VERTICOX: Vertically Distributed Cox Proportional Hazards Model Using the Alternating Direction Method of Multipliers
The Cox proportional hazards model is a popular semi-parametric model for survival analysis. In this paper, we aim at developing a federated algorithm for the Cox proportional hazards model over vertically partitioned data (i.e., data from the same patient are stored at different institutions). We p...
Saved in:
Published in | IEEE transactions on knowledge and data engineering Vol. 34; no. 2; pp. 996 - 1010 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.02.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Cox proportional hazards model is a popular semi-parametric model for survival analysis. In this paper, we aim at developing a federated algorithm for the Cox proportional hazards model over vertically partitioned data (i.e., data from the same patient are stored at different institutions). We propose a novel algorithm, namely VERTICOX, to obtain the global model parameters in a distributed fashion based on the Alternating Direction Method of Multipliers (ADMM) framework. The proposed model computes intermediary statistics and exchanges them to calculate the global model without collecting individual patient-level data. We demonstrate that our algorithm achieves equivalent accuracy for the estimation of model parameters and statistics to that of its centralized realization. The proposed algorithm converges linearly under the ADMM framework. Its computational complexity and communication costs are polynomially and linearly associated with the number of subjects, respectively. Experimental results show that VERTICOX can achieve accurate model parameter estimation to support federated survival analysis over vertically distributed data by saving bandwidth and avoiding exchange of information about individual patients. The source code for VERTICOX is available at: https://github.com/daiwenrui/VERTICOX . |
---|---|
AbstractList | The Cox proportional hazards model is a popular semi-parametric model for survival analysis. In this paper, we aim at developing a federated algorithm for the Cox proportional hazards model over vertically partitioned data (i.e., data from the same patient are stored at different institutions). We propose a novel algorithm, namely VERTICOX, to obtain the global model parameters in a distributed fashion based on the Alternating Direction Method of Multipliers (ADMM) framework. The proposed model computes intermediary statistics and exchanges them to calculate the global model without collecting individual patient-level data. We demonstrate that our algorithm achieves equivalent accuracy for the estimation of model parameters and statistics to that of its centralized realization. The proposed algorithm converges linearly under the ADMM framework. Its computational complexity and communication costs are polynomially and linearly associated with the number of subjects, respectively. Experimental results show that VERTICOX can achieve accurate model parameter estimation to support federated survival analysis over vertically distributed data by saving bandwidth and avoiding exchange of information about individual patients. The source code for VERTICOX is available at: https://github.com/daiwenrui/VERTICOX . The Cox proportional hazards model is a popular semi-parametric model for survival analysis. In this paper, we aim at developing a federated algorithm for the Cox proportional hazards model over vertically partitioned data (i.e., data from the same patient are stored at different institutions). We propose a novel algorithm, namely VERTICOX, to obtain the global model parameters in a distributed fashion based on the Alternating Direction Method of Multipliers (ADMM) framework. The proposed model computes intermediary statistics and exchanges them to calculate the global model without collecting individual patient-level data. We demonstrate that our algorithm achieves equivalent accuracy for the estimation of model parameters and statistics to that of its centralized realization. The proposed algorithm converges linearly under the ADMM framework. Its computational complexity and communication costs are polynomially and linearly associated with the number of subjects, respectively. Experimental results show that VERTICOX can achieve accurate model parameter estimation to support federated survival analysis over vertically distributed data by saving bandwidth and avoiding exchange of information about individual patients. The source code for VERTICOX is available at: https://github.com/daiwenrui/VERTICOX . The Cox proportional hazards model is a popular semi-parametric model for survival analysis. In this paper, we aim at developing a federated algorithm for the Cox proportional hazards model over vertically partitioned data (i.e., data from the same patient are stored at different institutions). We propose a novel algorithm, namely VERTICOX, to obtain the global model parameters in a distributed fashion based on the Alternating Direction Method of Multipliers (ADMM) framework. The proposed model computes intermediary statistics and exchanges them to calculate the global model without collecting individual patient-level data. We demonstrate that our algorithm achieves equivalent accuracy for the estimation of model parameters and statistics to that of its centralized realization. The proposed algorithm converges linearly under the ADMM framework. Its computational complexity and communication costs are polynomially and linearly associated with the number of subjects, respectively. Experimental results show that VERTICOX can achieve accurate model parameter estimation to support federated survival analysis over vertically distributed data by saving bandwidth and avoiding exchange of information about individual patients. The source code for VERTICOX is available at: https://github.com/daiwenrui/VERTICOX.The Cox proportional hazards model is a popular semi-parametric model for survival analysis. In this paper, we aim at developing a federated algorithm for the Cox proportional hazards model over vertically partitioned data (i.e., data from the same patient are stored at different institutions). We propose a novel algorithm, namely VERTICOX, to obtain the global model parameters in a distributed fashion based on the Alternating Direction Method of Multipliers (ADMM) framework. The proposed model computes intermediary statistics and exchanges them to calculate the global model without collecting individual patient-level data. We demonstrate that our algorithm achieves equivalent accuracy for the estimation of model parameters and statistics to that of its centralized realization. The proposed algorithm converges linearly under the ADMM framework. Its computational complexity and communication costs are polynomially and linearly associated with the number of subjects, respectively. Experimental results show that VERTICOX can achieve accurate model parameter estimation to support federated survival analysis over vertically distributed data by saving bandwidth and avoiding exchange of information about individual patients. The source code for VERTICOX is available at: https://github.com/daiwenrui/VERTICOX. |
Author | Li, Yong Ohno-Machado, Lucila Xiong, Hongkai Dai, Wenrui Jiang, Xiaoqian Bonomi, Luca |
Author_xml | – sequence: 1 givenname: Wenrui orcidid: 0000-0003-2522-5778 surname: Dai fullname: Dai, Wenrui email: daiwenrui@sjtu.edu.cn organization: Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai, China – sequence: 2 givenname: Xiaoqian surname: Jiang fullname: Jiang, Xiaoqian email: xiaoqian.jiang@uth.tmc.edu organization: School of Biomedical Informatics, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA – sequence: 3 givenname: Luca orcidid: 0000-0002-5751-1341 surname: Bonomi fullname: Bonomi, Luca email: lbonomi@ucsd.edu organization: UCSD Health Department of Biomedical Informatics, University of California San Diego, La Jolla, CA, USA – sequence: 4 givenname: Yong orcidid: 0000-0001-7551-1137 surname: Li fullname: Li, Yong email: marsleely@sjtu.edu.cn organization: Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai, China – sequence: 5 givenname: Hongkai orcidid: 0000-0003-4552-0029 surname: Xiong fullname: Xiong, Hongkai email: xionghongkai@sjtu.edu.cn organization: Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai, China – sequence: 6 givenname: Lucila surname: Ohno-Machado fullname: Ohno-Machado, Lucila email: lohnomachado@ucsd.edu organization: UCSD Health Department of Biomedical Informatics, University of California San Diego, La Jolla, CA, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36158636$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1vEzEQhleoiH7AD0BIyBIXLgmetffDHJCqJNCKRkUorbhZXnu2ceWsg-1FlF_PrhIi6IGTbc3zzrye9zQ76nyHWfYS6BSAinerz_PFNKc5neaiFozCk-wEiqKe5CDgaLhTDhPOeHWcncZ4TymtqxqeZceshKIuWXmS9beLr6vL2fW39-QWQ7JaOfdA5jamYJs-oSEz_5N8CX7rh6rvlCMX6pcKJpKlN-jITbTdHUlrJOcuYehUGt9zG1CPPFliWntDfEuWvUt26yyG-Dx72ioX8cX-PMtuPi5Ws4vJ1fWny9n51URzXqUJmIK3tUFUjFWKNpS3vIXcCKBGoVaUFVrotqwa1oABikXZcK4rDUbkIi_ZWfZh13fbNxs0GrsUlJPbYDcqPEivrPy30tm1vPM_pOACCiGGBm_3DYL_3mNMcmOjRudUh76PMq-gLnleFeOsN4_Qe98P-3ADVYKgULO6GKjXfzs6WPmTyADADtDBxxiwPSBA5Zi6HFOXY-pyn_qgqR5ptE1qXP_wKev-q3y1U1pEPEwStCrZ4Pc33Ge7Qw |
CODEN | ITKEEH |
CitedBy_id | crossref_primary_10_1016_j_future_2023_07_036 crossref_primary_10_1016_j_compbiomed_2024_109575 crossref_primary_10_1007_s12083_024_01740_9 crossref_primary_10_1109_JBHI_2021_3071270 crossref_primary_10_1186_s12911_022_01771_3 crossref_primary_10_1109_TKDE_2024_3382002 crossref_primary_10_1016_j_jbi_2023_104581 |
Cites_doi | 10.1177/0962280209105022 10.1002/sim.2299 10.1145/2660267.2660348 10.1007/978-0-387-84858-7 10.1145/2976749.2978318 10.2307/1402659 10.1177/096228020101000503 10.1111/j.2517-6161.1972.tb00899.x 10.1145/3035918.3064047 10.1137/1.9781611972740.59 10.1109/TSP.2015.2436358 10.1177/0962280209105024 10.1007/11787006_1 10.1191/0962280202sm284ra 10.1016/j.ijcard.2012.09.014 10.1109/TSP.2015.2465300 10.1177/0962280210385865 10.1145/3183713.3197390 10.1109/FOCS.2014.56 10.1093/jamia/ocv083 10.1109/TSP.2010.2055862 10.1145/1401890.1402013 10.1080/01621459.1977.10480613 10.29012/jpc.v4i1.614 10.1002/sam.11236 10.1109/TSP.2012.2194290 10.1109/TSP.2014.2304432 10.1136/amiajnl-2014-002751 10.1136/amiajnl-2012-000862 10.1016/j.ejca.2006.06.028 10.1561/2200000016 10.1007/11731139_74 10.1016/j.ijmedinf.2018.01.007 10.1109/FOCS.2013.53 10.1093/jamia/ocv146 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 5PM |
DOI | 10.1109/TKDE.2020.2989301 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | Technology Research Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1558-2191 |
EndPage | 1010 |
ExternalDocumentID | PMC9491599 36158636 10_1109_TKDE_2020_2989301 9076318 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61971285; 61720106001; 61932022 funderid: 10.13039/501100001809 – fundername: CPRIT Scholar in Cancer Research grantid: RR180012 – fundername: University of Texas Health Science Center at Houston; UTHealth funderid: 10.13039/100012615 – fundername: National Institutes of Health grantid: K99HG010493; R01GM118609 funderid: 10.13039/100000002 – fundername: National Institutes of Health grantid: R01GM118609; R01GM124111; R01GM012862 funderid: 10.13039/100000002 – fundername: NIGMS NIH HHS grantid: R01 GM124111 – fundername: NHGRI NIH HHS grantid: K99 HG010493 – fundername: NIGMS NIH HHS grantid: R01 GM118609 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB AAYXX CITATION 1OL 5VS 9M8 ABFSI AETIX AGSQL AI. AIBXA ALLEH E.L H~9 ICLAB IFJZH NPM RIG RNI RZB TAF VH1 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 5PM |
ID | FETCH-LOGICAL-c447t-1d54f8deea337a0b04f4f12d910daeca035c9cf67b3b1d10e56b44c7c1d929263 |
IEDL.DBID | RIE |
ISSN | 1041-4347 |
IngestDate | Thu Aug 21 18:38:20 EDT 2025 Fri Jul 11 00:15:06 EDT 2025 Mon Jun 30 03:35:19 EDT 2025 Mon Jul 21 05:59:09 EDT 2025 Thu Apr 24 23:07:32 EDT 2025 Tue Jul 01 01:19:36 EDT 2025 Wed Aug 27 02:05:26 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Federated survival analysis alternating direction method of multipliers privacy protection vertically partitioned data Cox proportional hazards model |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c447t-1d54f8deea337a0b04f4f12d910daeca035c9cf67b3b1d10e56b44c7c1d929263 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 share the first authorship. |
ORCID | 0000-0003-2522-5778 0000-0002-5751-1341 0000-0003-4552-0029 0000-0001-7551-1137 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/9491599 |
PMID | 36158636 |
PQID | 2619018385 |
PQPubID | 85438 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9491599 crossref_primary_10_1109_TKDE_2020_2989301 ieee_primary_9076318 proquest_miscellaneous_2718642756 pubmed_primary_36158636 proquest_journals_2619018385 crossref_citationtrail_10_1109_TKDE_2020_2989301 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on knowledge and data engineering |
PublicationTitleAbbrev | TKDE |
PublicationTitleAlternate | IEEE Trans Knowl Data Eng |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref34 ref15 ref37 ref36 ref30 ref33 ref10 Ries (ref31) 2008 ref1 ref17 Forero (ref27) 2010; 11 ref16 Que (ref22) ref38 ref18 Chaudhuri (ref44) Karr (ref19) 2009; 25 (ref13) 2016 Wiksten (ref2) 2008; 28 ref24 ref46 ref23 ref45 ref26 (ref14) 2016; 59 ref25 ref47 ref20 ref42 Chaudhuri (ref39) ref41 ref21 ref43 ref28 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Hansen (ref11) 1997; 10 ref40 |
References_xml | – volume: 11 start-page: 1663 year: 2010 ident: ref27 article-title: Consensus-based distributed support vector machines publication-title: J. Mach. Learn. Res. – ident: ref7 doi: 10.1177/0962280209105022 – ident: ref34 doi: 10.1002/sim.2299 – ident: ref42 doi: 10.1145/2660267.2660348 – ident: ref47 doi: 10.1007/978-0-387-84858-7 – start-page: 2652 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref39 article-title: A stability-based validation procedure for differentially private machine learning – ident: ref41 doi: 10.1145/2976749.2978318 – start-page: 1350 volume-title: Proc. AMIA Ann. Symp. ident: ref22 article-title: A collaborative framework for distributed privacy-preserving support vector machine learning – ident: ref33 doi: 10.2307/1402659 – ident: ref4 doi: 10.1177/096228020101000503 – volume: 25 start-page: 125 issue: 1 year: 2009 ident: ref19 article-title: Privacy-preserving analysis of vertically partitioned data using secure matrix products publication-title: J. Official Statist. – ident: ref5 doi: 10.1111/j.2517-6161.1972.tb00899.x – ident: ref40 doi: 10.1145/3035918.3064047 – volume-title: Genomic Data Sharing (GDS) Policy year: 2016 ident: ref13 – ident: ref20 doi: 10.1137/1.9781611972740.59 – ident: ref30 doi: 10.1109/TSP.2015.2436358 – volume: 10 start-page: 96 issue: 8 year: 1997 ident: ref11 article-title: HIPAA (Health Insurance Portability and Accountability Act) rules: Federal and state enforcement publication-title: Med. Interface – ident: ref36 doi: 10.1177/0962280209105024 – ident: ref37 doi: 10.1007/11787006_1 – ident: ref9 doi: 10.1191/0962280202sm284ra – ident: ref6 doi: 10.1016/j.ijcard.2012.09.014 – ident: ref28 doi: 10.1109/TSP.2015.2465300 – ident: ref8 doi: 10.1177/0962280210385865 – start-page: 289 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref44 article-title: Privacy-preserving logistic regression – ident: ref45 doi: 10.1145/3183713.3197390 – ident: ref38 doi: 10.1109/FOCS.2014.56 – ident: ref18 doi: 10.1093/jamia/ocv083 – ident: ref25 doi: 10.1109/TSP.2010.2055862 – volume: 28 start-page: 2279 issue: 4C year: 2008 ident: ref2 article-title: Comparison of the prognostic value of a panel of tissue tumor markers and established clinicopathological factors in patients with gastric cancer publication-title: Anticancer Res. – ident: ref15 doi: 10.1145/1401890.1402013 – ident: ref35 doi: 10.1080/01621459.1977.10480613 – ident: ref16 doi: 10.29012/jpc.v4i1.614 – ident: ref3 doi: 10.1002/sam.11236 – volume: 59 start-page: 1 issue: L119 year: 2016 ident: ref14 article-title: Regulation (EU) 2016/679 of the European Parliament and of the council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing directive 95/46/EC (General Data Protection Regulation) publication-title: Official J. Eur. Union – ident: ref26 doi: 10.1109/TSP.2012.2194290 – ident: ref29 doi: 10.1109/TSP.2014.2304432 – ident: ref10 doi: 10.1136/amiajnl-2014-002751 – ident: ref17 doi: 10.1136/amiajnl-2012-000862 – ident: ref1 doi: 10.1016/j.ejca.2006.06.028 – ident: ref24 doi: 10.1561/2200000016 – ident: ref21 doi: 10.1007/11731139_74 – volume-title: SEER Cancer Statistics Review 1975–2005 year: 2008 ident: ref31 – ident: ref46 doi: 10.1016/j.ijmedinf.2018.01.007 – ident: ref43 doi: 10.1109/FOCS.2013.53 – ident: ref23 doi: 10.1093/jamia/ocv146 |
SSID | ssj0008781 |
Score | 2.436854 |
Snippet | The Cox proportional hazards model is a popular semi-parametric model for survival analysis. In this paper, we aim at developing a federated algorithm for the... The Cox proportional hazards model is a popular semi-parametric model for survival analysis. In this paper, we aim at developing a federated algorithm for the... |
SourceID | pubmedcentral proquest pubmed crossref ieee |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 996 |
SubjectTerms | Algorithms alternating direction method of multipliers Analytical models Computational modeling cox proportional hazards model Data models Data privacy Distributed databases Estimation Exchanging Federated survival analysis Hazards Multipliers Parameter estimation privacy protection Source code Statistical models Survival Survival analysis vertically partitioned data |
Title | VERTICOX: Vertically Distributed Cox Proportional Hazards Model Using the Alternating Direction Method of Multipliers |
URI | https://ieeexplore.ieee.org/document/9076318 https://www.ncbi.nlm.nih.gov/pubmed/36158636 https://www.proquest.com/docview/2619018385 https://www.proquest.com/docview/2718642756 https://pubmed.ncbi.nlm.nih.gov/PMC9491599 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LbtQwFL1qu0BlQaHlMVCQkVghMrUT58Wumk41gAYQmlazi_wUiChBZSJBv55rxwltVSF2ieJEjnxsn2tfnwPwSiFFpsrl6ViTRQgKGRU85hErLJeaFkIJr_b5MVuc8ffrdL0Fb8azMMYYn3xmpu7S7-XrVnVuqewIA7kMMbgN2xi49We1xlG3yL0hKUYXGBMlPA87mIyWR6sPJ3OMBGM6dXLjiOhduJPgTF5kXpj573Tk_VVuo5o3MyavTEGne7AcKt9nnnyfdhs5VZc3dB3_9-_uw73ARclxD54HsGWafdgbfB5I6Pb7cPeKaOEBdOfzL6t3s0_rt-TcJ2WLuv5NTpwAr_POMprM2l_ks3NfuOgXGslCXLqzXcQZr9XEZykQJJ7kuA7LkXgfxt62IUtvak1aS5Z9tqNz634IZ6fz1WwRBfOGSHGebyKmU24LbYxIklxQSbnllsUa6YkWRgmapKpUNstlIplm1KSZ5FzlimlkbHGWPIKdpm3MEyA5LXPBqEhkonkpi8JKZY2ynDlzLZZNgA5tWKmgbO4MNurKRzi0rBwCKoeAKiBgAq_HV370sh7_KnzgWmssGBpqAocDUKrQ8X9WLiClOEwW6QRejo-xy7p9GNGYtsMyyAcw7MtTrPnjHlfjtwdcTiC_hrixgJMDv_6k-fbVy4KXvERuWj69vbbPYDd2Jzd8wvkh7GwuOvMc-dRGvvAd6Q9WmRv0 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwFHwqRYJyoNAWCBQwEidEtnbifHGrtlttabcgtK32FvkrAhElqOxK0F_Ps-OEtqoQt0RxIkce2_Ps5xmAtwopMlU2T6cyaYigkGHOIx6yvOJS01wo4dQ-T9PpGf-4SBZr8H44C2OMcclnZmQv3V6-btXKLpXtYSCXIgbvwF2c9xPWndYaxt08c5akGF9gVBTzzO9hMlrszY8PJhgLRnRkBccR0xtwL8a5PE-dNPPfCck5rNxGNm_mTF6ZhA43YdZXv8s9-T5aLeVIXd5Qdvzf_3sEDz0bJfsdfB7Dmmm2YLN3eiC-42_BgyuyhduwOp98mR-NPy0-kHOXli3q-jc5sBK81j3LaDJuf5HP1n_holtqJFNxaU93EWu9VhOXp0CQepL92i9I4r0ffduGzJytNWkrMuvyHa1f9w6cHU7m42no7RtCxXm2DJlOeJVrY0QcZ4JKyitesUgjQdHCKEHjRBWqSjMZS6YZNUkqOVeZYho5W5TGT2C9aRvzDEhGi0wwKmIZa17IPK-kqoyqOLP2WiwNgPZtWCqvbW4tNurSxTi0KC0CSouA0iMggHfDKz86YY9_Fd62rTUU9A0VwG4PlNJ3_Z-lDUkpDpR5EsCb4TF2WrsTIxrTrrAMMgIM_LIEa_60w9Xw7R6XAWTXEDcUsILg15803746YfCCF8hOi-e31_Y13J_OZyflydHp8QvYiOw5Dpd-vgvry4uVeYnsailfuU71Bz9lHz0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=VERTICOX%3A+Vertically+Distributed+Cox+Proportional+Hazards+Model+Using+the+Alternating+Direction+Method+of+Multipliers&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Dai%2C+Wenrui&rft.au=Jiang%2C+Xiaoqian&rft.au=Bonomi%2C+Luca&rft.au=Li%2C+Yong&rft.date=2022-02-01&rft.issn=1041-4347&rft.eissn=1558-2191&rft.volume=34&rft.issue=2&rft.spage=996&rft.epage=1010&rft_id=info:doi/10.1109%2Ftkde.2020.2989301&rft_id=info%3Apmid%2F36158636&rft.externalDocID=PMC9491599 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon |