Online Glucose Prediction Using Computationally Efficient Sparse Kernel Filtering Algorithms in Type-1 Diabetes
Streaming data from continuous glucose monitoring (CGM) systems enable the recursive identification of models to improve estimation accuracy for effective predictive glycemic control in patients with type-1 diabetes. A drawback of conventional recursive identification techniques is the increase in c...
Saved in:
Published in | IEEE transactions on control systems technology Vol. 28; no. 1; pp. 3 - 15 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1063-6536 1558-0865 |
DOI | 10.1109/TCST.2018.2843785 |
Cover
Loading…
Abstract | Streaming data from continuous glucose monitoring (CGM) systems enable the recursive identification of models to improve estimation accuracy for effective predictive glycemic control in patients with type-1 diabetes. A drawback of conventional recursive identification techniques is the increase in computational requirements, which is a concern for online and real-time applications such as the artificial pancreas systems implemented on handheld devices and smartphones where computational resources and memory are limited. To improve predictions in such computationally constrained hardware settings, efficient adaptive kernel filtering algorithms are developed in this paper to characterize the nonlinear glycemic variability by employing a sparsification criterion based on the information theory to reduce the computation time and complexity of the kernel filters without adversely deteriorating the predictive performance. Furthermore, the adaptive kernel filtering algorithms are designed to be insensitive to abnormal CGM measurements, thus compensating for measurement noise and disturbances. As such, the sparsification-based real-time model update framework can adapt the prediction models to accurately characterize the time-varying and nonlinear dynamics of glycemic measurements. The proposed recursive kernel filtering algorithms leveraging sparsity for improved computational efficiency are applied to both in-silico and clinical subjects, and the results demonstrate the effectiveness of the proposed methods. |
---|---|
AbstractList | Streaming data from continuous glucose monitoring (CGM) systems enable the recursive identification of models to improve estimation accuracy for effective predictive glycemic control in patients with type-1 diabetes. A drawback of conventional recursive identification techniques is the increase in computational requirements, which is a concern for online and real-time applications such as the artificial pancreas systems implemented on handheld devices and smartphones where computational resources and memory are limited. To improve predictions in such computationally constrained hardware settings, efficient adaptive kernel filtering algorithms are developed in this paper to characterize the nonlinear glycemic variability by employing a sparsification criterion based on the information theory to reduce the computation time and complexity of the kernel filters without adversely deteriorating the predictive performance. Furthermore, the adaptive kernel filtering algorithms are designed to be insensitive to abnormal CGM measurements, thus compensating for measurement noise and disturbances. As such, the sparsification-based real-time model update framework can adapt the prediction models to accurately characterize the time-varying and nonlinear dynamics of glycemic measurements. The proposed recursive kernel filtering algorithms leveraging sparsity for improved computational efficiency are applied to both in-silico and clinical subjects, and the results demonstrate the effectiveness of the proposed methods.Streaming data from continuous glucose monitoring (CGM) systems enable the recursive identification of models to improve estimation accuracy for effective predictive glycemic control in patients with type-1 diabetes. A drawback of conventional recursive identification techniques is the increase in computational requirements, which is a concern for online and real-time applications such as the artificial pancreas systems implemented on handheld devices and smartphones where computational resources and memory are limited. To improve predictions in such computationally constrained hardware settings, efficient adaptive kernel filtering algorithms are developed in this paper to characterize the nonlinear glycemic variability by employing a sparsification criterion based on the information theory to reduce the computation time and complexity of the kernel filters without adversely deteriorating the predictive performance. Furthermore, the adaptive kernel filtering algorithms are designed to be insensitive to abnormal CGM measurements, thus compensating for measurement noise and disturbances. As such, the sparsification-based real-time model update framework can adapt the prediction models to accurately characterize the time-varying and nonlinear dynamics of glycemic measurements. The proposed recursive kernel filtering algorithms leveraging sparsity for improved computational efficiency are applied to both in-silico and clinical subjects, and the results demonstrate the effectiveness of the proposed methods. Streaming data from continuous glucose monitoring (CGM) systems enable the recursive identification of models to improve estimation accuracy for effective predictive glycemic control in patients with type-1 diabetes. A drawback of conventional recursive identification techniques is the increase in computational requirements, which is a concern for online and real-time applications such as the artificial pancreas systems implemented on handheld devices and smartphones where computational resources and memory are limited. To improve predictions in such computationally constrained hardware settings, efficient adaptive kernel filtering algorithms are developed in this paper to characterize the nonlinear glycemic variability by employing a sparsification criterion based on the information theory to reduce the computation time and complexity of the kernel filters without adversely deteriorating the predictive performance. Furthermore, the adaptive kernel filtering algorithms are designed to be insensitive to abnormal CGM measurements, thus compensating for measurement noise and disturbances. As such, the sparsification-based real-time model update framework can adapt the prediction models to accurately characterize the time-varying and nonlinear dynamics of glycemic measurements. The proposed recursive kernel filtering algorithms leveraging sparsity for improved computational efficiency are applied to both in-silico and clinical subjects, and the results demonstrate the effectiveness of the proposed methods. |
Author | Hobbs, Nicole Quinn, Laurie Sevil, Mert Maloney, Zacharie Samadi, Sediqeh Littlejohn, Elizabeth Cinar, Ali Lazaro, Caterina Rashid, Mudassir Yu, Xia Feng, Jianyuan Hajizadeh, Iman |
Author_xml | – sequence: 1 givenname: Xia orcidid: 0000-0001-8106-1208 surname: Yu fullname: Yu, Xia email: yuxia@ise.neu.edu.cn organization: School of Information Science and Engineering, Northeastern University, Shenyang, China – sequence: 2 givenname: Mudassir surname: Rashid fullname: Rashid, Mudassir email: mrashid3@iit.edu organization: Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL, USA – sequence: 3 givenname: Jianyuan surname: Feng fullname: Feng, Jianyuan email: jfeng12@hawk.iit.edu organization: Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL, USA – sequence: 4 givenname: Nicole orcidid: 0000-0002-7221-3617 surname: Hobbs fullname: Hobbs, Nicole email: nfrantz1@hawk.iit.edu organization: Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA – sequence: 5 givenname: Iman orcidid: 0000-0001-8102-073X surname: Hajizadeh fullname: Hajizadeh, Iman email: ihajizad@hawk.iit.edu organization: Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL, USA – sequence: 6 givenname: Sediqeh surname: Samadi fullname: Samadi, Sediqeh email: ssamadi@hawk.iit.edu organization: Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL, USA – sequence: 7 givenname: Mert orcidid: 0000-0003-3662-0255 surname: Sevil fullname: Sevil, Mert email: msevil@hawk.iit.edu organization: Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA – sequence: 8 givenname: Caterina surname: Lazaro fullname: Lazaro, Caterina email: clazarom@hawk.iit.edu organization: Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, IL, USA – sequence: 9 givenname: Zacharie surname: Maloney fullname: Maloney, Zacharie email: zmaloney@hawk.iit.edu organization: Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, IL, USA – sequence: 10 givenname: Elizabeth surname: Littlejohn fullname: Littlejohn, Elizabeth email: elittlej@peds.bsd.uchicago.edu organization: Department of Pediatrics and Medicine, Kovler Diabetes Center, University of Chicago, Chicago, IL, USA – sequence: 11 givenname: Laurie surname: Quinn fullname: Quinn, Laurie email: lquinn18@gmail.com organization: Department of Biobehavioral Health Science, College of Nursing, University of Illinois at Chicago, Chicago, IL, USA – sequence: 12 givenname: Ali orcidid: 0000-0002-1607-9943 surname: Cinar fullname: Cinar, Ali email: cinar@iit.edu organization: Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32699492$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kV1rFDEUhgep2A_9ASJIwBtvZs3nJHMjlLWtYqFCt9chkz2zTckkazIj7L83w66L9sKrJCfP--bkvOfVSYgBquotwQtCcPtptbxfLSgmakEVZ1KJF9UZEULVWDXipOxxw-pGsOa0Os_5CWPCBZWvqlNGm7blLT2r4l3wLgC68ZONGdCPBGtnRxcDesgubNAyDttpNHPFeL9DV33vrIMwovutSUXxHVIAj66dHyHNiku_icmNj0NGLqDVbgs1QV-c6WCE_Lp62Ruf4c1hvagerq9Wy6_17d3Nt-XlbW05l2NNVKO4tS1TvcSkaUwpUGbL0SjMLWMtI4LwThroMG7WuGVCGNl1hPC1KMBF9Xnvu526Ada2NJyM19vkBpN2Ohqn_70J7lFv4i8tmRQcs2Lw8WCQ4s8J8qgHly14bwLEKWvK6TxZTnBBPzxDn-KUyrgKxRglSrWEFur93x0dW_mTRQHIHrAp5pygPyIE6zlvPeet57z1Ie-ikc801u3DKp9y_r_Kd3ulA4DjS4q1VJbh_gahgLgH |
CODEN | IETTE2 |
CitedBy_id | crossref_primary_10_1109_ACCESS_2019_2942088 crossref_primary_10_1016_j_jdiacomp_2021_107929 crossref_primary_10_1109_TBME_2024_3494732 crossref_primary_10_1109_JBHI_2020_3002022 crossref_primary_10_1109_JBHI_2024_3371108 crossref_primary_10_1016_j_conengprac_2021_104933 crossref_primary_10_1109_ACCESS_2020_3026009 crossref_primary_10_1109_JBHI_2021_3100558 crossref_primary_10_1109_TBME_2023_3276193 crossref_primary_10_1155_2022_8956850 crossref_primary_10_1109_TII_2022_3209248 crossref_primary_10_1016_j_smhl_2021_100193 crossref_primary_10_1016_j_compbiomed_2022_105388 crossref_primary_10_1109_MDAT_2024_3466830 crossref_primary_10_1007_s40747_021_00360_7 crossref_primary_10_1016_j_conengprac_2021_104881 crossref_primary_10_1016_j_smhl_2024_100457 crossref_primary_10_1007_s11517_024_03042_x crossref_primary_10_1021_acs_iecr_8b06202 crossref_primary_10_2174_1389201023666220603092433 |
Cites_doi | 10.1016/j.apenergy.2013.03.038 10.1109/TSP.2004.830985 10.1089/dia.2017.2509 10.2337/dc08-0720 10.1109/TSP.2007.907881 10.2337/diabetes.48.3.445 10.2337/dc06-1134 10.1109/TBME.2016.2535241 10.1016/j.arcontrol.2012.09.007 10.1177/193229680800200507 10.1109/TBME.2017.2652062 10.1177/193229680700100405 10.1177/193229680700100509 10.1109/CIT/IUCC/DASC/PICOM.2015.358 10.1007/s005920070020 10.1177/193229680900300106 10.1016/j.jpeds.2005.04.065 10.1109/TNET.2012.2187923 10.1177/1932296816658666 10.1089/dia.2016.0421 10.1016/j.knosys.2014.02.005 10.2337/diacare.28.5.1231 10.1109/TBME.2013.2291777 10.1016/S0956-5663(01)00304-9 10.3390/electronics3040609 10.1056/NEJMoa0805017 10.1109/TNNLS.2013.2258936 10.1089/dia.2011.0033 10.1055/s-2004-830399 10.1089/dia.2015.0146 10.1109/TBME.2015.2505507 10.1109/TNNLS.2012.2200500 10.1109/TITB.2009.2034141 10.3390/pr4040035 10.2337/diacare.10.5.622 10.1109/TSP.2008.2009895 10.1007/978-3-319-40242-0_15 10.2337/dc12-0660 10.1109/TBME.2017.2707344 10.1109/ICASSP.2006.1661394 10.1089/dia.2009.0076 10.1177/193229680800200517 10.4304/jcm.2.3.1-8 10.1111/pedi.12285 10.1002/9780470140529 10.1109/JBHI.2015.2446413 10.2337/dc14-3073 10.1111/dom.12707 10.2337/dc16-0824 10.2337/diacare.27.8.1922 10.3390/s17030532 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7SP 7TB 8FD FR3 L7M 7X8 5PM |
DOI | 10.1109/TCST.2018.2843785 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Engineering Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-0865 |
EndPage | 15 |
ExternalDocumentID | PMC7375403 32699492 10_1109_TCST_2018_2843785 8392739 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: China Scholarship Council grantid: 201406085037 funderid: 10.13039/501100004543 – fundername: National Institutes of Health grantid: 1DP3DK101075-01; 1DP3DK101077-01 funderid: 10.13039/100000002 – fundername: NIDDK NIH HHS grantid: DP3 DK101075 – fundername: NIDDK NIH HHS grantid: DP3 DK101077 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACBEA ACGFO ACGFS ACIWK ACKIV AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 VH1 AAYOK AAYXX CITATION RIG NPM 7SP 7TB 8FD FR3 L7M 7X8 5PM |
ID | FETCH-LOGICAL-c447t-18684cc938f70166a18623c38fa804c33931514b7aeb006d09355a7bb114d54c3 |
IEDL.DBID | RIE |
ISSN | 1063-6536 |
IngestDate | Thu Aug 21 18:27:23 EDT 2025 Thu Jul 10 22:41:16 EDT 2025 Sun Jun 29 16:53:32 EDT 2025 Mon Jul 21 06:05:10 EDT 2025 Thu Apr 24 23:03:48 EDT 2025 Tue Jul 01 02:36:00 EDT 2025 Wed Aug 27 02:30:42 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Kernel filtering algorithms type-1 diabetes (T1D) sparsification |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c447t-18684cc938f70166a18623c38fa804c33931514b7aeb006d09355a7bb114d54c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7221-3617 0000-0003-3662-0255 0000-0001-8102-073X 0000-0001-8106-1208 0000-0002-1607-9943 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/7375403 |
PMID | 32699492 |
PQID | 2332188912 |
PQPubID | 85425 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1109_TCST_2018_2843785 pubmed_primary_32699492 crossref_citationtrail_10_1109_TCST_2018_2843785 proquest_miscellaneous_2426536410 proquest_journals_2332188912 ieee_primary_8392739 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7375403 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-01-01 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on control systems technology |
PublicationTitleAbbrev | TCST |
PublicationTitleAlternate | IEEE Trans Control Syst Technol |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref56 ref59 ref15 ref58 ref14 ref53 ref52 ref55 ref11 ref54 liu (ref34) 2009; 20 buhling (ref62) 2004; 112 ref16 ref18 haykin (ref51) 2008 (ref4) 2008; 359 walsh (ref39) 2012 keith-hynes (ref10) 2014; 3 zorzi (ref47) 2017 ref50 ref45 ref48 ref42 ref44 ref43 ref49 ref7 ref9 messori (ref19) 2016 ref3 ref6 ref5 bonfanti (ref12) 2017 ref40 turksoy (ref8) 2017; 17 liu (ref35) 2011 boiroux (ref41) 2012 ref37 ref36 ref30 ref33 ref32 schölkopf (ref31) 2002 ref38 vapnik (ref46) 2013 klonoff (ref2) 2005; 28 kirchsteiger (ref1) 2015 man (ref17) 2016; 18 ref24 ref26 araghinejad (ref23) 2013 ref25 ref20 cinar (ref13) 2016 ref22 ref21 ref28 ref27 ref29 ref60 ref61 |
References_xml | – year: 2012 ident: ref41 article-title: Model predictive control algorithms for pen and pump insulin administration – ident: ref50 doi: 10.1016/j.apenergy.2013.03.038 – ident: ref45 doi: 10.1109/TSP.2004.830985 – ident: ref27 doi: 10.1089/dia.2017.2509 – ident: ref26 doi: 10.2337/dc08-0720 – ident: ref44 doi: 10.1109/TSP.2007.907881 – ident: ref16 doi: 10.2337/diabetes.48.3.445 – ident: ref3 doi: 10.2337/dc06-1134 – ident: ref7 doi: 10.1109/TBME.2016.2535241 – ident: ref43 doi: 10.1016/j.arcontrol.2012.09.007 – ident: ref29 doi: 10.1177/193229680800200507 – ident: ref9 doi: 10.1109/TBME.2017.2652062 – ident: ref21 doi: 10.1177/193229680700100405 – ident: ref53 doi: 10.1177/193229680700100509 – ident: ref42 doi: 10.1109/CIT/IUCC/DASC/PICOM.2015.358 – year: 2013 ident: ref23 publication-title: Data Driven Modeling Using Matlab in Water Resources and Environmental Engineering – ident: ref25 doi: 10.1007/s005920070020 – year: 2017 ident: ref47 publication-title: The harmonic analysis of kernel functions – ident: ref58 doi: 10.1177/193229680900300106 – ident: ref24 doi: 10.1016/j.jpeds.2005.04.065 – volume: 20 start-page: 1950 year: 2009 ident: ref34 article-title: An information theoretic approach of designing sparse kernel adaptive filters publication-title: IEEE Trans Neural Netw doi: 10.1109/TNET.2012.2187923 – ident: ref5 doi: 10.1177/1932296816658666 – ident: ref14 doi: 10.1089/dia.2016.0421 – ident: ref38 doi: 10.1016/j.knosys.2014.02.005 – volume: 28 start-page: 1231 year: 2005 ident: ref2 article-title: Continuous glucose monitoring: Roadmap for 21st century diabetes therapy publication-title: Diabetes Care doi: 10.2337/diacare.28.5.1231 – year: 2002 ident: ref31 publication-title: Learning With Kernels Support Vector Machines Regularization Optimization and Beyond – ident: ref59 doi: 10.1109/TBME.2013.2291777 – ident: ref49 doi: 10.1016/S0956-5663(01)00304-9 – year: 2012 ident: ref39 publication-title: Pumping Insulin Everything You Need For Success on a Smart Insulin Pump – volume: 3 start-page: 609 year: 2014 ident: ref10 article-title: The diabetes assistant: A smartphone-based system for real-time control of blood glucose publication-title: Electronics doi: 10.3390/electronics3040609 – volume: 359 start-page: 1464 year: 2008 ident: ref4 article-title: Continuous glucose monitoring and intensive treatment of type 1 diabetes publication-title: New England J Med doi: 10.1056/NEJMoa0805017 – year: 2008 ident: ref51 publication-title: Adaptive Filter Theory – ident: ref37 doi: 10.1109/TNNLS.2013.2258936 – ident: ref55 doi: 10.1089/dia.2011.0033 – volume: 112 start-page: 556 year: 2004 ident: ref62 article-title: Introductory experience with the continuous glucose monitoring system (CGMS; medtronic minimed) in detecting hyperglycemia by comparing the self-monitoring of blood glucose (SMBG) in non-pregnant women and in pregnant women with impaired glucose tolerance and gestational diabetes publication-title: Exp Clin Endocrinol Diabetes doi: 10.1055/s-2004-830399 – volume: 18 start-page: 39 year: 2016 ident: ref17 article-title: Model-based quantification of glucagon-like peptide-1-induced potentiation of insulin secretion in response to a mixed meal challenge publication-title: Diabetes Technol Therapeutics doi: 10.1089/dia.2015.0146 – ident: ref20 doi: 10.1109/TBME.2015.2505507 – year: 2013 ident: ref46 publication-title: The Nature of Statistical Learning Theory – ident: ref36 doi: 10.1109/TNNLS.2012.2200500 – ident: ref54 doi: 10.1109/TITB.2009.2034141 – ident: ref11 doi: 10.3390/pr4040035 – ident: ref57 doi: 10.2337/diacare.10.5.622 – year: 2015 ident: ref1 publication-title: Prediction Methods for Blood Glucose Concentration Design Use and Evaluation – ident: ref52 doi: 10.1109/TSP.2008.2009895 – year: 2011 ident: ref35 publication-title: Kernel Adaptive Filtering A Comprehensive Introduction – start-page: 173 year: 2017 ident: ref12 article-title: Advanced pump functions: Bolus calculator, bolus types, and temporary basal rates publication-title: Research into Childhood-Onset Diabetes doi: 10.1007/978-3-319-40242-0_15 – ident: ref40 doi: 10.2337/dc12-0660 – ident: ref18 doi: 10.1109/TBME.2017.2707344 – ident: ref32 doi: 10.1109/ICASSP.2006.1661394 – year: 2016 ident: ref13 article-title: Multivariable artificial pancreas method and system – ident: ref30 doi: 10.1089/dia.2009.0076 – year: 2016 ident: ref19 article-title: Model individualization for artificial pancreas publication-title: Comput Methods Programs Biomed – ident: ref48 doi: 10.1177/193229680800200517 – ident: ref33 doi: 10.4304/jcm.2.3.1-8 – ident: ref61 doi: 10.1111/pedi.12285 – ident: ref22 doi: 10.1002/9780470140529 – ident: ref6 doi: 10.1109/JBHI.2015.2446413 – ident: ref60 doi: 10.2337/dc14-3073 – ident: ref15 doi: 10.1111/dom.12707 – ident: ref28 doi: 10.2337/dc16-0824 – ident: ref56 doi: 10.2337/diacare.27.8.1922 – volume: 17 start-page: 532 year: 2017 ident: ref8 article-title: Use of wearable sensors and biometric variables in an artificial pancreas system publication-title: SENSORS doi: 10.3390/s17030532 |
SSID | ssj0014527 |
Score | 2.4067667 |
Snippet | Streaming data from continuous glucose monitoring (CGM) systems enable the recursive identification of models to improve estimation accuracy for effective... |
SourceID | pubmedcentral proquest pubmed crossref ieee |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3 |
SubjectTerms | Adaptation models Adaptive algorithms Adaptive filters Algorithms Computational efficiency Computational modeling Data models Diabetes Dynamical systems Glucose Information theory Kernel Kernel filtering algorithms Kernels Model accuracy Noise measurement Nonlinear dynamics Pancreas Performance prediction Prediction algorithms Predictive control Predictive models Real time sparsification Sugar type-1 diabetes (T1D) |
Title | Online Glucose Prediction Using Computationally Efficient Sparse Kernel Filtering Algorithms in Type-1 Diabetes |
URI | https://ieeexplore.ieee.org/document/8392739 https://www.ncbi.nlm.nih.gov/pubmed/32699492 https://www.proquest.com/docview/2332188912 https://www.proquest.com/docview/2426536410 https://pubmed.ncbi.nlm.nih.gov/PMC7375403 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9swDCbanrbDXt3Da1dowE7DlNqRYkfHomhWdOgwoCnQm2HJ3Bo0s4vEOWy_vqSkGGlRDLs5NuU4IWV-FKmPAJ_IqaBDl0k0aS2ZAUua1FpJ2BkrJA9UKd7gfP49P73UZ1ejqy340u-FQURffIYDPvS5_Lp1K14qO2RnXiizDdsUuIW9Wn3GQIf2rBThKJn7lGQS-TQPp8cXUy7iGg_oXawKbpu84YN8U5XH8OXDMskNvzN5DufrJw7lJjeDVWcH7u8DMsf__Ukv4FkEoOIoWMxL2MLmFTzdoCXchTbwj4qvoZxd_FhwNoc1KHyFgQitIOIy4vyPOPE8FPRF4uKWAmUU33DR4FxMZpyL5xFH81_tYtZd_16KWSM4-JWZiNU4y9dwOTmZHp_K2JhBOq2LTjLFvnbOqPHPgiBjXtGJoXL0sRqn2illFAEJbYuKOxPltSdxrwprKfiqRyTwBnaatsF3IDhAttyE3VY5-VMkvKGyuqa_BUdaW51AulZV6SJrOTfPmJc-eklNydotWbtl1G4Cn_sht4Gy41_Cu6yUXjDqI4H9tT2UcVIvy6FSBIjGJhsm8LG_TNORcyxVg-2KZAjxkPXpLE3gbTCf_t6ElI3RhkYX9wyrF2Cq7_tXmtm1p_wuuFNxqt4__rR78GTIywB-ZWgfdrrFCj8QVursgZ8kd_2eEFo |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED6N8QB74NdgBAYYiSeEu6R2k_pxmlYKWyekddLeotg5WEVJpjZ9gL-eOzuNumlCvKXJOU1759x3vvN3AB_IqaBDl0g0cSmZAUua2FpJ2BkLJA9UKN7gPDlLxxf66-Xgcgs-dXthENEXn2GPD30uv6zdipfKDtiZZ8rcg_sD3owbdmt1OQMdGrRSjKNk6pOSUcuoeTA9Op9yGdewR29jlXHj5A0v5Nuq3IUwbxdKbnie0WOYrJ85FJz87K0a23N_btE5_u-PegKPWggqDoPNPIUtrJ7BzgYx4S7UgYFUfA4F7eLbgvM5rEPhawxEaAbRLiTOf4tjz0RBXyTOrylURnGCiwrnYjTjbDyPOJz_qBez5urXUswqweGvTERbj7N8Dhej4-nRWLatGaTTOmskk-xr54wafs8INKYFnegrRx-LYaydUkYRlNA2K7g3UVp6Gvcis5bCr3JAAi9gu6orfAmCQ2TLbdhtkZJHRUIcKilL-ltwoLXVEcRrVeWu5S3n9hnz3McvsclZuzlrN2-1G8HHbsh1IO34l_AuK6UTbPURwf7aHvJ2Wi_zvlIEiYYm6UfwvrtME5KzLEWF9YpkCPOQ9ekkjmAvmE93b8LKxmhDo7MbhtUJMNn3zSvV7MqTfmfcqzhWr-5-2nfwYDydnOanX85OXsPDPi8K-HWifdhuFit8Q8ipsW_9hPkLS5oTog |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+Glucose+Prediction+Using+Computationally+Efficient+Sparse+Kernel+Filtering+Algorithms+in+Type-1+Diabetes&rft.jtitle=IEEE+transactions+on+control+systems+technology&rft.au=Yu%2C+Xia&rft.au=Rashid%2C+Mudassir&rft.au=Feng%2C+Jianyuan&rft.au=Hobbs%2C+Nicole&rft.date=2020-01-01&rft.issn=1063-6536&rft.volume=28&rft.issue=1&rft.spage=3&rft_id=info:doi/10.1109%2Ftcst.2018.2843785&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6536&client=summon |