Online Glucose Prediction Using Computationally Efficient Sparse Kernel Filtering Algorithms in Type-1 Diabetes

Streaming data from continuous glucose monitoring (CGM) systems enable the recursive identification of models to improve estimation accuracy for effective predictive glycemic control in patients with type-1 diabetes. A drawback of conventional recursive identification techniques is the increase in c...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on control systems technology Vol. 28; no. 1; pp. 3 - 15
Main Authors Yu, Xia, Rashid, Mudassir, Feng, Jianyuan, Hobbs, Nicole, Hajizadeh, Iman, Samadi, Sediqeh, Sevil, Mert, Lazaro, Caterina, Maloney, Zacharie, Littlejohn, Elizabeth, Quinn, Laurie, Cinar, Ali
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1063-6536
1558-0865
DOI10.1109/TCST.2018.2843785

Cover

Loading…
Abstract Streaming data from continuous glucose monitoring (CGM) systems enable the recursive identification of models to improve estimation accuracy for effective predictive glycemic control in patients with type-1 diabetes. A drawback of conventional recursive identification techniques is the increase in computational requirements, which is a concern for online and real-time applications such as the artificial pancreas systems implemented on handheld devices and smartphones where computational resources and memory are limited. To improve predictions in such computationally constrained hardware settings, efficient adaptive kernel filtering algorithms are developed in this paper to characterize the nonlinear glycemic variability by employing a sparsification criterion based on the information theory to reduce the computation time and complexity of the kernel filters without adversely deteriorating the predictive performance. Furthermore, the adaptive kernel filtering algorithms are designed to be insensitive to abnormal CGM measurements, thus compensating for measurement noise and disturbances. As such, the sparsification-based real-time model update framework can adapt the prediction models to accurately characterize the time-varying and nonlinear dynamics of glycemic measurements. The proposed recursive kernel filtering algorithms leveraging sparsity for improved computational efficiency are applied to both in-silico and clinical subjects, and the results demonstrate the effectiveness of the proposed methods.
AbstractList Streaming data from continuous glucose monitoring (CGM) systems enable the recursive identification of models to improve estimation accuracy for effective predictive glycemic control in patients with type-1 diabetes. A drawback of conventional recursive identification techniques is the increase in computational requirements, which is a concern for online and real-time applications such as the artificial pancreas systems implemented on handheld devices and smartphones where computational resources and memory are limited. To improve predictions in such computationally constrained hardware settings, efficient adaptive kernel filtering algorithms are developed in this paper to characterize the nonlinear glycemic variability by employing a sparsification criterion based on the information theory to reduce the computation time and complexity of the kernel filters without adversely deteriorating the predictive performance. Furthermore, the adaptive kernel filtering algorithms are designed to be insensitive to abnormal CGM measurements, thus compensating for measurement noise and disturbances. As such, the sparsification-based real-time model update framework can adapt the prediction models to accurately characterize the time-varying and nonlinear dynamics of glycemic measurements. The proposed recursive kernel filtering algorithms leveraging sparsity for improved computational efficiency are applied to both in-silico and clinical subjects, and the results demonstrate the effectiveness of the proposed methods.Streaming data from continuous glucose monitoring (CGM) systems enable the recursive identification of models to improve estimation accuracy for effective predictive glycemic control in patients with type-1 diabetes. A drawback of conventional recursive identification techniques is the increase in computational requirements, which is a concern for online and real-time applications such as the artificial pancreas systems implemented on handheld devices and smartphones where computational resources and memory are limited. To improve predictions in such computationally constrained hardware settings, efficient adaptive kernel filtering algorithms are developed in this paper to characterize the nonlinear glycemic variability by employing a sparsification criterion based on the information theory to reduce the computation time and complexity of the kernel filters without adversely deteriorating the predictive performance. Furthermore, the adaptive kernel filtering algorithms are designed to be insensitive to abnormal CGM measurements, thus compensating for measurement noise and disturbances. As such, the sparsification-based real-time model update framework can adapt the prediction models to accurately characterize the time-varying and nonlinear dynamics of glycemic measurements. The proposed recursive kernel filtering algorithms leveraging sparsity for improved computational efficiency are applied to both in-silico and clinical subjects, and the results demonstrate the effectiveness of the proposed methods.
Streaming data from continuous glucose monitoring (CGM) systems enable the recursive identification of models to improve estimation accuracy for effective predictive glycemic control in patients with type-1 diabetes. A drawback of conventional recursive identification techniques is the increase in computational requirements, which is a concern for online and real-time applications such as the artificial pancreas systems implemented on handheld devices and smartphones where computational resources and memory are limited. To improve predictions in such computationally constrained hardware settings, efficient adaptive kernel filtering algorithms are developed in this paper to characterize the nonlinear glycemic variability by employing a sparsification criterion based on the information theory to reduce the computation time and complexity of the kernel filters without adversely deteriorating the predictive performance. Furthermore, the adaptive kernel filtering algorithms are designed to be insensitive to abnormal CGM measurements, thus compensating for measurement noise and disturbances. As such, the sparsification-based real-time model update framework can adapt the prediction models to accurately characterize the time-varying and nonlinear dynamics of glycemic measurements. The proposed recursive kernel filtering algorithms leveraging sparsity for improved computational efficiency are applied to both in-silico and clinical subjects, and the results demonstrate the effectiveness of the proposed methods.
Author Hobbs, Nicole
Quinn, Laurie
Sevil, Mert
Maloney, Zacharie
Samadi, Sediqeh
Littlejohn, Elizabeth
Cinar, Ali
Lazaro, Caterina
Rashid, Mudassir
Yu, Xia
Feng, Jianyuan
Hajizadeh, Iman
Author_xml – sequence: 1
  givenname: Xia
  orcidid: 0000-0001-8106-1208
  surname: Yu
  fullname: Yu, Xia
  email: yuxia@ise.neu.edu.cn
  organization: School of Information Science and Engineering, Northeastern University, Shenyang, China
– sequence: 2
  givenname: Mudassir
  surname: Rashid
  fullname: Rashid, Mudassir
  email: mrashid3@iit.edu
  organization: Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL, USA
– sequence: 3
  givenname: Jianyuan
  surname: Feng
  fullname: Feng, Jianyuan
  email: jfeng12@hawk.iit.edu
  organization: Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL, USA
– sequence: 4
  givenname: Nicole
  orcidid: 0000-0002-7221-3617
  surname: Hobbs
  fullname: Hobbs, Nicole
  email: nfrantz1@hawk.iit.edu
  organization: Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
– sequence: 5
  givenname: Iman
  orcidid: 0000-0001-8102-073X
  surname: Hajizadeh
  fullname: Hajizadeh, Iman
  email: ihajizad@hawk.iit.edu
  organization: Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL, USA
– sequence: 6
  givenname: Sediqeh
  surname: Samadi
  fullname: Samadi, Sediqeh
  email: ssamadi@hawk.iit.edu
  organization: Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL, USA
– sequence: 7
  givenname: Mert
  orcidid: 0000-0003-3662-0255
  surname: Sevil
  fullname: Sevil, Mert
  email: msevil@hawk.iit.edu
  organization: Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
– sequence: 8
  givenname: Caterina
  surname: Lazaro
  fullname: Lazaro, Caterina
  email: clazarom@hawk.iit.edu
  organization: Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, IL, USA
– sequence: 9
  givenname: Zacharie
  surname: Maloney
  fullname: Maloney, Zacharie
  email: zmaloney@hawk.iit.edu
  organization: Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, IL, USA
– sequence: 10
  givenname: Elizabeth
  surname: Littlejohn
  fullname: Littlejohn, Elizabeth
  email: elittlej@peds.bsd.uchicago.edu
  organization: Department of Pediatrics and Medicine, Kovler Diabetes Center, University of Chicago, Chicago, IL, USA
– sequence: 11
  givenname: Laurie
  surname: Quinn
  fullname: Quinn, Laurie
  email: lquinn18@gmail.com
  organization: Department of Biobehavioral Health Science, College of Nursing, University of Illinois at Chicago, Chicago, IL, USA
– sequence: 12
  givenname: Ali
  orcidid: 0000-0002-1607-9943
  surname: Cinar
  fullname: Cinar, Ali
  email: cinar@iit.edu
  organization: Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32699492$$D View this record in MEDLINE/PubMed
BookMark eNp9kV1rFDEUhgep2A_9ASJIwBtvZs3nJHMjlLWtYqFCt9chkz2zTckkazIj7L83w66L9sKrJCfP--bkvOfVSYgBquotwQtCcPtptbxfLSgmakEVZ1KJF9UZEULVWDXipOxxw-pGsOa0Os_5CWPCBZWvqlNGm7blLT2r4l3wLgC68ZONGdCPBGtnRxcDesgubNAyDttpNHPFeL9DV33vrIMwovutSUXxHVIAj66dHyHNiku_icmNj0NGLqDVbgs1QV-c6WCE_Lp62Ruf4c1hvagerq9Wy6_17d3Nt-XlbW05l2NNVKO4tS1TvcSkaUwpUGbL0SjMLWMtI4LwThroMG7WuGVCGNl1hPC1KMBF9Xnvu526Ada2NJyM19vkBpN2Ohqn_70J7lFv4i8tmRQcs2Lw8WCQ4s8J8qgHly14bwLEKWvK6TxZTnBBPzxDn-KUyrgKxRglSrWEFur93x0dW_mTRQHIHrAp5pygPyIE6zlvPeet57z1Ie-ikc801u3DKp9y_r_Kd3ulA4DjS4q1VJbh_gahgLgH
CODEN IETTE2
CitedBy_id crossref_primary_10_1109_ACCESS_2019_2942088
crossref_primary_10_1016_j_jdiacomp_2021_107929
crossref_primary_10_1109_TBME_2024_3494732
crossref_primary_10_1109_JBHI_2020_3002022
crossref_primary_10_1109_JBHI_2024_3371108
crossref_primary_10_1016_j_conengprac_2021_104933
crossref_primary_10_1109_ACCESS_2020_3026009
crossref_primary_10_1109_JBHI_2021_3100558
crossref_primary_10_1109_TBME_2023_3276193
crossref_primary_10_1155_2022_8956850
crossref_primary_10_1109_TII_2022_3209248
crossref_primary_10_1016_j_smhl_2021_100193
crossref_primary_10_1016_j_compbiomed_2022_105388
crossref_primary_10_1109_MDAT_2024_3466830
crossref_primary_10_1007_s40747_021_00360_7
crossref_primary_10_1016_j_conengprac_2021_104881
crossref_primary_10_1016_j_smhl_2024_100457
crossref_primary_10_1007_s11517_024_03042_x
crossref_primary_10_1021_acs_iecr_8b06202
crossref_primary_10_2174_1389201023666220603092433
Cites_doi 10.1016/j.apenergy.2013.03.038
10.1109/TSP.2004.830985
10.1089/dia.2017.2509
10.2337/dc08-0720
10.1109/TSP.2007.907881
10.2337/diabetes.48.3.445
10.2337/dc06-1134
10.1109/TBME.2016.2535241
10.1016/j.arcontrol.2012.09.007
10.1177/193229680800200507
10.1109/TBME.2017.2652062
10.1177/193229680700100405
10.1177/193229680700100509
10.1109/CIT/IUCC/DASC/PICOM.2015.358
10.1007/s005920070020
10.1177/193229680900300106
10.1016/j.jpeds.2005.04.065
10.1109/TNET.2012.2187923
10.1177/1932296816658666
10.1089/dia.2016.0421
10.1016/j.knosys.2014.02.005
10.2337/diacare.28.5.1231
10.1109/TBME.2013.2291777
10.1016/S0956-5663(01)00304-9
10.3390/electronics3040609
10.1056/NEJMoa0805017
10.1109/TNNLS.2013.2258936
10.1089/dia.2011.0033
10.1055/s-2004-830399
10.1089/dia.2015.0146
10.1109/TBME.2015.2505507
10.1109/TNNLS.2012.2200500
10.1109/TITB.2009.2034141
10.3390/pr4040035
10.2337/diacare.10.5.622
10.1109/TSP.2008.2009895
10.1007/978-3-319-40242-0_15
10.2337/dc12-0660
10.1109/TBME.2017.2707344
10.1109/ICASSP.2006.1661394
10.1089/dia.2009.0076
10.1177/193229680800200517
10.4304/jcm.2.3.1-8
10.1111/pedi.12285
10.1002/9780470140529
10.1109/JBHI.2015.2446413
10.2337/dc14-3073
10.1111/dom.12707
10.2337/dc16-0824
10.2337/diacare.27.8.1922
10.3390/s17030532
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SP
7TB
8FD
FR3
L7M
7X8
5PM
DOI 10.1109/TCST.2018.2843785
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


Engineering Research Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0865
EndPage 15
ExternalDocumentID PMC7375403
32699492
10_1109_TCST_2018_2843785
8392739
Genre orig-research
Journal Article
GrantInformation_xml – fundername: China Scholarship Council
  grantid: 201406085037
  funderid: 10.13039/501100004543
– fundername: National Institutes of Health
  grantid: 1DP3DK101075-01; 1DP3DK101077-01
  funderid: 10.13039/100000002
– fundername: NIDDK NIH HHS
  grantid: DP3 DK101075
– fundername: NIDDK NIH HHS
  grantid: DP3 DK101077
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACBEA
ACGFO
ACGFS
ACIWK
ACKIV
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
NPM
7SP
7TB
8FD
FR3
L7M
7X8
5PM
ID FETCH-LOGICAL-c447t-18684cc938f70166a18623c38fa804c33931514b7aeb006d09355a7bb114d54c3
IEDL.DBID RIE
ISSN 1063-6536
IngestDate Thu Aug 21 18:27:23 EDT 2025
Thu Jul 10 22:41:16 EDT 2025
Sun Jun 29 16:53:32 EDT 2025
Mon Jul 21 06:05:10 EDT 2025
Thu Apr 24 23:03:48 EDT 2025
Tue Jul 01 02:36:00 EDT 2025
Wed Aug 27 02:30:42 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Kernel filtering algorithms
type-1 diabetes (T1D)
sparsification
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c447t-18684cc938f70166a18623c38fa804c33931514b7aeb006d09355a7bb114d54c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7221-3617
0000-0003-3662-0255
0000-0001-8102-073X
0000-0001-8106-1208
0000-0002-1607-9943
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7375403
PMID 32699492
PQID 2332188912
PQPubID 85425
PageCount 13
ParticipantIDs crossref_primary_10_1109_TCST_2018_2843785
pubmed_primary_32699492
crossref_citationtrail_10_1109_TCST_2018_2843785
proquest_miscellaneous_2426536410
proquest_journals_2332188912
ieee_primary_8392739
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7375403
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on control systems technology
PublicationTitleAbbrev TCST
PublicationTitleAlternate IEEE Trans Control Syst Technol
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref56
ref59
ref15
ref58
ref14
ref53
ref52
ref55
ref11
ref54
liu (ref34) 2009; 20
buhling (ref62) 2004; 112
ref16
ref18
haykin (ref51) 2008
(ref4) 2008; 359
walsh (ref39) 2012
keith-hynes (ref10) 2014; 3
zorzi (ref47) 2017
ref50
ref45
ref48
ref42
ref44
ref43
ref49
ref7
ref9
messori (ref19) 2016
ref3
ref6
ref5
bonfanti (ref12) 2017
ref40
turksoy (ref8) 2017; 17
liu (ref35) 2011
boiroux (ref41) 2012
ref37
ref36
ref30
ref33
ref32
schölkopf (ref31) 2002
ref38
vapnik (ref46) 2013
klonoff (ref2) 2005; 28
kirchsteiger (ref1) 2015
man (ref17) 2016; 18
ref24
ref26
araghinejad (ref23) 2013
ref25
ref20
cinar (ref13) 2016
ref22
ref21
ref28
ref27
ref29
ref60
ref61
References_xml – year: 2012
  ident: ref41
  article-title: Model predictive control algorithms for pen and pump insulin administration
– ident: ref50
  doi: 10.1016/j.apenergy.2013.03.038
– ident: ref45
  doi: 10.1109/TSP.2004.830985
– ident: ref27
  doi: 10.1089/dia.2017.2509
– ident: ref26
  doi: 10.2337/dc08-0720
– ident: ref44
  doi: 10.1109/TSP.2007.907881
– ident: ref16
  doi: 10.2337/diabetes.48.3.445
– ident: ref3
  doi: 10.2337/dc06-1134
– ident: ref7
  doi: 10.1109/TBME.2016.2535241
– ident: ref43
  doi: 10.1016/j.arcontrol.2012.09.007
– ident: ref29
  doi: 10.1177/193229680800200507
– ident: ref9
  doi: 10.1109/TBME.2017.2652062
– ident: ref21
  doi: 10.1177/193229680700100405
– ident: ref53
  doi: 10.1177/193229680700100509
– ident: ref42
  doi: 10.1109/CIT/IUCC/DASC/PICOM.2015.358
– year: 2013
  ident: ref23
  publication-title: Data Driven Modeling Using Matlab in Water Resources and Environmental Engineering
– ident: ref25
  doi: 10.1007/s005920070020
– year: 2017
  ident: ref47
  publication-title: The harmonic analysis of kernel functions
– ident: ref58
  doi: 10.1177/193229680900300106
– ident: ref24
  doi: 10.1016/j.jpeds.2005.04.065
– volume: 20
  start-page: 1950
  year: 2009
  ident: ref34
  article-title: An information theoretic approach of designing sparse kernel adaptive filters
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNET.2012.2187923
– ident: ref5
  doi: 10.1177/1932296816658666
– ident: ref14
  doi: 10.1089/dia.2016.0421
– ident: ref38
  doi: 10.1016/j.knosys.2014.02.005
– volume: 28
  start-page: 1231
  year: 2005
  ident: ref2
  article-title: Continuous glucose monitoring: Roadmap for 21st century diabetes therapy
  publication-title: Diabetes Care
  doi: 10.2337/diacare.28.5.1231
– year: 2002
  ident: ref31
  publication-title: Learning With Kernels Support Vector Machines Regularization Optimization and Beyond
– ident: ref59
  doi: 10.1109/TBME.2013.2291777
– ident: ref49
  doi: 10.1016/S0956-5663(01)00304-9
– year: 2012
  ident: ref39
  publication-title: Pumping Insulin Everything You Need For Success on a Smart Insulin Pump
– volume: 3
  start-page: 609
  year: 2014
  ident: ref10
  article-title: The diabetes assistant: A smartphone-based system for real-time control of blood glucose
  publication-title: Electronics
  doi: 10.3390/electronics3040609
– volume: 359
  start-page: 1464
  year: 2008
  ident: ref4
  article-title: Continuous glucose monitoring and intensive treatment of type 1 diabetes
  publication-title: New England J Med
  doi: 10.1056/NEJMoa0805017
– year: 2008
  ident: ref51
  publication-title: Adaptive Filter Theory
– ident: ref37
  doi: 10.1109/TNNLS.2013.2258936
– ident: ref55
  doi: 10.1089/dia.2011.0033
– volume: 112
  start-page: 556
  year: 2004
  ident: ref62
  article-title: Introductory experience with the continuous glucose monitoring system (CGMS; medtronic minimed) in detecting hyperglycemia by comparing the self-monitoring of blood glucose (SMBG) in non-pregnant women and in pregnant women with impaired glucose tolerance and gestational diabetes
  publication-title: Exp Clin Endocrinol Diabetes
  doi: 10.1055/s-2004-830399
– volume: 18
  start-page: 39
  year: 2016
  ident: ref17
  article-title: Model-based quantification of glucagon-like peptide-1-induced potentiation of insulin secretion in response to a mixed meal challenge
  publication-title: Diabetes Technol Therapeutics
  doi: 10.1089/dia.2015.0146
– ident: ref20
  doi: 10.1109/TBME.2015.2505507
– year: 2013
  ident: ref46
  publication-title: The Nature of Statistical Learning Theory
– ident: ref36
  doi: 10.1109/TNNLS.2012.2200500
– ident: ref54
  doi: 10.1109/TITB.2009.2034141
– ident: ref11
  doi: 10.3390/pr4040035
– ident: ref57
  doi: 10.2337/diacare.10.5.622
– year: 2015
  ident: ref1
  publication-title: Prediction Methods for Blood Glucose Concentration Design Use and Evaluation
– ident: ref52
  doi: 10.1109/TSP.2008.2009895
– year: 2011
  ident: ref35
  publication-title: Kernel Adaptive Filtering A Comprehensive Introduction
– start-page: 173
  year: 2017
  ident: ref12
  article-title: Advanced pump functions: Bolus calculator, bolus types, and temporary basal rates
  publication-title: Research into Childhood-Onset Diabetes
  doi: 10.1007/978-3-319-40242-0_15
– ident: ref40
  doi: 10.2337/dc12-0660
– ident: ref18
  doi: 10.1109/TBME.2017.2707344
– ident: ref32
  doi: 10.1109/ICASSP.2006.1661394
– year: 2016
  ident: ref13
  article-title: Multivariable artificial pancreas method and system
– ident: ref30
  doi: 10.1089/dia.2009.0076
– year: 2016
  ident: ref19
  article-title: Model individualization for artificial pancreas
  publication-title: Comput Methods Programs Biomed
– ident: ref48
  doi: 10.1177/193229680800200517
– ident: ref33
  doi: 10.4304/jcm.2.3.1-8
– ident: ref61
  doi: 10.1111/pedi.12285
– ident: ref22
  doi: 10.1002/9780470140529
– ident: ref6
  doi: 10.1109/JBHI.2015.2446413
– ident: ref60
  doi: 10.2337/dc14-3073
– ident: ref15
  doi: 10.1111/dom.12707
– ident: ref28
  doi: 10.2337/dc16-0824
– ident: ref56
  doi: 10.2337/diacare.27.8.1922
– volume: 17
  start-page: 532
  year: 2017
  ident: ref8
  article-title: Use of wearable sensors and biometric variables in an artificial pancreas system
  publication-title: SENSORS
  doi: 10.3390/s17030532
SSID ssj0014527
Score 2.4067667
Snippet Streaming data from continuous glucose monitoring (CGM) systems enable the recursive identification of models to improve estimation accuracy for effective...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3
SubjectTerms Adaptation models
Adaptive algorithms
Adaptive filters
Algorithms
Computational efficiency
Computational modeling
Data models
Diabetes
Dynamical systems
Glucose
Information theory
Kernel
Kernel filtering algorithms
Kernels
Model accuracy
Noise measurement
Nonlinear dynamics
Pancreas
Performance prediction
Prediction algorithms
Predictive control
Predictive models
Real time
sparsification
Sugar
type-1 diabetes (T1D)
Title Online Glucose Prediction Using Computationally Efficient Sparse Kernel Filtering Algorithms in Type-1 Diabetes
URI https://ieeexplore.ieee.org/document/8392739
https://www.ncbi.nlm.nih.gov/pubmed/32699492
https://www.proquest.com/docview/2332188912
https://www.proquest.com/docview/2426536410
https://pubmed.ncbi.nlm.nih.gov/PMC7375403
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9swDCbanrbDXt3Da1dowE7DlNqRYkfHomhWdOgwoCnQm2HJ3Bo0s4vEOWy_vqSkGGlRDLs5NuU4IWV-FKmPAJ_IqaBDl0k0aS2ZAUua1FpJ2BkrJA9UKd7gfP49P73UZ1ejqy340u-FQURffIYDPvS5_Lp1K14qO2RnXiizDdsUuIW9Wn3GQIf2rBThKJn7lGQS-TQPp8cXUy7iGg_oXawKbpu84YN8U5XH8OXDMskNvzN5DufrJw7lJjeDVWcH7u8DMsf__Ukv4FkEoOIoWMxL2MLmFTzdoCXchTbwj4qvoZxd_FhwNoc1KHyFgQitIOIy4vyPOPE8FPRF4uKWAmUU33DR4FxMZpyL5xFH81_tYtZd_16KWSM4-JWZiNU4y9dwOTmZHp_K2JhBOq2LTjLFvnbOqPHPgiBjXtGJoXL0sRqn2illFAEJbYuKOxPltSdxrwprKfiqRyTwBnaatsF3IDhAttyE3VY5-VMkvKGyuqa_BUdaW51AulZV6SJrOTfPmJc-eklNydotWbtl1G4Cn_sht4Gy41_Cu6yUXjDqI4H9tT2UcVIvy6FSBIjGJhsm8LG_TNORcyxVg-2KZAjxkPXpLE3gbTCf_t6ElI3RhkYX9wyrF2Cq7_tXmtm1p_wuuFNxqt4__rR78GTIywB-ZWgfdrrFCj8QVursgZ8kd_2eEFo
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED6N8QB74NdgBAYYiSeEu6R2k_pxmlYKWyekddLeotg5WEVJpjZ9gL-eOzuNumlCvKXJOU1759x3vvN3AB_IqaBDl0g0cSmZAUua2FpJ2BkLJA9UKN7gPDlLxxf66-Xgcgs-dXthENEXn2GPD30uv6zdipfKDtiZZ8rcg_sD3owbdmt1OQMdGrRSjKNk6pOSUcuoeTA9Op9yGdewR29jlXHj5A0v5Nuq3IUwbxdKbnie0WOYrJ85FJz87K0a23N_btE5_u-PegKPWggqDoPNPIUtrJ7BzgYx4S7UgYFUfA4F7eLbgvM5rEPhawxEaAbRLiTOf4tjz0RBXyTOrylURnGCiwrnYjTjbDyPOJz_qBez5urXUswqweGvTERbj7N8Dhej4-nRWLatGaTTOmskk-xr54wafs8INKYFnegrRx-LYaydUkYRlNA2K7g3UVp6Gvcis5bCr3JAAi9gu6orfAmCQ2TLbdhtkZJHRUIcKilL-ltwoLXVEcRrVeWu5S3n9hnz3McvsclZuzlrN2-1G8HHbsh1IO34l_AuK6UTbPURwf7aHvJ2Wi_zvlIEiYYm6UfwvrtME5KzLEWF9YpkCPOQ9ekkjmAvmE93b8LKxmhDo7MbhtUJMNn3zSvV7MqTfmfcqzhWr-5-2nfwYDydnOanX85OXsPDPi8K-HWifdhuFit8Q8ipsW_9hPkLS5oTog
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+Glucose+Prediction+Using+Computationally+Efficient+Sparse+Kernel+Filtering+Algorithms+in+Type-1+Diabetes&rft.jtitle=IEEE+transactions+on+control+systems+technology&rft.au=Yu%2C+Xia&rft.au=Rashid%2C+Mudassir&rft.au=Feng%2C+Jianyuan&rft.au=Hobbs%2C+Nicole&rft.date=2020-01-01&rft.issn=1063-6536&rft.volume=28&rft.issue=1&rft.spage=3&rft_id=info:doi/10.1109%2Ftcst.2018.2843785&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6536&client=summon