O -GlcNAc Transferase Is Essential for Sensory Neuron Survival and Maintenance

O -GlcNAc transferase (OGT) regulates a wide range of cellular processes through the addition of the O- GlcNAc sugar moiety to thousands of protein substrates. Because nutrient availability affects the activity of OGT, its role has been broadly studied in metabolic tissues. OGT is enriched in the ne...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of neuroscience Vol. 37; no. 8; pp. 2125 - 2136
Main Authors Su, Cathy, Schwarz, Thomas L.
Format Journal Article
LanguageEnglish
Published United States Society for Neuroscience 22.02.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract O -GlcNAc transferase (OGT) regulates a wide range of cellular processes through the addition of the O- GlcNAc sugar moiety to thousands of protein substrates. Because nutrient availability affects the activity of OGT, its role has been broadly studied in metabolic tissues. OGT is enriched in the nervous system, but little is known about its importance in basic neuronal processes in vivo . Here, we show that OGT is essential for sensory neuron survival and maintenance in mice. Sensory neuron-specific knock-out of OGT results in behavioral hyposensitivity to thermal and mechanical stimuli accompanied by decreased epidermal innervation and cell-body loss in the dorsal root ganglia. These effects are observed early in postnatal development and progress as animals age. Cultured sensory neurons lacking OGT also exhibit decreased axonal outgrowth. The effects on neuronal health in vivo are not solely due to disruption of developmental processes, because inducing OGT knock-out in the sensory neurons of adult mice results in a similar decrease in nerve fiber endings and cell bodies. Significant nerve-ending loss occurs before a decrease in cell bodies; this phenotype is indicative of axonal dieback that progresses to neuronal death. Our findings demonstrate that OGT is important in regulating axonal maintenance in the periphery and the overall health and survival of sensory neurons. SIGNIFICANCE STATEMENT We show the importance of O -GlcNAc transferase (OGT) for sensory neuron health and survival in vivo . This study is the first to find that loss of OGT results in neuronal cell death. Moreover, it suggests that aberrant O- GlcNAc signaling can contribute to the development of neuropathy. The sensory neurons lie outside of the blood–brain barrier and therefore, compared to central neurons, may have a greater need for mechanisms of metabolic sensing and compensation. Peripheral sensory neurons in particular are subject to degeneration in diabetes. Our findings provide a foundation for understanding the role of OGT under normal physiological conditions in the peripheral nervous system. This knowledge will be important for gaining greater insight into such disease states as diabetic neuropathy.
AbstractList O-GlcNAc transferase (OGT) regulates a wide range of cellular processes through the addition of the O-GlcNAc sugar moiety to thousands of protein substrates. Because nutrient availability affects the activity of OGT, its role has been broadly studied in metabolic tissues. OGT is enriched in the nervous system, but little is known about its importance in basic neuronal processes in vivo. Here, we show that OGT is essential for sensory neuron survival and maintenance in mice. Sensory neuron-specific knock-out of OGT results in behavioral hyposensitivity to thermal and mechanical stimuli accompanied by decreased epidermal innervation and cell-body loss in the dorsal root ganglia. These effects are observed early in postnatal development and progress as animals age. Cultured sensory neurons lacking OGT also exhibit decreased axonal outgrowth. The effects on neuronal health in vivo are not solely due to disruption of developmental processes, because inducing OGT knock-out in the sensory neurons of adult mice results in a similar decrease in nerve fiber endings and cell bodies. Significant nerve-ending loss occurs before a decrease in cell bodies; this phenotype is indicative of axonal dieback that progresses to neuronal death. Our findings demonstrate that OGT is important in regulating axonal maintenance in the periphery and the overall health and survival of sensory neurons.
-GlcNAc transferase (OGT) regulates a wide range of cellular processes through the addition of the GlcNAc sugar moiety to thousands of protein substrates. Because nutrient availability affects the activity of OGT, its role has been broadly studied in metabolic tissues. OGT is enriched in the nervous system, but little is known about its importance in basic neuronal processes Here, we show that OGT is essential for sensory neuron survival and maintenance in mice. Sensory neuron-specific knock-out of OGT results in behavioral hyposensitivity to thermal and mechanical stimuli accompanied by decreased epidermal innervation and cell-body loss in the dorsal root ganglia. These effects are observed early in postnatal development and progress as animals age. Cultured sensory neurons lacking OGT also exhibit decreased axonal outgrowth. The effects on neuronal health are not solely due to disruption of developmental processes, because inducing OGT knock-out in the sensory neurons of adult mice results in a similar decrease in nerve fiber endings and cell bodies. Significant nerve-ending loss occurs before a decrease in cell bodies; this phenotype is indicative of axonal dieback that progresses to neuronal death. Our findings demonstrate that OGT is important in regulating axonal maintenance in the periphery and the overall health and survival of sensory neurons. We show the importance of -GlcNAc transferase (OGT) for sensory neuron health and survival This study is the first to find that loss of OGT results in neuronal cell death. Moreover, it suggests that aberrant GlcNAc signaling can contribute to the development of neuropathy. The sensory neurons lie outside of the blood-brain barrier and therefore, compared to central neurons, may have a greater need for mechanisms of metabolic sensing and compensation. Peripheral sensory neurons in particular are subject to degeneration in diabetes. Our findings provide a foundation for understanding the role of OGT under normal physiological conditions in the peripheral nervous system. This knowledge will be important for gaining greater insight into such disease states as diabetic neuropathy.
O -GlcNAc transferase (OGT) regulates a wide range of cellular processes through the addition of the O- GlcNAc sugar moiety to thousands of protein substrates. Because nutrient availability affects the activity of OGT, its role has been broadly studied in metabolic tissues. OGT is enriched in the nervous system, but little is known about its importance in basic neuronal processes in vivo . Here, we show that OGT is essential for sensory neuron survival and maintenance in mice. Sensory neuron-specific knock-out of OGT results in behavioral hyposensitivity to thermal and mechanical stimuli accompanied by decreased epidermal innervation and cell-body loss in the dorsal root ganglia. These effects are observed early in postnatal development and progress as animals age. Cultured sensory neurons lacking OGT also exhibit decreased axonal outgrowth. The effects on neuronal health in vivo are not solely due to disruption of developmental processes, because inducing OGT knock-out in the sensory neurons of adult mice results in a similar decrease in nerve fiber endings and cell bodies. Significant nerve-ending loss occurs before a decrease in cell bodies; this phenotype is indicative of axonal dieback that progresses to neuronal death. Our findings demonstrate that OGT is important in regulating axonal maintenance in the periphery and the overall health and survival of sensory neurons. SIGNIFICANCE STATEMENT We show the importance of O -GlcNAc transferase (OGT) for sensory neuron health and survival in vivo . This study is the first to find that loss of OGT results in neuronal cell death. Moreover, it suggests that aberrant O- GlcNAc signaling can contribute to the development of neuropathy. The sensory neurons lie outside of the blood–brain barrier and therefore, compared to central neurons, may have a greater need for mechanisms of metabolic sensing and compensation. Peripheral sensory neurons in particular are subject to degeneration in diabetes. Our findings provide a foundation for understanding the role of OGT under normal physiological conditions in the peripheral nervous system. This knowledge will be important for gaining greater insight into such disease states as diabetic neuropathy.
O-GlcNAc transferase (OGT) regulates a wide range of cellular processes through the addition of the O-GlcNAc sugar moiety to thousands of protein substrates. Because nutrient availability affects the activity of OGT, its role has been broadly studied in metabolic tissues. OGT is enriched in the nervous system, but little is known about its importance in basic neuronal processes in vivo Here, we show that OGT is essential for sensory neuron survival and maintenance in mice. Sensory neuron-specific knock-out of OGT results in behavioral hyposensitivity to thermal and mechanical stimuli accompanied by decreased epidermal innervation and cell-body loss in the dorsal root ganglia. These effects are observed early in postnatal development and progress as animals age. Cultured sensory neurons lacking OGT also exhibit decreased axonal outgrowth. The effects on neuronal health in vivo are not solely due to disruption of developmental processes, because inducing OGT knock-out in the sensory neurons of adult mice results in a similar decrease in nerve fiber endings and cell bodies. Significant nerve-ending loss occurs before a decrease in cell bodies; this phenotype is indicative of axonal dieback that progresses to neuronal death. Our findings demonstrate that OGT is important in regulating axonal maintenance in the periphery and the overall health and survival of sensory neurons.SIGNIFICANCE STATEMENT We show the importance of O-GlcNAc transferase (OGT) for sensory neuron health and survival in vivo This study is the first to find that loss of OGT results in neuronal cell death. Moreover, it suggests that aberrant O-GlcNAc signaling can contribute to the development of neuropathy. The sensory neurons lie outside of the blood-brain barrier and therefore, compared to central neurons, may have a greater need for mechanisms of metabolic sensing and compensation. Peripheral sensory neurons in particular are subject to degeneration in diabetes. Our findings provide a foundation for understanding the role of OGT under normal physiological conditions in the peripheral nervous system. This knowledge will be important for gaining greater insight into such disease states as diabetic neuropathy.O-GlcNAc transferase (OGT) regulates a wide range of cellular processes through the addition of the O-GlcNAc sugar moiety to thousands of protein substrates. Because nutrient availability affects the activity of OGT, its role has been broadly studied in metabolic tissues. OGT is enriched in the nervous system, but little is known about its importance in basic neuronal processes in vivo Here, we show that OGT is essential for sensory neuron survival and maintenance in mice. Sensory neuron-specific knock-out of OGT results in behavioral hyposensitivity to thermal and mechanical stimuli accompanied by decreased epidermal innervation and cell-body loss in the dorsal root ganglia. These effects are observed early in postnatal development and progress as animals age. Cultured sensory neurons lacking OGT also exhibit decreased axonal outgrowth. The effects on neuronal health in vivo are not solely due to disruption of developmental processes, because inducing OGT knock-out in the sensory neurons of adult mice results in a similar decrease in nerve fiber endings and cell bodies. Significant nerve-ending loss occurs before a decrease in cell bodies; this phenotype is indicative of axonal dieback that progresses to neuronal death. Our findings demonstrate that OGT is important in regulating axonal maintenance in the periphery and the overall health and survival of sensory neurons.SIGNIFICANCE STATEMENT We show the importance of O-GlcNAc transferase (OGT) for sensory neuron health and survival in vivo This study is the first to find that loss of OGT results in neuronal cell death. Moreover, it suggests that aberrant O-GlcNAc signaling can contribute to the development of neuropathy. The sensory neurons lie outside of the blood-brain barrier and therefore, compared to central neurons, may have a greater need for mechanisms of metabolic sensing and compensation. Peripheral sensory neurons in particular are subject to degeneration in diabetes. Our findings provide a foundation for understanding the role of OGT under normal physiological conditions in the peripheral nervous system. This knowledge will be important for gaining greater insight into such disease states as diabetic neuropathy.
Author Su, Cathy
Schwarz, Thomas L.
Author_xml – sequence: 1
  givenname: Cathy
  surname: Su
  fullname: Su, Cathy
– sequence: 2
  givenname: Thomas L.
  orcidid: 0000-0001-7532-0250
  surname: Schwarz
  fullname: Schwarz, Thomas L.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28115479$$D View this record in MEDLINE/PubMed
BookMark eNqNkUFvEzEUhC1URNPCX6h85LLBz-u1NxJCqqK0pCqJRNqz5XifwWhjF3s3Uv89jloiygVOPsw3o_GbM3ISYkBCLoBNoeH1h5vV4v7rejNfTuu6FRXIKWegXpFJUWcVFwxOyIRxxSoplDglZzn_YIypAr0hp7wFaISaTchqTavr3q4uLb1LJmSHyWSky0wXOWMYvOmpi4luMOSYHukKxxQD3Yxp7_dFM6GjX4wPAwYTLL4lr53pM757fs_J_dXibv65ul1fL-eXt5UVQg0Vr2VjhWrASjuzWCsOlm9b6BggEx0oa5zsWrflrFOudR0qJZE3WyYscxzqc_LpKfdh3O6ws6VpMr1-SH5n0qOOxuuXSvDf9be41005l2pUCXj_HJDizxHzoHc-W-x7EzCOWUOrVAuNZP-DSpCMlxkKevFnrWOf3_cugHwCbIo5J3RHBJg-DKuPw-rDsBqkPgxbjB__Mlo_mMHHw_d8_y_7L3-4qjs
CitedBy_id crossref_primary_10_3389_fgene_2019_00640
crossref_primary_10_3390_ijms22168888
crossref_primary_10_1038_s12276_021_00709_5
crossref_primary_10_3390_molecules23081967
crossref_primary_10_1186_s12936_017_2131_2
crossref_primary_10_3390_genes12101570
crossref_primary_10_1172_jci_insight_183033
crossref_primary_10_3389_fnins_2023_1137847
crossref_primary_10_1002_dneu_22598
crossref_primary_10_1083_jcb_201912077
crossref_primary_10_1016_j_nbd_2024_106485
crossref_primary_10_1074_jbc_M117_790097
crossref_primary_10_1016_j_neuint_2021_105099
crossref_primary_10_1111_jnc_14242
crossref_primary_10_1002_1873_3468_13286
crossref_primary_10_1016_j_celrep_2021_108905
crossref_primary_10_7554_eLife_86478
crossref_primary_10_1016_j_phrs_2017_12_006
crossref_primary_10_1016_j_jbc_2022_102115
crossref_primary_10_1242_dmm_050671
crossref_primary_10_1016_j_pharmthera_2024_108761
crossref_primary_10_7554_eLife_83979
crossref_primary_10_1523_JNEUROSCI_1962_22_2023
crossref_primary_10_1007_s12264_021_00776_8
crossref_primary_10_1093_hmg_ddab223
crossref_primary_10_1158_1541_7786_MCR_20_0926
crossref_primary_10_1186_s12929_022_00851_w
crossref_primary_10_1007_s10863_018_9760_1
crossref_primary_10_1111_joa_13605
crossref_primary_10_3389_fendo_2022_943576
crossref_primary_10_4103_1673_5374_354515
crossref_primary_10_1098_rsob_240209
crossref_primary_10_1016_j_ymgme_2024_108492
crossref_primary_10_1038_s41380_025_02943_z
crossref_primary_10_1186_s12974_023_02824_8
crossref_primary_10_1016_j_bcp_2018_03_017
crossref_primary_10_1126_sciadv_abn8092
crossref_primary_10_4103_1673_5374_380872
crossref_primary_10_1038_s41598_025_85276_9
crossref_primary_10_1038_nrm_2017_22
crossref_primary_10_1016_j_cellsig_2021_110201
Cites_doi 10.1523/JNEUROSCI.1235-16.2016
10.1196/annals.1372.008
10.1074/jbc.M807431200
10.1002/dneu.20695
10.1111/j.1749-6632.2002.tb02108.x
10.1016/S1474-4422(12)70065-0
10.1126/science.aad5494
10.1016/S0021-9258(19)50380-5
10.1186/1559-0275-11-8
10.1038/nrn2294
10.1016/j.biocel.2009.03.008
10.1074/jbc.M503396200
10.1016/j.brainresbull.2016.08.002
10.1002/gene.20010
10.1016/j.tins.2012.04.001
10.1002/cne.22667
10.1016/j.cell.2014.09.010
10.1146/annurev-biochem-060713-035344
10.1128/MCB.24.4.1680-1690.2004
10.1097/WCO.0b013e32830b84cb
10.1126/science.1151363
10.1083/jcb.201501101
10.1016/j.bbagen.2004.03.016
10.1016/B978-0-444-52902-2.00003-5
10.1074/mcp.O112.018366
10.1074/jbc.M115.693580
10.1530/JOE-14-0182
10.1038/nature06668
10.1038/nature05815
10.1016/j.cmet.2012.07.006
10.1016/j.tem.2013.02.002
10.1074/jbc.M010420200
10.1074/jbc.272.14.9308
10.1016/j.cell.2014.06.007
10.1074/jbc.M109.077818
10.1038/nchembio.770
10.1084/jem.20131780
10.1038/216173a0
10.1074/jbc.M111.249508
10.1073/pnas.100471497
10.2337/dc07-9920
10.1016/j.pain.2012.04.022
ContentType Journal Article
Copyright Copyright © 2017 the authors 0270-6474/17/372125-12$15.00/0.
Copyright © 2017 the authors 0270-6474/17/372125-12$15.00/0 2017
Copyright_xml – notice: Copyright © 2017 the authors 0270-6474/17/372125-12$15.00/0.
– notice: Copyright © 2017 the authors 0270-6474/17/372125-12$15.00/0 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
5PM
DOI 10.1523/JNEUROSCI.3384-16.2017
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList Neurosciences Abstracts
MEDLINE

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1529-2401
EndPage 2136
ExternalDocumentID PMC5338757
28115479
10_1523_JNEUROSCI_3384_16_2017
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NICHD NIH HHS
  grantid: P30 HD018655
– fundername: NICHD NIH HHS
  grantid: U54 HD090255
– fundername: NINDS NIH HHS
  grantid: F31 NS084629
– fundername: NIGMS NIH HHS
  grantid: R01 GM069808
GroupedDBID ---
-DZ
-~X
.55
18M
2WC
34G
39C
53G
5GY
5RE
5VS
AAFWJ
AAJMC
AAYXX
ABBAR
ABIVO
ACGUR
ACNCT
ADBBV
ADCOW
ADHGD
AENEX
AFCFT
AFOSN
AFSQR
AHWXS
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
H13
HYE
H~9
KQ8
L7B
OK1
P0W
P2P
QZG
R.V
RHI
RPM
TFN
TR2
W8F
WH7
WOQ
X7M
YBU
YHG
YKV
YNH
YSK
AFHIN
AIZTS
CGR
CUY
CVF
ECM
EIF
NPM
RHF
7X8
7TK
5PM
ID FETCH-LOGICAL-c447t-2365c4751c6c9ce3721c2b81d01e04d17caf6d8fb20d7f8fde776e25b04c0f213
ISSN 0270-6474
1529-2401
IngestDate Thu Aug 21 14:33:30 EDT 2025
Thu Jul 10 22:24:46 EDT 2025
Fri Jul 11 00:36:08 EDT 2025
Wed Feb 19 02:43:45 EST 2025
Tue Jul 01 03:47:36 EDT 2025
Thu Apr 24 23:06:32 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords O-GlcNAcylation
sensory neuron
O-GlcNAc transferase
degeneration
dorsal root ganglion
Language English
License https://creativecommons.org/licenses/by-nc-sa/4.0
Copyright © 2017 the authors 0270-6474/17/372125-12$15.00/0.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c447t-2365c4751c6c9ce3721c2b81d01e04d17caf6d8fb20d7f8fde776e25b04c0f213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author contributions: C.S. and T.L.S. designed research; C.S. performed research; C.S. analyzed data; C.S. and T.L.S. wrote the paper.
ORCID 0000-0001-7532-0250
OpenAccessLink https://www.jneurosci.org/content/jneuro/37/8/2125.full.pdf
PMID 28115479
PQID 1861602384
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5338757
proquest_miscellaneous_1877815607
proquest_miscellaneous_1861602384
pubmed_primary_28115479
crossref_primary_10_1523_JNEUROSCI_3384_16_2017
crossref_citationtrail_10_1523_JNEUROSCI_3384_16_2017
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-02-22
20170222
PublicationDateYYYYMMDD 2017-02-22
PublicationDate_xml – month: 02
  year: 2017
  text: 2017-02-22
  day: 22
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of neuroscience
PublicationTitleAlternate J Neurosci
PublicationYear 2017
Publisher Society for Neuroscience
Publisher_xml – name: Society for Neuroscience
References 2023041803235025000_37.8.2125.1
2023041803235025000_37.8.2125.2
2023041803235025000_37.8.2125.5
2023041803235025000_37.8.2125.6
2023041803235025000_37.8.2125.3
2023041803235025000_37.8.2125.4
2023041803235025000_37.8.2125.40
2023041803235025000_37.8.2125.20
2023041803235025000_37.8.2125.42
2023041803235025000_37.8.2125.41
2023041803235025000_37.8.2125.22
Haltiwanger (2023041803235025000_37.8.2125.12) 1992; 267
2023041803235025000_37.8.2125.21
2023041803235025000_37.8.2125.9
2023041803235025000_37.8.2125.24
2023041803235025000_37.8.2125.23
2023041803235025000_37.8.2125.7
2023041803235025000_37.8.2125.26
2023041803235025000_37.8.2125.8
2023041803235025000_37.8.2125.25
2023041803235025000_37.8.2125.28
2023041803235025000_37.8.2125.27
2023041803235025000_37.8.2125.29
2023041803235025000_37.8.2125.31
2023041803235025000_37.8.2125.30
2023041803235025000_37.8.2125.11
2023041803235025000_37.8.2125.33
2023041803235025000_37.8.2125.10
2023041803235025000_37.8.2125.32
2023041803235025000_37.8.2125.13
2023041803235025000_37.8.2125.35
2023041803235025000_37.8.2125.34
2023041803235025000_37.8.2125.15
2023041803235025000_37.8.2125.37
2023041803235025000_37.8.2125.14
2023041803235025000_37.8.2125.36
2023041803235025000_37.8.2125.17
2023041803235025000_37.8.2125.39
2023041803235025000_37.8.2125.16
2023041803235025000_37.8.2125.38
2023041803235025000_37.8.2125.19
2023041803235025000_37.8.2125.18
18288188 - Nature. 2008 Feb 21;451(7181):964-9
27629714 - J Neurosci. 2016 Sep 14;36(37):9633-46
22267118 - Nat Chem Biol. 2012 Jan 22;8(3):253-61
23647930 - Trends Endocrinol Metab. 2013 Jun;24(6):301-9
11976211 - Ann N Y Acad Sci. 2002 Apr;959:368-83
11148210 - J Biol Chem. 2001 Mar 30;276(13):9838-45
20018868 - J Biol Chem. 2010 Feb 19;285(8):5204-11
27497832 - Brain Res Bull. 2016 Aug 4
14749383 - Mol Cell Biol. 2004 Feb;24(4):1680-90
27294441 - Annu Rev Biochem. 2016 Jun 2;85:631-57
17327355 - Diabetes Care. 2007 Mar;30(3):753-9
18769245 - Curr Opin Neurol. 2008 Oct;21(5):527-33
25303527 - Cell. 2014 Oct 9;159(2):306-17
18323454 - Science. 2008 Mar 7;319(5868):1402-5
16027160 - J Biol Chem. 2005 Sep 23;280(38):32944-56
4862079 - Nature. 1967 Oct 14;216(5111):173-4
19086029 - Dev Neurobiol. 2009 Feb 1-15;69(2-3):162-73
10801981 - Proc Natl Acad Sci U S A. 2000 May 23;97(11):5735-9
22883232 - Cell Metab. 2012 Aug 8;16(2):226-37
22703890 - Pain. 2012 Oct;153(10):2017-30
15238246 - Biochim Biophys Acta. 2004 Jul 6;1673(1-2):13-28
24593906 - Clin Proteomics. 2014 Mar 05;11(1):8
26598517 - J Biol Chem. 2016 Jan 29;291(5):2107-18
26989246 - Science. 2016 Mar 18;351(6279):1293-6
9083067 - J Biol Chem. 1997 Apr 4;272(14):9308-15
25056117 - J Endocrinol. 2014 Sep;222(3):G13-25
19004831 - J Biol Chem. 2009 Jan 2;284(1):174-81
1533623 - J Biol Chem. 1992 May 5;267(13):9005-13
24995978 - Cell. 2014 Jul 3;158(1):54-68
24733831 - J Exp Med. 2014 May 5;211(5):801-14
22645316 - Mol Cell Proteomics. 2012 Aug;11(8):215-29
23931773 - Handb Clin Neurol. 2013;115:29-41
18094705 - Nat Rev Neurosci. 2008 Jan;9(1):36-45
21618224 - J Comp Neurol. 2011 Oct 15;519(15):3085-101
21622566 - J Biol Chem. 2011 Jul 22;286(29):26118-26
22578891 - Trends Neurosci. 2012 Jun;35(6):364-72
22608666 - Lancet Neurol. 2012 Jun;11(6):521-34
25825515 - J Cell Biol. 2015 Mar 30;208(7):869-80
17151306 - Ann N Y Acad Sci. 2006 Nov;1084:250-66
17460662 - Nature. 2007 Apr 26;446(7139):1017-22
15048809 - Genesis. 2004 Mar;38(3):122-9
19782947 - Int J Biochem Cell Biol. 2009 Nov;41(11):2134-46
References_xml – ident: 2023041803235025000_37.8.2125.14
  doi: 10.1523/JNEUROSCI.1235-16.2016
– ident: 2023041803235025000_37.8.2125.41
  doi: 10.1196/annals.1372.008
– ident: 2023041803235025000_37.8.2125.33
  doi: 10.1074/jbc.M807431200
– ident: 2023041803235025000_37.8.2125.9
  doi: 10.1002/dneu.20695
– ident: 2023041803235025000_37.8.2125.36
  doi: 10.1111/j.1749-6632.2002.tb02108.x
– ident: 2023041803235025000_37.8.2125.4
  doi: 10.1016/S1474-4422(12)70065-0
– ident: 2023041803235025000_37.8.2125.16
  doi: 10.1126/science.aad5494
– volume: 267
  start-page: 9005
  year: 1992
  ident: 2023041803235025000_37.8.2125.12
  article-title: Glycosylation of nuclear and cytoplasmic proteins. Purification and characterization of a uridine diphospho-N-acetylglucosamine: polypeptide β-N-acetylglucosaminyltransferase
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(19)50380-5
– ident: 2023041803235025000_37.8.2125.19
  doi: 10.1186/1559-0275-11-8
– ident: 2023041803235025000_37.8.2125.34
  doi: 10.1038/nrn2294
– ident: 2023041803235025000_37.8.2125.17
  doi: 10.1016/j.biocel.2009.03.008
– ident: 2023041803235025000_37.8.2125.30
  doi: 10.1074/jbc.M503396200
– ident: 2023041803235025000_37.8.2125.37
  doi: 10.1016/j.brainresbull.2016.08.002
– ident: 2023041803235025000_37.8.2125.1
  doi: 10.1002/gene.20010
– ident: 2023041803235025000_37.8.2125.6
  doi: 10.1016/j.tins.2012.04.001
– ident: 2023041803235025000_37.8.2125.11
  doi: 10.1002/cne.22667
– ident: 2023041803235025000_37.8.2125.27
  doi: 10.1016/j.cell.2014.09.010
– ident: 2023041803235025000_37.8.2125.18
  doi: 10.1146/annurev-biochem-060713-035344
– ident: 2023041803235025000_37.8.2125.21
  doi: 10.1128/MCB.24.4.1680-1690.2004
– ident: 2023041803235025000_37.8.2125.42
  doi: 10.1097/WCO.0b013e32830b84cb
– ident: 2023041803235025000_37.8.2125.7
  doi: 10.1126/science.1151363
– ident: 2023041803235025000_37.8.2125.2
  doi: 10.1083/jcb.201501101
– ident: 2023041803235025000_37.8.2125.40
  doi: 10.1016/j.bbagen.2004.03.016
– ident: 2023041803235025000_37.8.2125.5
  doi: 10.1016/B978-0-444-52902-2.00003-5
– ident: 2023041803235025000_37.8.2125.35
  doi: 10.1074/mcp.O112.018366
– ident: 2023041803235025000_37.8.2125.8
  doi: 10.1074/jbc.M115.693580
– ident: 2023041803235025000_37.8.2125.3
  doi: 10.1530/JOE-14-0182
– ident: 2023041803235025000_37.8.2125.39
  doi: 10.1038/nature06668
– ident: 2023041803235025000_37.8.2125.13
  doi: 10.1038/nature05815
– ident: 2023041803235025000_37.8.2125.25
  doi: 10.1016/j.cmet.2012.07.006
– ident: 2023041803235025000_37.8.2125.26
  doi: 10.1016/j.tem.2013.02.002
– ident: 2023041803235025000_37.8.2125.10
  doi: 10.1074/jbc.M010420200
– ident: 2023041803235025000_37.8.2125.15
  doi: 10.1074/jbc.272.14.9308
– ident: 2023041803235025000_37.8.2125.23
  doi: 10.1016/j.cell.2014.06.007
– ident: 2023041803235025000_37.8.2125.38
  doi: 10.1074/jbc.M109.077818
– ident: 2023041803235025000_37.8.2125.24
  doi: 10.1038/nchembio.770
– ident: 2023041803235025000_37.8.2125.22
  doi: 10.1084/jem.20131780
– ident: 2023041803235025000_37.8.2125.32
  doi: 10.1038/216173a0
– ident: 2023041803235025000_37.8.2125.31
  doi: 10.1074/jbc.M111.249508
– ident: 2023041803235025000_37.8.2125.28
  doi: 10.1073/pnas.100471497
– ident: 2023041803235025000_37.8.2125.20
  doi: 10.2337/dc07-9920
– ident: 2023041803235025000_37.8.2125.29
  doi: 10.1016/j.pain.2012.04.022
– reference: 14749383 - Mol Cell Biol. 2004 Feb;24(4):1680-90
– reference: 21618224 - J Comp Neurol. 2011 Oct 15;519(15):3085-101
– reference: 23647930 - Trends Endocrinol Metab. 2013 Jun;24(6):301-9
– reference: 1533623 - J Biol Chem. 1992 May 5;267(13):9005-13
– reference: 24995978 - Cell. 2014 Jul 3;158(1):54-68
– reference: 18769245 - Curr Opin Neurol. 2008 Oct;21(5):527-33
– reference: 17460662 - Nature. 2007 Apr 26;446(7139):1017-22
– reference: 27294441 - Annu Rev Biochem. 2016 Jun 2;85:631-57
– reference: 22883232 - Cell Metab. 2012 Aug 8;16(2):226-37
– reference: 11976211 - Ann N Y Acad Sci. 2002 Apr;959:368-83
– reference: 27629714 - J Neurosci. 2016 Sep 14;36(37):9633-46
– reference: 26989246 - Science. 2016 Mar 18;351(6279):1293-6
– reference: 23931773 - Handb Clin Neurol. 2013;115:29-41
– reference: 22608666 - Lancet Neurol. 2012 Jun;11(6):521-34
– reference: 16027160 - J Biol Chem. 2005 Sep 23;280(38):32944-56
– reference: 15238246 - Biochim Biophys Acta. 2004 Jul 6;1673(1-2):13-28
– reference: 22267118 - Nat Chem Biol. 2012 Jan 22;8(3):253-61
– reference: 19004831 - J Biol Chem. 2009 Jan 2;284(1):174-81
– reference: 22578891 - Trends Neurosci. 2012 Jun;35(6):364-72
– reference: 19086029 - Dev Neurobiol. 2009 Feb 1-15;69(2-3):162-73
– reference: 19782947 - Int J Biochem Cell Biol. 2009 Nov;41(11):2134-46
– reference: 22703890 - Pain. 2012 Oct;153(10):2017-30
– reference: 24593906 - Clin Proteomics. 2014 Mar 05;11(1):8
– reference: 11148210 - J Biol Chem. 2001 Mar 30;276(13):9838-45
– reference: 15048809 - Genesis. 2004 Mar;38(3):122-9
– reference: 20018868 - J Biol Chem. 2010 Feb 19;285(8):5204-11
– reference: 18094705 - Nat Rev Neurosci. 2008 Jan;9(1):36-45
– reference: 21622566 - J Biol Chem. 2011 Jul 22;286(29):26118-26
– reference: 27497832 - Brain Res Bull. 2016 Aug 4;:
– reference: 18323454 - Science. 2008 Mar 7;319(5868):1402-5
– reference: 10801981 - Proc Natl Acad Sci U S A. 2000 May 23;97(11):5735-9
– reference: 26598517 - J Biol Chem. 2016 Jan 29;291(5):2107-18
– reference: 18288188 - Nature. 2008 Feb 21;451(7181):964-9
– reference: 22645316 - Mol Cell Proteomics. 2012 Aug;11(8):215-29
– reference: 9083067 - J Biol Chem. 1997 Apr 4;272(14):9308-15
– reference: 17151306 - Ann N Y Acad Sci. 2006 Nov;1084:250-66
– reference: 17327355 - Diabetes Care. 2007 Mar;30(3):753-9
– reference: 25303527 - Cell. 2014 Oct 9;159(2):306-17
– reference: 4862079 - Nature. 1967 Oct 14;216(5111):173-4
– reference: 25056117 - J Endocrinol. 2014 Sep;222(3):G13-25
– reference: 25825515 - J Cell Biol. 2015 Mar 30;208(7):869-80
– reference: 24733831 - J Exp Med. 2014 May 5;211(5):801-14
SSID ssj0007017
Score 2.4238763
Snippet O -GlcNAc transferase (OGT) regulates a wide range of cellular processes through the addition of the O- GlcNAc sugar moiety to thousands of protein substrates....
-GlcNAc transferase (OGT) regulates a wide range of cellular processes through the addition of the GlcNAc sugar moiety to thousands of protein substrates....
O-GlcNAc transferase (OGT) regulates a wide range of cellular processes through the addition of the O-GlcNAc sugar moiety to thousands of protein substrates....
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2125
SubjectTerms Animals
Body Weight - genetics
Cell Survival - drug effects
Cell Survival - genetics
Cells, Cultured
Ganglia, Spinal - cytology
Gene Expression Regulation - genetics
Glucose Tolerance Test
Locomotion - genetics
Male
Mental Disorders - genetics
Mice
Mice, Inbred C57BL
Mice, Transgenic
Muscle Strength - genetics
N-Acetylglucosaminyltransferases - deficiency
N-Acetylglucosaminyltransferases - metabolism
NAV1.8 Voltage-Gated Sodium Channel - genetics
NAV1.8 Voltage-Gated Sodium Channel - metabolism
Neuronal Plasticity - genetics
Sensory Receptor Cells - physiology
Thermosensing - genetics
Transcription Factor Brn-3A - genetics
Transcription Factor Brn-3A - metabolism
Title O -GlcNAc Transferase Is Essential for Sensory Neuron Survival and Maintenance
URI https://www.ncbi.nlm.nih.gov/pubmed/28115479
https://www.proquest.com/docview/1861602384
https://www.proquest.com/docview/1877815607
https://pubmed.ncbi.nlm.nih.gov/PMC5338757
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgvPCCgHEpNxkJ8VKlix0nzh6rMlgHLUjdpL1Fjutom7Z06oWJ_XrOiR0n7SYue4mi1I5Tf1-Oz4l9PhPygWmRRpFJAxiqdCCYEoHSqI0XhakCBxacEMxGHo2T_SNxcBwfN9MFVXbJMu_p61vzSu6CKlwDXDFL9j-Q9TeFC3AO-MIREIbjP2H8Pfhyrsd9bSXKCzOHIak7XHT3FphSdGpzE8EclAucSa90OOBtXoF1-OkkAkYK9SJKD_1ZQ56Wq9oSvfQ8mKzqBEL_UX6iT67U_LpZd9T91mt_VYCRCrO0mxi0vWR0vNmGtU5cQtwp7BY7PeOsJ6-ma1jbvFpNF0ejdM1W2pRnN-5yZpVQbtj0uNKWOBjj0sbJYNiDoFoEDJeX2KzPFtCXFxXSPEWRIbtJzYaa9o_RABxcVPG_Tx5wCC1w14tPw69-9JZhtUuz_3suqxweYuf2R0A5adfeum9zI2DZXHfbcmQOH5NHDlbat3R6Qu6Z8inZ7pdqObv4RT_Sak1wNdmyTUY1w2iLYXS4oJ5hFLCjjmHUMozWDKPAMNpi2DNy9HnvcLAfuA04Ai2EXAY8SmItZMx0one1iSRnmucQ4YTMhGLKpFZFMk2LnIdTWaTF1EiZGB7nodBhAYA-J1vlrDQvCZUmzwWfhoVOcyEMT0MFXQonKhEw3qoOieuuy7RTp8dNUs4zjFKhaOZ7P8Pez1iSYe93yI6vd2n1Wf5a432NTAamFOfHVGlmq0XG0oQl6MOKP5WREgWWQrjPC4umb7emQYfINZx9AZRyX_-lPD2pJN0dJ1_dueZr8rB5jd-QreV8Zd6Cu7zM31X8_g02Jr2W
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=O-GlcNAc+Transferase+Is+Essential+for+Sensory+Neuron+Survival+and+Maintenance&rft.jtitle=The+Journal+of+neuroscience&rft.au=Su%2C+Cathy&rft.au=Schwarz%2C+Thomas+L.&rft.date=2017-02-22&rft.pub=Society+for+Neuroscience&rft.issn=0270-6474&rft.eissn=1529-2401&rft.volume=37&rft.issue=8&rft.spage=2125&rft.epage=2136&rft_id=info:doi/10.1523%2FJNEUROSCI.3384-16.2017&rft_id=info%3Apmid%2F28115479&rft.externalDocID=PMC5338757
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon