AOSLO-net: A Deep Learning-Based Method for Automatic Segmentation of Retinal Microaneurysms From Adaptive Optics Scanning Laser Ophthalmoscopy Images
Accurate segmentation of microaneurysms (MAs) from adaptive optics scanning laser ophthalmoscopy (AOSLO) images is crucial for identifying MA morphologies and assessing the hemodynamics inside the MAs. Herein, we introduce AOSLO-net to perform automatic MA segmentation from AOSLO images of diabetic...
Saved in:
Published in | Translational vision science & technology Vol. 11; no. 8; p. 7 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
The Association for Research in Vision and Ophthalmology
01.08.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2164-2591 2164-2591 |
DOI | 10.1167/tvst.11.8.7 |
Cover
Loading…
Abstract | Accurate segmentation of microaneurysms (MAs) from adaptive optics scanning laser ophthalmoscopy (AOSLO) images is crucial for identifying MA morphologies and assessing the hemodynamics inside the MAs. Herein, we introduce AOSLO-net to perform automatic MA segmentation from AOSLO images of diabetic retinas.
AOSLO-net is composed of a deep neural network based on UNet with a pretrained EfficientNet as the encoder. We have designed customized preprocessing and postprocessing policies for AOSLO images, including generation of multichannel images, de-noising, contrast enhancement, ensemble and union of model predictions, to optimize the MA segmentation. AOSLO-net is trained and tested using 87 MAs imaged from 28 eyes of 20 subjects with varying severity of diabetic retinopathy (DR), which is the largest available AOSLO dataset for MA detection. To avoid the overfitting in the model training process, we augment the training data by flipping, rotating, scaling the original image to increase the diversity of data available for model training.
The validity of the model is demonstrated by the good agreement between the predictions of AOSLO-net and the MA masks generated by ophthalmologists and skillful trainees on 87 patient-specific MA images. Our results show that AOSLO-net outperforms the state-of-the-art segmentation model (nnUNet) both in accuracy (e.g., intersection over union and Dice scores), as well as computational cost.
We demonstrate that AOSLO-net provides high-quality of MA segmentation from AOSLO images that enables correct MA morphological classification.
As the first attempt to automatically segment retinal MAs from AOSLO images, AOSLO-net could facilitate the pathological study of DR and help ophthalmologists make disease prognoses. |
---|---|
AbstractList | Accurate segmentation of microaneurysms (MAs) from adaptive optics scanning laser ophthalmoscopy (AOSLO) images is crucial for identifying MA morphologies and assessing the hemodynamics inside the MAs. Herein, we introduce AOSLO-net to perform automatic MA segmentation from AOSLO images of diabetic retinas.
AOSLO-net is composed of a deep neural network based on UNet with a pretrained EfficientNet as the encoder. We have designed customized preprocessing and postprocessing policies for AOSLO images, including generation of multichannel images, de-noising, contrast enhancement, ensemble and union of model predictions, to optimize the MA segmentation. AOSLO-net is trained and tested using 87 MAs imaged from 28 eyes of 20 subjects with varying severity of diabetic retinopathy (DR), which is the largest available AOSLO dataset for MA detection. To avoid the overfitting in the model training process, we augment the training data by flipping, rotating, scaling the original image to increase the diversity of data available for model training.
The validity of the model is demonstrated by the good agreement between the predictions of AOSLO-net and the MA masks generated by ophthalmologists and skillful trainees on 87 patient-specific MA images. Our results show that AOSLO-net outperforms the state-of-the-art segmentation model (nnUNet) both in accuracy (e.g., intersection over union and Dice scores), as well as computational cost.
We demonstrate that AOSLO-net provides high-quality of MA segmentation from AOSLO images that enables correct MA morphological classification.
As the first attempt to automatically segment retinal MAs from AOSLO images, AOSLO-net could facilitate the pathological study of DR and help ophthalmologists make disease prognoses. Accurate segmentation of microaneurysms (MAs) from adaptive optics scanning laser ophthalmoscopy (AOSLO) images is crucial for identifying MA morphologies and assessing the hemodynamics inside the MAs. Herein, we introduce AOSLO-net to perform automatic MA segmentation from AOSLO images of diabetic retinas.PurposeAccurate segmentation of microaneurysms (MAs) from adaptive optics scanning laser ophthalmoscopy (AOSLO) images is crucial for identifying MA morphologies and assessing the hemodynamics inside the MAs. Herein, we introduce AOSLO-net to perform automatic MA segmentation from AOSLO images of diabetic retinas.AOSLO-net is composed of a deep neural network based on UNet with a pretrained EfficientNet as the encoder. We have designed customized preprocessing and postprocessing policies for AOSLO images, including generation of multichannel images, de-noising, contrast enhancement, ensemble and union of model predictions, to optimize the MA segmentation. AOSLO-net is trained and tested using 87 MAs imaged from 28 eyes of 20 subjects with varying severity of diabetic retinopathy (DR), which is the largest available AOSLO dataset for MA detection. To avoid the overfitting in the model training process, we augment the training data by flipping, rotating, scaling the original image to increase the diversity of data available for model training.MethodAOSLO-net is composed of a deep neural network based on UNet with a pretrained EfficientNet as the encoder. We have designed customized preprocessing and postprocessing policies for AOSLO images, including generation of multichannel images, de-noising, contrast enhancement, ensemble and union of model predictions, to optimize the MA segmentation. AOSLO-net is trained and tested using 87 MAs imaged from 28 eyes of 20 subjects with varying severity of diabetic retinopathy (DR), which is the largest available AOSLO dataset for MA detection. To avoid the overfitting in the model training process, we augment the training data by flipping, rotating, scaling the original image to increase the diversity of data available for model training.The validity of the model is demonstrated by the good agreement between the predictions of AOSLO-net and the MA masks generated by ophthalmologists and skillful trainees on 87 patient-specific MA images. Our results show that AOSLO-net outperforms the state-of-the-art segmentation model (nnUNet) both in accuracy (e.g., intersection over union and Dice scores), as well as computational cost.ResultsThe validity of the model is demonstrated by the good agreement between the predictions of AOSLO-net and the MA masks generated by ophthalmologists and skillful trainees on 87 patient-specific MA images. Our results show that AOSLO-net outperforms the state-of-the-art segmentation model (nnUNet) both in accuracy (e.g., intersection over union and Dice scores), as well as computational cost.We demonstrate that AOSLO-net provides high-quality of MA segmentation from AOSLO images that enables correct MA morphological classification.ConclusionsWe demonstrate that AOSLO-net provides high-quality of MA segmentation from AOSLO images that enables correct MA morphological classification.As the first attempt to automatically segment retinal MAs from AOSLO images, AOSLO-net could facilitate the pathological study of DR and help ophthalmologists make disease prognoses.Translational RelevanceAs the first attempt to automatically segment retinal MAs from AOSLO images, AOSLO-net could facilitate the pathological study of DR and help ophthalmologists make disease prognoses. |
Author | Li, He Zhang, Qian Sampani, Konstantina Sun, Jennifer K. Deng, Yixiang Karniadakis, George Em Cai, Shengze Xu, Mengjia |
Author_xml | – sequence: 1 givenname: Qian surname: Zhang fullname: Zhang, Qian organization: Division of Applied Mathematics, Brown University, Providence, RI, USA – sequence: 2 givenname: Konstantina surname: Sampani fullname: Sampani, Konstantina organization: Beetham Eye Institute, Joslin Diabetes Center, Department of Medicine and Department of Ophthalmology, Harvard Medical School, Boston, MA, USA – sequence: 3 givenname: Mengjia surname: Xu fullname: Xu, Mengjia organization: Division of Applied Mathematics, Brown University, Providence, RI, USA, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA – sequence: 4 givenname: Shengze surname: Cai fullname: Cai, Shengze organization: Division of Applied Mathematics, Brown University, Providence, RI, USA – sequence: 5 givenname: Yixiang surname: Deng fullname: Deng, Yixiang organization: School of Engineering, Brown University, Providence, RI, USA – sequence: 6 givenname: He surname: Li fullname: Li, He organization: School of Engineering, Brown University, Providence, RI, USA – sequence: 7 givenname: Jennifer K. surname: Sun fullname: Sun, Jennifer K. organization: Beetham Eye Institute, Joslin Diabetes Center, Department of Medicine and Department of Ophthalmology, Harvard Medical School, Boston, MA, USA – sequence: 8 givenname: George Em surname: Karniadakis fullname: Karniadakis, George Em organization: Division of Applied Mathematics and School of Engineering, Brown University, Providence, RI, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35938881$$D View this record in MEDLINE/PubMed |
BookMark | eNptkVGP1CAUhYlZ467rPvlueDQxHQstpfXBpK6ubtLNJI4-Ewq3M5gWKtBJ5o_4e2Uy62Y18nJP4PBduOc5OrPOAkIvSb4ipOJv4z7EpFb1ij9BF5RUZUZZQ84e6XN0FcKPPK2qZmVZPUPnBWuKuq7JBfrVrjfdOrMQ3-EWfwSYcQfSW2O32QcZQOM7iDun8eA8bpfoJhmNwhvYTmBj0s5iN-CvEI2VI74zyjtpYfGHMAV8492EWy3naPaA16mogDdK2iMfd4nv0-4u7uQ4uaDcfMC3k9xCeIGeDnIMcHVfL9H3m0_frr9k3frz7XXbZaosecxI3xd5oQbCe0V6mg_AOKRaD0w3NTBFi6qiA2GsaNSgac5pryXRDWiqGZfFJXp_4s5LP4FW6U9ejmL2ZpL-IJw04u8Ta3Zi6_aiSWBOqwR4fQ_w7ucCIYrJBAXjmIbgliBo1TQN4xUvkvXV414PTf6EkQxvToY0wxA8DA8Wkotj2uKYdlKiFjy5yT9uZU6BpIea8b93fgPgRrHu |
CitedBy_id | crossref_primary_10_1016_j_engappai_2023_106867 crossref_primary_10_3389_fphy_2023_1259273 crossref_primary_10_1109_JSEN_2024_3514190 crossref_primary_10_3389_fphy_2023_1266500 crossref_primary_10_1080_21681163_2023_2219341 crossref_primary_10_3390_biomimetics7010015 crossref_primary_10_1016_j_xops_2024_100652 crossref_primary_10_3788_LOP240437 crossref_primary_10_4236_jcc_2024_1211007 crossref_primary_10_1167_tvst_14_2_27 crossref_primary_10_1016_j_preteyeres_2025_101350 crossref_primary_10_1007_s40123_022_00641_5 crossref_primary_10_1364_BOE_511587 crossref_primary_10_1007_s00366_024_02003_0 crossref_primary_10_1016_j_engappai_2023_107187 crossref_primary_10_3390_diagnostics13142413 |
Cites_doi | 10.1109/Access.6287639 10.1016/j.ins.2017.08.050 10.1097/IAE.0000000000000859 10.1038/s41592-020-01008-z 10.1136/bjophthalmol-2016-310047 10.1364/BOE.7.004958 10.1136/bjophthalmol-2018-312258 10.1109/LGRS.2018.2802944 10.1167/iovs.02-0951 10.1038/s41433-019-0626-5 10.1177/1932296816629491 10.1038/s41598-019-53357-1 10.1117/1.JMI.6.2.025008 10.1109/JBHI.6221020 10.1167/iovs.13-13122 10.1038/s41574-020-00451-4 10.1167/iovs.18-24573 10.1038/s42256-020-0154-9 10.1007/s40123-018-0153-7 10.1167/iovs.18-24386 10.3389/fphys.2018.00989 10.1167/iovs.63.2.18 10.1016/j.knosys.2019.04.025 10.1098/rsos.201102 10.1109/CVPR.2009.5206848 10.1016/S0161-6420(03)00475-5 10.1167/iovs.15-18782 10.1038/s41433-019-0566-0 10.1364/OL.41.001881 10.1167/tvst.9.2.43 10.1167/tvst.10.2.6 10.1038/nmeth.2089 10.1109/TMI.42 10.1039/c3ib20259c 10.1007/s11892-019-1226-2 10.1016/j.procs.2016.07.014 10.1109/TMI.2016.2546227 10.1016/j.oret.2019.09.010 10.1038/s41598-017-07103-0 10.1038/s41433-019-0562-4 10.7717/peerj.453 10.1038/s41551-019-0487-z 10.1016/S0161-6420(13)38012-9 10.1016/S2213-8587(19)30411-5 10.1117/1.JMI.6.1.014006 |
ContentType | Journal Article |
Copyright | Copyright 2022 The Authors 2022 |
Copyright_xml | – notice: Copyright 2022 The Authors 2022 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1167/tvst.11.8.7 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
DocumentTitleAlternate | Automatic Segmentation of AOSLO Images |
EISSN | 2164-2591 |
ExternalDocumentID | PMC9366726 35938881 10_1167_tvst_11_8_7 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R01 HL154150 – fundername: NEI NIH HHS grantid: R01 EY024702 – fundername: NHLBI NIH HHS grantid: U01 HL142518 |
GroupedDBID | 53G AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION EBS EJD GROUPED_DOAJ M~E OK1 RPM TRV CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c447t-1bb303cf17bc1b20fe57eb208f5d98e5c23662f15539cfd2072bda1d9ed2d57a3 |
ISSN | 2164-2591 |
IngestDate | Thu Aug 21 17:31:47 EDT 2025 Fri Jul 11 05:01:32 EDT 2025 Mon Jul 21 05:39:26 EDT 2025 Thu Apr 24 23:03:22 EDT 2025 Tue Jul 01 02:11:51 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | http://creativecommons.org/licenses/by/4.0 This work is licensed under a Creative Commons Attribution 4.0 International License. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c447t-1bb303cf17bc1b20fe57eb208f5d98e5c23662f15539cfd2072bda1d9ed2d57a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 QZ, KS, and MX contributed equally to this work. |
OpenAccessLink | http://dx.doi.org/10.1167/tvst.11.8.7 |
PMID | 35938881 |
PQID | 2699957673 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9366726 proquest_miscellaneous_2699957673 pubmed_primary_35938881 crossref_primary_10_1167_tvst_11_8_7 crossref_citationtrail_10_1167_tvst_11_8_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-01 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Translational vision science & technology |
PublicationTitleAlternate | Transl Vis Sci Technol |
PublicationYear | 2022 |
Publisher | The Association for Research in Vision and Ophthalmology |
Publisher_xml | – name: The Association for Research in Vision and Ophthalmology |
References | Goatman (bib51) 2003; 44 Hasegawa (bib12) 2016; 57 Karimi (bib43) 2019; 39 Li (bib20) 2020; 7 Zhang (bib50) 201; 15 Isensee (bib38) 2021; 18 Ehlers (bib21) 2017; 101 Kou (bib22) 2019; 6 Rajalakshmi (bib25) 2020; 30 Alom (bib33) 2019; 6 Fenner (bib16) 2018; 7 Tan (bib41) 2019 Dubow (bib14) 2014; 55 Goh (bib49) 2016; 10 He (bib26) 2020; 34 Cunefare (bib35) 2017; 7 Hafner (bib13) 2018; 59 Kaizu (bib11) 2020; 4 Schreur (bib19) 2019; 103 Walt (bib47) 2014; 2 Tan (bib36) 2017; 420 Pavel (bib45) Borrelli (bib10) 2019; 9 bib1 Dholakia (bib18) 2022; 63 bib2 Wilkinson (bib6) 2003; 110 Lammer (bib23) 2018; 59 Schneider (bib40) 2012; 9 Kwan (bib9) 2019; 19 Liskowski (bib29) 2016; 35 Deng (bib42) 2009 Lu (bib39) 2016; 7 Musial (bib34) 2020; 9 Ronneberger (bib30) 2015 Mitani (bib8) 2020; 4 Jin (bib32) 2019; 178 Vujosevic (bib24) 2020; 8 Early Treatment Diabetic Retinopathy Study Research Group (bib5) 1991; 98 Grzybowski (bib27) 2020; 34 An (bib4) 2021; 10 Ezra (bib44) 2013; 5 Couturier (bib48) 2015; 35 Zhang (bib31) 2020; 24 Antonetti (bib3) 2021; 17 Yan (bib7) 2020; 2 Kou (bib37) 2020; 8 Bernabeu (bib15) 2018; 9 Castro (bib17) 2016; 41 Dai (bib46) 2017 Pratt (bib28) 2016; 90 |
References_xml | – volume: 8 start-page: 185514 year: 2020 ident: bib37 article-title: An enhanced residual U-Net for microaneurysms and exudates segmentation in fundus images publication-title: IEEE Access doi: 10.1109/Access.6287639 – volume: 420 start-page: 66 year: 2017 ident: bib36 article-title: Automated segmentation of exudates, haemorrhages, microaneurysms using single convolutional neural network publication-title: Inf Sci doi: 10.1016/j.ins.2017.08.050 – volume: 35 start-page: 2384 year: 2015 ident: bib48 article-title: Capillary plexus anomalies in diabetic retinopathy on optical coherence tomography angiography publication-title: Retina doi: 10.1097/IAE.0000000000000859 – volume: 18 start-page: 203 year: 2021 ident: bib38 article-title: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation publication-title: Nat Methods doi: 10.1038/s41592-020-01008-z – volume: 101 start-page: 696 year: 2017 ident: bib21 article-title: Automated quantitative characterisation of retinal vascular leakage and microaneurysms in ultra-widefield fluorescein angiography publication-title: Br J Ophthalmol doi: 10.1136/bjophthalmol-2016-310047 – volume: 7 start-page: 4958 year: 2016 ident: bib39 article-title: Computational fluid dynamics assisted characterization of parafoveal hemodynamics in normal and diabetic eyes using adaptive optics scanning laser ophthalmoscopy publication-title: Biomed Opt Express doi: 10.1364/BOE.7.004958 – volume: 103 start-page: 630 year: 2019 ident: bib19 article-title: Morphological and topographical appearance of mic-roaneurysms on optical coherence tomography angiography publication-title: Br J Ophthalmol doi: 10.1136/bjophthalmol-2018-312258 – ident: bib2 – volume: 15 start-page: 749 year: 201 ident: bib50 article-title: Road Extraction by Deep Residual U-Net publication-title: IEEE Geoscience and Remote Sensing Letters doi: 10.1109/LGRS.2018.2802944 – volume: 44 start-page: 5335 year: 2003 ident: bib51 article-title: Automated measurement of microaneurysm turnover publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.02-0951 – volume: 30 start-page: 420 year: 2020 ident: bib25 article-title: The impact of artificial intelligence in screening for diabetic retinopathy in India publication-title: Eye doi: 10.1038/s41433-019-0626-5 – volume: 10 start-page: 282 year: 2016 ident: bib49 article-title: Retinal imaging techniques for diabetic retinopathy screening publication-title: J Diabetes Sci Technol doi: 10.1177/1932296816629491 – volume: 9 start-page: 1 year: 2019 ident: bib10 article-title: In vivo rotational three-dimensional OCTA analysis of microaneurysms in the human diabetic retina publication-title: Sci Rep doi: 10.1038/s41598-019-53357-1 – volume: 6 start-page: 025008 year: 2019 ident: bib22 article-title: Microaneurysms segmentation with a U-Net based on recurrent residual convolutional neural network publication-title: J Med Imaging doi: 10.1117/1.JMI.6.2.025008 – volume: 24 start-page: 3095 year: 2020 ident: bib31 article-title: Automated semantic segmentation of red blood cells for sickle cell disease publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.6221020 – volume: 55 start-page: 1299 year: 2014 ident: bib14 article-title: Classification of human retinal microaneurysms using adaptive optics scanning light ophthalmoscope fluorescein angiography publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.13-13122 – volume: 17 start-page: 195 year: 2021 ident: bib3 article-title: Current understanding of the molecular and cellular pathology of diabetic retinopathy publication-title: Nat Rev Endocrinol doi: 10.1038/s41574-020-00451-4 – volume: 59 start-page: 5932 year: 2018 ident: bib13 article-title: Dynamic changes of retinal microaneurysms in diabetes imaged with in vivo adaptive optics optical coherence tomography publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.18-24573 – volume: 2 start-page: 141 year: 2020 ident: bib7 article-title: Deep-learning-based prediction of late age-related macular degeneration progression publication-title: Nat Mach Intell doi: 10.1038/s42256-020-0154-9 – volume: 7 start-page: 333 year: 2018 ident: bib16 article-title: Advances in retinal imaging and applications in diabetic retinopathy screening: a review publication-title: Ophthalmol Ther doi: 10.1007/s40123-018-0153-7 – volume: 59 start-page: 5633 year: 2018 ident: bib23 article-title: Association of microaneurysms on adaptive optics scanning laser ophthalmoscopy with surrounding neuroretinal pathology and visual function in diabetes publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.18-24386 – volume: 9 start-page: 989 year: 2018 ident: bib15 article-title: Estimation of diabetic retinal microaneurysm perfusion parameters based on computational fluid dynamics modeling of adaptive optics scanning laser ophthalmoscopy publication-title: Front Physiol doi: 10.3389/fphys.2018.00989 – volume: 63 start-page: 18 year: 2022 ident: bib18 article-title: In vivo capillary structure and blood cell flux in the normal and diabetic mouse eye publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.63.2.18 – volume: 178 start-page: 149 year: 2019 ident: bib32 article-title: DUNet: A deformable network for retinal vessel segmentation publication-title: Knowledge-Based Syst doi: 10.1016/j.knosys.2019.04.025 – volume: 7 start-page: 201102 year: 2020 ident: bib20 article-title: Predictive modelling of thrombus formation in diabetic retinal microaneurysms publication-title: R Soc Open Sci doi: 10.1098/rsos.201102 – start-page: 248 volume-title: 2009 IEEE Conference on Computer Vision and Pattern Recognition. year: 2009 ident: bib42 article-title: Imagenet: a large-scale hierarchical image database doi: 10.1109/CVPR.2009.5206848 – start-page: 234 volume-title: International Conference on Medical Image Computing and Computer-assisted Intervention year: 2015 ident: bib30 article-title: U-Net: Convolutional networks for biomedical image segmentation – ident: bib45 – volume: 110 start-page: 1677 year: 2003 ident: bib6 article-title: Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales publication-title: Ophthalmology doi: 10.1016/S0161-6420(03)00475-5 – volume: 57 start-page: 348 year: 2016 ident: bib12 article-title: New insights into microaneurysms in the deep capillary plexus detected by optical coherence tomography angiography in diabetic macular edema publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.15-18782 – volume: 34 start-page: 451 issue: 3 year: 2020 ident: bib27 article-title: Artificial intelligence for diabetic retinopathy screening: a review publication-title: Eye (Lond) doi: 10.1038/s41433-019-0566-0 – start-page: 6105 volume-title: International Conference on Machine Learning year: 2019 ident: bib41 article-title: Efficientnet: rethinking model scaling for convolutional neural networks – volume: 41 start-page: 1881 year: 2016 ident: bib17 article-title: Rapid high resolution imaging with a dual-channel scanning technique publication-title: Opt Lett doi: 10.1364/OL.41.001881 – volume: 9 start-page: 43 year: 2020 ident: bib34 article-title: Automatic segmentation of retinal capillaries in adaptive optics scanning laser ophthalmoscope perfusion images using a convolutional neural network publication-title: Transl Vis Sci Technol doi: 10.1167/tvst.9.2.43 – volume: 10 start-page: 6 year: 2021 ident: bib4 article-title: Associations between capillary diameter, capillary density, and microaneurysms in diabetic retinopathy: A high-resolution confocal microscopy study publication-title: Transl Vis Sci Technol doi: 10.1167/tvst.10.2.6 – start-page: 764 volume-title: Proceedings of the IEEE International Conference on Computer Vision year: 2017 ident: bib46 article-title: Deformable convolutional networks – volume: 9 start-page: 671 year: 2012 ident: bib40 article-title: NIH Image to ImageJ: 25 years of image analysis publication-title: Nat Methods doi: 10.1038/nmeth.2089 – volume: 39 start-page: 499 year: 2019 ident: bib43 article-title: Reducing the hausdorff distance in medical image segmentation with convolutional neural networks publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.42 – volume: 5 start-page: 474 year: 2013 ident: bib44 article-title: Non-dimensional analysis of retinal microaneurysms: critical threshold for treatment publication-title: Integr Biol (Camb) doi: 10.1039/c3ib20259c – volume: 19 start-page: 95 year: 2019 ident: bib9 article-title: Imaging and biomarkers in diabetic macular edema and diabetic retinopathy publication-title: Curr Diabetes Rep doi: 10.1007/s11892-019-1226-2 – volume: 90 start-page: 200 year: 2016 ident: bib28 article-title: Convolutional neural networks for diabetic retinopathy publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2016.07.014 – volume: 35 start-page: 2369 year: 2016 ident: bib29 article-title: Segmenting retinal blood vessels with deep neural networks publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2016.2546227 – volume: 4 start-page: 175 year: 2020 ident: bib11 article-title: Microaneurysm imaging using multiple en face OCT angiography image averaging: morphology and visualization publication-title: Ophthalmol Retina doi: 10.1016/j.oret.2019.09.010 – volume: 7 start-page: 1 year: 2017 ident: bib35 article-title: Open source software for automatic detection of cone photoreceptors in adaptive optics ophthalmoscopy using convolutional neural networks publication-title: Sci Rep doi: 10.1038/s41598-017-07103-0 – ident: bib1 – volume: 34 start-page: 572 year: 2020 ident: bib26 article-title: Artificial intelligence-based screening for diabetic retinopathy at community hospital publication-title: Eye (Lond) doi: 10.1038/s41433-019-0562-4 – volume: 2 start-page: e453 year: 2014 ident: bib47 article-title: Scikit-image: image processing in Python publication-title: Peer J doi: 10.7717/peerj.453 – volume: 4 start-page: 18 year: 2020 ident: bib8 article-title: Detection of anaemia from retinal fundus images via deep learning publication-title: Nat Biomed Eng doi: 10.1038/s41551-019-0487-z – volume: 98 start-page: 786 year: 1991 ident: bib5 article-title: Grading diabetic retinopathy from stereoscopic color fundus photographs—an extension of the Modified Airlie House Classification: ETDRS Report Number 10 publication-title: Ophthalmology doi: 10.1016/S0161-6420(13)38012-9 – volume: 8 start-page: 337 year: 2020 ident: bib24 article-title: Screening for diabetic retinopathy: new perspectives and challenges publication-title: Lancet Diabetes Endocrinol doi: 10.1016/S2213-8587(19)30411-5 – volume: 6 start-page: 014006 year: 2019 ident: bib33 article-title: Recurrent residual U-Net for medical image segmentation publication-title: J Med Imaging doi: 10.1117/1.JMI.6.1.014006 |
SSID | ssj0000685446 |
Score | 2.3057568 |
Snippet | Accurate segmentation of microaneurysms (MAs) from adaptive optics scanning laser ophthalmoscopy (AOSLO) images is crucial for identifying MA morphologies and... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 7 |
SubjectTerms | Artificial Intelligence Deep Learning Diabetic Retinopathy - diagnostic imaging Humans Lasers Microaneurysm - diagnostic imaging Ophthalmoscopy - methods Optics and Photonics |
Title | AOSLO-net: A Deep Learning-Based Method for Automatic Segmentation of Retinal Microaneurysms From Adaptive Optics Scanning Laser Ophthalmoscopy Images |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35938881 https://www.proquest.com/docview/2699957673 https://pubmed.ncbi.nlm.nih.gov/PMC9366726 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKkNBeEIhbYSAj7YkqpXHiOOGtINBAKxXqJvUtShynHWqSanUnbT-E_8C_5NiO04QVCXhxLNt1JJ-vPpecC0LHfhJFIvUzR7jQ-J5PnChi3BmpqMdkJHI3U4HCk6_Bybn_ZU7nvd7PltfSVqZDfrM3ruR_qApjQFcVJfsPlG02hQHoA32hBQpD-1c0Hk9np1OnFMa8B3eHWNuEqQvnPfCnbDDRFaK1M-F4KyuToHUmFkUdc1SabCRSF8eaKO-8RKW4vN4UGxBqq2IwzpK1di-arnVG5xk3VY4Gp7D_JYwu5TJZFZUKb7kefC7gftq0JV7NDFfW5GhC2Qc2mEjhTt4y7jdG7G8t7M5UZsjS-B4YmVbWlb_V7HyrLbuiXHy_2PkemVLbsyUM34i2fQNUY-tdB-xJ34MENDoHtDS3c2m7LXCGrRuY7ecLgfoyLa82EvrDcNhZBTRaFxoiHo28MAzdHXNsXBbt1B10l4BG4ra0d8P0QwqadR0BCq9723rZIbpnf94Vf27pNL-75rZknbMH6H6tpOCxQdxD1BPlI_SjQds7PMYKa7iLNWywhgFruMEabmMNVzmusYa7WMMKa9hiDRusYYs1rLGGu1jDBmuP0fmnj2cfTpy6qofDfZ9Jx01TEJt47rKUuykZ5YIyAc8wp1kUCsqJFwQkV_WsIp5nZMRImiVuFomMZJQl3hN0UFaleIYw91hOAqqKJHKfgvCZMioSYFq-yHNC_T56Yw875nXKe1V5ZRVr1TdgsSIS9OIwZn103Cxem0wv-5e9tlSL4SZWn9fgrKrtJiYBKFugvjOvj54aKjYbWfL3EevQt1mgsrx3Z8qLpc72HsFxMBI8_-OeL9Dh7n9zhA7k5Va8BElZpq80Rn8Bwo7Igw |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AOSLO-net%3A+A+Deep+Learning-Based+Method+for+Automatic+Segmentation+of+Retinal+Microaneurysms+From+Adaptive+Optics+Scanning+Laser+Ophthalmoscopy+Images&rft.jtitle=Translational+vision+science+%26+technology&rft.au=Zhang%2C+Qian&rft.au=Sampani%2C+Konstantina&rft.au=Xu%2C+Mengjia&rft.au=Cai%2C+Shengze&rft.date=2022-08-01&rft.eissn=2164-2591&rft.volume=11&rft.issue=8&rft.spage=7&rft_id=info:doi/10.1167%2Ftvst.11.8.7&rft_id=info%3Apmid%2F35938881&rft.externalDocID=35938881 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2164-2591&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2164-2591&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2164-2591&client=summon |