Cannabis Use Is Quantitatively Associated with Nucleus Accumbens and Amygdala Abnormalities in Young Adult Recreational Users
Marijuana is the most commonly used illicit drug in the United States, but little is known about its effects on the human brain, particularly on reward/aversion regions implicated in addiction, such as the nucleus accumbens and amygdala. Animal studies show structural changes in brain regions such a...
Saved in:
Published in | The Journal of neuroscience Vol. 34; no. 16; pp. 5529 - 5538 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Society for Neuroscience
16.04.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Marijuana is the most commonly used illicit drug in the United States, but little is known about its effects on the human brain, particularly on reward/aversion regions implicated in addiction, such as the nucleus accumbens and amygdala. Animal studies show structural changes in brain regions such as the nucleus accumbens after exposure to Δ9-tetrahydrocannabinol, but less is known about cannabis use and brain morphometry in these regions in humans. We collected high-resolution MRI scans on young adult recreational marijuana users and nonusing controls and conducted three independent analyses of morphometry in these structures: (1) gray matter density using voxel-based morphometry, (2) volume (total brain and regional volumes), and (3) shape (surface morphometry). Gray matter density analyses revealed greater gray matter density in marijuana users than in control participants in the left nucleus accumbens extending to subcallosal cortex, hypothalamus, sublenticular extended amygdala, and left amygdala, even after controlling for age, sex, alcohol use, and cigarette smoking. Trend-level effects were observed for a volume increase in the left nucleus accumbens only. Significant shape differences were detected in the left nucleus accumbens and right amygdala. The left nucleus accumbens showed salient exposure-dependent alterations across all three measures and an altered multimodal relationship across measures in the marijuana group. These data suggest that marijuana exposure, even in young recreational users, is associated with exposure-dependent alterations of the neural matrix of core reward structures and is consistent with animal studies of changes in dendritic arborization. |
---|---|
AbstractList | Marijuana is the most commonly used illicit drug in the United States, but little is known about its effects on the human brain, particularly on reward/aversion regions implicated in addiction, such as the nucleus accumbens and amygdala. Animal studies show structural changes in brain regions such as the nucleus accumbens after exposure to Δ9-tetrahydrocannabinol, but less is known about cannabis use and brain morphometry in these regions in humans. We collected high-resolution MRI scans on young adult recreational marijuana users and nonusing controls and conducted three independent analyses of morphometry in these structures: (1) gray matter density using voxel-based morphometry, (2) volume (total brain and regional volumes), and (3) shape (surface morphometry). Gray matter density analyses revealed greater gray matter density in marijuana users than in control participants in the left nucleus accumbens extending to subcallosal cortex, hypothalamus, sublenticular extended amygdala, and left amygdala, even after controlling for age, sex, alcohol use, and cigarette smoking. Trend-level effects were observed for a volume increase in the left nucleus accumbens only. Significant shape differences were detected in the left nucleus accumbens and right amygdala. The left nucleus accumbens showed salient exposure-dependent alterations across all three measures and an altered multimodal relationship across measures in the marijuana group. These data suggest that marijuana exposure, even in young recreational users, is associated with exposure-dependent alterations of the neural matrix of core reward structures and is consistent with animal studies of changes in dendritic arborization. Marijuana is the most commonly used illicit drug in the United States, but little is known about its effects on the human brain, particularly on reward/aversion regions implicated in addiction, such as the nucleus accumbens and amygdala. Animal studies show structural changes in brain regions such as the nucleus accumbens after exposure to Δ9-tetrahydrocannabinol, but less is known about cannabis use and brain morphometry in these regions in humans. We collected high-resolution MRI scans on young adult recreational marijuana users and nonusing controls and conducted three independent analyses of morphometry in these structures: (1) gray matter density using voxel-based morphometry, (2) volume (total brain and regional volumes), and (3) shape (surface morphometry). Gray matter density analyses revealed greater gray matter density in marijuana users than in control participants in the left nucleus accumbens extending to subcallosal cortex, hypothalamus, sublenticular extended amygdala, and left amygdala, even after controlling for age, sex, alcohol use, and cigarette smoking. Trend-level effects were observed for a volume increase in the left nucleus accumbens only. Significant shape differences were detected in the left nucleus accumbens and right amygdala. The left nucleus accumbens showed salient exposure-dependent alterations across all three measures and an altered multimodal relationship across measures in the marijuana group. These data suggest that marijuana exposure, even in young recreational users, is associated with exposure-dependent alterations of the neural matrix of core reward structures and is consistent with animal studies of changes in dendritic arborization.Marijuana is the most commonly used illicit drug in the United States, but little is known about its effects on the human brain, particularly on reward/aversion regions implicated in addiction, such as the nucleus accumbens and amygdala. Animal studies show structural changes in brain regions such as the nucleus accumbens after exposure to Δ9-tetrahydrocannabinol, but less is known about cannabis use and brain morphometry in these regions in humans. We collected high-resolution MRI scans on young adult recreational marijuana users and nonusing controls and conducted three independent analyses of morphometry in these structures: (1) gray matter density using voxel-based morphometry, (2) volume (total brain and regional volumes), and (3) shape (surface morphometry). Gray matter density analyses revealed greater gray matter density in marijuana users than in control participants in the left nucleus accumbens extending to subcallosal cortex, hypothalamus, sublenticular extended amygdala, and left amygdala, even after controlling for age, sex, alcohol use, and cigarette smoking. Trend-level effects were observed for a volume increase in the left nucleus accumbens only. Significant shape differences were detected in the left nucleus accumbens and right amygdala. The left nucleus accumbens showed salient exposure-dependent alterations across all three measures and an altered multimodal relationship across measures in the marijuana group. These data suggest that marijuana exposure, even in young recreational users, is associated with exposure-dependent alterations of the neural matrix of core reward structures and is consistent with animal studies of changes in dendritic arborization. Marijuana is the most commonly used illicit drug in the United States, but little is known about its effects on the human brain, particularly on reward/aversion regions implicated in addiction, such as the nucleus accumbens and amygdala. Animal studies show structural changes in brain regions such as the nucleus accumbens after exposure to [Delta]9-tetrahydrocannabinol, but less is known about cannabis use and brain morphometry in these regions in humans. We collected high-resolution MRI scans on young adult recreational marijuana users and nonusing controls and conducted three independent analyses of morphometry in these structures: (1) gray matter density using voxel-based morphometry, (2) volume (total brain and regional volumes), and (3) shape (surface morphometry). Gray matter density analyses revealed greater gray matter density in marijuana users than in control participants in the left nucleus accumbens extending to subcallosal cortex, hypothalamus, sublenticular extended amygdala, and left amygdala, even after controlling for age, sex, alcohol use, and cigarette smoking. Trend-level effects were observed for a volume increase in the left nucleus accumbens only. Significant shape differences were detected in the left nucleus accumbens and right amygdala. The left nucleus accumbens showed salient exposure-dependent alterations across all three measures and an altered multimodal relationship across measures in the marijuana group. These data suggest that marijuana exposure, even in young recreational users, is associated with exposure-dependent alterations of the neural matrix of core reward structures and is consistent with animal studies of changes in dendritic arborization. |
Author | Gilman, Jodi M. van der Kouwe, Andre Breiter, Hans C. Lee, Myung Joo Kuster, John K. Blood, Anne J. Lee, Sang Kim, Byoung Woo Makris, Nikos |
Author_xml | – sequence: 1 givenname: Jodi M. surname: Gilman fullname: Gilman, Jodi M. – sequence: 2 givenname: John K. surname: Kuster fullname: Kuster, John K. – sequence: 3 givenname: Sang surname: Lee fullname: Lee, Sang – sequence: 4 givenname: Myung Joo surname: Lee fullname: Lee, Myung Joo – sequence: 5 givenname: Byoung Woo surname: Kim fullname: Kim, Byoung Woo – sequence: 6 givenname: Nikos surname: Makris fullname: Makris, Nikos – sequence: 7 givenname: Andre surname: van der Kouwe fullname: van der Kouwe, Andre – sequence: 8 givenname: Anne J. surname: Blood fullname: Blood, Anne J. – sequence: 9 givenname: Hans C. surname: Breiter fullname: Breiter, Hans C. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24741043$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkkFv1DAQhS1URLeFv1D5yCVbO3biREJI0arQRVUrSnvgZDn2ZGvk2CV2ivbAf8dLywq49GRp5nvPM5p3hA588IDQCSVLWpXs9NPl2e311ZfVeskFrwrKliWh_AVa5G5blJzQA7QgpSBFnYFDdBTjN0KIIFS8QodlrlHC2QL9XCnvVW8jvo2A1xF_npVPNqlkH8BtcRdj0FYlMPiHTXf4ctYO5og7reexBx-x8gZ343ZjlFO4632YRuVsshCx9fhrmP0Gd2Z2CV-DniAbB6_c7rspvkYvB-UivHl6j9HNh7Ob1XlxcfVxveouCs25SAUlom4FE0YRplpBDTDDQAyiraGty9qovmdD2YiGqIrwypCBGDPwvuJ0yMJj9P7R9n7uRzAafJqUk_eTHdW0lUFZ-W_H2zu5CQ-StU3DSZsN3j4ZTOH7DDHJ0UYNzikPYY6SNqVoGkEb_jxaUdHkdWqW0ZO_x9rP8-c6GagfAT2FGCcY9gglchcDuY-B3MVAUiZ3McjCd_8J9e-Tht161j0n_wW9brvN |
CitedBy_id | crossref_primary_10_1016_j_addbeh_2018_10_007 crossref_primary_10_1016_j_bpsgos_2024_100361 crossref_primary_10_1080_07448481_2020_1751171 crossref_primary_10_1517_14656566_2016_1114101 crossref_primary_10_1016_j_pharmthera_2018_10_006 crossref_primary_10_1016_j_msard_2021_102830 crossref_primary_10_3389_fpsyt_2018_00175 crossref_primary_10_1038_s41598_017_01275_5 crossref_primary_10_1124_pr_115_010967 crossref_primary_10_1016_j_drugalcdep_2019_05_012 crossref_primary_10_1073_pnas_1415297111 crossref_primary_10_1016_j_nicl_2021_102664 crossref_primary_10_1016_j_pcl_2019_08_004 crossref_primary_10_1007_s40429_018_0233_8 crossref_primary_10_1111_adb_12652 crossref_primary_10_1016_j_pscychresns_2023_111613 crossref_primary_10_1038_s41380_019_0577_z crossref_primary_10_3390_biomedicines12030681 crossref_primary_10_1007_s00213_017_4606_9 crossref_primary_10_3389_fpsyt_2019_01005 crossref_primary_10_1016_j_bbr_2024_115150 crossref_primary_10_1111_add_14629 crossref_primary_10_1007_s11934_020_01031_9 crossref_primary_10_1002_brb3_459 crossref_primary_10_1177_00243639221141223 crossref_primary_10_1371_journal_pone_0132322 crossref_primary_10_1017_S0033291718002672 crossref_primary_10_1016_j_biopsych_2015_08_024 crossref_primary_10_1016_j_pscychresns_2019_04_011 crossref_primary_10_17826_cumj_1349328 crossref_primary_10_2174_1389201023666220614145535 crossref_primary_10_5937_zdravzast50_35543 crossref_primary_10_1016_j_addbeh_2015_12_008 crossref_primary_10_3174_ajnr_A8215 crossref_primary_10_3389_fpsyt_2020_00859 crossref_primary_10_1002_cncr_30185 crossref_primary_10_1038_s41386_021_01226_9 crossref_primary_10_3389_fpsyt_2021_643193 crossref_primary_10_1097_01_NT_0000450999_79976_60 crossref_primary_10_1007_s11926_016_0625_5 crossref_primary_10_1007_s40429_016_0102_2 crossref_primary_10_1080_00325481_2018_1413281 crossref_primary_10_1016_j_pediatrneurol_2016_09_004 crossref_primary_10_1007_s40615_020_00915_3 crossref_primary_10_1016_j_biopsych_2015_11_013 crossref_primary_10_1002_ppul_23836 crossref_primary_10_1038_npp_2015_295 crossref_primary_10_1007_s40429_020_00335_7 crossref_primary_10_4303_jdar_236017 crossref_primary_10_3390_ijms24065251 crossref_primary_10_5409_wjcp_v11_i1_1 crossref_primary_10_1111_adb_13169 crossref_primary_10_1093_pch_21_1_31 crossref_primary_10_1016_j_euroneuro_2018_04_003 crossref_primary_10_1016_j_addbeh_2019_106152 crossref_primary_10_1016_j_nicl_2016_06_006 crossref_primary_10_1080_09687637_2016_1209645 crossref_primary_10_1016_j_econedurev_2018_08_003 crossref_primary_10_1111_adb_12874 crossref_primary_10_1177_1758835919866362 crossref_primary_10_1016_j_pnpbp_2020_109897 crossref_primary_10_1007_s00406_019_00979_1 crossref_primary_10_1016_j_brainres_2014_11_034 crossref_primary_10_1097_OGX_0000000000000685 crossref_primary_10_4236_jbbs_2020_108022 crossref_primary_10_1016_j_prrv_2016_11_001 crossref_primary_10_1016_j_pscychresns_2018_03_008 crossref_primary_10_3389_fpubh_2019_00311 crossref_primary_10_1016_j_neuropharm_2021_108500 crossref_primary_10_1002_jnr_23901 crossref_primary_10_1017_S1092852915000395 crossref_primary_10_1097_YCO_0000000000000150 crossref_primary_10_1016_j_euroneuro_2023_05_005 crossref_primary_10_33590_emjneurol_21_07_suppl_3 crossref_primary_10_1016_j_neuint_2022_105406 crossref_primary_10_1177_20503121211000909 crossref_primary_10_1016_j_pscychresns_2015_09_009 crossref_primary_10_3389_fpsyt_2023_1083334 crossref_primary_10_1016_j_ypmed_2017_06_004 crossref_primary_10_1093_abm_kax027 crossref_primary_10_1016_j_dcn_2015_10_004 crossref_primary_10_3758_s13415_016_0421_8 crossref_primary_10_1111_pme_12736 crossref_primary_10_1177_1087054716640109 crossref_primary_10_1007_s00429_018_1690_5 crossref_primary_10_1007_s00415_017_8715_5 crossref_primary_10_1523_JNEUROSCI_3375_17_2018 crossref_primary_10_1007_s00213_020_05608_7 crossref_primary_10_1017_S0954579424000804 crossref_primary_10_3389_fpsyt_2017_00285 crossref_primary_10_1177_1077559515620853 crossref_primary_10_1523_JNEUROSCI_2946_14_2015 crossref_primary_10_1017_S0033291715002342 crossref_primary_10_3389_fpsyt_2021_745193 crossref_primary_10_1007_s12519_024_00828_9 crossref_primary_10_1016_j_dcn_2015_04_006 crossref_primary_10_1080_00243639_2015_1125083 crossref_primary_10_1177_0024363920916284 crossref_primary_10_1007_s40429_017_0141_3 crossref_primary_10_1016_j_drugalcdep_2015_06_016 crossref_primary_10_1080_00952990_2019_1634086 crossref_primary_10_3390_brainsci13050787 crossref_primary_10_1093_cercor_bhaa087 crossref_primary_10_1016_j_pscychresns_2017_03_007 crossref_primary_10_1016_j_biopsych_2020_09_021 crossref_primary_10_1001_jamapsychiatry_2018_4500 crossref_primary_10_1371_journal_pone_0155302 crossref_primary_10_1111_soin_12359 crossref_primary_10_1177_13591053211002248 crossref_primary_10_1007_s11481_018_9782_9 crossref_primary_10_1038_s41398_021_01382_y crossref_primary_10_1016_j_psychres_2020_113588 crossref_primary_10_1089_can_2021_0099 crossref_primary_10_3899_jrheum_150103 crossref_primary_10_4103_ijpn_ijpn_1_21 crossref_primary_10_1016_j_jadohealth_2014_05_006 crossref_primary_10_3389_fphar_2014_00259 crossref_primary_10_1016_j_euroneuro_2016_08_015 crossref_primary_10_3934_publichealth_2019_1_4 crossref_primary_10_7759_cureus_28361 crossref_primary_10_1038_s41386_022_01413_2 crossref_primary_10_1002_hbm_25131 crossref_primary_10_1007_s11469_020_00226_y crossref_primary_10_1038_s41598_022_22313_x crossref_primary_10_1111_add_14084 crossref_primary_10_1038_s41386_019_0347_2 crossref_primary_10_1001_jamapsychiatry_2018_0335 crossref_primary_10_1016_j_drugpo_2017_10_003 crossref_primary_10_1521_jscp_2019_38_6_451 crossref_primary_10_1016_j_neulet_2021_136141 crossref_primary_10_1523_JNEUROSCI_0190_17_2017 crossref_primary_10_2217_ijr_14_34 crossref_primary_10_1080_00913847_2024_2375788 crossref_primary_10_1371_journal_pone_0152482 crossref_primary_10_3389_fncel_2016_00264 crossref_primary_10_1038_mp_2017_200 crossref_primary_10_1177_1090198120965509 crossref_primary_10_1089_can_2017_0030 crossref_primary_10_3917_psyt_232_0111 crossref_primary_10_1176_appi_focus_17204 crossref_primary_10_3390_medicina55070396 crossref_primary_10_1016_j_drugalcdep_2016_09_002 crossref_primary_10_15252_embr_201439742 crossref_primary_10_1007_s00429_015_1158_9 crossref_primary_10_1007_s13311_015_0375_5 crossref_primary_10_1111_ajad_12270 crossref_primary_10_1177_20503245221095228 crossref_primary_10_1016_j_cobeha_2016_10_004 crossref_primary_10_1016_j_jbusvent_2020_106088 crossref_primary_10_1586_14737175_2014_985209 crossref_primary_10_1111_add_14252 crossref_primary_10_1016_S1474_4422_14_70251_0 crossref_primary_10_1177_0269881117718380 crossref_primary_10_1016_j_dcn_2015_05_005 crossref_primary_10_1080_00952990_2017_1306746 crossref_primary_10_1159_000533524 crossref_primary_10_1177_02698811221117523 crossref_primary_10_1590_1415_4714_2018v21n4p715_3 crossref_primary_10_1111_bph_13581 crossref_primary_10_1016_S1042_0991_15_30855_0 crossref_primary_10_1093_pm_pnx143 crossref_primary_10_1016_j_drugalcdep_2016_01_032 crossref_primary_10_1371_journal_pone_0149764 crossref_primary_10_1016_j_pscychresns_2017_09_003 crossref_primary_10_1016_j_spen_2023_101052 crossref_primary_10_1016_j_pscychresns_2016_05_009 crossref_primary_10_1016_j_josat_2024_209472 crossref_primary_10_1016_j_ctcp_2020_101154 crossref_primary_10_1016_j_bpsc_2018_02_006 crossref_primary_10_1111_ajad_13093 crossref_primary_10_1093_ijnp_pyv061 crossref_primary_10_3390_brainsci10020102 crossref_primary_10_1016_j_jebo_2018_07_003 |
Cites_doi | 10.1111/j.1360-0443.1993.tb02093.x 10.1053/scnp.2001.22927 10.1016/j.euroneuro.2003.08.005 10.1136/jnnp.23.1.56 10.1097/WNR.0b013e3282fa6db9 10.1016/j.drugalcdep.2004.06.011 10.1046/j.1460-9568.1999.00576.x 10.1073/pnas.191355898 10.1016/j.cogbrainres.2005.02.016 10.1007/BF02245916 10.1016/S0009-9120(02)00325-9 10.1002/hbm.20595 10.1002/ana.410250110 10.1016/S0006-8993(00)02739-6 10.1002/syn.20106 10.1136/bmj.326.7396.942 10.1016/j.neuron.2004.10.027 10.1186/1471-2377-8-8 10.1016/j.pscychresns.2006.08.006 10.1080/07448480309595719 10.1002/hbm.1058 10.1192/bjp.bp.109.067314 10.1006/nimg.2000.0582 10.1006/nimg.1998.0384 10.1016/0306-4603(86)90040-7 10.1073/pnas.92.26.12304 10.1363/3401508 10.1016/j.biopsych.2006.08.027 10.1002/ajmg.b.30944 10.1016/j.media.2009.05.004 10.1371/journal.pone.0031654 10.1007/978-1-4757-0145-6_1 10.3109/10826084.2010.482443 10.1001/archpsyc.65.6.694 10.1016/S0092-6566(03)00046-1 10.1016/S0896-6273(01)00303-8 10.1097/00001756-200112210-00024 10.1016/S0896-6273(02)00569-X 10.1038/npp.2009.110 10.1016/j.neuroimage.2005.03.035 10.1016/j.neuroimage.2007.12.025 10.1371/journal.pone.0013945 10.1016/S0893-133X(01)00371-2 10.1038/sj.bjp.0705931 10.1038/npp.2012.92 10.1073/pnas.0703472104 10.1016/j.neuron.2008.08.011 10.1523/JNEUROSCI.2134-04.2004 10.1016/S0896-6273(00)80374-8 10.1016/j.neuroimage.2011.09.046 10.1523/JNEUROSCI.0086-08.2008 10.1176/ajp.156.1.11 10.1523/JNEUROSCI.2571-07.2007 10.1038/clpt.2010.318 10.1093/cercor/4.4.344 10.1002/syn.20313 10.1176/appi.neuropsych.18.3.318 |
ContentType | Journal Article |
Copyright | Copyright © 2014 the authors 0270-6474/14/345529-10$15.00/0 2014 |
Copyright_xml | – notice: Copyright © 2014 the authors 0270-6474/14/345529-10$15.00/0 2014 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TK 5PM |
DOI | 10.1523/JNEUROSCI.4745-13.2014 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Neurosciences Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitleList | MEDLINE - Academic Neurosciences Abstracts CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1529-2401 |
EndPage | 5538 |
ExternalDocumentID | PMC3988409 24741043 10_1523_JNEUROSCI_4745_13_2014 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: PHS HHS grantid: NIDA 026104 – fundername: PHS HHS grantid: NIDA 14118 – fundername: NIDA NIH HHS grantid: K01 DA034093 – fundername: PHS HHS grantid: NIDA 027804 – fundername: PHS HHS grantid: NIDA 026002 – fundername: PHS HHS grantid: NIDA 034093 – fundername: PHS HHS grantid: NINDS 052368 |
GroupedDBID | --- -DZ -~X .55 18M 2WC 34G 39C 53G 5GY 5RE 5VS AAFWJ AAJMC AAYXX ABBAR ABIVO ACGUR ACNCT ADBBV ADCOW ADHGD AENEX AETEA AFCFT AFOSN AFSQR AHWXS ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW CITATION CS3 DIK DU5 E3Z EBS EJD F5P GX1 H13 HYE H~9 KQ8 L7B OK1 P0W P2P QZG R.V RHI RPM TFN TR2 W8F WH7 WOQ X7M XJT YBU YHG YKV YNH YSK CGR CUY CVF ECM EIF NPM 7X8 7TK 5PM |
ID | FETCH-LOGICAL-c447t-10769737da03a971de3d3e7f796e9626dabb3f28780a5045d0f0ddf4b541f973 |
ISSN | 0270-6474 1529-2401 |
IngestDate | Thu Aug 21 18:37:10 EDT 2025 Thu Jul 10 18:20:20 EDT 2025 Fri Jul 11 13:42:06 EDT 2025 Thu Apr 03 07:08:39 EDT 2025 Tue Jul 01 03:47:11 EDT 2025 Thu Apr 24 23:09:00 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Keywords | reward cannabis marijuana topology/shape multimodal imaging gray matter density |
Language | English |
License | https://creativecommons.org/licenses/by-nc-sa/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c447t-10769737da03a971de3d3e7f796e9626dabb3f28780a5045d0f0ddf4b541f973 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 A.J.B. and H.C.B. contributed equally to this work. Author contributions: J.M.G., M.J.L., B.K., N.M., A.J.v.d.K., A.B., and H.C.B. designed research; J.M.G., J.K.K., S.L., and A.J.v.d.K. performed research; M.J.L., B.K., A.B., and H.C.B. contributed unpublished reagents/analytic tools; J.M.G., J.K.K., S.L., M.J.L., N.M., A.B., and H.C.B. analyzed data; J.M.G., A.B., and H.C.B. wrote the paper. J.K.K., S.L., and M.J.L. contributed equally to this work. |
OpenAccessLink | https://www.jneurosci.org/content/jneuro/34/16/5529.full.pdf |
PMID | 24741043 |
PQID | 1517876963 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3988409 proquest_miscellaneous_1827887184 proquest_miscellaneous_1517876963 pubmed_primary_24741043 crossref_primary_10_1523_JNEUROSCI_4745_13_2014 crossref_citationtrail_10_1523_JNEUROSCI_4745_13_2014 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-04-16 |
PublicationDateYYYYMMDD | 2014-04-16 |
PublicationDate_xml | – month: 04 year: 2014 text: 2014-04-16 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of neuroscience |
PublicationTitleAlternate | J Neurosci |
PublicationYear | 2014 |
Publisher | Society for Neuroscience |
Publisher_xml | – name: Society for Neuroscience |
References | 2023041304102392000_34.16.5529.3 2023041304102392000_34.16.5529.27 2023041304102392000_34.16.5529.2 2023041304102392000_34.16.5529.26 2023041304102392000_34.16.5529.5 2023041304102392000_34.16.5529.25 2023041304102392000_34.16.5529.4 2023041304102392000_34.16.5529.24 2023041304102392000_34.16.5529.7 2023041304102392000_34.16.5529.23 2023041304102392000_34.16.5529.6 2023041304102392000_34.16.5529.22 2023041304102392000_34.16.5529.9 2023041304102392000_34.16.5529.21 2023041304102392000_34.16.5529.8 2023041304102392000_34.16.5529.20 2023041304102392000_34.16.5529.61 2023041304102392000_34.16.5529.60 2023041304102392000_34.16.5529.1 2023041304102392000_34.16.5529.19 2023041304102392000_34.16.5529.18 2023041304102392000_34.16.5529.17 2023041304102392000_34.16.5529.38 2023041304102392000_34.16.5529.37 2023041304102392000_34.16.5529.36 2023041304102392000_34.16.5529.35 2023041304102392000_34.16.5529.34 2023041304102392000_34.16.5529.33 2023041304102392000_34.16.5529.32 2023041304102392000_34.16.5529.31 2023041304102392000_34.16.5529.30 2023041304102392000_34.16.5529.29 2023041304102392000_34.16.5529.28 2023041304102392000_34.16.5529.49 2023041304102392000_34.16.5529.48 2023041304102392000_34.16.5529.47 2023041304102392000_34.16.5529.46 2023041304102392000_34.16.5529.45 2023041304102392000_34.16.5529.44 2023041304102392000_34.16.5529.43 2023041304102392000_34.16.5529.42 2023041304102392000_34.16.5529.41 2023041304102392000_34.16.5529.40 Childress (2023041304102392000_34.16.5529.14) 1999; 156 2023041304102392000_34.16.5529.39 2023041304102392000_34.16.5529.16 2023041304102392000_34.16.5529.15 2023041304102392000_34.16.5529.59 2023041304102392000_34.16.5529.58 2023041304102392000_34.16.5529.13 2023041304102392000_34.16.5529.57 2023041304102392000_34.16.5529.12 2023041304102392000_34.16.5529.56 2023041304102392000_34.16.5529.11 2023041304102392000_34.16.5529.55 2023041304102392000_34.16.5529.10 2023041304102392000_34.16.5529.54 2023041304102392000_34.16.5529.53 2023041304102392000_34.16.5529.52 2023041304102392000_34.16.5529.51 2023041304102392000_34.16.5529.50 19525140 - Med Image Anal. 2009 Aug;13(4):543-63 15795138 - Brain Res Cogn Brain Res. 2005 Apr;23(1):107-18 9892292 - Am J Psychiatry. 1999 Jan;156(1):11-8 21289620 - Clin Pharmacol Ther. 2011 Mar;89(3):400-7 9918726 - Neuroimage. 1999 Jan;9(1):18-45 22384048 - PLoS One. 2012;7(2):e31654 15635590 - Synapse. 2005 Mar 1;55(3):183-91 10860804 - Neuroimage. 2000 Jun;11(6 Pt 1):805-21 14399272 - J Neurol Neurosurg Psychiatry. 1960 Feb;23:56-62 15541319 - Neuron. 2004 Nov 18;44(4):729-40 14717576 - J Am Coll Health. 2003 Jul-Aug;52(1):17-24 20118463 - Br J Psychiatry. 2010 Feb;196(2):150-7 18440913 - Int Fam Plan Perspect. 2008 Mar;34(1):15-20 14636960 - Eur Neuropsychopharmacol. 2003 Dec;13(6):442-52 7950308 - Cereb Cortex. 1994 Jul-Aug;4(4):344-60 11747097 - Hum Brain Mapp. 2002 Jan;15(1):1-25 17239356 - Biol Psychiatry. 2007 Jun 1;61(11):1281-9 18940597 - Neuron. 2008 Oct 9;60(1):174-88 11447572 - Semin Clin Neuropsychiatry. 2001 Jul;6(3):205-16 11742222 - Neuroreport. 2001 Dec 21;12(18):3973-8 12493577 - Clin Biochem. 2002 Oct;35(7):501-11 15525780 - J Neurosci. 2004 Nov 3;24(44):9953-61 3739800 - Addict Behav. 1986;11(2):149-61 11573015 - Proc Natl Acad Sci U S A. 2001 Sep 25;98(20):11818-23 16963581 - J Neuropsychiatry Clin Neurosci. 2006 Summer;18(3):318-32 21982932 - Neuroimage. 2012 Feb 15;59(4):3845-51 18382272 - Neuroreport. 2008 Apr 16;19(6):609-13 19388013 - Am J Med Genet B Neuropsychiatr Genet. 2009 Sep 5;150B(6):762-81 17535893 - Proc Natl Acad Sci U S A. 2007 Jun 5;104(23):9800-5 18448634 - J Neurosci. 2008 Apr 30;28(18):4583-91 15313883 - Br J Pharmacol. 2004 Sep;143(2):227-34 12727737 - BMJ. 2003 May 3;326(7396):942-3 1776564 - Adv Exp Med Biol. 1991;295:1-42 9331351 - Neuron. 1997 Sep;19(3):591-611 17289354 - Psychiatry Res. 2007 Feb 28;154(2):181-90 18242102 - Neuroimage. 2008 Apr 1;40(2):559-69 10215912 - Eur J Neurosci. 1999 May;11(5):1598-604 11395019 - Neuron. 2001 May;30(2):619-39 21124764 - PLoS One. 2010;5(11):e13945 11832223 - Neuron. 2002 Jan 31;33(3):341-55 11850152 - Neuropsychopharmacology. 2002 Mar;26(3):376-86 15607838 - Drug Alcohol Depend. 2005 Jan 7;77(1):23-30 20590400 - Subst Use Misuse. 2010 Sep;45(11):1787-808 2177204 - Psychopharmacology (Berl). 1990;102(2):156-62 18077695 - J Neurosci. 2007 Dec 12;27(50):13835-42 18570200 - Hum Brain Mapp. 2009 Apr;30(4):1236-45 22669173 - Neuropsychopharmacology. 2012 Oct;37(11):2368-76 15886023 - Neuroimage. 2005 Aug 1;27(1):222-30 18519827 - Arch Gen Psychiatry. 2008 Jun;65(6):694-701 8329970 - Addiction. 1993 Jun;88(6):791-804 19710631 - Neuropsychopharmacology. 2010 Jan;35(1):217-38 16881072 - Synapse. 2006 Nov;60(6):429-36 8618890 - Proc Natl Acad Sci U S A. 1995 Dec 19;92(26):12304-8 10986361 - Brain Res. 2000 Sep 22;877(2):407-10 18412976 - BMC Neurol. 2008;8:8 2643919 - Ann Neurol. 1989 Jan;25(1):61-7 |
References_xml | – ident: 2023041304102392000_34.16.5529.54 doi: 10.1111/j.1360-0443.1993.tb02093.x – ident: 2023041304102392000_34.16.5529.5 doi: 10.1053/scnp.2001.22927 – ident: 2023041304102392000_34.16.5529.39 doi: 10.1016/j.euroneuro.2003.08.005 – ident: 2023041304102392000_34.16.5529.29 doi: 10.1136/jnnp.23.1.56 – ident: 2023041304102392000_34.16.5529.36 doi: 10.1097/WNR.0b013e3282fa6db9 – ident: 2023041304102392000_34.16.5529.47 doi: 10.1016/j.drugalcdep.2004.06.011 – ident: 2023041304102392000_34.16.5529.53 doi: 10.1046/j.1460-9568.1999.00576.x – ident: 2023041304102392000_34.16.5529.6 doi: 10.1073/pnas.191355898 – ident: 2023041304102392000_34.16.5529.28 doi: 10.1016/j.cogbrainres.2005.02.016 – ident: 2023041304102392000_34.16.5529.13 doi: 10.1007/BF02245916 – ident: 2023041304102392000_34.16.5529.22 doi: 10.1016/S0009-9120(02)00325-9 – ident: 2023041304102392000_34.16.5529.15 doi: 10.1002/hbm.20595 – ident: 2023041304102392000_34.16.5529.18 doi: 10.1002/ana.410250110 – ident: 2023041304102392000_34.16.5529.41 doi: 10.1016/S0006-8993(00)02739-6 – ident: 2023041304102392000_34.16.5529.26 doi: 10.1002/syn.20106 – ident: 2023041304102392000_34.16.5529.34 doi: 10.1136/bmj.326.7396.942 – ident: 2023041304102392000_34.16.5529.45 doi: 10.1016/j.neuron.2004.10.027 – ident: 2023041304102392000_34.16.5529.48 doi: 10.1186/1471-2377-8-8 – ident: 2023041304102392000_34.16.5529.60 doi: 10.1016/j.pscychresns.2006.08.006 – ident: 2023041304102392000_34.16.5529.49 doi: 10.1080/07448480309595719 – ident: 2023041304102392000_34.16.5529.50 doi: 10.1002/hbm.1058 – ident: 2023041304102392000_34.16.5529.31 doi: 10.1192/bjp.bp.109.067314 – ident: 2023041304102392000_34.16.5529.3 doi: 10.1006/nimg.2000.0582 – ident: 2023041304102392000_34.16.5529.44 doi: 10.1006/nimg.1998.0384 – ident: 2023041304102392000_34.16.5529.56 doi: 10.1016/0306-4603(86)90040-7 – ident: 2023041304102392000_34.16.5529.51 doi: 10.1073/pnas.92.26.12304 – ident: 2023041304102392000_34.16.5529.23 doi: 10.1363/3401508 – ident: 2023041304102392000_34.16.5529.35 doi: 10.1016/j.biopsych.2006.08.027 – ident: 2023041304102392000_34.16.5529.24 doi: 10.1002/ajmg.b.30944 – ident: 2023041304102392000_34.16.5529.32 doi: 10.1016/j.media.2009.05.004 – ident: 2023041304102392000_34.16.5529.8 doi: 10.1371/journal.pone.0031654 – ident: 2023041304102392000_34.16.5529.33 doi: 10.1007/978-1-4757-0145-6_1 – ident: 2023041304102392000_34.16.5529.42 doi: 10.3109/10826084.2010.482443 – ident: 2023041304102392000_34.16.5529.61 doi: 10.1001/archpsyc.65.6.694 – ident: 2023041304102392000_34.16.5529.27 doi: 10.1016/S0092-6566(03)00046-1 – ident: 2023041304102392000_34.16.5529.11 doi: 10.1016/S0896-6273(01)00303-8 – ident: 2023041304102392000_34.16.5529.17 doi: 10.1097/00001756-200112210-00024 – ident: 2023041304102392000_34.16.5529.21 doi: 10.1016/S0896-6273(02)00569-X – ident: 2023041304102392000_34.16.5529.57 – ident: 2023041304102392000_34.16.5529.40 doi: 10.1038/npp.2009.110 – ident: 2023041304102392000_34.16.5529.58 doi: 10.1016/j.neuroimage.2005.03.035 – ident: 2023041304102392000_34.16.5529.59 doi: 10.1016/j.neuroimage.2007.12.025 – ident: 2023041304102392000_34.16.5529.2 – ident: 2023041304102392000_34.16.5529.7 doi: 10.1371/journal.pone.0013945 – ident: 2023041304102392000_34.16.5529.9 doi: 10.1016/S0893-133X(01)00371-2 – ident: 2023041304102392000_34.16.5529.20 – ident: 2023041304102392000_34.16.5529.43 doi: 10.1038/sj.bjp.0705931 – ident: 2023041304102392000_34.16.5529.55 doi: 10.1038/npp.2012.92 – ident: 2023041304102392000_34.16.5529.12 doi: 10.1073/pnas.0703472104 – ident: 2023041304102392000_34.16.5529.46 doi: 10.1016/j.neuron.2008.08.011 – ident: 2023041304102392000_34.16.5529.4 doi: 10.1523/JNEUROSCI.2134-04.2004 – ident: 2023041304102392000_34.16.5529.10 doi: 10.1016/S0896-6273(00)80374-8 – ident: 2023041304102392000_34.16.5529.16 doi: 10.1016/j.neuroimage.2011.09.046 – ident: 2023041304102392000_34.16.5529.25 doi: 10.1523/JNEUROSCI.0086-08.2008 – volume: 156 start-page: 11 year: 1999 ident: 2023041304102392000_34.16.5529.14 article-title: Limbic activation during cue-induced cocaine craving publication-title: Am J Psychiatry doi: 10.1176/ajp.156.1.11 – ident: 2023041304102392000_34.16.5529.1 – ident: 2023041304102392000_34.16.5529.30 doi: 10.1523/JNEUROSCI.2571-07.2007 – ident: 2023041304102392000_34.16.5529.37 doi: 10.1038/clpt.2010.318 – ident: 2023041304102392000_34.16.5529.19 doi: 10.1093/cercor/4.4.344 – ident: 2023041304102392000_34.16.5529.38 doi: 10.1002/syn.20313 – ident: 2023041304102392000_34.16.5529.52 doi: 10.1176/appi.neuropsych.18.3.318 – reference: 18519827 - Arch Gen Psychiatry. 2008 Jun;65(6):694-701 – reference: 11850152 - Neuropsychopharmacology. 2002 Mar;26(3):376-86 – reference: 20590400 - Subst Use Misuse. 2010 Sep;45(11):1787-808 – reference: 16881072 - Synapse. 2006 Nov;60(6):429-36 – reference: 11747097 - Hum Brain Mapp. 2002 Jan;15(1):1-25 – reference: 14399272 - J Neurol Neurosurg Psychiatry. 1960 Feb;23:56-62 – reference: 11573015 - Proc Natl Acad Sci U S A. 2001 Sep 25;98(20):11818-23 – reference: 15607838 - Drug Alcohol Depend. 2005 Jan 7;77(1):23-30 – reference: 21289620 - Clin Pharmacol Ther. 2011 Mar;89(3):400-7 – reference: 18570200 - Hum Brain Mapp. 2009 Apr;30(4):1236-45 – reference: 11832223 - Neuron. 2002 Jan 31;33(3):341-55 – reference: 15541319 - Neuron. 2004 Nov 18;44(4):729-40 – reference: 12727737 - BMJ. 2003 May 3;326(7396):942-3 – reference: 19388013 - Am J Med Genet B Neuropsychiatr Genet. 2009 Sep 5;150B(6):762-81 – reference: 12493577 - Clin Biochem. 2002 Oct;35(7):501-11 – reference: 18382272 - Neuroreport. 2008 Apr 16;19(6):609-13 – reference: 9892292 - Am J Psychiatry. 1999 Jan;156(1):11-8 – reference: 18440913 - Int Fam Plan Perspect. 2008 Mar;34(1):15-20 – reference: 18412976 - BMC Neurol. 2008;8:8 – reference: 10986361 - Brain Res. 2000 Sep 22;877(2):407-10 – reference: 18242102 - Neuroimage. 2008 Apr 1;40(2):559-69 – reference: 22669173 - Neuropsychopharmacology. 2012 Oct;37(11):2368-76 – reference: 15525780 - J Neurosci. 2004 Nov 3;24(44):9953-61 – reference: 18077695 - J Neurosci. 2007 Dec 12;27(50):13835-42 – reference: 8618890 - Proc Natl Acad Sci U S A. 1995 Dec 19;92(26):12304-8 – reference: 15886023 - Neuroimage. 2005 Aug 1;27(1):222-30 – reference: 1776564 - Adv Exp Med Biol. 1991;295:1-42 – reference: 11447572 - Semin Clin Neuropsychiatry. 2001 Jul;6(3):205-16 – reference: 22384048 - PLoS One. 2012;7(2):e31654 – reference: 16963581 - J Neuropsychiatry Clin Neurosci. 2006 Summer;18(3):318-32 – reference: 20118463 - Br J Psychiatry. 2010 Feb;196(2):150-7 – reference: 10215912 - Eur J Neurosci. 1999 May;11(5):1598-604 – reference: 14717576 - J Am Coll Health. 2003 Jul-Aug;52(1):17-24 – reference: 21982932 - Neuroimage. 2012 Feb 15;59(4):3845-51 – reference: 19710631 - Neuropsychopharmacology. 2010 Jan;35(1):217-38 – reference: 2177204 - Psychopharmacology (Berl). 1990;102(2):156-62 – reference: 9331351 - Neuron. 1997 Sep;19(3):591-611 – reference: 11742222 - Neuroreport. 2001 Dec 21;12(18):3973-8 – reference: 15795138 - Brain Res Cogn Brain Res. 2005 Apr;23(1):107-18 – reference: 9918726 - Neuroimage. 1999 Jan;9(1):18-45 – reference: 11395019 - Neuron. 2001 May;30(2):619-39 – reference: 2643919 - Ann Neurol. 1989 Jan;25(1):61-7 – reference: 17535893 - Proc Natl Acad Sci U S A. 2007 Jun 5;104(23):9800-5 – reference: 3739800 - Addict Behav. 1986;11(2):149-61 – reference: 18448634 - J Neurosci. 2008 Apr 30;28(18):4583-91 – reference: 10860804 - Neuroimage. 2000 Jun;11(6 Pt 1):805-21 – reference: 14636960 - Eur Neuropsychopharmacol. 2003 Dec;13(6):442-52 – reference: 15635590 - Synapse. 2005 Mar 1;55(3):183-91 – reference: 21124764 - PLoS One. 2010;5(11):e13945 – reference: 17289354 - Psychiatry Res. 2007 Feb 28;154(2):181-90 – reference: 17239356 - Biol Psychiatry. 2007 Jun 1;61(11):1281-9 – reference: 7950308 - Cereb Cortex. 1994 Jul-Aug;4(4):344-60 – reference: 18940597 - Neuron. 2008 Oct 9;60(1):174-88 – reference: 8329970 - Addiction. 1993 Jun;88(6):791-804 – reference: 19525140 - Med Image Anal. 2009 Aug;13(4):543-63 – reference: 15313883 - Br J Pharmacol. 2004 Sep;143(2):227-34 |
SSID | ssj0007017 |
Score | 2.532886 |
Snippet | Marijuana is the most commonly used illicit drug in the United States, but little is known about its effects on the human brain, particularly on... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 5529 |
SubjectTerms | Adolescent Adult Amygdala - pathology Female Humans Image Processing, Computer-Assisted Magnetic Resonance Imaging Male Marijuana Smoking - pathology Marijuana Smoking - physiopathology Nucleus Accumbens - pathology Organ Size Severity of Illness Index Young Adult |
Title | Cannabis Use Is Quantitatively Associated with Nucleus Accumbens and Amygdala Abnormalities in Young Adult Recreational Users |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24741043 https://www.proquest.com/docview/1517876963 https://www.proquest.com/docview/1827887184 https://pubmed.ncbi.nlm.nih.gov/PMC3988409 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKcuGCgOWxvGQkxKVKN46dODlW1S7b7lKEtpV6i5zagUpdB5H2UCR-BP-YseM8yq5g4RK1bhy3_r6OZ8bjGYTeBiaHleSRF4VEeSzJAk8EIvIEi4OExIpF0gbITqOzOZsswkWv97MTtbTdZIPl9xvPlfwPqtAGuJpTsv-AbPNQaIDXgC9cAWG43grjkdBaZKuyPy9Vf1yaCE1tD42BCFvvmqmvI8ynJnfxtjQVIkwdEF2lZx5e7T5LsRb9YaaNAru2OVaNH8RKgv7QZOjoqJeA6bx0cfO1WtseMLOqbSdJZsOb96u1c7ZOCrlqnbDn27o2iA3iabyuLkLoUriltW36sDNfa1IUXY8FsYEu1YFKJ9gCDiYrq6rzDJQTvIHd6SFdyezcnI6BXTkbhs5PotzbKkXMtfUgtHkpJlMTFnk5Gg9g0NAj1IT0sXYFrHf9px_T0_nFRTo7WczuoLsBWB6mKMb5pzYBPfdtEefmJ7hD5zDO8c2j7Os714yY32NxO8rN7AG676DDw4piD1FP6UfocKjFprja4XfYxgnbDZhD9KNmHQYa4HGJ91mHW9ZhwzrsWIcb1mFgHa5Zh_dYh1caW9ZhyzrcZR22rHuMZqcns9GZ54p4eEvG-AaWeR4lnHIpfCoSTqSikiqe8yRSCVjTUmQZzcFuj30Rgn0h_dyXMmdZyEgOHZ-gA11o9QxhUFZznwaSZjC_vogSKUUuY9CZM0EViY9QWM90unQJ7k2dlXVqDF1AKG0QSg1CKaGpQegIHTf9vlYpXv7a400NZArS2GyxCa2KbQmdCKyAEaxqf7gnDkwIL4nhOU8r8JtxAxiG-Ax68z1aNDeYbPD7n-jVF5sVniaxcdY8v8W4L9C99n_5Eh1svm3VK9CtN9lry_ZfBRbQnQ |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cannabis+Use+Is+Quantitatively+Associated+with+Nucleus+Accumbens+and+Amygdala+Abnormalities+in+Young+Adult+Recreational+Users&rft.jtitle=The+Journal+of+neuroscience&rft.au=Gilman%2C+Jodi+M&rft.au=Kuster%2C+John+K&rft.au=Lee%2C+Sang&rft.au=Lee%2C+Myung+Joo&rft.date=2014-04-16&rft.issn=0270-6474&rft.eissn=1529-2401&rft.volume=34&rft.issue=16&rft.spage=5529&rft.epage=5538&rft_id=info:doi/10.1523%2FJNEUROSCI.4745-13.2014&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon |