O -GlcNAc Transferase Is Essential for Sensory Neuron Survival and Maintenance
O -GlcNAc transferase (OGT) regulates a wide range of cellular processes through the addition of the O- GlcNAc sugar moiety to thousands of protein substrates. Because nutrient availability affects the activity of OGT, its role has been broadly studied in metabolic tissues. OGT is enriched in the ne...
Saved in:
Published in | The Journal of neuroscience Vol. 37; no. 8; pp. 2125 - 2136 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Society for Neuroscience
22.02.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | O
-GlcNAc transferase (OGT) regulates a wide range of cellular processes through the addition of the
O-
GlcNAc sugar moiety to thousands of protein substrates. Because nutrient availability affects the activity of OGT, its role has been broadly studied in metabolic tissues. OGT is enriched in the nervous system, but little is known about its importance in basic neuronal processes
in vivo
. Here, we show that OGT is essential for sensory neuron survival and maintenance in mice. Sensory neuron-specific knock-out of OGT results in behavioral hyposensitivity to thermal and mechanical stimuli accompanied by decreased epidermal innervation and cell-body loss in the dorsal root ganglia. These effects are observed early in postnatal development and progress as animals age. Cultured sensory neurons lacking OGT also exhibit decreased axonal outgrowth. The effects on neuronal health
in vivo
are not solely due to disruption of developmental processes, because inducing OGT knock-out in the sensory neurons of adult mice results in a similar decrease in nerve fiber endings and cell bodies. Significant nerve-ending loss occurs before a decrease in cell bodies; this phenotype is indicative of axonal dieback that progresses to neuronal death. Our findings demonstrate that OGT is important in regulating axonal maintenance in the periphery and the overall health and survival of sensory neurons.
SIGNIFICANCE STATEMENT
We show the importance of
O
-GlcNAc transferase (OGT) for sensory neuron health and survival
in vivo
. This study is the first to find that loss of OGT results in neuronal cell death. Moreover, it suggests that aberrant
O-
GlcNAc signaling can contribute to the development of neuropathy. The sensory neurons lie outside of the blood–brain barrier and therefore, compared to central neurons, may have a greater need for mechanisms of metabolic sensing and compensation. Peripheral sensory neurons in particular are subject to degeneration in diabetes. Our findings provide a foundation for understanding the role of OGT under normal physiological conditions in the peripheral nervous system. This knowledge will be important for gaining greater insight into such disease states as diabetic neuropathy. |
---|---|
AbstractList | O-GlcNAc transferase (OGT) regulates a wide range of cellular processes through the addition of the O-GlcNAc sugar moiety to thousands of protein substrates. Because nutrient availability affects the activity of OGT, its role has been broadly studied in metabolic tissues. OGT is enriched in the nervous system, but little is known about its importance in basic neuronal processes in vivo. Here, we show that OGT is essential for sensory neuron survival and maintenance in mice. Sensory neuron-specific knock-out of OGT results in behavioral hyposensitivity to thermal and mechanical stimuli accompanied by decreased epidermal innervation and cell-body loss in the dorsal root ganglia. These effects are observed early in postnatal development and progress as animals age. Cultured sensory neurons lacking OGT also exhibit decreased axonal outgrowth. The effects on neuronal health in vivo are not solely due to disruption of developmental processes, because inducing OGT knock-out in the sensory neurons of adult mice results in a similar decrease in nerve fiber endings and cell bodies. Significant nerve-ending loss occurs before a decrease in cell bodies; this phenotype is indicative of axonal dieback that progresses to neuronal death. Our findings demonstrate that OGT is important in regulating axonal maintenance in the periphery and the overall health and survival of sensory neurons. -GlcNAc transferase (OGT) regulates a wide range of cellular processes through the addition of the GlcNAc sugar moiety to thousands of protein substrates. Because nutrient availability affects the activity of OGT, its role has been broadly studied in metabolic tissues. OGT is enriched in the nervous system, but little is known about its importance in basic neuronal processes Here, we show that OGT is essential for sensory neuron survival and maintenance in mice. Sensory neuron-specific knock-out of OGT results in behavioral hyposensitivity to thermal and mechanical stimuli accompanied by decreased epidermal innervation and cell-body loss in the dorsal root ganglia. These effects are observed early in postnatal development and progress as animals age. Cultured sensory neurons lacking OGT also exhibit decreased axonal outgrowth. The effects on neuronal health are not solely due to disruption of developmental processes, because inducing OGT knock-out in the sensory neurons of adult mice results in a similar decrease in nerve fiber endings and cell bodies. Significant nerve-ending loss occurs before a decrease in cell bodies; this phenotype is indicative of axonal dieback that progresses to neuronal death. Our findings demonstrate that OGT is important in regulating axonal maintenance in the periphery and the overall health and survival of sensory neurons. We show the importance of -GlcNAc transferase (OGT) for sensory neuron health and survival This study is the first to find that loss of OGT results in neuronal cell death. Moreover, it suggests that aberrant GlcNAc signaling can contribute to the development of neuropathy. The sensory neurons lie outside of the blood-brain barrier and therefore, compared to central neurons, may have a greater need for mechanisms of metabolic sensing and compensation. Peripheral sensory neurons in particular are subject to degeneration in diabetes. Our findings provide a foundation for understanding the role of OGT under normal physiological conditions in the peripheral nervous system. This knowledge will be important for gaining greater insight into such disease states as diabetic neuropathy. O -GlcNAc transferase (OGT) regulates a wide range of cellular processes through the addition of the O- GlcNAc sugar moiety to thousands of protein substrates. Because nutrient availability affects the activity of OGT, its role has been broadly studied in metabolic tissues. OGT is enriched in the nervous system, but little is known about its importance in basic neuronal processes in vivo . Here, we show that OGT is essential for sensory neuron survival and maintenance in mice. Sensory neuron-specific knock-out of OGT results in behavioral hyposensitivity to thermal and mechanical stimuli accompanied by decreased epidermal innervation and cell-body loss in the dorsal root ganglia. These effects are observed early in postnatal development and progress as animals age. Cultured sensory neurons lacking OGT also exhibit decreased axonal outgrowth. The effects on neuronal health in vivo are not solely due to disruption of developmental processes, because inducing OGT knock-out in the sensory neurons of adult mice results in a similar decrease in nerve fiber endings and cell bodies. Significant nerve-ending loss occurs before a decrease in cell bodies; this phenotype is indicative of axonal dieback that progresses to neuronal death. Our findings demonstrate that OGT is important in regulating axonal maintenance in the periphery and the overall health and survival of sensory neurons. SIGNIFICANCE STATEMENT We show the importance of O -GlcNAc transferase (OGT) for sensory neuron health and survival in vivo . This study is the first to find that loss of OGT results in neuronal cell death. Moreover, it suggests that aberrant O- GlcNAc signaling can contribute to the development of neuropathy. The sensory neurons lie outside of the blood–brain barrier and therefore, compared to central neurons, may have a greater need for mechanisms of metabolic sensing and compensation. Peripheral sensory neurons in particular are subject to degeneration in diabetes. Our findings provide a foundation for understanding the role of OGT under normal physiological conditions in the peripheral nervous system. This knowledge will be important for gaining greater insight into such disease states as diabetic neuropathy. O-GlcNAc transferase (OGT) regulates a wide range of cellular processes through the addition of the O-GlcNAc sugar moiety to thousands of protein substrates. Because nutrient availability affects the activity of OGT, its role has been broadly studied in metabolic tissues. OGT is enriched in the nervous system, but little is known about its importance in basic neuronal processes in vivo Here, we show that OGT is essential for sensory neuron survival and maintenance in mice. Sensory neuron-specific knock-out of OGT results in behavioral hyposensitivity to thermal and mechanical stimuli accompanied by decreased epidermal innervation and cell-body loss in the dorsal root ganglia. These effects are observed early in postnatal development and progress as animals age. Cultured sensory neurons lacking OGT also exhibit decreased axonal outgrowth. The effects on neuronal health in vivo are not solely due to disruption of developmental processes, because inducing OGT knock-out in the sensory neurons of adult mice results in a similar decrease in nerve fiber endings and cell bodies. Significant nerve-ending loss occurs before a decrease in cell bodies; this phenotype is indicative of axonal dieback that progresses to neuronal death. Our findings demonstrate that OGT is important in regulating axonal maintenance in the periphery and the overall health and survival of sensory neurons.SIGNIFICANCE STATEMENT We show the importance of O-GlcNAc transferase (OGT) for sensory neuron health and survival in vivo This study is the first to find that loss of OGT results in neuronal cell death. Moreover, it suggests that aberrant O-GlcNAc signaling can contribute to the development of neuropathy. The sensory neurons lie outside of the blood-brain barrier and therefore, compared to central neurons, may have a greater need for mechanisms of metabolic sensing and compensation. Peripheral sensory neurons in particular are subject to degeneration in diabetes. Our findings provide a foundation for understanding the role of OGT under normal physiological conditions in the peripheral nervous system. This knowledge will be important for gaining greater insight into such disease states as diabetic neuropathy.O-GlcNAc transferase (OGT) regulates a wide range of cellular processes through the addition of the O-GlcNAc sugar moiety to thousands of protein substrates. Because nutrient availability affects the activity of OGT, its role has been broadly studied in metabolic tissues. OGT is enriched in the nervous system, but little is known about its importance in basic neuronal processes in vivo Here, we show that OGT is essential for sensory neuron survival and maintenance in mice. Sensory neuron-specific knock-out of OGT results in behavioral hyposensitivity to thermal and mechanical stimuli accompanied by decreased epidermal innervation and cell-body loss in the dorsal root ganglia. These effects are observed early in postnatal development and progress as animals age. Cultured sensory neurons lacking OGT also exhibit decreased axonal outgrowth. The effects on neuronal health in vivo are not solely due to disruption of developmental processes, because inducing OGT knock-out in the sensory neurons of adult mice results in a similar decrease in nerve fiber endings and cell bodies. Significant nerve-ending loss occurs before a decrease in cell bodies; this phenotype is indicative of axonal dieback that progresses to neuronal death. Our findings demonstrate that OGT is important in regulating axonal maintenance in the periphery and the overall health and survival of sensory neurons.SIGNIFICANCE STATEMENT We show the importance of O-GlcNAc transferase (OGT) for sensory neuron health and survival in vivo This study is the first to find that loss of OGT results in neuronal cell death. Moreover, it suggests that aberrant O-GlcNAc signaling can contribute to the development of neuropathy. The sensory neurons lie outside of the blood-brain barrier and therefore, compared to central neurons, may have a greater need for mechanisms of metabolic sensing and compensation. Peripheral sensory neurons in particular are subject to degeneration in diabetes. Our findings provide a foundation for understanding the role of OGT under normal physiological conditions in the peripheral nervous system. This knowledge will be important for gaining greater insight into such disease states as diabetic neuropathy. |
Author | Su, Cathy Schwarz, Thomas L. |
Author_xml | – sequence: 1 givenname: Cathy surname: Su fullname: Su, Cathy – sequence: 2 givenname: Thomas L. orcidid: 0000-0001-7532-0250 surname: Schwarz fullname: Schwarz, Thomas L. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28115479$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUFvEzEUhC1URNPCX6h85LLBz-u1NxJCqqK0pCqJRNqz5XifwWhjF3s3Uv89jloiygVOPsw3o_GbM3ISYkBCLoBNoeH1h5vV4v7rejNfTuu6FRXIKWegXpFJUWcVFwxOyIRxxSoplDglZzn_YIypAr0hp7wFaISaTchqTavr3q4uLb1LJmSHyWSky0wXOWMYvOmpi4luMOSYHukKxxQD3Yxp7_dFM6GjX4wPAwYTLL4lr53pM757fs_J_dXibv65ul1fL-eXt5UVQg0Vr2VjhWrASjuzWCsOlm9b6BggEx0oa5zsWrflrFOudR0qJZE3WyYscxzqc_LpKfdh3O6ws6VpMr1-SH5n0qOOxuuXSvDf9be41005l2pUCXj_HJDizxHzoHc-W-x7EzCOWUOrVAuNZP-DSpCMlxkKevFnrWOf3_cugHwCbIo5J3RHBJg-DKuPw-rDsBqkPgxbjB__Mlo_mMHHw_d8_y_7L3-4qjs |
CitedBy_id | crossref_primary_10_3389_fgene_2019_00640 crossref_primary_10_3390_ijms22168888 crossref_primary_10_1038_s12276_021_00709_5 crossref_primary_10_3390_molecules23081967 crossref_primary_10_1186_s12936_017_2131_2 crossref_primary_10_3390_genes12101570 crossref_primary_10_1172_jci_insight_183033 crossref_primary_10_3389_fnins_2023_1137847 crossref_primary_10_1002_dneu_22598 crossref_primary_10_1083_jcb_201912077 crossref_primary_10_1016_j_nbd_2024_106485 crossref_primary_10_1074_jbc_M117_790097 crossref_primary_10_1016_j_neuint_2021_105099 crossref_primary_10_1111_jnc_14242 crossref_primary_10_1002_1873_3468_13286 crossref_primary_10_1016_j_celrep_2021_108905 crossref_primary_10_7554_eLife_86478 crossref_primary_10_1016_j_phrs_2017_12_006 crossref_primary_10_1016_j_jbc_2022_102115 crossref_primary_10_1242_dmm_050671 crossref_primary_10_1016_j_pharmthera_2024_108761 crossref_primary_10_7554_eLife_83979 crossref_primary_10_1523_JNEUROSCI_1962_22_2023 crossref_primary_10_1007_s12264_021_00776_8 crossref_primary_10_1093_hmg_ddab223 crossref_primary_10_1158_1541_7786_MCR_20_0926 crossref_primary_10_1186_s12929_022_00851_w crossref_primary_10_1007_s10863_018_9760_1 crossref_primary_10_1111_joa_13605 crossref_primary_10_3389_fendo_2022_943576 crossref_primary_10_4103_1673_5374_354515 crossref_primary_10_1098_rsob_240209 crossref_primary_10_1016_j_ymgme_2024_108492 crossref_primary_10_1038_s41380_025_02943_z crossref_primary_10_1186_s12974_023_02824_8 crossref_primary_10_1016_j_bcp_2018_03_017 crossref_primary_10_1126_sciadv_abn8092 crossref_primary_10_4103_1673_5374_380872 crossref_primary_10_1038_s41598_025_85276_9 crossref_primary_10_1038_nrm_2017_22 crossref_primary_10_1016_j_cellsig_2021_110201 |
Cites_doi | 10.1523/JNEUROSCI.1235-16.2016 10.1196/annals.1372.008 10.1074/jbc.M807431200 10.1002/dneu.20695 10.1111/j.1749-6632.2002.tb02108.x 10.1016/S1474-4422(12)70065-0 10.1126/science.aad5494 10.1016/S0021-9258(19)50380-5 10.1186/1559-0275-11-8 10.1038/nrn2294 10.1016/j.biocel.2009.03.008 10.1074/jbc.M503396200 10.1016/j.brainresbull.2016.08.002 10.1002/gene.20010 10.1016/j.tins.2012.04.001 10.1002/cne.22667 10.1016/j.cell.2014.09.010 10.1146/annurev-biochem-060713-035344 10.1128/MCB.24.4.1680-1690.2004 10.1097/WCO.0b013e32830b84cb 10.1126/science.1151363 10.1083/jcb.201501101 10.1016/j.bbagen.2004.03.016 10.1016/B978-0-444-52902-2.00003-5 10.1074/mcp.O112.018366 10.1074/jbc.M115.693580 10.1530/JOE-14-0182 10.1038/nature06668 10.1038/nature05815 10.1016/j.cmet.2012.07.006 10.1016/j.tem.2013.02.002 10.1074/jbc.M010420200 10.1074/jbc.272.14.9308 10.1016/j.cell.2014.06.007 10.1074/jbc.M109.077818 10.1038/nchembio.770 10.1084/jem.20131780 10.1038/216173a0 10.1074/jbc.M111.249508 10.1073/pnas.100471497 10.2337/dc07-9920 10.1016/j.pain.2012.04.022 |
ContentType | Journal Article |
Copyright | Copyright © 2017 the authors 0270-6474/17/372125-12$15.00/0. Copyright © 2017 the authors 0270-6474/17/372125-12$15.00/0 2017 |
Copyright_xml | – notice: Copyright © 2017 the authors 0270-6474/17/372125-12$15.00/0. – notice: Copyright © 2017 the authors 0270-6474/17/372125-12$15.00/0 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TK 5PM |
DOI | 10.1523/JNEUROSCI.3384-16.2017 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Neurosciences Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitleList | Neurosciences Abstracts MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1529-2401 |
EndPage | 2136 |
ExternalDocumentID | PMC5338757 28115479 10_1523_JNEUROSCI_3384_16_2017 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NICHD NIH HHS grantid: P30 HD018655 – fundername: NICHD NIH HHS grantid: U54 HD090255 – fundername: NINDS NIH HHS grantid: F31 NS084629 – fundername: NIGMS NIH HHS grantid: R01 GM069808 |
GroupedDBID | --- -DZ -~X .55 18M 2WC 34G 39C 53G 5GY 5RE 5VS AAFWJ AAJMC AAYXX ABBAR ABIVO ACGUR ACNCT ADBBV ADCOW ADHGD AENEX AFCFT AFOSN AFSQR AHWXS ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW CITATION CS3 DIK DU5 E3Z EBS EJD F5P GX1 H13 HYE H~9 KQ8 L7B OK1 P0W P2P QZG R.V RHI RPM TFN TR2 W8F WH7 WOQ X7M YBU YHG YKV YNH YSK AFHIN AIZTS CGR CUY CVF ECM EIF NPM RHF 7X8 7TK 5PM |
ID | FETCH-LOGICAL-c447t-2365c4751c6c9ce3721c2b81d01e04d17caf6d8fb20d7f8fde776e25b04c0f213 |
ISSN | 0270-6474 1529-2401 |
IngestDate | Thu Aug 21 14:33:30 EDT 2025 Thu Jul 10 22:24:46 EDT 2025 Fri Jul 11 00:36:08 EDT 2025 Wed Feb 19 02:43:45 EST 2025 Tue Jul 01 03:47:36 EDT 2025 Thu Apr 24 23:06:32 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | O-GlcNAcylation sensory neuron O-GlcNAc transferase degeneration dorsal root ganglion |
Language | English |
License | https://creativecommons.org/licenses/by-nc-sa/4.0 Copyright © 2017 the authors 0270-6474/17/372125-12$15.00/0. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c447t-2365c4751c6c9ce3721c2b81d01e04d17caf6d8fb20d7f8fde776e25b04c0f213 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Author contributions: C.S. and T.L.S. designed research; C.S. performed research; C.S. analyzed data; C.S. and T.L.S. wrote the paper. |
ORCID | 0000-0001-7532-0250 |
OpenAccessLink | https://www.jneurosci.org/content/jneuro/37/8/2125.full.pdf |
PMID | 28115479 |
PQID | 1861602384 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5338757 proquest_miscellaneous_1877815607 proquest_miscellaneous_1861602384 pubmed_primary_28115479 crossref_primary_10_1523_JNEUROSCI_3384_16_2017 crossref_citationtrail_10_1523_JNEUROSCI_3384_16_2017 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-02-22 20170222 |
PublicationDateYYYYMMDD | 2017-02-22 |
PublicationDate_xml | – month: 02 year: 2017 text: 2017-02-22 day: 22 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of neuroscience |
PublicationTitleAlternate | J Neurosci |
PublicationYear | 2017 |
Publisher | Society for Neuroscience |
Publisher_xml | – name: Society for Neuroscience |
References | 2023041803235025000_37.8.2125.1 2023041803235025000_37.8.2125.2 2023041803235025000_37.8.2125.5 2023041803235025000_37.8.2125.6 2023041803235025000_37.8.2125.3 2023041803235025000_37.8.2125.4 2023041803235025000_37.8.2125.40 2023041803235025000_37.8.2125.20 2023041803235025000_37.8.2125.42 2023041803235025000_37.8.2125.41 2023041803235025000_37.8.2125.22 Haltiwanger (2023041803235025000_37.8.2125.12) 1992; 267 2023041803235025000_37.8.2125.21 2023041803235025000_37.8.2125.9 2023041803235025000_37.8.2125.24 2023041803235025000_37.8.2125.23 2023041803235025000_37.8.2125.7 2023041803235025000_37.8.2125.26 2023041803235025000_37.8.2125.8 2023041803235025000_37.8.2125.25 2023041803235025000_37.8.2125.28 2023041803235025000_37.8.2125.27 2023041803235025000_37.8.2125.29 2023041803235025000_37.8.2125.31 2023041803235025000_37.8.2125.30 2023041803235025000_37.8.2125.11 2023041803235025000_37.8.2125.33 2023041803235025000_37.8.2125.10 2023041803235025000_37.8.2125.32 2023041803235025000_37.8.2125.13 2023041803235025000_37.8.2125.35 2023041803235025000_37.8.2125.34 2023041803235025000_37.8.2125.15 2023041803235025000_37.8.2125.37 2023041803235025000_37.8.2125.14 2023041803235025000_37.8.2125.36 2023041803235025000_37.8.2125.17 2023041803235025000_37.8.2125.39 2023041803235025000_37.8.2125.16 2023041803235025000_37.8.2125.38 2023041803235025000_37.8.2125.19 2023041803235025000_37.8.2125.18 18288188 - Nature. 2008 Feb 21;451(7181):964-9 27629714 - J Neurosci. 2016 Sep 14;36(37):9633-46 22267118 - Nat Chem Biol. 2012 Jan 22;8(3):253-61 23647930 - Trends Endocrinol Metab. 2013 Jun;24(6):301-9 11976211 - Ann N Y Acad Sci. 2002 Apr;959:368-83 11148210 - J Biol Chem. 2001 Mar 30;276(13):9838-45 20018868 - J Biol Chem. 2010 Feb 19;285(8):5204-11 27497832 - Brain Res Bull. 2016 Aug 4 14749383 - Mol Cell Biol. 2004 Feb;24(4):1680-90 27294441 - Annu Rev Biochem. 2016 Jun 2;85:631-57 17327355 - Diabetes Care. 2007 Mar;30(3):753-9 18769245 - Curr Opin Neurol. 2008 Oct;21(5):527-33 25303527 - Cell. 2014 Oct 9;159(2):306-17 18323454 - Science. 2008 Mar 7;319(5868):1402-5 16027160 - J Biol Chem. 2005 Sep 23;280(38):32944-56 4862079 - Nature. 1967 Oct 14;216(5111):173-4 19086029 - Dev Neurobiol. 2009 Feb 1-15;69(2-3):162-73 10801981 - Proc Natl Acad Sci U S A. 2000 May 23;97(11):5735-9 22883232 - Cell Metab. 2012 Aug 8;16(2):226-37 22703890 - Pain. 2012 Oct;153(10):2017-30 15238246 - Biochim Biophys Acta. 2004 Jul 6;1673(1-2):13-28 24593906 - Clin Proteomics. 2014 Mar 05;11(1):8 26598517 - J Biol Chem. 2016 Jan 29;291(5):2107-18 26989246 - Science. 2016 Mar 18;351(6279):1293-6 9083067 - J Biol Chem. 1997 Apr 4;272(14):9308-15 25056117 - J Endocrinol. 2014 Sep;222(3):G13-25 19004831 - J Biol Chem. 2009 Jan 2;284(1):174-81 1533623 - J Biol Chem. 1992 May 5;267(13):9005-13 24995978 - Cell. 2014 Jul 3;158(1):54-68 24733831 - J Exp Med. 2014 May 5;211(5):801-14 22645316 - Mol Cell Proteomics. 2012 Aug;11(8):215-29 23931773 - Handb Clin Neurol. 2013;115:29-41 18094705 - Nat Rev Neurosci. 2008 Jan;9(1):36-45 21618224 - J Comp Neurol. 2011 Oct 15;519(15):3085-101 21622566 - J Biol Chem. 2011 Jul 22;286(29):26118-26 22578891 - Trends Neurosci. 2012 Jun;35(6):364-72 22608666 - Lancet Neurol. 2012 Jun;11(6):521-34 25825515 - J Cell Biol. 2015 Mar 30;208(7):869-80 17151306 - Ann N Y Acad Sci. 2006 Nov;1084:250-66 17460662 - Nature. 2007 Apr 26;446(7139):1017-22 15048809 - Genesis. 2004 Mar;38(3):122-9 19782947 - Int J Biochem Cell Biol. 2009 Nov;41(11):2134-46 |
References_xml | – ident: 2023041803235025000_37.8.2125.14 doi: 10.1523/JNEUROSCI.1235-16.2016 – ident: 2023041803235025000_37.8.2125.41 doi: 10.1196/annals.1372.008 – ident: 2023041803235025000_37.8.2125.33 doi: 10.1074/jbc.M807431200 – ident: 2023041803235025000_37.8.2125.9 doi: 10.1002/dneu.20695 – ident: 2023041803235025000_37.8.2125.36 doi: 10.1111/j.1749-6632.2002.tb02108.x – ident: 2023041803235025000_37.8.2125.4 doi: 10.1016/S1474-4422(12)70065-0 – ident: 2023041803235025000_37.8.2125.16 doi: 10.1126/science.aad5494 – volume: 267 start-page: 9005 year: 1992 ident: 2023041803235025000_37.8.2125.12 article-title: Glycosylation of nuclear and cytoplasmic proteins. Purification and characterization of a uridine diphospho-N-acetylglucosamine: polypeptide β-N-acetylglucosaminyltransferase publication-title: J Biol Chem doi: 10.1016/S0021-9258(19)50380-5 – ident: 2023041803235025000_37.8.2125.19 doi: 10.1186/1559-0275-11-8 – ident: 2023041803235025000_37.8.2125.34 doi: 10.1038/nrn2294 – ident: 2023041803235025000_37.8.2125.17 doi: 10.1016/j.biocel.2009.03.008 – ident: 2023041803235025000_37.8.2125.30 doi: 10.1074/jbc.M503396200 – ident: 2023041803235025000_37.8.2125.37 doi: 10.1016/j.brainresbull.2016.08.002 – ident: 2023041803235025000_37.8.2125.1 doi: 10.1002/gene.20010 – ident: 2023041803235025000_37.8.2125.6 doi: 10.1016/j.tins.2012.04.001 – ident: 2023041803235025000_37.8.2125.11 doi: 10.1002/cne.22667 – ident: 2023041803235025000_37.8.2125.27 doi: 10.1016/j.cell.2014.09.010 – ident: 2023041803235025000_37.8.2125.18 doi: 10.1146/annurev-biochem-060713-035344 – ident: 2023041803235025000_37.8.2125.21 doi: 10.1128/MCB.24.4.1680-1690.2004 – ident: 2023041803235025000_37.8.2125.42 doi: 10.1097/WCO.0b013e32830b84cb – ident: 2023041803235025000_37.8.2125.7 doi: 10.1126/science.1151363 – ident: 2023041803235025000_37.8.2125.2 doi: 10.1083/jcb.201501101 – ident: 2023041803235025000_37.8.2125.40 doi: 10.1016/j.bbagen.2004.03.016 – ident: 2023041803235025000_37.8.2125.5 doi: 10.1016/B978-0-444-52902-2.00003-5 – ident: 2023041803235025000_37.8.2125.35 doi: 10.1074/mcp.O112.018366 – ident: 2023041803235025000_37.8.2125.8 doi: 10.1074/jbc.M115.693580 – ident: 2023041803235025000_37.8.2125.3 doi: 10.1530/JOE-14-0182 – ident: 2023041803235025000_37.8.2125.39 doi: 10.1038/nature06668 – ident: 2023041803235025000_37.8.2125.13 doi: 10.1038/nature05815 – ident: 2023041803235025000_37.8.2125.25 doi: 10.1016/j.cmet.2012.07.006 – ident: 2023041803235025000_37.8.2125.26 doi: 10.1016/j.tem.2013.02.002 – ident: 2023041803235025000_37.8.2125.10 doi: 10.1074/jbc.M010420200 – ident: 2023041803235025000_37.8.2125.15 doi: 10.1074/jbc.272.14.9308 – ident: 2023041803235025000_37.8.2125.23 doi: 10.1016/j.cell.2014.06.007 – ident: 2023041803235025000_37.8.2125.38 doi: 10.1074/jbc.M109.077818 – ident: 2023041803235025000_37.8.2125.24 doi: 10.1038/nchembio.770 – ident: 2023041803235025000_37.8.2125.22 doi: 10.1084/jem.20131780 – ident: 2023041803235025000_37.8.2125.32 doi: 10.1038/216173a0 – ident: 2023041803235025000_37.8.2125.31 doi: 10.1074/jbc.M111.249508 – ident: 2023041803235025000_37.8.2125.28 doi: 10.1073/pnas.100471497 – ident: 2023041803235025000_37.8.2125.20 doi: 10.2337/dc07-9920 – ident: 2023041803235025000_37.8.2125.29 doi: 10.1016/j.pain.2012.04.022 – reference: 14749383 - Mol Cell Biol. 2004 Feb;24(4):1680-90 – reference: 21618224 - J Comp Neurol. 2011 Oct 15;519(15):3085-101 – reference: 23647930 - Trends Endocrinol Metab. 2013 Jun;24(6):301-9 – reference: 1533623 - J Biol Chem. 1992 May 5;267(13):9005-13 – reference: 24995978 - Cell. 2014 Jul 3;158(1):54-68 – reference: 18769245 - Curr Opin Neurol. 2008 Oct;21(5):527-33 – reference: 17460662 - Nature. 2007 Apr 26;446(7139):1017-22 – reference: 27294441 - Annu Rev Biochem. 2016 Jun 2;85:631-57 – reference: 22883232 - Cell Metab. 2012 Aug 8;16(2):226-37 – reference: 11976211 - Ann N Y Acad Sci. 2002 Apr;959:368-83 – reference: 27629714 - J Neurosci. 2016 Sep 14;36(37):9633-46 – reference: 26989246 - Science. 2016 Mar 18;351(6279):1293-6 – reference: 23931773 - Handb Clin Neurol. 2013;115:29-41 – reference: 22608666 - Lancet Neurol. 2012 Jun;11(6):521-34 – reference: 16027160 - J Biol Chem. 2005 Sep 23;280(38):32944-56 – reference: 15238246 - Biochim Biophys Acta. 2004 Jul 6;1673(1-2):13-28 – reference: 22267118 - Nat Chem Biol. 2012 Jan 22;8(3):253-61 – reference: 19004831 - J Biol Chem. 2009 Jan 2;284(1):174-81 – reference: 22578891 - Trends Neurosci. 2012 Jun;35(6):364-72 – reference: 19086029 - Dev Neurobiol. 2009 Feb 1-15;69(2-3):162-73 – reference: 19782947 - Int J Biochem Cell Biol. 2009 Nov;41(11):2134-46 – reference: 22703890 - Pain. 2012 Oct;153(10):2017-30 – reference: 24593906 - Clin Proteomics. 2014 Mar 05;11(1):8 – reference: 11148210 - J Biol Chem. 2001 Mar 30;276(13):9838-45 – reference: 15048809 - Genesis. 2004 Mar;38(3):122-9 – reference: 20018868 - J Biol Chem. 2010 Feb 19;285(8):5204-11 – reference: 18094705 - Nat Rev Neurosci. 2008 Jan;9(1):36-45 – reference: 21622566 - J Biol Chem. 2011 Jul 22;286(29):26118-26 – reference: 27497832 - Brain Res Bull. 2016 Aug 4;: – reference: 18323454 - Science. 2008 Mar 7;319(5868):1402-5 – reference: 10801981 - Proc Natl Acad Sci U S A. 2000 May 23;97(11):5735-9 – reference: 26598517 - J Biol Chem. 2016 Jan 29;291(5):2107-18 – reference: 18288188 - Nature. 2008 Feb 21;451(7181):964-9 – reference: 22645316 - Mol Cell Proteomics. 2012 Aug;11(8):215-29 – reference: 9083067 - J Biol Chem. 1997 Apr 4;272(14):9308-15 – reference: 17151306 - Ann N Y Acad Sci. 2006 Nov;1084:250-66 – reference: 17327355 - Diabetes Care. 2007 Mar;30(3):753-9 – reference: 25303527 - Cell. 2014 Oct 9;159(2):306-17 – reference: 4862079 - Nature. 1967 Oct 14;216(5111):173-4 – reference: 25056117 - J Endocrinol. 2014 Sep;222(3):G13-25 – reference: 25825515 - J Cell Biol. 2015 Mar 30;208(7):869-80 – reference: 24733831 - J Exp Med. 2014 May 5;211(5):801-14 |
SSID | ssj0007017 |
Score | 2.4238763 |
Snippet | O
-GlcNAc transferase (OGT) regulates a wide range of cellular processes through the addition of the
O-
GlcNAc sugar moiety to thousands of protein substrates.... -GlcNAc transferase (OGT) regulates a wide range of cellular processes through the addition of the GlcNAc sugar moiety to thousands of protein substrates.... O-GlcNAc transferase (OGT) regulates a wide range of cellular processes through the addition of the O-GlcNAc sugar moiety to thousands of protein substrates.... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2125 |
SubjectTerms | Animals Body Weight - genetics Cell Survival - drug effects Cell Survival - genetics Cells, Cultured Ganglia, Spinal - cytology Gene Expression Regulation - genetics Glucose Tolerance Test Locomotion - genetics Male Mental Disorders - genetics Mice Mice, Inbred C57BL Mice, Transgenic Muscle Strength - genetics N-Acetylglucosaminyltransferases - deficiency N-Acetylglucosaminyltransferases - metabolism NAV1.8 Voltage-Gated Sodium Channel - genetics NAV1.8 Voltage-Gated Sodium Channel - metabolism Neuronal Plasticity - genetics Sensory Receptor Cells - physiology Thermosensing - genetics Transcription Factor Brn-3A - genetics Transcription Factor Brn-3A - metabolism |
Title | O -GlcNAc Transferase Is Essential for Sensory Neuron Survival and Maintenance |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28115479 https://www.proquest.com/docview/1861602384 https://www.proquest.com/docview/1877815607 https://pubmed.ncbi.nlm.nih.gov/PMC5338757 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgvPCCgHEpNxkJ8VKlix0nzh6rMlgHLUjdpL1Fjutom7Z06oWJ_XrOiR0n7SYue4mi1I5Tf1-Oz4l9PhPygWmRRpFJAxiqdCCYEoHSqI0XhakCBxacEMxGHo2T_SNxcBwfN9MFVXbJMu_p61vzSu6CKlwDXDFL9j-Q9TeFC3AO-MIREIbjP2H8Pfhyrsd9bSXKCzOHIak7XHT3FphSdGpzE8EclAucSa90OOBtXoF1-OkkAkYK9SJKD_1ZQ56Wq9oSvfQ8mKzqBEL_UX6iT67U_LpZd9T91mt_VYCRCrO0mxi0vWR0vNmGtU5cQtwp7BY7PeOsJ6-ma1jbvFpNF0ejdM1W2pRnN-5yZpVQbtj0uNKWOBjj0sbJYNiDoFoEDJeX2KzPFtCXFxXSPEWRIbtJzYaa9o_RABxcVPG_Tx5wCC1w14tPw69-9JZhtUuz_3suqxweYuf2R0A5adfeum9zI2DZXHfbcmQOH5NHDlbat3R6Qu6Z8inZ7pdqObv4RT_Sak1wNdmyTUY1w2iLYXS4oJ5hFLCjjmHUMozWDKPAMNpi2DNy9HnvcLAfuA04Ai2EXAY8SmItZMx0one1iSRnmucQ4YTMhGLKpFZFMk2LnIdTWaTF1EiZGB7nodBhAYA-J1vlrDQvCZUmzwWfhoVOcyEMT0MFXQonKhEw3qoOieuuy7RTp8dNUs4zjFKhaOZ7P8Pez1iSYe93yI6vd2n1Wf5a432NTAamFOfHVGlmq0XG0oQl6MOKP5WREgWWQrjPC4umb7emQYfINZx9AZRyX_-lPD2pJN0dJ1_dueZr8rB5jd-QreV8Zd6Cu7zM31X8_g02Jr2W |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=O-GlcNAc+Transferase+Is+Essential+for+Sensory+Neuron+Survival+and+Maintenance&rft.jtitle=The+Journal+of+neuroscience&rft.au=Su%2C+Cathy&rft.au=Schwarz%2C+Thomas+L.&rft.date=2017-02-22&rft.pub=Society+for+Neuroscience&rft.issn=0270-6474&rft.eissn=1529-2401&rft.volume=37&rft.issue=8&rft.spage=2125&rft.epage=2136&rft_id=info:doi/10.1523%2FJNEUROSCI.3384-16.2017&rft_id=info%3Apmid%2F28115479&rft.externalDocID=PMC5338757 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon |