the sensorimotor cortex and basal ganglia after movements. In particular, beta activity driven from the STN to cortex indicates task-relevant movement errors, information that may be important in modifying subsequent motor responses. |
Author | Pogosyan, Alek Zrinzo, Ludvic Limousin, Patricia Brown, Peter Zavala, Baltazar Tan, Huiling Foltynie, Thomas Ashkan, Keyoumars |
Author_xml | – sequence: 1 givenname: Huiling surname: Tan fullname: Tan, Huiling – sequence: 2 givenname: Baltazar orcidid: 0000-0002-7284-7994 surname: Zavala fullname: Zavala, Baltazar – sequence: 3 givenname: Alek surname: Pogosyan fullname: Pogosyan, Alek – sequence: 4 givenname: Keyoumars surname: Ashkan fullname: Ashkan, Keyoumars – sequence: 5 givenname: Ludvic surname: Zrinzo fullname: Zrinzo, Ludvic – sequence: 6 givenname: Thomas surname: Foltynie fullname: Foltynie, Thomas – sequence: 7 givenname: Patricia surname: Limousin fullname: Limousin, Patricia – sequence: 8 givenname: Peter surname: Brown fullname: Brown, Peter |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25505327$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUVtrFDEYDVKx2-pfKHn0ZdbcswMilHW1K7UFa30NmSTTRmaSNZks-O_N7rZFfSkEPpJzyeE7J-AoxOAAOMNojjmh775crW6_Xd8s13PKMGswmxOE2Qswq2jbEIbwEZghIlEjmGTH4CTnnwghibB8BY4J54hTImfAXZRRB3hTuuleD3r0Bl4VM7iSoQ_wa9y60YUJrlKKCX50kzOTjwHqYOF6ynC11UPR-ydbkg938IfPJY5xqvRzqzfTHnwNXvZ6yO7NwzwFt59W35cXzeX15_Xy_LIxjMmpxqbGuL7rzcIIbI3glGrZWu2wtQuDXWf3N4p5zwiy2vamYy0X0lJkHKen4MPBd1O60VlToyc9qE3yo06_VdRe_YsEf6_u4lYxIjBq22rw9sEgxV_F5UmNPhs3DDq4WLLCUvB2gQilz1MFlVyIRbujnv0d6ynPYw2V8P5AMCnmnFyvjD9srqb0g8JI7VpXT62rXeuqnl3rVS7-kz_-8IzwD8ortUI |
CitedBy_id | crossref_primary_10_1523_JNEUROSCI_0208_20_2020 crossref_primary_10_1093_brain_awae184 crossref_primary_10_1016_j_neuroimage_2022_119389 crossref_primary_10_15446_revfacmed_v64n1_50473 crossref_primary_10_1073_pnas_1517629112 crossref_primary_10_3390_s24092875 crossref_primary_10_1152_jn_00238_2020 crossref_primary_10_1523_ENEURO_0009_21_2021 crossref_primary_10_1523_JNEUROSCI_1314_18_2018 crossref_primary_10_1016_j_nbd_2019_03_004 crossref_primary_10_3389_fnsys_2020_00061 crossref_primary_10_1016_j_neuroimage_2020_117447 crossref_primary_10_1038_s41531_023_00567_0 crossref_primary_10_3389_fnsys_2016_00017 crossref_primary_10_1080_00222895_2023_2213198 crossref_primary_10_1007_s11055_019_00824_x crossref_primary_10_1523_JNEUROSCI_1090_15_2015 crossref_primary_10_1093_brain_awy266 crossref_primary_10_3389_fnhum_2020_00354 crossref_primary_10_1152_jn_00547_2016 crossref_primary_10_3389_fnins_2017_00646 crossref_primary_10_7554_eLife_51956 crossref_primary_10_1016_j_neuroimage_2019_06_034 crossref_primary_10_1016_j_neubiorev_2021_104520 crossref_primary_10_1093_cercor_bhae037 crossref_primary_10_1016_j_neuroimage_2018_06_032 crossref_primary_10_1016_j_nbd_2018_06_007 crossref_primary_10_1016_j_neuron_2015_07_019 crossref_primary_10_1523_JNEUROSCI_3596_17_2018 crossref_primary_10_1016_j_nbd_2019_104716 crossref_primary_10_1016_j_nicl_2015_08_018 crossref_primary_10_1111_ejn_13328 crossref_primary_10_1038_s41598_017_17849_2 crossref_primary_10_1038_s41467_020_18435_3 crossref_primary_10_1038_s41598_021_97004_0 crossref_primary_10_1111_ejn_14494 crossref_primary_10_1016_j_neuroimage_2021_118645 crossref_primary_10_1016_j_cortex_2023_05_002 crossref_primary_10_1371_journal_pbio_3002140 crossref_primary_10_3390_brainsci8040074 crossref_primary_10_1016_j_nicl_2018_05_001 crossref_primary_10_1038_s42003_023_04531_9 crossref_primary_10_1523_JNEUROSCI_3204_15_2016 crossref_primary_10_3389_fneur_2020_00794 crossref_primary_10_1002_mds_27996 crossref_primary_10_1088_1741_2552_abaca3 |
Cites_doi | 10.1126/science.8091209 10.1371/journal.pone.0089443 10.1016/j.neuroimage.2013.05.084 10.1016/j.bbr.2008.11.012 10.1016/j.neuroimage.2012.09.036 10.1093/brain/awh053 10.1016/j.conb.2010.02.015 10.7551/mitpress/4708.003.0020 10.1093/cercor/bht002 10.1152/jn.00675.2003 10.1523/JNEUROSCI.5295-07.2008 10.1016/j.tics.2012.07.007 10.1523/JNEUROSCI.0282-08.2008 10.1073/pnas.1113158108 10.1523/JNEUROSCI.4739-13.2014 10.1126/science.1105370 10.1007/BF00198091 10.1007/PL00007990 10.1126/science.1102941 10.1162/jocn_a_00659 10.1152/jn.00266.2007 10.1016/j.conb.2005.03.004 10.1002/(SICI)1097-0193(1998)6:1<59::AID-HBM5>3.0.CO;2-K 10.1093/brain/awf135 10.1093/brain/awf042 10.1093/brain/awf156 10.1016/j.neuroimage.2012.11.036 10.1523/JNEUROSCI.1036-13.2013 10.1038/35092560 10.1016/j.jneumeth.2009.11.020 10.1016/j.neuroimage.2011.07.072 10.1007/s00221-006-0571-y 10.1586/ern.10.68 10.1016/j.conb.2010.08.022 10.1016/S0893-6080(96)00035-4 10.1016/j.neuron.2005.05.020 10.1097/00001756-200108080-00057 10.1152/ajpregu.2000.279.1.R1 10.1016/S0896-6273(03)00869-9 10.1007/s004229900137 10.1093/brain/awh480 10.1038/nature02169 10.1523/JNEUROSCI.0767-12.2012 10.1162/jocn_a_00543 10.1007/s12311-008-0072-6 10.1016/j.conb.2007.12.001 10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C 10.3109/00207454.2013.813509 10.1097/00001756-200105080-00013 10.1007/s00221-008-1280-5 10.1016/j.neuroscience.2014.06.008 |
ContentType | Journal Article |
Copyright | Copyright © 2014 Tan et al. Copyright © 2014 Tan et al. 2014 |
Copyright_xml | – notice: Copyright © 2014 Tan et al. – notice: Copyright © 2014 Tan et al. 2014 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TK 5PM |
DOI | 10.1523/JNEUROSCI.3414-14.2014 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Neurosciences Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef Neurosciences Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1529-2401 |
EndPage | 16754 |
ExternalDocumentID | PMC4261099 25505327 10_1523_JNEUROSCI_3414_14_2014 |
Genre | Randomized Controlled Trial Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Medical Research Council grantid: G0901503 |
GroupedDBID | --- -DZ -~X .55 18M 2WC 34G 39C 53G 5GY 5RE 5VS AAFWJ AAJMC AAYXX ABBAR ABIVO ACGUR ACNCT ADBBV ADCOW ADHGD AENEX AETEA AFCFT AFOSN AFSQR AHWXS ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW CITATION CS3 DIK DU5 E3Z EBS EJD F5P GX1 H13 HYE H~9 KQ8 L7B OK1 P0W P2P QZG R.V RHI RPM TFN TR2 W8F WH7 WOQ X7M XJT YBU YHG YKV YNH YSK CGR CUY CVF ECM EIF NPM 7X8 7TK 5PM |
ID | FETCH-LOGICAL-c447t-243ccefbfc8c61dc6533a79dae1dd8c1ebd79dae315f420dadfcb49567d30ce53 |
ISSN | 0270-6474 1529-2401 |
IngestDate | Thu Aug 21 14:28:35 EDT 2025 Sun Aug 24 03:20:57 EDT 2025 Fri Jul 11 15:07:19 EDT 2025 Sat May 31 02:10:27 EDT 2025 Tue Jul 01 03:47:18 EDT 2025 Thu Apr 24 22:53:49 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 50 |
Keywords | information flow adaptation movement error sensorimotor cortex subthalamic nucleus effective connectivity |
Language | English |
License | https://creativecommons.org/licenses/by-nc-sa/4.0 Copyright © 2014 Tan et al. This article is freely available online through the J Neurosci Author Open Choice option. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c447t-243ccefbfc8c61dc6533a79dae1dd8c1ebd79dae315f420dadfcb49567d30ce53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 Author contributions: H.T. and P.B. designed research; H.T. and B.Z. performed research; H.T., B.Z., A.P., K.A., L.Z., T.F., and P.L. contributed unpublished reagents/analytic tools; H.T. and P.B. analyzed data; H.T., B.Z., A.P., and P.B. wrote the paper. |
ORCID | 0000-0002-7284-7994 |
OpenAccessLink | https://www.jneurosci.org/content/jneuro/34/50/16744.full.pdf |
PMID | 25505327 |
PQID | 1637566893 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4261099 proquest_miscellaneous_1765980233 proquest_miscellaneous_1637566893 pubmed_primary_25505327 crossref_citationtrail_10_1523_JNEUROSCI_3414_14_2014 crossref_primary_10_1523_JNEUROSCI_3414_14_2014 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-12-10 2014-Dec-10 20141210 |
PublicationDateYYYYMMDD | 2014-12-10 |
PublicationDate_xml | – month: 12 year: 2014 text: 2014-12-10 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of neuroscience |
PublicationTitleAlternate | J Neurosci |
PublicationYear | 2014 |
Publisher | Society for Neuroscience |
Publisher_xml | – name: Society for Neuroscience |
References | 2023041304144225000_34.50.16744.25 2023041304144225000_34.50.16744.26 2023041304144225000_34.50.16744.27 2023041304144225000_34.50.16744.28 2023041304144225000_34.50.16744.29 2023041304144225000_34.50.16744.30 Curran-Everett (2023041304144225000_34.50.16744.8) 2000; 279 2023041304144225000_34.50.16744.31 2023041304144225000_34.50.16744.32 2023041304144225000_34.50.16744.33 2023041304144225000_34.50.16744.34 2023041304144225000_34.50.16744.9 2023041304144225000_34.50.16744.7 2023041304144225000_34.50.16744.6 2023041304144225000_34.50.16744.5 2023041304144225000_34.50.16744.13 2023041304144225000_34.50.16744.4 2023041304144225000_34.50.16744.14 2023041304144225000_34.50.16744.3 2023041304144225000_34.50.16744.15 2023041304144225000_34.50.16744.2 2023041304144225000_34.50.16744.16 2023041304144225000_34.50.16744.1 2023041304144225000_34.50.16744.17 2023041304144225000_34.50.16744.18 2023041304144225000_34.50.16744.19 2023041304144225000_34.50.16744.20 2023041304144225000_34.50.16744.21 2023041304144225000_34.50.16744.22 2023041304144225000_34.50.16744.23 Korenberg (2023041304144225000_34.50.16744.24) 2002; 21 2023041304144225000_34.50.16744.46 2023041304144225000_34.50.16744.47 2023041304144225000_34.50.16744.48 2023041304144225000_34.50.16744.49 2023041304144225000_34.50.16744.50 2023041304144225000_34.50.16744.51 2023041304144225000_34.50.16744.52 2023041304144225000_34.50.16744.10 2023041304144225000_34.50.16744.11 2023041304144225000_34.50.16744.12 2023041304144225000_34.50.16744.35 2023041304144225000_34.50.16744.36 2023041304144225000_34.50.16744.37 2023041304144225000_34.50.16744.38 2023041304144225000_34.50.16744.39 2023041304144225000_34.50.16744.40 2023041304144225000_34.50.16744.41 2023041304144225000_34.50.16744.42 2023041304144225000_34.50.16744.43 2023041304144225000_34.50.16744.44 2023041304144225000_34.50.16744.45 |
References_xml | – ident: 2023041304144225000_34.50.16744.16 doi: 10.1126/science.8091209 – ident: 2023041304144225000_34.50.16744.37 doi: 10.1371/journal.pone.0089443 – ident: 2023041304144225000_34.50.16744.3 doi: 10.1016/j.neuroimage.2013.05.084 – ident: 2023041304144225000_34.50.16744.12 doi: 10.1016/j.bbr.2008.11.012 – ident: 2023041304144225000_34.50.16744.17 doi: 10.1016/j.neuroimage.2012.09.036 – ident: 2023041304144225000_34.50.16744.9 doi: 10.1093/brain/awh053 – ident: 2023041304144225000_34.50.16744.13 doi: 10.1016/j.conb.2010.02.015 – ident: 2023041304144225000_34.50.16744.20 doi: 10.7551/mitpress/4708.003.0020 – ident: 2023041304144225000_34.50.16744.18 doi: 10.1093/cercor/bht002 – volume: 21 start-page: 537 year: 2002 ident: 2023041304144225000_34.50.16744.24 article-title: A Bayesian view of motor adaptation publication-title: Curr Psychol Cogn – ident: 2023041304144225000_34.50.16744.25 doi: 10.1152/jn.00675.2003 – ident: 2023041304144225000_34.50.16744.29 doi: 10.1523/JNEUROSCI.5295-07.2008 – ident: 2023041304144225000_34.50.16744.30 doi: 10.1016/j.tics.2012.07.007 – ident: 2023041304144225000_34.50.16744.27 doi: 10.1523/JNEUROSCI.0282-08.2008 – ident: 2023041304144225000_34.50.16744.21 doi: 10.1073/pnas.1113158108 – ident: 2023041304144225000_34.50.16744.46 doi: 10.1523/JNEUROSCI.4739-13.2014 – ident: 2023041304144225000_34.50.16744.47 doi: 10.1126/science.1105370 – ident: 2023041304144225000_34.50.16744.22 doi: 10.1007/BF00198091 – ident: 2023041304144225000_34.50.16744.1 doi: 10.1007/PL00007990 – ident: 2023041304144225000_34.50.16744.15 doi: 10.1126/science.1102941 – ident: 2023041304144225000_34.50.16744.7 doi: 10.1162/jocn_a_00659 – ident: 2023041304144225000_34.50.16744.48 doi: 10.1152/jn.00266.2007 – ident: 2023041304144225000_34.50.16744.11 doi: 10.1016/j.conb.2005.03.004 – ident: 2023041304144225000_34.50.16744.26 doi: 10.1002/(SICI)1097-0193(1998)6:1<59::AID-HBM5>3.0.CO;2-K – ident: 2023041304144225000_34.50.16744.6 doi: 10.1093/brain/awf135 – ident: 2023041304144225000_34.50.16744.40 doi: 10.1093/brain/awf042 – ident: 2023041304144225000_34.50.16744.50 doi: 10.1093/brain/awf156 – ident: 2023041304144225000_34.50.16744.19 doi: 10.1016/j.neuroimage.2012.11.036 – ident: 2023041304144225000_34.50.16744.52 doi: 10.1523/JNEUROSCI.1036-13.2013 – ident: 2023041304144225000_34.50.16744.39 doi: 10.1038/35092560 – ident: 2023041304144225000_34.50.16744.43 doi: 10.1016/j.jneumeth.2009.11.020 – ident: 2023041304144225000_34.50.16744.41 doi: 10.1016/j.neuroimage.2011.07.072 – ident: 2023041304144225000_34.50.16744.42 doi: 10.1007/s00221-006-0571-y – ident: 2023041304144225000_34.50.16744.14 doi: 10.1586/ern.10.68 – ident: 2023041304144225000_34.50.16744.49 doi: 10.1016/j.conb.2010.08.022 – ident: 2023041304144225000_34.50.16744.51 doi: 10.1016/S0893-6080(96)00035-4 – ident: 2023041304144225000_34.50.16744.2 doi: 10.1016/j.neuron.2005.05.020 – ident: 2023041304144225000_34.50.16744.5 doi: 10.1097/00001756-200108080-00057 – volume: 279 start-page: R1 year: 2000 ident: 2023041304144225000_34.50.16744.8 article-title: Multiple comparisons: philosophies and illustrations publication-title: Am J Physiol Regul Integr Comp Physiol doi: 10.1152/ajpregu.2000.279.1.R1 – ident: 2023041304144225000_34.50.16744.35 doi: 10.1016/S0896-6273(03)00869-9 – ident: 2023041304144225000_34.50.16744.10 doi: 10.1007/s004229900137 – ident: 2023041304144225000_34.50.16744.45 doi: 10.1093/brain/awh480 – ident: 2023041304144225000_34.50.16744.23 doi: 10.1038/nature02169 – ident: 2023041304144225000_34.50.16744.31 doi: 10.1523/JNEUROSCI.0767-12.2012 – ident: 2023041304144225000_34.50.16744.32 doi: 10.1162/jocn_a_00543 – ident: 2023041304144225000_34.50.16744.34 doi: 10.1007/s12311-008-0072-6 – ident: 2023041304144225000_34.50.16744.4 doi: 10.1016/j.conb.2007.12.001 – ident: 2023041304144225000_34.50.16744.28 doi: 10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C – ident: 2023041304144225000_34.50.16744.36 doi: 10.3109/00207454.2013.813509 – ident: 2023041304144225000_34.50.16744.33 doi: 10.1097/00001756-200105080-00013 – ident: 2023041304144225000_34.50.16744.44 doi: 10.1007/s00221-008-1280-5 – ident: 2023041304144225000_34.50.16744.38 doi: 10.1016/j.neuroscience.2014.06.008 |
SSID | ssj0007017 |
Score | 2.3676815 |
Snippet | Monitoring and evaluating movement errors to guide subsequent movements is a critical feature of normal motor control. Previously, we showed that the... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 16744 |
SubjectTerms | Adaptation, Physiological - physiology Aged Deep Brain Stimulation - methods Female Humans Male Middle Aged Motion Perception - physiology Movement - physiology Photic Stimulation - methods Psychomotor Performance - physiology Subthalamic Nucleus - physiology |
Title | Human Subthalamic Nucleus in Movement Error Detection and Its Evaluation during Visuomotor Adaptation |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25505327 https://www.proquest.com/docview/1637566893 https://www.proquest.com/docview/1765980233 https://pubmed.ncbi.nlm.nih.gov/PMC4261099 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKeOEFAeOjfMlIiBfULt9uH6NpqGzaBKJDe4sc21kLIZna5KH7n_gfubMTJ92mwXiJGsdxkt7PZ__O5ztC3nMh_EkIHVByEEOgZDjiMDEB1pqJCOiDnHA06B-fRLPT4PAsPBsMfve8luoqHYvLG_eV_I9UoQzkirtk7yBZ2ygUwG-QLxxBwnD8JxkbCzz0_WrBc0wsD-QfqtTax_W41KHAK1B1q3IFiqVSTVpw9ACu1h8PbKDvdrPi9-W6Ru88qB5LftFbpf_Rgao3he0Fw7T4mBuL6qxe5u2oiHZpDg8zWZ55XvFLbn2Cv5Tn5XpjbopzZTcOxevFT1N6pDYlOoJvWShcHQex8VU1isxjQFEDk41nrBpF6-mVHbeviRuzpkGciUfb6FXcKxH0Bmk4N7Gnr40AoY5EcXiCjpDf9j-PYZSGF0LrmRt0Y167zn9lKLQOikiNoKXEtpNgO8CTEmznHrnvAStBtXr0tQtOzxyd4Nl-brMhHdrZu_l9tudC1wjOVT_d3sRn_og8bMRNYwO_x2SgiidkNy54Vf7a0A9U-xDrxZldojQiaQ-RtEEkXRa0RSTViKQWkRQQSQGRtEMkNYikHSJph8in5PTTwXx_NmoSeYxEELAK5OwLobI0ExMRuVJEwDE4m0quXCknwlWp1Ge-G2aB50guM5Eic2fSd4QK_WdkpygL9YJQuBqlUSp8Hopgypx04vnClyyTU89RUTokYfuXJqKJco_JVvLkdpEOyZ6978LEefnrHe9aiSWgknGdjReqrNcJUBwGLAmYwC11WBROMfgi1HlupGyf66HVwPfYkLAt-dsKGBJ--0qxXOjQ8GgQAc738s5f84o86Lrua7JTrWr1BqbbVfpWg_wPTwzWaw |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+Subthalamic+Nucleus+in+Movement+Error+Detection+and+Its+Evaluation+during+Visuomotor+Adaptation&rft.jtitle=The+Journal+of+neuroscience&rft.au=Tan%2C+Huiling&rft.au=Zavala%2C+Baltazar&rft.au=Pogosyan%2C+Alek&rft.au=Ashkan%2C+Keyoumars&rft.date=2014-12-10&rft.issn=0270-6474&rft.eissn=1529-2401&rft.volume=34&rft.issue=50&rft.spage=16744&rft.epage=16754&rft_id=info:doi/10.1523%2FJNEUROSCI.3414-14.2014&rft.externalDBID=n%2Fa&rft.externalDocID=10_1523_JNEUROSCI_3414_14_2014 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon |