VERTICOX: Vertically Distributed Cox Proportional Hazards Model Using the Alternating Direction Method of Multipliers

The Cox proportional hazards model is a popular semi-parametric model for survival analysis. In this paper, we aim at developing a federated algorithm for the Cox proportional hazards model over vertically partitioned data (i.e., data from the same patient are stored at different institutions). We p...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on knowledge and data engineering Vol. 34; no. 2; pp. 996 - 1010
Main Authors Dai, Wenrui, Jiang, Xiaoqian, Bonomi, Luca, Li, Yong, Xiong, Hongkai, Ohno-Machado, Lucila
Format Journal Article
LanguageEnglish
Published United States IEEE 01.02.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Cox proportional hazards model is a popular semi-parametric model for survival analysis. In this paper, we aim at developing a federated algorithm for the Cox proportional hazards model over vertically partitioned data (i.e., data from the same patient are stored at different institutions). We propose a novel algorithm, namely VERTICOX, to obtain the global model parameters in a distributed fashion based on the Alternating Direction Method of Multipliers (ADMM) framework. The proposed model computes intermediary statistics and exchanges them to calculate the global model without collecting individual patient-level data. We demonstrate that our algorithm achieves equivalent accuracy for the estimation of model parameters and statistics to that of its centralized realization. The proposed algorithm converges linearly under the ADMM framework. Its computational complexity and communication costs are polynomially and linearly associated with the number of subjects, respectively. Experimental results show that VERTICOX can achieve accurate model parameter estimation to support federated survival analysis over vertically distributed data by saving bandwidth and avoiding exchange of information about individual patients. The source code for VERTICOX is available at: https://github.com/daiwenrui/VERTICOX .
AbstractList The Cox proportional hazards model is a popular semi-parametric model for survival analysis. In this paper, we aim at developing a federated algorithm for the Cox proportional hazards model over vertically partitioned data (i.e., data from the same patient are stored at different institutions). We propose a novel algorithm, namely VERTICOX, to obtain the global model parameters in a distributed fashion based on the Alternating Direction Method of Multipliers (ADMM) framework. The proposed model computes intermediary statistics and exchanges them to calculate the global model without collecting individual patient-level data. We demonstrate that our algorithm achieves equivalent accuracy for the estimation of model parameters and statistics to that of its centralized realization. The proposed algorithm converges linearly under the ADMM framework. Its computational complexity and communication costs are polynomially and linearly associated with the number of subjects, respectively. Experimental results show that VERTICOX can achieve accurate model parameter estimation to support federated survival analysis over vertically distributed data by saving bandwidth and avoiding exchange of information about individual patients. The source code for VERTICOX is available at: https://github.com/daiwenrui/VERTICOX .
The Cox proportional hazards model is a popular semi-parametric model for survival analysis. In this paper, we aim at developing a federated algorithm for the Cox proportional hazards model over vertically partitioned data (i.e., data from the same patient are stored at different institutions). We propose a novel algorithm, namely VERTICOX, to obtain the global model parameters in a distributed fashion based on the Alternating Direction Method of Multipliers (ADMM) framework. The proposed model computes intermediary statistics and exchanges them to calculate the global model without collecting individual patient-level data. We demonstrate that our algorithm achieves equivalent accuracy for the estimation of model parameters and statistics to that of its centralized realization. The proposed algorithm converges linearly under the ADMM framework. Its computational complexity and communication costs are polynomially and linearly associated with the number of subjects, respectively. Experimental results show that VERTICOX can achieve accurate model parameter estimation to support federated survival analysis over vertically distributed data by saving bandwidth and avoiding exchange of information about individual patients. The source code for VERTICOX is available at: https://github.com/daiwenrui/VERTICOX .
The Cox proportional hazards model is a popular semi-parametric model for survival analysis. In this paper, we aim at developing a federated algorithm for the Cox proportional hazards model over vertically partitioned data (i.e., data from the same patient are stored at different institutions). We propose a novel algorithm, namely VERTICOX, to obtain the global model parameters in a distributed fashion based on the Alternating Direction Method of Multipliers (ADMM) framework. The proposed model computes intermediary statistics and exchanges them to calculate the global model without collecting individual patient-level data. We demonstrate that our algorithm achieves equivalent accuracy for the estimation of model parameters and statistics to that of its centralized realization. The proposed algorithm converges linearly under the ADMM framework. Its computational complexity and communication costs are polynomially and linearly associated with the number of subjects, respectively. Experimental results show that VERTICOX can achieve accurate model parameter estimation to support federated survival analysis over vertically distributed data by saving bandwidth and avoiding exchange of information about individual patients. The source code for VERTICOX is available at: https://github.com/daiwenrui/VERTICOX.The Cox proportional hazards model is a popular semi-parametric model for survival analysis. In this paper, we aim at developing a federated algorithm for the Cox proportional hazards model over vertically partitioned data (i.e., data from the same patient are stored at different institutions). We propose a novel algorithm, namely VERTICOX, to obtain the global model parameters in a distributed fashion based on the Alternating Direction Method of Multipliers (ADMM) framework. The proposed model computes intermediary statistics and exchanges them to calculate the global model without collecting individual patient-level data. We demonstrate that our algorithm achieves equivalent accuracy for the estimation of model parameters and statistics to that of its centralized realization. The proposed algorithm converges linearly under the ADMM framework. Its computational complexity and communication costs are polynomially and linearly associated with the number of subjects, respectively. Experimental results show that VERTICOX can achieve accurate model parameter estimation to support federated survival analysis over vertically distributed data by saving bandwidth and avoiding exchange of information about individual patients. The source code for VERTICOX is available at: https://github.com/daiwenrui/VERTICOX.
Author Li, Yong
Ohno-Machado, Lucila
Xiong, Hongkai
Dai, Wenrui
Jiang, Xiaoqian
Bonomi, Luca
Author_xml – sequence: 1
  givenname: Wenrui
  orcidid: 0000-0003-2522-5778
  surname: Dai
  fullname: Dai, Wenrui
  email: daiwenrui@sjtu.edu.cn
  organization: Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 2
  givenname: Xiaoqian
  surname: Jiang
  fullname: Jiang, Xiaoqian
  email: xiaoqian.jiang@uth.tmc.edu
  organization: School of Biomedical Informatics, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
– sequence: 3
  givenname: Luca
  orcidid: 0000-0002-5751-1341
  surname: Bonomi
  fullname: Bonomi, Luca
  email: lbonomi@ucsd.edu
  organization: UCSD Health Department of Biomedical Informatics, University of California San Diego, La Jolla, CA, USA
– sequence: 4
  givenname: Yong
  orcidid: 0000-0001-7551-1137
  surname: Li
  fullname: Li, Yong
  email: marsleely@sjtu.edu.cn
  organization: Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 5
  givenname: Hongkai
  orcidid: 0000-0003-4552-0029
  surname: Xiong
  fullname: Xiong, Hongkai
  email: xionghongkai@sjtu.edu.cn
  organization: Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 6
  givenname: Lucila
  surname: Ohno-Machado
  fullname: Ohno-Machado, Lucila
  email: lohnomachado@ucsd.edu
  organization: UCSD Health Department of Biomedical Informatics, University of California San Diego, La Jolla, CA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36158636$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1vEzEQhleoiH7AD0BIyBIXLgmetffDHJCqJNCKRkUorbhZXnu2ceWsg-1FlF_PrhIi6IGTbc3zzrye9zQ76nyHWfYS6BSAinerz_PFNKc5neaiFozCk-wEiqKe5CDgaLhTDhPOeHWcncZ4TymtqxqeZceshKIuWXmS9beLr6vL2fW39-QWQ7JaOfdA5jamYJs-oSEz_5N8CX7rh6rvlCMX6pcKJpKlN-jITbTdHUlrJOcuYehUGt9zG1CPPFliWntDfEuWvUt26yyG-Dx72ioX8cX-PMtuPi5Ws4vJ1fWny9n51URzXqUJmIK3tUFUjFWKNpS3vIXcCKBGoVaUFVrotqwa1oABikXZcK4rDUbkIi_ZWfZh13fbNxs0GrsUlJPbYDcqPEivrPy30tm1vPM_pOACCiGGBm_3DYL_3mNMcmOjRudUh76PMq-gLnleFeOsN4_Qe98P-3ADVYKgULO6GKjXfzs6WPmTyADADtDBxxiwPSBA5Zi6HFOXY-pyn_qgqR5ptE1qXP_wKev-q3y1U1pEPEwStCrZ4Pc33Ge7Qw
CODEN ITKEEH
CitedBy_id crossref_primary_10_1016_j_future_2023_07_036
crossref_primary_10_1016_j_compbiomed_2024_109575
crossref_primary_10_1007_s12083_024_01740_9
crossref_primary_10_1109_JBHI_2021_3071270
crossref_primary_10_1186_s12911_022_01771_3
crossref_primary_10_1109_TKDE_2024_3382002
crossref_primary_10_1016_j_jbi_2023_104581
Cites_doi 10.1177/0962280209105022
10.1002/sim.2299
10.1145/2660267.2660348
10.1007/978-0-387-84858-7
10.1145/2976749.2978318
10.2307/1402659
10.1177/096228020101000503
10.1111/j.2517-6161.1972.tb00899.x
10.1145/3035918.3064047
10.1137/1.9781611972740.59
10.1109/TSP.2015.2436358
10.1177/0962280209105024
10.1007/11787006_1
10.1191/0962280202sm284ra
10.1016/j.ijcard.2012.09.014
10.1109/TSP.2015.2465300
10.1177/0962280210385865
10.1145/3183713.3197390
10.1109/FOCS.2014.56
10.1093/jamia/ocv083
10.1109/TSP.2010.2055862
10.1145/1401890.1402013
10.1080/01621459.1977.10480613
10.29012/jpc.v4i1.614
10.1002/sam.11236
10.1109/TSP.2012.2194290
10.1109/TSP.2014.2304432
10.1136/amiajnl-2014-002751
10.1136/amiajnl-2012-000862
10.1016/j.ejca.2006.06.028
10.1561/2200000016
10.1007/11731139_74
10.1016/j.ijmedinf.2018.01.007
10.1109/FOCS.2013.53
10.1093/jamia/ocv146
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
5PM
DOI 10.1109/TKDE.2020.2989301
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList

Technology Research Database
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2191
EndPage 1010
ExternalDocumentID PMC9491599
36158636
10_1109_TKDE_2020_2989301
9076318
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61971285; 61720106001; 61932022
  funderid: 10.13039/501100001809
– fundername: CPRIT Scholar in Cancer Research
  grantid: RR180012
– fundername: University of Texas Health Science Center at Houston; UTHealth
  funderid: 10.13039/100012615
– fundername: National Institutes of Health
  grantid: K99HG010493; R01GM118609
  funderid: 10.13039/100000002
– fundername: National Institutes of Health
  grantid: R01GM118609; R01GM124111; R01GM012862
  funderid: 10.13039/100000002
– fundername: NIGMS NIH HHS
  grantid: R01 GM124111
– fundername: NHGRI NIH HHS
  grantid: K99 HG010493
– fundername: NIGMS NIH HHS
  grantid: R01 GM118609
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
AAYXX
CITATION
1OL
5VS
9M8
ABFSI
AETIX
AGSQL
AI.
AIBXA
ALLEH
E.L
H~9
ICLAB
IFJZH
NPM
RIG
RNI
RZB
TAF
VH1
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
5PM
ID FETCH-LOGICAL-c447t-1d54f8deea337a0b04f4f12d910daeca035c9cf67b3b1d10e56b44c7c1d929263
IEDL.DBID RIE
ISSN 1041-4347
IngestDate Thu Aug 21 18:38:20 EDT 2025
Fri Jul 11 00:15:06 EDT 2025
Mon Jun 30 03:35:19 EDT 2025
Mon Jul 21 05:59:09 EDT 2025
Thu Apr 24 23:07:32 EDT 2025
Tue Jul 01 01:19:36 EDT 2025
Wed Aug 27 02:05:26 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Federated survival analysis
alternating direction method of multipliers
privacy protection
vertically partitioned data
Cox proportional hazards model
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c447t-1d54f8deea337a0b04f4f12d910daeca035c9cf67b3b1d10e56b44c7c1d929263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
share the first authorship.
ORCID 0000-0003-2522-5778
0000-0002-5751-1341
0000-0003-4552-0029
0000-0001-7551-1137
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/9491599
PMID 36158636
PQID 2619018385
PQPubID 85438
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9491599
crossref_primary_10_1109_TKDE_2020_2989301
ieee_primary_9076318
proquest_miscellaneous_2718642756
pubmed_primary_36158636
proquest_journals_2619018385
crossref_citationtrail_10_1109_TKDE_2020_2989301
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on knowledge and data engineering
PublicationTitleAbbrev TKDE
PublicationTitleAlternate IEEE Trans Knowl Data Eng
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref34
ref15
ref37
ref36
ref30
ref33
ref10
Ries (ref31) 2008
ref1
ref17
Forero (ref27) 2010; 11
ref16
Que (ref22)
ref38
ref18
Chaudhuri (ref44)
Karr (ref19) 2009; 25
(ref13) 2016
Wiksten (ref2) 2008; 28
ref24
ref46
ref23
ref45
ref26
(ref14) 2016; 59
ref25
ref47
ref20
ref42
Chaudhuri (ref39)
ref41
ref21
ref43
ref28
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Hansen (ref11) 1997; 10
ref40
References_xml – volume: 11
  start-page: 1663
  year: 2010
  ident: ref27
  article-title: Consensus-based distributed support vector machines
  publication-title: J. Mach. Learn. Res.
– ident: ref7
  doi: 10.1177/0962280209105022
– ident: ref34
  doi: 10.1002/sim.2299
– ident: ref42
  doi: 10.1145/2660267.2660348
– ident: ref47
  doi: 10.1007/978-0-387-84858-7
– start-page: 2652
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  ident: ref39
  article-title: A stability-based validation procedure for differentially private machine learning
– ident: ref41
  doi: 10.1145/2976749.2978318
– start-page: 1350
  volume-title: Proc. AMIA Ann. Symp.
  ident: ref22
  article-title: A collaborative framework for distributed privacy-preserving support vector machine learning
– ident: ref33
  doi: 10.2307/1402659
– ident: ref4
  doi: 10.1177/096228020101000503
– volume: 25
  start-page: 125
  issue: 1
  year: 2009
  ident: ref19
  article-title: Privacy-preserving analysis of vertically partitioned data using secure matrix products
  publication-title: J. Official Statist.
– ident: ref5
  doi: 10.1111/j.2517-6161.1972.tb00899.x
– ident: ref40
  doi: 10.1145/3035918.3064047
– volume-title: Genomic Data Sharing (GDS) Policy
  year: 2016
  ident: ref13
– ident: ref20
  doi: 10.1137/1.9781611972740.59
– ident: ref30
  doi: 10.1109/TSP.2015.2436358
– volume: 10
  start-page: 96
  issue: 8
  year: 1997
  ident: ref11
  article-title: HIPAA (Health Insurance Portability and Accountability Act) rules: Federal and state enforcement
  publication-title: Med. Interface
– ident: ref36
  doi: 10.1177/0962280209105024
– ident: ref37
  doi: 10.1007/11787006_1
– ident: ref9
  doi: 10.1191/0962280202sm284ra
– ident: ref6
  doi: 10.1016/j.ijcard.2012.09.014
– ident: ref28
  doi: 10.1109/TSP.2015.2465300
– ident: ref8
  doi: 10.1177/0962280210385865
– start-page: 289
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  ident: ref44
  article-title: Privacy-preserving logistic regression
– ident: ref45
  doi: 10.1145/3183713.3197390
– ident: ref38
  doi: 10.1109/FOCS.2014.56
– ident: ref18
  doi: 10.1093/jamia/ocv083
– ident: ref25
  doi: 10.1109/TSP.2010.2055862
– volume: 28
  start-page: 2279
  issue: 4C
  year: 2008
  ident: ref2
  article-title: Comparison of the prognostic value of a panel of tissue tumor markers and established clinicopathological factors in patients with gastric cancer
  publication-title: Anticancer Res.
– ident: ref15
  doi: 10.1145/1401890.1402013
– ident: ref35
  doi: 10.1080/01621459.1977.10480613
– ident: ref16
  doi: 10.29012/jpc.v4i1.614
– ident: ref3
  doi: 10.1002/sam.11236
– volume: 59
  start-page: 1
  issue: L119
  year: 2016
  ident: ref14
  article-title: Regulation (EU) 2016/679 of the European Parliament and of the council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing directive 95/46/EC (General Data Protection Regulation)
  publication-title: Official J. Eur. Union
– ident: ref26
  doi: 10.1109/TSP.2012.2194290
– ident: ref29
  doi: 10.1109/TSP.2014.2304432
– ident: ref10
  doi: 10.1136/amiajnl-2014-002751
– ident: ref17
  doi: 10.1136/amiajnl-2012-000862
– ident: ref1
  doi: 10.1016/j.ejca.2006.06.028
– ident: ref24
  doi: 10.1561/2200000016
– ident: ref21
  doi: 10.1007/11731139_74
– volume-title: SEER Cancer Statistics Review 1975–2005
  year: 2008
  ident: ref31
– ident: ref46
  doi: 10.1016/j.ijmedinf.2018.01.007
– ident: ref43
  doi: 10.1109/FOCS.2013.53
– ident: ref23
  doi: 10.1093/jamia/ocv146
SSID ssj0008781
Score 2.436854
Snippet The Cox proportional hazards model is a popular semi-parametric model for survival analysis. In this paper, we aim at developing a federated algorithm for the...
The Cox proportional hazards model is a popular semi-parametric model for survival analysis. In this paper, we aim at developing a federated algorithm for the...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 996
SubjectTerms Algorithms
alternating direction method of multipliers
Analytical models
Computational modeling
cox proportional hazards model
Data models
Data privacy
Distributed databases
Estimation
Exchanging
Federated survival analysis
Hazards
Multipliers
Parameter estimation
privacy protection
Source code
Statistical models
Survival
Survival analysis
vertically partitioned data
Title VERTICOX: Vertically Distributed Cox Proportional Hazards Model Using the Alternating Direction Method of Multipliers
URI https://ieeexplore.ieee.org/document/9076318
https://www.ncbi.nlm.nih.gov/pubmed/36158636
https://www.proquest.com/docview/2619018385
https://www.proquest.com/docview/2718642756
https://pubmed.ncbi.nlm.nih.gov/PMC9491599
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LbtQwFL1qu0BlQaHlMVCQkVghMrUT58Wumk41gAYQmlazi_wUiChBZSJBv55rxwltVSF2ieJEjnxsn2tfnwPwSiFFpsrl6ViTRQgKGRU85hErLJeaFkIJr_b5MVuc8ffrdL0Fb8azMMYYn3xmpu7S7-XrVnVuqewIA7kMMbgN2xi49We1xlG3yL0hKUYXGBMlPA87mIyWR6sPJ3OMBGM6dXLjiOhduJPgTF5kXpj573Tk_VVuo5o3MyavTEGne7AcKt9nnnyfdhs5VZc3dB3_9-_uw73ARclxD54HsGWafdgbfB5I6Pb7cPeKaOEBdOfzL6t3s0_rt-TcJ2WLuv5NTpwAr_POMprM2l_ks3NfuOgXGslCXLqzXcQZr9XEZykQJJ7kuA7LkXgfxt62IUtvak1aS5Z9tqNz634IZ6fz1WwRBfOGSHGebyKmU24LbYxIklxQSbnllsUa6YkWRgmapKpUNstlIplm1KSZ5FzlimlkbHGWPIKdpm3MEyA5LXPBqEhkonkpi8JKZY2ynDlzLZZNgA5tWKmgbO4MNurKRzi0rBwCKoeAKiBgAq_HV370sh7_KnzgWmssGBpqAocDUKrQ8X9WLiClOEwW6QRejo-xy7p9GNGYtsMyyAcw7MtTrPnjHlfjtwdcTiC_hrixgJMDv_6k-fbVy4KXvERuWj69vbbPYDd2Jzd8wvkh7GwuOvMc-dRGvvAd6Q9WmRv0
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwFHwqRYJyoNAWCBQwEidEtnbifHGrtlttabcgtK32FvkrAhElqOxK0F_Ps-OEtqoQt0RxIkce2_Ps5xmAtwopMlU2T6cyaYigkGHOIx6yvOJS01wo4dQ-T9PpGf-4SBZr8H44C2OMcclnZmQv3V6-btXKLpXtYSCXIgbvwF2c9xPWndYaxt08c5akGF9gVBTzzO9hMlrszY8PJhgLRnRkBccR0xtwL8a5PE-dNPPfCck5rNxGNm_mTF6ZhA43YdZXv8s9-T5aLeVIXd5Qdvzf_3sEDz0bJfsdfB7Dmmm2YLN3eiC-42_BgyuyhduwOp98mR-NPy0-kHOXli3q-jc5sBK81j3LaDJuf5HP1n_holtqJFNxaU93EWu9VhOXp0CQepL92i9I4r0ffduGzJytNWkrMuvyHa1f9w6cHU7m42no7RtCxXm2DJlOeJVrY0QcZ4JKyitesUgjQdHCKEHjRBWqSjMZS6YZNUkqOVeZYho5W5TGT2C9aRvzDEhGi0wwKmIZa17IPK-kqoyqOLP2WiwNgPZtWCqvbW4tNurSxTi0KC0CSouA0iMggHfDKz86YY9_Fd62rTUU9A0VwG4PlNJ3_Z-lDUkpDpR5EsCb4TF2WrsTIxrTrrAMMgIM_LIEa_60w9Xw7R6XAWTXEDcUsILg15803746YfCCF8hOi-e31_Y13J_OZyflydHp8QvYiOw5Dpd-vgvry4uVeYnsailfuU71Bz9lHz0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=VERTICOX%3A+Vertically+Distributed+Cox+Proportional+Hazards+Model+Using+the+Alternating+Direction+Method+of+Multipliers&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Dai%2C+Wenrui&rft.au=Jiang%2C+Xiaoqian&rft.au=Bonomi%2C+Luca&rft.au=Li%2C+Yong&rft.date=2022-02-01&rft.issn=1041-4347&rft.eissn=1558-2191&rft.volume=34&rft.issue=2&rft.spage=996&rft.epage=1010&rft_id=info:doi/10.1109%2Ftkde.2020.2989301&rft_id=info%3Apmid%2F36158636&rft.externalDocID=PMC9491599
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon