Atrial Fibrillation Detection During Sepsis: Study on MIMIC III ICU Data

Sepsis is defined by life-threatening organ dysfunction during infection and is one of the leading causes of critical illness. During sepsis, there is high risk that new-onset of atrial fibrillation (AF) can occur, which is associated with significant morbidity and mortality. As a result, computer a...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of biomedical and health informatics Vol. 24; no. 11; pp. 3124 - 3135
Main Authors Bashar, Syed Khairul, Hossain, Md Billal, Ding, Eric, Walkey, Allan J., McManus, David D., Chon, Ki H.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.11.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Sepsis is defined by life-threatening organ dysfunction during infection and is one of the leading causes of critical illness. During sepsis, there is high risk that new-onset of atrial fibrillation (AF) can occur, which is associated with significant morbidity and mortality. As a result, computer aided automated and reliable detection of new-onset AF during sepsis is crucial, especially for the critically ill patients in the intensive care unit (ICU). In this paper, a novel automated and robust two-step algorithm to detect AF from ICU patients using electrocardiogram (ECG) signals is presented. First, several statistical parameters including root mean square of successive differences, Shannon entropy, and sample entropy were calculated from the heart rate for the screening of possible AF segments. Next, Poincaré plot-based features along with P-wave characteristics were used to reduce false positive detection of AF, caused by the premature atrial and ventricular beats. A subset of the Medical Information Mart for Intensive Care (MIMIC) III database containing 198 subjects was used in this study. During the training and validation phases, both the simple thresholding as well as machine learning classifiers achieved very high segment-wise AF classification performance. Finally, we tested the performance of our proposed algorithm using two independent test data sets and compared the performance with two state-of-the-art methods. The algorithm achieved an overall 100% sensitivity, 98% specificity, 98.99% accuracy, 98% positive predictive value, and 100% negative predictive value on the subject-wise AF detection, thus showing the efficacy of our proposed algorithm in critically ill sepsis patients. The annotations of the data have been made publicly available for other investigators.
AbstractList Sepsis is defined by life-threatening organ dysfunction during infection and is one of the leading causes of critical illness. During sepsis, there is high risk that new-onset of atrial fibrillation (AF) can occur, which is associated with significant morbidity and mortality. As a result, computer aided automated and reliable detection of new-onset AF during sepsis is crucial, especially for the critically ill patients in the intensive care unit (ICU). In this paper, a novel automated and robust two-step algorithm to detect AF from ICU patients using electrocardiogram (ECG) signals is presented. First, several statistical parameters including root mean square of successive differences, Shannon entropy, and sample entropy were calculated from the heart rate for the screening of possible AF segments. Next, Poincaré plot-based features along with P-wave characteristics were used to reduce false positive detection of AF, caused by the premature atrial and ventricular beats. A subset of the Medical Information Mart for Intensive Care (MIMIC) III database containing 198 subjects was used in this study. During the training and validation phases, both the simple thresholding as well as machine learning classifiers achieved very high segment-wise AF classification performance. Finally, we tested the performance of our proposed algorithm using two independent test data sets and compared the performance with two state-of-the-art methods. The algorithm achieved an overall 100% sensitivity, 98% specificity, 98.99% accuracy, 98% positive predictive value, and 100% negative predictive value on the subject-wise AF detection, thus showing the efficacy of our proposed algorithm in critically ill sepsis patients. The annotations of the data have been made publicly available for other investigators.
Sepsis is defined by life-threatening organ dysfunction during infection and is one of the leading causes of critical illness. During sepsis, there is high risk that new-onset of atrial fibrillation (AF) can occur, which is associated with significant morbidity and mortality. As a result, computer aided automated and reliable detection of new-onset AF during sepsis is crucial, especially for the critically ill patients in the intensive care unit (ICU). In this paper, a novel automated and robust two-step algorithm to detect AF from ICU patients using electrocardiogram (ECG) signals is presented. First, several statistical parameters including root mean square of successive differences, Shannon entropy, and sample entropy were calculated from the heart rate for the screening of possible AF segments. Next, Poincaré plot-based features along with P-wave characteristics were used to reduce false positive detection of AF, caused by the premature atrial and ventricular beats. A subset of the Medical Information Mart for Intensive Care (MIMIC) III database containing 198 subjects was used in this study. During the training and validation phases, both the simple thresholding as well as machine learning classifiers achieved very high segment-wise AF classification performance. Finally, we tested the performance of our proposed algorithm using two independent test data sets and compared the performance with two state-of-the-art methods. The algorithm achieved an overall 100% sensitivity, 98% specificity, 98.99% accuracy, 98% positive predictive value, and 100% negative predictive value on the subject-wise AF detection, thus showing the efficacy of our proposed algorithm in critically ill sepsis patients. The annotations of the data have been made publicly available for other investigators.Sepsis is defined by life-threatening organ dysfunction during infection and is one of the leading causes of critical illness. During sepsis, there is high risk that new-onset of atrial fibrillation (AF) can occur, which is associated with significant morbidity and mortality. As a result, computer aided automated and reliable detection of new-onset AF during sepsis is crucial, especially for the critically ill patients in the intensive care unit (ICU). In this paper, a novel automated and robust two-step algorithm to detect AF from ICU patients using electrocardiogram (ECG) signals is presented. First, several statistical parameters including root mean square of successive differences, Shannon entropy, and sample entropy were calculated from the heart rate for the screening of possible AF segments. Next, Poincaré plot-based features along with P-wave characteristics were used to reduce false positive detection of AF, caused by the premature atrial and ventricular beats. A subset of the Medical Information Mart for Intensive Care (MIMIC) III database containing 198 subjects was used in this study. During the training and validation phases, both the simple thresholding as well as machine learning classifiers achieved very high segment-wise AF classification performance. Finally, we tested the performance of our proposed algorithm using two independent test data sets and compared the performance with two state-of-the-art methods. The algorithm achieved an overall 100% sensitivity, 98% specificity, 98.99% accuracy, 98% positive predictive value, and 100% negative predictive value on the subject-wise AF detection, thus showing the efficacy of our proposed algorithm in critically ill sepsis patients. The annotations of the data have been made publicly available for other investigators.
Author McManus, David D.
Hossain, Md Billal
Chon, Ki H.
Ding, Eric
Bashar, Syed Khairul
Walkey, Allan J.
Author_xml – sequence: 1
  givenname: Syed Khairul
  orcidid: 0000-0002-0180-1980
  surname: Bashar
  fullname: Bashar, Syed Khairul
  email: syed.bashar@uconn.edu
  organization: Biomedical Engineering Department, University of Connecticut, Storrs, CT, USA
– sequence: 2
  givenname: Md Billal
  orcidid: 0000-0002-2344-8321
  surname: Hossain
  fullname: Hossain, Md Billal
  email: md.b.hossain@uconn.edu
  organization: Biomedical Engineering Department, University of Connecticut, Storrs, CT, USA
– sequence: 3
  givenname: Eric
  surname: Ding
  fullname: Ding, Eric
  email: eric.ding@umassmed.org
  organization: Division of Cardiology, University of Massachusetts Medical School, Worcester, MA, USA
– sequence: 4
  givenname: Allan J.
  surname: Walkey
  fullname: Walkey, Allan J.
  email: awalkey@bu.edu
  organization: Department of Medicine, Boston University School of Medicine, Boston, MA, USA
– sequence: 5
  givenname: David D.
  surname: McManus
  fullname: McManus, David D.
  email: david.mcmanus@umassmed.edu
  organization: Division of Cardiology, University of Massachusetts Medical School, Worcester, MA, USA
– sequence: 6
  givenname: Ki H.
  orcidid: 0000-0002-4422-4837
  surname: Chon
  fullname: Chon, Ki H.
  email: ki.chon@uconn.edu
  organization: Biomedical Engineering Department, University of Connecticut, Storrs, CT, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32750900$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtP3DAUhS1EVR7lByAkFIkNm5le24kds0Ciw2NSgVgAa8vJXINRJhlspxL_vp7OMGpZ1Btb1985vtdnj2x3fYeEHFIYUwrq-88f02rMgMGYKVVQrrbILqOiHDEG5fbHmap8hxyE8ApplamkxFeyw5ksQAHskulF9M602bWrvWtbE13fZZcYsVmdBu-65-wBF8GFs-whDrP3LNXvqrtqklVVlVWTp-zSRPONfLGmDXiw3vfJ0_XV42Q6ur2_qSYXt6Mmz2UcUWmYqa0sJK-L1ChYlYMqqSlmthaG5apuFJVQcmrQcitnKBkKa5ui5iUyvk_OV76LoZ7jrMEuetPqhXdz4991b5z-96ZzL_q5_6WlSK5FmQxO1wa-fxswRD13ocE0e4f9EDTLOQjBWC4TevIJfe0H36XxEiWAFlyUkKjjvzvatPLxyQmgK6DxfQge7QahoJdZ6mWWepmlXmeZNPKTpnHxTzppKNf-V3m0UjpE3LykQOVcUv4bSkKo-A
CODEN IJBHA9
CitedBy_id crossref_primary_10_2139_ssrn_4092345
crossref_primary_10_1016_j_engappai_2024_108607
crossref_primary_10_3390_app11062880
crossref_primary_10_3390_bios11080269
crossref_primary_10_1016_j_bea_2023_100089
crossref_primary_10_1109_TBME_2020_3004310
crossref_primary_10_1016_j_bspc_2024_107480
crossref_primary_10_3390_s22228588
crossref_primary_10_3390_biomedicines12040891
crossref_primary_10_1016_j_bspc_2024_106730
crossref_primary_10_1111_exsy_13277
crossref_primary_10_1038_s41598_022_24574_y
crossref_primary_10_3390_s20195683
crossref_primary_10_1109_TBME_2022_3158582
crossref_primary_10_1002_widm_1530
crossref_primary_10_1093_cvr_cvab169
crossref_primary_10_1109_JBHI_2022_3221464
crossref_primary_10_23919_cje_2023_00_181
crossref_primary_10_3390_healthcare11050710
crossref_primary_10_1186_s13054_024_05138_0
crossref_primary_10_1016_j_bspc_2024_106683
crossref_primary_10_3390_nu15132924
crossref_primary_10_1016_j_artmed_2023_102644
crossref_primary_10_1016_j_compbiomed_2021_104404
crossref_primary_10_1016_j_compbiomed_2025_109901
crossref_primary_10_1007_s00540_024_03316_6
crossref_primary_10_2196_18840
crossref_primary_10_1145_3517247
crossref_primary_10_1186_s40635_022_00490_3
crossref_primary_10_1016_j_cmpb_2025_108698
crossref_primary_10_1016_j_cvdhj_2021_05_004
crossref_primary_10_1016_j_eswa_2022_118930
crossref_primary_10_3390_jcdd9110400
crossref_primary_10_1111_pace_14891
crossref_primary_10_1049_htl2_12121
crossref_primary_10_1109_JBHI_2022_3173655
crossref_primary_10_3389_fcimb_2023_1256382
crossref_primary_10_1016_j_compbiomed_2022_105270
Cites_doi 10.1161/01.CIR.101.23.e215
10.1007/BF02347697
10.1016/j.cmpb.2013.12.002
10.1016/j.knosys.2013.09.016
10.1109/CIC.2000.898539
10.1111/anec.12111
10.1152/ajpheart.00561.2010
10.1038/sdata.2016.35
10.1016/j.eswa.2018.08.011
10.1177/0885066619866172
10.1109/TBME.2007.903707
10.1016/j.jelectrocard.2016.07.033
10.1016/j.compbiomed.2017.12.007
10.1088/1361-6579/aaff04
10.1109/ACCESS.2019.2939943
10.1109/TBME.2018.2810508
10.1109/TSMC.2017.2705582
10.1109/EMBC.2019.8856496
10.1016/j.jelectrocard.2009.06.006
10.1016/j.ahj.2013.03.020
10.1016/j.bspc.2009.11.001
10.1371/journal.pone.0127168
10.1109/ACCESS.2019.2894092
10.1007/s11517-014-1234-y
10.1056/NEJMp1611928
10.1016/j.compbiomed.2015.03.005
10.1016/j.ahj.2006.02.016
10.1109/TBME.2010.2096506
10.1001/jama.2011.1615
10.1016/j.eswa.2011.08.025
10.1056/NEJMoa1105575
10.1016/j.cmpb.2016.04.009
10.1016/j.eswa.2007.12.016
10.1007/s10439-009-9740-z
10.1007/s12471-014-0641-x
10.1109/TCSVT.2018.2799214
10.1142/S0219519417400449
10.1109/JBHI.2015.2418195
10.1186/1475-925X-13-18
10.1016/j.bspc.2015.01.007
10.1046/j.1460-9592.2002.00457.x
10.1109/ICPR.2008.4761755
10.1016/0022-0736(92)90123-H
10.1109/ACCESS.2019.2926199
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
DOI 10.1109/JBHI.2020.2995139
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Xplore
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2168-2208
EndPage 3135
ExternalDocumentID PMC7670858
32750900
10_1109_JBHI_2020_2995139
9094371
Genre orig-research
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIH
  grantid: R01 HL136660
– fundername: NHLBI NIH HHS
  grantid: R01 HL136660
– fundername: NHLBI NIH HHS
  grantid: T32 HL120823
– fundername: NHLBI NIH HHS
  grantid: F30 HL149335
GroupedDBID 0R~
4.4
6IF
6IH
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
ID FETCH-LOGICAL-c447t-17a2abf7573b52080f940981a5dfb6a249bc9170831aef3f7de72e6ffc5b38e23
IEDL.DBID RIE
ISSN 2168-2194
2168-2208
IngestDate Thu Aug 21 17:59:40 EDT 2025
Fri Jul 11 09:19:34 EDT 2025
Mon Jun 30 04:16:32 EDT 2025
Mon Jul 21 06:00:21 EDT 2025
Tue Jul 01 02:59:58 EDT 2025
Thu Apr 24 23:04:33 EDT 2025
Wed Aug 27 02:29:36 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c447t-17a2abf7573b52080f940981a5dfb6a249bc9170831aef3f7de72e6ffc5b38e23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0180-1980
0000-0002-2344-8321
0000-0002-4422-4837
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7670858
PMID 32750900
PQID 2460153680
PQPubID 85417
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7670858
pubmed_primary_32750900
crossref_primary_10_1109_JBHI_2020_2995139
proquest_journals_2460153680
ieee_primary_9094371
crossref_citationtrail_10_1109_JBHI_2020_2995139
proquest_miscellaneous_2430662247
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-01
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE journal of biomedical and health informatics
PublicationTitleAbbrev JBHI
PublicationTitleAlternate IEEE J Biomed Health Inform
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
(ref49) 2019
ref11
ref10
ref17
ref16
ref19
ref18
larburu (ref31) 0
ref46
ref45
ref48
ref47
ref42
ref41
ref44
sörnmo (ref24) 2015; 53
ref43
krivoshei (ref40) 2017; 19
ref8
ref7
ref9
ref4
ref6
ref5
ref35
ref34
ref37
ref36
ref30
ref33
ref32
ref2
ref1
ref39
hargittai (ref38) 0
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
sibley (ref3) 2015; 22
References_xml – ident: ref34
  doi: 10.1161/01.CIR.101.23.e215
– ident: ref9
  doi: 10.1007/BF02347697
– ident: ref27
  doi: 10.1016/j.cmpb.2013.12.002
– ident: ref26
  doi: 10.1016/j.knosys.2013.09.016
– ident: ref14
  doi: 10.1109/CIC.2000.898539
– ident: ref10
  doi: 10.1111/anec.12111
– ident: ref17
  doi: 10.1152/ajpheart.00561.2010
– ident: ref35
  doi: 10.1038/sdata.2016.35
– ident: ref21
  doi: 10.1016/j.eswa.2018.08.011
– start-page: 265
  year: 0
  ident: ref31
  article-title: Comparative study of algorithms for atrial fibrillation detection
  publication-title: Proc IEEE Comput Cardiol
– ident: ref36
  doi: 10.1177/0885066619866172
– ident: ref19
  doi: 10.1109/TBME.2007.903707
– ident: ref20
  doi: 10.1016/j.jelectrocard.2016.07.033
– ident: ref29
  doi: 10.1016/j.compbiomed.2017.12.007
– ident: ref8
  doi: 10.1088/1361-6579/aaff04
– ident: ref43
  doi: 10.1109/ACCESS.2019.2939943
– ident: ref32
  doi: 10.1109/TBME.2018.2810508
– volume: 22
  start-page: 179
  year: 2015
  ident: ref3
  article-title: New-onset atrial fibrillation in critically ill patients
  publication-title: Canadian Journal of Research
– ident: ref39
  doi: 10.1109/TSMC.2017.2705582
– ident: ref33
  doi: 10.1109/EMBC.2019.8856496
– volume: 19
  start-page: 753
  year: 2017
  ident: ref40
  article-title: Smart detection of atrial fibrillation
  publication-title: Europace
– ident: ref22
  doi: 10.1016/j.jelectrocard.2009.06.006
– ident: ref2
  doi: 10.1016/j.ahj.2013.03.020
– ident: ref41
  doi: 10.1016/j.bspc.2009.11.001
– ident: ref6
  doi: 10.1371/journal.pone.0127168
– ident: ref37
  doi: 10.1109/ACCESS.2019.2894092
– volume: 53
  start-page: 287
  year: 2015
  ident: ref24
  article-title: Detection of occult paroxysmal atrial fibrillation
  publication-title: Med Biological Eng Comput
  doi: 10.1007/s11517-014-1234-y
– ident: ref1
  doi: 10.1056/NEJMp1611928
– ident: ref25
  doi: 10.1016/j.compbiomed.2015.03.005
– ident: ref48
  doi: 10.1016/j.ahj.2006.02.016
– ident: ref18
  doi: 10.1109/TBME.2010.2096506
– ident: ref4
  doi: 10.1001/jama.2011.1615
– ident: ref46
  doi: 10.1016/j.eswa.2011.08.025
– ident: ref47
  doi: 10.1056/NEJMoa1105575
– ident: ref30
  doi: 10.1016/j.cmpb.2016.04.009
– ident: ref45
  doi: 10.1016/j.eswa.2007.12.016
– ident: ref15
  doi: 10.1007/s10439-009-9740-z
– ident: ref5
  doi: 10.1007/s12471-014-0641-x
– ident: ref44
  doi: 10.1109/TCSVT.2018.2799214
– ident: ref28
  doi: 10.1142/S0219519417400449
– ident: ref42
  doi: 10.1109/JBHI.2015.2418195
– ident: ref16
  doi: 10.1186/1475-925X-13-18
– ident: ref12
  doi: 10.1016/j.bspc.2015.01.007
– ident: ref13
  doi: 10.1046/j.1460-9592.2002.00457.x
– year: 2019
  ident: ref49
  article-title: Mathworks - makers of matlab and simulink
– start-page: 897
  year: 0
  ident: ref38
  article-title: Is it possible to detect atrial fibrillation by simply using RR intervals?
  publication-title: Proc IEEE Comput Cardiol
– ident: ref23
  doi: 10.1109/ICPR.2008.4761755
– ident: ref11
  doi: 10.1016/0022-0736(92)90123-H
– ident: ref7
  doi: 10.1109/ACCESS.2019.2926199
SSID ssj0000816896
Score 2.4939413
Snippet Sepsis is defined by life-threatening organ dysfunction during infection and is one of the leading causes of critical illness. During sepsis, there is high...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3124
SubjectTerms Algorithms
Annotations
Atrial fibrillation
Atrial Fibrillation - diagnosis
Automation
Cardiac arrhythmia
Detection algorithms
EKG
Electrocardiography
Entropy
Entropy (Information theory)
Feature extraction
Fibrillation
Heart Atria
Heart rate
Heart rate variability
Humans
ICU
Intensive care
Intensive Care Units
Learning algorithms
Machine learning
MIMICs
Morbidity
P waves
P-wave
Poincaré plot
Premature beat
Segments
Sepsis
Sepsis - diagnosis
Ventricle
Title Atrial Fibrillation Detection During Sepsis: Study on MIMIC III ICU Data
URI https://ieeexplore.ieee.org/document/9094371
https://www.ncbi.nlm.nih.gov/pubmed/32750900
https://www.proquest.com/docview/2460153680
https://www.proquest.com/docview/2430662247
https://pubmed.ncbi.nlm.nih.gov/PMC7670858
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEBZpDqWXvtKH8ygq9FTqjVYPa91bsumyDmwv7UJuRrZGNDR4Q9d7aH59ZmSvSUIovQlLMpJGGs1oHh9jn7zKnfAyT8m6mWqf5cgHvU99CIEAr0SICUwX37P5Up9fmIsd9mWIhQGA6HwGIypGW75f1Rt6KjvOyQ2OAsafoOLWxWoN7ykRQCLCcUkspHgQdW_ExFEcn5_OC1QGpRgh-zVjgga_cw1FXJXHRMyHnpJ3rp7ZC7bYDrrzOPk92rTVqL55kM_xf2f1kj3vZVB-0m2aV2wHmtfs6aK3su-x-UnE8uAzCge46pzl-Bm00WsLSzGykf-A6_Xl-isnT8S_HL8vkA9OeVEUvJgu-Zlr3Ru2nH37OZ2nPeJCWmtt23RsnXRVsMaqykgUJkOO-t9k7IwPVeZQVatq1O8IncxBUMF6sBKyEGpTqQlI9ZbtNqsG3jOuwWfKijoIMNo7l4NVtQymQhUKuQgkTGwJUNZ9OnJCxbgqo1oi8pJoVhLNyp5mCfs8dLnucnH8q_EeLfXQsF_lhB1uqVz2p3VdSo1qqVHZRCTs41CN54yMJ66B1YbaKEqWL7VN2LtuUwz_VpQkPxfY297bLkMDyuF9v6a5_BVzedsMV9NM9h8f7QF7RnPqYh8P2W77ZwNHKAS11Ye4-28BhIAAtA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4hKrW90ActpEDrSj1VzZK143jTGyxdJZRwKStxi5zYVlFRFnWzh_bXM-NkI0Co6s2K7cj22OMZz-MD-GREqiPD05Csm2FskhT5oDGhcc4R4FXkfALT4jzJ5vHppbzcgC9DLIy11juf2REVvS3fLOoVPZUdpuQGRwHjT_Del-MuWmt4UfEQEh6Qi2MhxKMY92ZMHMfh6XGWozrIoxEyYDkmcPA7F5FHVnlMyHzoK3nn8pm9gGI97M7n5Ndo1Vaj-u-DjI7_O6-XsNVLoeyo2zavYMM2r-Fp0dvZtyE78mgebEYBAdeduxw7sa3328KSj21kP-zN8mr5lZEv4h-G3wvkhFOW5znLp3N2olv9BuazbxfTLOwxF8I6jlUbjpXmunJKKlFJjuKkS1EDnIy1NK5KNCprVY0aHuGTaeuEU8YqbhPnalmJieXiLWw2i8buAoutSYSKahdZGRutU6tEzZ2sUIlCPmIDiNYEKOs-ITnhYlyXXjGJ0pJoVhLNyp5mAXweutx02Tj-1Xiblnpo2K9yAPtrKpf9eV2WPEbFVIpkEgXwcajGk0bmE93YxYraCEqXz2MVwE63KYZ_C0qTn0bYW93bLkMDyuJ9v6a5-umzeasEV1NO3j0-2g_wLLsozsqz_Pz7Hjyn-XWRkPuw2f5e2QMUidrqvT8JtwrAA_0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atrial+Fibrillation+Detection+During+Sepsis%3A+Study+on+MIMIC+III+ICU+Data&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Bashar%2C+Syed+Khairul&rft.au=Hossain%2C+Md+Billal&rft.au=Ding%2C+Eric&rft.au=Walkey%2C+Allan+J&rft.date=2020-11-01&rft.eissn=2168-2208&rft.volume=24&rft.issue=11&rft.spage=3124&rft_id=info:doi/10.1109%2FJBHI.2020.2995139&rft_id=info%3Apmid%2F32750900&rft.externalDocID=32750900
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon