AOSLO-net: A Deep Learning-Based Method for Automatic Segmentation of Retinal Microaneurysms From Adaptive Optics Scanning Laser Ophthalmoscopy Images

Accurate segmentation of microaneurysms (MAs) from adaptive optics scanning laser ophthalmoscopy (AOSLO) images is crucial for identifying MA morphologies and assessing the hemodynamics inside the MAs. Herein, we introduce AOSLO-net to perform automatic MA segmentation from AOSLO images of diabetic...

Full description

Saved in:
Bibliographic Details
Published inTranslational vision science & technology Vol. 11; no. 8; p. 7
Main Authors Zhang, Qian, Sampani, Konstantina, Xu, Mengjia, Cai, Shengze, Deng, Yixiang, Li, He, Sun, Jennifer K., Karniadakis, George Em
Format Journal Article
LanguageEnglish
Published United States The Association for Research in Vision and Ophthalmology 01.08.2022
Subjects
Online AccessGet full text
ISSN2164-2591
2164-2591
DOI10.1167/tvst.11.8.7

Cover

Loading…
Abstract Accurate segmentation of microaneurysms (MAs) from adaptive optics scanning laser ophthalmoscopy (AOSLO) images is crucial for identifying MA morphologies and assessing the hemodynamics inside the MAs. Herein, we introduce AOSLO-net to perform automatic MA segmentation from AOSLO images of diabetic retinas. AOSLO-net is composed of a deep neural network based on UNet with a pretrained EfficientNet as the encoder. We have designed customized preprocessing and postprocessing policies for AOSLO images, including generation of multichannel images, de-noising, contrast enhancement, ensemble and union of model predictions, to optimize the MA segmentation. AOSLO-net is trained and tested using 87 MAs imaged from 28 eyes of 20 subjects with varying severity of diabetic retinopathy (DR), which is the largest available AOSLO dataset for MA detection. To avoid the overfitting in the model training process, we augment the training data by flipping, rotating, scaling the original image to increase the diversity of data available for model training. The validity of the model is demonstrated by the good agreement between the predictions of AOSLO-net and the MA masks generated by ophthalmologists and skillful trainees on 87 patient-specific MA images. Our results show that AOSLO-net outperforms the state-of-the-art segmentation model (nnUNet) both in accuracy (e.g., intersection over union and Dice scores), as well as computational cost. We demonstrate that AOSLO-net provides high-quality of MA segmentation from AOSLO images that enables correct MA morphological classification. As the first attempt to automatically segment retinal MAs from AOSLO images, AOSLO-net could facilitate the pathological study of DR and help ophthalmologists make disease prognoses.
AbstractList Accurate segmentation of microaneurysms (MAs) from adaptive optics scanning laser ophthalmoscopy (AOSLO) images is crucial for identifying MA morphologies and assessing the hemodynamics inside the MAs. Herein, we introduce AOSLO-net to perform automatic MA segmentation from AOSLO images of diabetic retinas. AOSLO-net is composed of a deep neural network based on UNet with a pretrained EfficientNet as the encoder. We have designed customized preprocessing and postprocessing policies for AOSLO images, including generation of multichannel images, de-noising, contrast enhancement, ensemble and union of model predictions, to optimize the MA segmentation. AOSLO-net is trained and tested using 87 MAs imaged from 28 eyes of 20 subjects with varying severity of diabetic retinopathy (DR), which is the largest available AOSLO dataset for MA detection. To avoid the overfitting in the model training process, we augment the training data by flipping, rotating, scaling the original image to increase the diversity of data available for model training. The validity of the model is demonstrated by the good agreement between the predictions of AOSLO-net and the MA masks generated by ophthalmologists and skillful trainees on 87 patient-specific MA images. Our results show that AOSLO-net outperforms the state-of-the-art segmentation model (nnUNet) both in accuracy (e.g., intersection over union and Dice scores), as well as computational cost. We demonstrate that AOSLO-net provides high-quality of MA segmentation from AOSLO images that enables correct MA morphological classification. As the first attempt to automatically segment retinal MAs from AOSLO images, AOSLO-net could facilitate the pathological study of DR and help ophthalmologists make disease prognoses.
Accurate segmentation of microaneurysms (MAs) from adaptive optics scanning laser ophthalmoscopy (AOSLO) images is crucial for identifying MA morphologies and assessing the hemodynamics inside the MAs. Herein, we introduce AOSLO-net to perform automatic MA segmentation from AOSLO images of diabetic retinas.PurposeAccurate segmentation of microaneurysms (MAs) from adaptive optics scanning laser ophthalmoscopy (AOSLO) images is crucial for identifying MA morphologies and assessing the hemodynamics inside the MAs. Herein, we introduce AOSLO-net to perform automatic MA segmentation from AOSLO images of diabetic retinas.AOSLO-net is composed of a deep neural network based on UNet with a pretrained EfficientNet as the encoder. We have designed customized preprocessing and postprocessing policies for AOSLO images, including generation of multichannel images, de-noising, contrast enhancement, ensemble and union of model predictions, to optimize the MA segmentation. AOSLO-net is trained and tested using 87 MAs imaged from 28 eyes of 20 subjects with varying severity of diabetic retinopathy (DR), which is the largest available AOSLO dataset for MA detection. To avoid the overfitting in the model training process, we augment the training data by flipping, rotating, scaling the original image to increase the diversity of data available for model training.MethodAOSLO-net is composed of a deep neural network based on UNet with a pretrained EfficientNet as the encoder. We have designed customized preprocessing and postprocessing policies for AOSLO images, including generation of multichannel images, de-noising, contrast enhancement, ensemble and union of model predictions, to optimize the MA segmentation. AOSLO-net is trained and tested using 87 MAs imaged from 28 eyes of 20 subjects with varying severity of diabetic retinopathy (DR), which is the largest available AOSLO dataset for MA detection. To avoid the overfitting in the model training process, we augment the training data by flipping, rotating, scaling the original image to increase the diversity of data available for model training.The validity of the model is demonstrated by the good agreement between the predictions of AOSLO-net and the MA masks generated by ophthalmologists and skillful trainees on 87 patient-specific MA images. Our results show that AOSLO-net outperforms the state-of-the-art segmentation model (nnUNet) both in accuracy (e.g., intersection over union and Dice scores), as well as computational cost.ResultsThe validity of the model is demonstrated by the good agreement between the predictions of AOSLO-net and the MA masks generated by ophthalmologists and skillful trainees on 87 patient-specific MA images. Our results show that AOSLO-net outperforms the state-of-the-art segmentation model (nnUNet) both in accuracy (e.g., intersection over union and Dice scores), as well as computational cost.We demonstrate that AOSLO-net provides high-quality of MA segmentation from AOSLO images that enables correct MA morphological classification.ConclusionsWe demonstrate that AOSLO-net provides high-quality of MA segmentation from AOSLO images that enables correct MA morphological classification.As the first attempt to automatically segment retinal MAs from AOSLO images, AOSLO-net could facilitate the pathological study of DR and help ophthalmologists make disease prognoses.Translational RelevanceAs the first attempt to automatically segment retinal MAs from AOSLO images, AOSLO-net could facilitate the pathological study of DR and help ophthalmologists make disease prognoses.
Author Li, He
Zhang, Qian
Sampani, Konstantina
Sun, Jennifer K.
Deng, Yixiang
Karniadakis, George Em
Cai, Shengze
Xu, Mengjia
Author_xml – sequence: 1
  givenname: Qian
  surname: Zhang
  fullname: Zhang, Qian
  organization: Division of Applied Mathematics, Brown University, Providence, RI, USA
– sequence: 2
  givenname: Konstantina
  surname: Sampani
  fullname: Sampani, Konstantina
  organization: Beetham Eye Institute, Joslin Diabetes Center, Department of Medicine and Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
– sequence: 3
  givenname: Mengjia
  surname: Xu
  fullname: Xu, Mengjia
  organization: Division of Applied Mathematics, Brown University, Providence, RI, USA, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
– sequence: 4
  givenname: Shengze
  surname: Cai
  fullname: Cai, Shengze
  organization: Division of Applied Mathematics, Brown University, Providence, RI, USA
– sequence: 5
  givenname: Yixiang
  surname: Deng
  fullname: Deng, Yixiang
  organization: School of Engineering, Brown University, Providence, RI, USA
– sequence: 6
  givenname: He
  surname: Li
  fullname: Li, He
  organization: School of Engineering, Brown University, Providence, RI, USA
– sequence: 7
  givenname: Jennifer K.
  surname: Sun
  fullname: Sun, Jennifer K.
  organization: Beetham Eye Institute, Joslin Diabetes Center, Department of Medicine and Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
– sequence: 8
  givenname: George Em
  surname: Karniadakis
  fullname: Karniadakis, George Em
  organization: Division of Applied Mathematics and School of Engineering, Brown University, Providence, RI, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35938881$$D View this record in MEDLINE/PubMed
BookMark eNptkVGP1CAUhYlZ467rPvlueDQxHQstpfXBpK6ubtLNJI4-Ewq3M5gWKtBJ5o_4e2Uy62Y18nJP4PBduOc5OrPOAkIvSb4ipOJv4z7EpFb1ij9BF5RUZUZZQ84e6XN0FcKPPK2qZmVZPUPnBWuKuq7JBfrVrjfdOrMQ3-EWfwSYcQfSW2O32QcZQOM7iDun8eA8bpfoJhmNwhvYTmBj0s5iN-CvEI2VI74zyjtpYfGHMAV8492EWy3naPaA16mogDdK2iMfd4nv0-4u7uQ4uaDcfMC3k9xCeIGeDnIMcHVfL9H3m0_frr9k3frz7XXbZaosecxI3xd5oQbCe0V6mg_AOKRaD0w3NTBFi6qiA2GsaNSgac5pryXRDWiqGZfFJXp_4s5LP4FW6U9ejmL2ZpL-IJw04u8Ta3Zi6_aiSWBOqwR4fQ_w7ucCIYrJBAXjmIbgliBo1TQN4xUvkvXV414PTf6EkQxvToY0wxA8DA8Wkotj2uKYdlKiFjy5yT9uZU6BpIea8b93fgPgRrHu
CitedBy_id crossref_primary_10_1016_j_engappai_2023_106867
crossref_primary_10_3389_fphy_2023_1259273
crossref_primary_10_1109_JSEN_2024_3514190
crossref_primary_10_3389_fphy_2023_1266500
crossref_primary_10_1080_21681163_2023_2219341
crossref_primary_10_3390_biomimetics7010015
crossref_primary_10_1016_j_xops_2024_100652
crossref_primary_10_3788_LOP240437
crossref_primary_10_4236_jcc_2024_1211007
crossref_primary_10_1167_tvst_14_2_27
crossref_primary_10_1016_j_preteyeres_2025_101350
crossref_primary_10_1007_s40123_022_00641_5
crossref_primary_10_1364_BOE_511587
crossref_primary_10_1007_s00366_024_02003_0
crossref_primary_10_1016_j_engappai_2023_107187
crossref_primary_10_3390_diagnostics13142413
Cites_doi 10.1109/Access.6287639
10.1016/j.ins.2017.08.050
10.1097/IAE.0000000000000859
10.1038/s41592-020-01008-z
10.1136/bjophthalmol-2016-310047
10.1364/BOE.7.004958
10.1136/bjophthalmol-2018-312258
10.1109/LGRS.2018.2802944
10.1167/iovs.02-0951
10.1038/s41433-019-0626-5
10.1177/1932296816629491
10.1038/s41598-019-53357-1
10.1117/1.JMI.6.2.025008
10.1109/JBHI.6221020
10.1167/iovs.13-13122
10.1038/s41574-020-00451-4
10.1167/iovs.18-24573
10.1038/s42256-020-0154-9
10.1007/s40123-018-0153-7
10.1167/iovs.18-24386
10.3389/fphys.2018.00989
10.1167/iovs.63.2.18
10.1016/j.knosys.2019.04.025
10.1098/rsos.201102
10.1109/CVPR.2009.5206848
10.1016/S0161-6420(03)00475-5
10.1167/iovs.15-18782
10.1038/s41433-019-0566-0
10.1364/OL.41.001881
10.1167/tvst.9.2.43
10.1167/tvst.10.2.6
10.1038/nmeth.2089
10.1109/TMI.42
10.1039/c3ib20259c
10.1007/s11892-019-1226-2
10.1016/j.procs.2016.07.014
10.1109/TMI.2016.2546227
10.1016/j.oret.2019.09.010
10.1038/s41598-017-07103-0
10.1038/s41433-019-0562-4
10.7717/peerj.453
10.1038/s41551-019-0487-z
10.1016/S0161-6420(13)38012-9
10.1016/S2213-8587(19)30411-5
10.1117/1.JMI.6.1.014006
ContentType Journal Article
Copyright Copyright 2022 The Authors 2022
Copyright_xml – notice: Copyright 2022 The Authors 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1167/tvst.11.8.7
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate Automatic Segmentation of AOSLO Images
EISSN 2164-2591
ExternalDocumentID PMC9366726
35938881
10_1167_tvst_11_8_7
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01 HL154150
– fundername: NEI NIH HHS
  grantid: R01 EY024702
– fundername: NHLBI NIH HHS
  grantid: U01 HL142518
GroupedDBID 53G
AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
EBS
EJD
GROUPED_DOAJ
M~E
OK1
RPM
TRV
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c447t-1bb303cf17bc1b20fe57eb208f5d98e5c23662f15539cfd2072bda1d9ed2d57a3
ISSN 2164-2591
IngestDate Thu Aug 21 17:31:47 EDT 2025
Fri Jul 11 05:01:32 EDT 2025
Mon Jul 21 05:39:26 EDT 2025
Thu Apr 24 23:03:22 EDT 2025
Tue Jul 01 02:11:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License http://creativecommons.org/licenses/by/4.0
This work is licensed under a Creative Commons Attribution 4.0 International License.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c447t-1bb303cf17bc1b20fe57eb208f5d98e5c23662f15539cfd2072bda1d9ed2d57a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
QZ, KS, and MX contributed equally to this work.
OpenAccessLink http://dx.doi.org/10.1167/tvst.11.8.7
PMID 35938881
PQID 2699957673
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9366726
proquest_miscellaneous_2699957673
pubmed_primary_35938881
crossref_primary_10_1167_tvst_11_8_7
crossref_citationtrail_10_1167_tvst_11_8_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Translational vision science & technology
PublicationTitleAlternate Transl Vis Sci Technol
PublicationYear 2022
Publisher The Association for Research in Vision and Ophthalmology
Publisher_xml – name: The Association for Research in Vision and Ophthalmology
References Goatman (bib51) 2003; 44
Hasegawa (bib12) 2016; 57
Karimi (bib43) 2019; 39
Li (bib20) 2020; 7
Zhang (bib50) 201; 15
Isensee (bib38) 2021; 18
Ehlers (bib21) 2017; 101
Kou (bib22) 2019; 6
Rajalakshmi (bib25) 2020; 30
Alom (bib33) 2019; 6
Fenner (bib16) 2018; 7
Tan (bib41) 2019
Dubow (bib14) 2014; 55
Goh (bib49) 2016; 10
He (bib26) 2020; 34
Cunefare (bib35) 2017; 7
Hafner (bib13) 2018; 59
Kaizu (bib11) 2020; 4
Schreur (bib19) 2019; 103
Walt (bib47) 2014; 2
Tan (bib36) 2017; 420
Pavel (bib45)
Borrelli (bib10) 2019; 9
bib1
Dholakia (bib18) 2022; 63
bib2
Wilkinson (bib6) 2003; 110
Lammer (bib23) 2018; 59
Schneider (bib40) 2012; 9
Kwan (bib9) 2019; 19
Liskowski (bib29) 2016; 35
Deng (bib42) 2009
Lu (bib39) 2016; 7
Musial (bib34) 2020; 9
Ronneberger (bib30) 2015
Mitani (bib8) 2020; 4
Jin (bib32) 2019; 178
Vujosevic (bib24) 2020; 8
Early Treatment Diabetic Retinopathy Study Research Group (bib5) 1991; 98
Grzybowski (bib27) 2020; 34
An (bib4) 2021; 10
Ezra (bib44) 2013; 5
Couturier (bib48) 2015; 35
Zhang (bib31) 2020; 24
Antonetti (bib3) 2021; 17
Yan (bib7) 2020; 2
Kou (bib37) 2020; 8
Bernabeu (bib15) 2018; 9
Castro (bib17) 2016; 41
Dai (bib46) 2017
Pratt (bib28) 2016; 90
References_xml – volume: 8
  start-page: 185514
  year: 2020
  ident: bib37
  article-title: An enhanced residual U-Net for microaneurysms and exudates segmentation in fundus images
  publication-title: IEEE Access
  doi: 10.1109/Access.6287639
– volume: 420
  start-page: 66
  year: 2017
  ident: bib36
  article-title: Automated segmentation of exudates, haemorrhages, microaneurysms using single convolutional neural network
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2017.08.050
– volume: 35
  start-page: 2384
  year: 2015
  ident: bib48
  article-title: Capillary plexus anomalies in diabetic retinopathy on optical coherence tomography angiography
  publication-title: Retina
  doi: 10.1097/IAE.0000000000000859
– volume: 18
  start-page: 203
  year: 2021
  ident: bib38
  article-title: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation
  publication-title: Nat Methods
  doi: 10.1038/s41592-020-01008-z
– volume: 101
  start-page: 696
  year: 2017
  ident: bib21
  article-title: Automated quantitative characterisation of retinal vascular leakage and microaneurysms in ultra-widefield fluorescein angiography
  publication-title: Br J Ophthalmol
  doi: 10.1136/bjophthalmol-2016-310047
– volume: 7
  start-page: 4958
  year: 2016
  ident: bib39
  article-title: Computational fluid dynamics assisted characterization of parafoveal hemodynamics in normal and diabetic eyes using adaptive optics scanning laser ophthalmoscopy
  publication-title: Biomed Opt Express
  doi: 10.1364/BOE.7.004958
– volume: 103
  start-page: 630
  year: 2019
  ident: bib19
  article-title: Morphological and topographical appearance of mic-roaneurysms on optical coherence tomography angiography
  publication-title: Br J Ophthalmol
  doi: 10.1136/bjophthalmol-2018-312258
– ident: bib2
– volume: 15
  start-page: 749
  year: 201
  ident: bib50
  article-title: Road Extraction by Deep Residual U-Net
  publication-title: IEEE Geoscience and Remote Sensing Letters
  doi: 10.1109/LGRS.2018.2802944
– volume: 44
  start-page: 5335
  year: 2003
  ident: bib51
  article-title: Automated measurement of microaneurysm turnover
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.02-0951
– volume: 30
  start-page: 420
  year: 2020
  ident: bib25
  article-title: The impact of artificial intelligence in screening for diabetic retinopathy in India
  publication-title: Eye
  doi: 10.1038/s41433-019-0626-5
– volume: 10
  start-page: 282
  year: 2016
  ident: bib49
  article-title: Retinal imaging techniques for diabetic retinopathy screening
  publication-title: J Diabetes Sci Technol
  doi: 10.1177/1932296816629491
– volume: 9
  start-page: 1
  year: 2019
  ident: bib10
  article-title: In vivo rotational three-dimensional OCTA analysis of microaneurysms in the human diabetic retina
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-53357-1
– volume: 6
  start-page: 025008
  year: 2019
  ident: bib22
  article-title: Microaneurysms segmentation with a U-Net based on recurrent residual convolutional neural network
  publication-title: J Med Imaging
  doi: 10.1117/1.JMI.6.2.025008
– volume: 24
  start-page: 3095
  year: 2020
  ident: bib31
  article-title: Automated semantic segmentation of red blood cells for sickle cell disease
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.6221020
– volume: 55
  start-page: 1299
  year: 2014
  ident: bib14
  article-title: Classification of human retinal microaneurysms using adaptive optics scanning light ophthalmoscope fluorescein angiography
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.13-13122
– volume: 17
  start-page: 195
  year: 2021
  ident: bib3
  article-title: Current understanding of the molecular and cellular pathology of diabetic retinopathy
  publication-title: Nat Rev Endocrinol
  doi: 10.1038/s41574-020-00451-4
– volume: 59
  start-page: 5932
  year: 2018
  ident: bib13
  article-title: Dynamic changes of retinal microaneurysms in diabetes imaged with in vivo adaptive optics optical coherence tomography
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.18-24573
– volume: 2
  start-page: 141
  year: 2020
  ident: bib7
  article-title: Deep-learning-based prediction of late age-related macular degeneration progression
  publication-title: Nat Mach Intell
  doi: 10.1038/s42256-020-0154-9
– volume: 7
  start-page: 333
  year: 2018
  ident: bib16
  article-title: Advances in retinal imaging and applications in diabetic retinopathy screening: a review
  publication-title: Ophthalmol Ther
  doi: 10.1007/s40123-018-0153-7
– volume: 59
  start-page: 5633
  year: 2018
  ident: bib23
  article-title: Association of microaneurysms on adaptive optics scanning laser ophthalmoscopy with surrounding neuroretinal pathology and visual function in diabetes
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.18-24386
– volume: 9
  start-page: 989
  year: 2018
  ident: bib15
  article-title: Estimation of diabetic retinal microaneurysm perfusion parameters based on computational fluid dynamics modeling of adaptive optics scanning laser ophthalmoscopy
  publication-title: Front Physiol
  doi: 10.3389/fphys.2018.00989
– volume: 63
  start-page: 18
  year: 2022
  ident: bib18
  article-title: In vivo capillary structure and blood cell flux in the normal and diabetic mouse eye
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.63.2.18
– volume: 178
  start-page: 149
  year: 2019
  ident: bib32
  article-title: DUNet: A deformable network for retinal vessel segmentation
  publication-title: Knowledge-Based Syst
  doi: 10.1016/j.knosys.2019.04.025
– volume: 7
  start-page: 201102
  year: 2020
  ident: bib20
  article-title: Predictive modelling of thrombus formation in diabetic retinal microaneurysms
  publication-title: R Soc Open Sci
  doi: 10.1098/rsos.201102
– start-page: 248
  volume-title: 2009 IEEE Conference on Computer Vision and Pattern Recognition.
  year: 2009
  ident: bib42
  article-title: Imagenet: a large-scale hierarchical image database
  doi: 10.1109/CVPR.2009.5206848
– start-page: 234
  volume-title: International Conference on Medical Image Computing and Computer-assisted Intervention
  year: 2015
  ident: bib30
  article-title: U-Net: Convolutional networks for biomedical image segmentation
– ident: bib45
– volume: 110
  start-page: 1677
  year: 2003
  ident: bib6
  article-title: Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales
  publication-title: Ophthalmology
  doi: 10.1016/S0161-6420(03)00475-5
– volume: 57
  start-page: 348
  year: 2016
  ident: bib12
  article-title: New insights into microaneurysms in the deep capillary plexus detected by optical coherence tomography angiography in diabetic macular edema
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.15-18782
– volume: 34
  start-page: 451
  issue: 3
  year: 2020
  ident: bib27
  article-title: Artificial intelligence for diabetic retinopathy screening: a review
  publication-title: Eye (Lond)
  doi: 10.1038/s41433-019-0566-0
– start-page: 6105
  volume-title: International Conference on Machine Learning
  year: 2019
  ident: bib41
  article-title: Efficientnet: rethinking model scaling for convolutional neural networks
– volume: 41
  start-page: 1881
  year: 2016
  ident: bib17
  article-title: Rapid high resolution imaging with a dual-channel scanning technique
  publication-title: Opt Lett
  doi: 10.1364/OL.41.001881
– volume: 9
  start-page: 43
  year: 2020
  ident: bib34
  article-title: Automatic segmentation of retinal capillaries in adaptive optics scanning laser ophthalmoscope perfusion images using a convolutional neural network
  publication-title: Transl Vis Sci Technol
  doi: 10.1167/tvst.9.2.43
– volume: 10
  start-page: 6
  year: 2021
  ident: bib4
  article-title: Associations between capillary diameter, capillary density, and microaneurysms in diabetic retinopathy: A high-resolution confocal microscopy study
  publication-title: Transl Vis Sci Technol
  doi: 10.1167/tvst.10.2.6
– start-page: 764
  volume-title: Proceedings of the IEEE International Conference on Computer Vision
  year: 2017
  ident: bib46
  article-title: Deformable convolutional networks
– volume: 9
  start-page: 671
  year: 2012
  ident: bib40
  article-title: NIH Image to ImageJ: 25 years of image analysis
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2089
– volume: 39
  start-page: 499
  year: 2019
  ident: bib43
  article-title: Reducing the hausdorff distance in medical image segmentation with convolutional neural networks
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.42
– volume: 5
  start-page: 474
  year: 2013
  ident: bib44
  article-title: Non-dimensional analysis of retinal microaneurysms: critical threshold for treatment
  publication-title: Integr Biol (Camb)
  doi: 10.1039/c3ib20259c
– volume: 19
  start-page: 95
  year: 2019
  ident: bib9
  article-title: Imaging and biomarkers in diabetic macular edema and diabetic retinopathy
  publication-title: Curr Diabetes Rep
  doi: 10.1007/s11892-019-1226-2
– volume: 90
  start-page: 200
  year: 2016
  ident: bib28
  article-title: Convolutional neural networks for diabetic retinopathy
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2016.07.014
– volume: 35
  start-page: 2369
  year: 2016
  ident: bib29
  article-title: Segmenting retinal blood vessels with deep neural networks
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2016.2546227
– volume: 4
  start-page: 175
  year: 2020
  ident: bib11
  article-title: Microaneurysm imaging using multiple en face OCT angiography image averaging: morphology and visualization
  publication-title: Ophthalmol Retina
  doi: 10.1016/j.oret.2019.09.010
– volume: 7
  start-page: 1
  year: 2017
  ident: bib35
  article-title: Open source software for automatic detection of cone photoreceptors in adaptive optics ophthalmoscopy using convolutional neural networks
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-07103-0
– ident: bib1
– volume: 34
  start-page: 572
  year: 2020
  ident: bib26
  article-title: Artificial intelligence-based screening for diabetic retinopathy at community hospital
  publication-title: Eye (Lond)
  doi: 10.1038/s41433-019-0562-4
– volume: 2
  start-page: e453
  year: 2014
  ident: bib47
  article-title: Scikit-image: image processing in Python
  publication-title: Peer J
  doi: 10.7717/peerj.453
– volume: 4
  start-page: 18
  year: 2020
  ident: bib8
  article-title: Detection of anaemia from retinal fundus images via deep learning
  publication-title: Nat Biomed Eng
  doi: 10.1038/s41551-019-0487-z
– volume: 98
  start-page: 786
  year: 1991
  ident: bib5
  article-title: Grading diabetic retinopathy from stereoscopic color fundus photographs—an extension of the Modified Airlie House Classification: ETDRS Report Number 10
  publication-title: Ophthalmology
  doi: 10.1016/S0161-6420(13)38012-9
– volume: 8
  start-page: 337
  year: 2020
  ident: bib24
  article-title: Screening for diabetic retinopathy: new perspectives and challenges
  publication-title: Lancet Diabetes Endocrinol
  doi: 10.1016/S2213-8587(19)30411-5
– volume: 6
  start-page: 014006
  year: 2019
  ident: bib33
  article-title: Recurrent residual U-Net for medical image segmentation
  publication-title: J Med Imaging
  doi: 10.1117/1.JMI.6.1.014006
SSID ssj0000685446
Score 2.3057568
Snippet Accurate segmentation of microaneurysms (MAs) from adaptive optics scanning laser ophthalmoscopy (AOSLO) images is crucial for identifying MA morphologies and...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 7
SubjectTerms Artificial Intelligence
Deep Learning
Diabetic Retinopathy - diagnostic imaging
Humans
Lasers
Microaneurysm - diagnostic imaging
Ophthalmoscopy - methods
Optics and Photonics
Title AOSLO-net: A Deep Learning-Based Method for Automatic Segmentation of Retinal Microaneurysms From Adaptive Optics Scanning Laser Ophthalmoscopy Images
URI https://www.ncbi.nlm.nih.gov/pubmed/35938881
https://www.proquest.com/docview/2699957673
https://pubmed.ncbi.nlm.nih.gov/PMC9366726
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKkNBeEIhbYSAj7YkqpXHiOOGtINBAKxXqJvUtShynHWqSanUnbT-E_8C_5NiO04QVCXhxLNt1JJ-vPpecC0LHfhJFIvUzR7jQ-J5PnChi3BmpqMdkJHI3U4HCk6_Bybn_ZU7nvd7PltfSVqZDfrM3ruR_qApjQFcVJfsPlG02hQHoA32hBQpD-1c0Hk9np1OnFMa8B3eHWNuEqQvnPfCnbDDRFaK1M-F4KyuToHUmFkUdc1SabCRSF8eaKO-8RKW4vN4UGxBqq2IwzpK1di-arnVG5xk3VY4Gp7D_JYwu5TJZFZUKb7kefC7gftq0JV7NDFfW5GhC2Qc2mEjhTt4y7jdG7G8t7M5UZsjS-B4YmVbWlb_V7HyrLbuiXHy_2PkemVLbsyUM34i2fQNUY-tdB-xJ34MENDoHtDS3c2m7LXCGrRuY7ecLgfoyLa82EvrDcNhZBTRaFxoiHo28MAzdHXNsXBbt1B10l4BG4ra0d8P0QwqadR0BCq9723rZIbpnf94Vf27pNL-75rZknbMH6H6tpOCxQdxD1BPlI_SjQds7PMYKa7iLNWywhgFruMEabmMNVzmusYa7WMMKa9hiDRusYYs1rLGGu1jDBmuP0fmnj2cfTpy6qofDfZ9Jx01TEJt47rKUuykZ5YIyAc8wp1kUCsqJFwQkV_WsIp5nZMRImiVuFomMZJQl3hN0UFaleIYw91hOAqqKJHKfgvCZMioSYFq-yHNC_T56Yw875nXKe1V5ZRVr1TdgsSIS9OIwZn103Cxem0wv-5e9tlSL4SZWn9fgrKrtJiYBKFugvjOvj54aKjYbWfL3EevQt1mgsrx3Z8qLpc72HsFxMBI8_-OeL9Dh7n9zhA7k5Va8BElZpq80Rn8Bwo7Igw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AOSLO-net%3A+A+Deep+Learning-Based+Method+for+Automatic+Segmentation+of+Retinal+Microaneurysms+From+Adaptive+Optics+Scanning+Laser+Ophthalmoscopy+Images&rft.jtitle=Translational+vision+science+%26+technology&rft.au=Zhang%2C+Qian&rft.au=Sampani%2C+Konstantina&rft.au=Xu%2C+Mengjia&rft.au=Cai%2C+Shengze&rft.date=2022-08-01&rft.eissn=2164-2591&rft.volume=11&rft.issue=8&rft.spage=7&rft_id=info:doi/10.1167%2Ftvst.11.8.7&rft_id=info%3Apmid%2F35938881&rft.externalDocID=35938881
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2164-2591&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2164-2591&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2164-2591&client=summon