Antibacterial Action of Nanoparticles by Lethal Stretching of Bacterial Cell Membranes

It is commonly accepted that nanoparticles (NPs) can kill bacteria; however, the mechanism of antimicrobial action remains obscure for large NPs that cannot translocate the bacterial cell wall. It is demonstrated that the increase in membrane tension caused by the adsorption of NPs is responsible fo...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 32; no. 52; pp. e2005679 - n/a
Main Authors Linklater, Denver P., Baulin, Vladimir A., Le Guével, Xavier, Fleury, Jean‐Baptiste, Hanssen, Eric, Nguyen, The Hong Phong, Juodkazis, Saulius, Bryant, Gary, Crawford, Russell J., Stoodley, Paul, Ivanova, Elena P.
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.12.2020
Wiley-VCH Verlag
Subjects
Online AccessGet full text

Cover

Loading…
Abstract It is commonly accepted that nanoparticles (NPs) can kill bacteria; however, the mechanism of antimicrobial action remains obscure for large NPs that cannot translocate the bacterial cell wall. It is demonstrated that the increase in membrane tension caused by the adsorption of NPs is responsible for mechanical deformation, leading to cell rupture and death. A biophysical model of the NP–membrane interactions is presented which suggests that adsorbed NPs cause membrane stretching and squeezing. This general phenomenon is demonstrated experimentally using both model membranes and Pseudomonas aeruginosa and Staphylococcus aureus, representing Gram‐positive and Gram‐negative bacteria. Hydrophilic and hydrophobic quasi‐spherical and star‐shaped gold (Au)NPs are synthesized to explore the antibacterial mechanism of non‐translocating AuNPs. Direct observation of nanoparticle‐induced membrane tension and squeezing is demonstrated using a custom‐designed microfluidic device, which relieves contraction of the model membrane surface area and eventual lipid bilayer collapse. Quasi‐spherical nanoparticles exhibit a greater bactericidal action due to a higher interactive affinity, resulting in greater membrane stretching and rupturing, corroborating the theoretical model. Electron microscopy techniques are used to characterize the NP–bacterial‐membrane interactions. This combination of experimental and theoretical results confirm the proposed mechanism of membrane‐tension‐induced (mechanical) killing of bacterial cells by non‐translocating NPs. The mechanism of antimicrobial action for nanoparticles that are unable to translocate across the bacterial cell wall remains obscure. In this work, it is demonstrated that the increase of membrane tension provoked by the adsorption of nanoparticles is responsible for mechanical deformation of the membrane, which leads to bacterial cell rupture and death.
AbstractList It is commonly accepted that nanoparticles (NPs) can kill bacteria; however, the mechanism of antimicrobial action remains obscure for large NPs that cannot translocate the bacterial cell wall. It is demonstrated that the increase in membrane tension caused by the adsorption of NPs is responsible for mechanical deformation, leading to cell rupture and death. A biophysical model of the NP-membrane interactions is presented which suggests that adsorbed NPs cause membrane stretching and squeezing. This general phenomenon is demonstrated experimentally using both model membranes and Pseudomonas aeruginosa and Staphylococcus aureus, representing Gram-positive and Gram-negative bacteria. Hydrophilic and hydrophobic quasi-spherical and star-shaped gold (Au)NPs are synthesized to explore the antibacterial mechanism of non-translocating AuNPs. Direct observation of nanoparticle-induced membrane tension and squeezing is demonstrated using a custom-designed microfluidic device, which relieves contraction of the model membrane surface area and eventual lipid bilayer collapse. Quasi-spherical nanoparticles exhibit a greater bactericidal action due to a higher interactive affinity, resulting in greater membrane stretching and rupturing, corroborating the theoretical model. Electron microscopy techniques are used to characterize the NP-bacterial-membrane interactions. This combination of experimental and theoretical results confirm the proposed mechanism of membrane-tension-induced (mechanical) killing of bacterial cells by non-translocating NPs.It is commonly accepted that nanoparticles (NPs) can kill bacteria; however, the mechanism of antimicrobial action remains obscure for large NPs that cannot translocate the bacterial cell wall. It is demonstrated that the increase in membrane tension caused by the adsorption of NPs is responsible for mechanical deformation, leading to cell rupture and death. A biophysical model of the NP-membrane interactions is presented which suggests that adsorbed NPs cause membrane stretching and squeezing. This general phenomenon is demonstrated experimentally using both model membranes and Pseudomonas aeruginosa and Staphylococcus aureus, representing Gram-positive and Gram-negative bacteria. Hydrophilic and hydrophobic quasi-spherical and star-shaped gold (Au)NPs are synthesized to explore the antibacterial mechanism of non-translocating AuNPs. Direct observation of nanoparticle-induced membrane tension and squeezing is demonstrated using a custom-designed microfluidic device, which relieves contraction of the model membrane surface area and eventual lipid bilayer collapse. Quasi-spherical nanoparticles exhibit a greater bactericidal action due to a higher interactive affinity, resulting in greater membrane stretching and rupturing, corroborating the theoretical model. Electron microscopy techniques are used to characterize the NP-bacterial-membrane interactions. This combination of experimental and theoretical results confirm the proposed mechanism of membrane-tension-induced (mechanical) killing of bacterial cells by non-translocating NPs.
It is commonly accepted that nanoparticles (NPs) can kill bacteria; however, the mechanism of antimicrobial action remains obscure for large NPs that cannot translocate the bacterial cell wall. It is demonstrated that the increase in membrane tension caused by the adsorption of NPs is responsible for mechanical deformation, leading to cell rupture and death. A biophysical model of the NP–membrane interactions is presented which suggests that adsorbed NPs cause membrane stretching and squeezing. This general phenomenon is demonstrated experimentally using both model membranes and Pseudomonas aeruginosa and Staphylococcus aureus, representing Gram‐positive and Gram‐negative bacteria. Hydrophilic and hydrophobic quasi‐spherical and star‐shaped gold (Au)NPs are synthesized to explore the antibacterial mechanism of non‐translocating AuNPs. Direct observation of nanoparticle‐induced membrane tension and squeezing is demonstrated using a custom‐designed microfluidic device, which relieves contraction of the model membrane surface area and eventual lipid bilayer collapse. Quasi‐spherical nanoparticles exhibit a greater bactericidal action due to a higher interactive affinity, resulting in greater membrane stretching and rupturing, corroborating the theoretical model. Electron microscopy techniques are used to characterize the NP–bacterial‐membrane interactions. This combination of experimental and theoretical results confirm the proposed mechanism of membrane‐tension‐induced (mechanical) killing of bacterial cells by non‐translocating NPs.
It is commonly accepted that nanoparticles (NPs) can kill bacteria; however, the mechanism of antimicrobial action remains obscure for large NPs that cannot translocate the bacterial cell wall. It is demonstrated that the increase in membrane tension caused by the adsorption of NPs is responsible for mechanical deformation, leading to cell rupture and death. A biophysical model of the NP–membrane interactions is presented which suggests that adsorbed NPs cause membrane stretching and squeezing. This general phenomenon is demonstrated experimentally using both model membranes and Pseudomonas aeruginosa and Staphylococcus aureus, representing Gram‐positive and Gram‐negative bacteria. Hydrophilic and hydrophobic quasi‐spherical and star‐shaped gold (Au)NPs are synthesized to explore the antibacterial mechanism of non‐translocating AuNPs. Direct observation of nanoparticle‐induced membrane tension and squeezing is demonstrated using a custom‐designed microfluidic device, which relieves contraction of the model membrane surface area and eventual lipid bilayer collapse. Quasi‐spherical nanoparticles exhibit a greater bactericidal action due to a higher interactive affinity, resulting in greater membrane stretching and rupturing, corroborating the theoretical model. Electron microscopy techniques are used to characterize the NP–bacterial‐membrane interactions. This combination of experimental and theoretical results confirm the proposed mechanism of membrane‐tension‐induced (mechanical) killing of bacterial cells by non‐translocating NPs. The mechanism of antimicrobial action for nanoparticles that are unable to translocate across the bacterial cell wall remains obscure. In this work, it is demonstrated that the increase of membrane tension provoked by the adsorption of nanoparticles is responsible for mechanical deformation of the membrane, which leads to bacterial cell rupture and death.
Abstract It is commonly accepted that nanoparticles (NPs) can kill bacteria; however, the mechanism of antimicrobial action remains obscure for large NPs that cannot translocate the bacterial cell wall. It is demonstrated that the increase in membrane tension caused by the adsorption of NPs is responsible for mechanical deformation, leading to cell rupture and death. A biophysical model of the NP–membrane interactions is presented which suggests that adsorbed NPs cause membrane stretching and squeezing. This general phenomenon is demonstrated experimentally using both model membranes and Pseudomonas aeruginosa and Staphylococcus aureus , representing Gram‐positive and Gram‐negative bacteria. Hydrophilic and hydrophobic quasi‐spherical and star‐shaped gold (Au)NPs are synthesized to explore the antibacterial mechanism of non‐translocating AuNPs. Direct observation of nanoparticle‐induced membrane tension and squeezing is demonstrated using a custom‐designed microfluidic device, which relieves contraction of the model membrane surface area and eventual lipid bilayer collapse. Quasi‐spherical nanoparticles exhibit a greater bactericidal action due to a higher interactive affinity, resulting in greater membrane stretching and rupturing, corroborating the theoretical model. Electron microscopy techniques are used to characterize the NP–bacterial‐membrane interactions. This combination of experimental and theoretical results confirm the proposed mechanism of membrane‐tension‐induced (mechanical) killing of bacterial cells by non‐translocating NPs.
Author Fleury, Jean‐Baptiste
Crawford, Russell J.
Nguyen, The Hong Phong
Le Guével, Xavier
Stoodley, Paul
Bryant, Gary
Linklater, Denver P.
Juodkazis, Saulius
Ivanova, Elena P.
Baulin, Vladimir A.
Hanssen, Eric
Author_xml – sequence: 1
  givenname: Denver P.
  surname: Linklater
  fullname: Linklater, Denver P.
  organization: Swinburne University of Technology
– sequence: 2
  givenname: Vladimir A.
  orcidid: 0000-0003-2086-4271
  surname: Baulin
  fullname: Baulin, Vladimir A.
  organization: Universitat Rovira i Virgili
– sequence: 3
  givenname: Xavier
  surname: Le Guével
  fullname: Le Guével, Xavier
  organization: University Grenoble‐Alpes
– sequence: 4
  givenname: Jean‐Baptiste
  orcidid: 0000-0003-1878-0108
  surname: Fleury
  fullname: Fleury, Jean‐Baptiste
  organization: Saarland University
– sequence: 5
  givenname: Eric
  orcidid: 0000-0002-8897-4373
  surname: Hanssen
  fullname: Hanssen, Eric
  organization: University of Melbourne
– sequence: 6
  givenname: The Hong Phong
  surname: Nguyen
  fullname: Nguyen, The Hong Phong
  organization: Ton Duc Thang University
– sequence: 7
  givenname: Saulius
  orcidid: 0000-0003-3542-3874
  surname: Juodkazis
  fullname: Juodkazis, Saulius
  organization: Swinburne University of Technology
– sequence: 8
  givenname: Gary
  surname: Bryant
  fullname: Bryant, Gary
  organization: RMIT University
– sequence: 9
  givenname: Russell J.
  surname: Crawford
  fullname: Crawford, Russell J.
  organization: RMIT University
– sequence: 10
  givenname: Paul
  surname: Stoodley
  fullname: Stoodley, Paul
  organization: University of Southampton
– sequence: 11
  givenname: Elena P.
  orcidid: 0000-0002-5509-8071
  surname: Ivanova
  fullname: Ivanova, Elena P.
  email: elena.ivanova@rmit.edu.au
  organization: RMIT University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33179362$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03373591$$DView record in HAL
BookMark eNqF0Utv1DAUBWALFdFpYcsSRWJDFxmu3_EyDIUiTWHBY2v5FZoqiQc7A5p_j6Mpg8SGlSXr89GxzgU6m-IUEHqOYY0ByGvjR7MmQAC4kOoRWmFOcM1A8TO0AkV5rQRrztFFzvcAoASIJ-icUiwVFWSFvrXT3Fvj5pB6M1Stm_s4VbGrPpop7kyaezeEXNlDtQ3zXRGf5xRmd9dP3xf15vRyE4ahug2jTWYK-Sl63Jkhh2cP5yX6-u76y-am3n56_2HTbmvHmFS17KgQzjASlPOeEyKUN4YGY2XDpSQiWN9x2QELXJCG2mCFoOAF9tYrieklujrmlmp6l_rRpIOOptc37VYvd0CppFzhn4t9dbS7FH_sQ5712GdXapfCcZ81YQKgYbQRhb78h97HfZrKT4qSFDAGzIpaH5VLMecUulMDDHpZRy_r6NM65cGLh9i9HYM_8T9zFKCO4Fc_hMN_4nT79rb9G_4bleKbkQ
CitedBy_id crossref_primary_10_1039_D3NJ04160C
crossref_primary_10_3390_pharmaceutics13030425
crossref_primary_10_3390_pharmaceutics15092253
crossref_primary_10_1002_adhm_202301060
crossref_primary_10_1186_s12951_022_01321_z
crossref_primary_10_1016_j_apsusc_2021_149857
crossref_primary_10_1039_D2TB02258C
crossref_primary_10_1007_s44174_024_00162_8
crossref_primary_10_3389_fmicb_2023_1229838
crossref_primary_10_1007_s10904_022_02294_0
crossref_primary_10_2174_1568026622666220919124104
crossref_primary_10_1021_acsanm_3c02239
crossref_primary_10_3390_nano13182529
crossref_primary_10_1515_zpch_2023_0501
crossref_primary_10_1021_acsami_2c10844
crossref_primary_10_1002_agt2_620
crossref_primary_10_1134_S0003683824010125
crossref_primary_10_1002_adfm_202210406
crossref_primary_10_1016_j_jconrel_2023_05_009
crossref_primary_10_3390_pharmaceutics14071513
crossref_primary_10_1002_adhm_202102367
crossref_primary_10_1080_17518253_2024_2360489
crossref_primary_10_1126_sciadv_abm7665
crossref_primary_10_1073_pnas_2104610118
crossref_primary_10_1142_S0218625X24300041
crossref_primary_10_1002_lpor_202300753
crossref_primary_10_1002_adma_202402445
crossref_primary_10_3390_jcs8020043
crossref_primary_10_1002_adfm_202110635
crossref_primary_10_1016_j_jcis_2023_07_160
crossref_primary_10_1016_j_cjche_2021_03_013
crossref_primary_10_1038_s41392_024_01745_z
crossref_primary_10_1016_j_cej_2022_135084
crossref_primary_10_1039_D3RA04398C
crossref_primary_10_3390_pharmaceutics14122599
crossref_primary_10_1021_acs_langmuir_3c01973
crossref_primary_10_3390_microorganisms10081504
crossref_primary_10_1016_j_apsusc_2023_156929
crossref_primary_10_1039_D1SM00864A
crossref_primary_10_3390_nano11020312
crossref_primary_10_1021_acsami_2c08845
crossref_primary_10_1088_2043_6262_acc453
crossref_primary_10_3390_ijms24076632
crossref_primary_10_1007_s13399_023_05237_y
crossref_primary_10_1016_j_cej_2023_147812
crossref_primary_10_1021_acsabm_3c00059
crossref_primary_10_1039_D1BM01077H
crossref_primary_10_1039_D3BM00663H
crossref_primary_10_1021_acsnano_2c12799
crossref_primary_10_1002_cnma_202400073
crossref_primary_10_1186_s12951_022_01572_w
crossref_primary_10_1002_adma_202212315
crossref_primary_10_1007_s40820_021_00598_3
crossref_primary_10_1021_acs_langmuir_1c00416
crossref_primary_10_1038_s41467_023_41490_5
crossref_primary_10_1002_adma_202307756
crossref_primary_10_1007_s00339_021_04927_6
crossref_primary_10_1016_j_jcis_2021_06_047
crossref_primary_10_1039_D3NR04287A
crossref_primary_10_1002_bmm2_12108
crossref_primary_10_1080_17518253_2024_2305142
crossref_primary_10_1039_D1NR04961E
crossref_primary_10_1002_ps_7218
crossref_primary_10_1016_j_apsusc_2021_152145
crossref_primary_10_1016_j_jallcom_2023_173084
crossref_primary_10_1016_j_mtchem_2022_100888
crossref_primary_10_1002_slct_202401385
crossref_primary_10_1017_S1431927622004676
crossref_primary_10_1002_advs_202103721
crossref_primary_10_1021_acsabm_3c00274
crossref_primary_10_3390_ijms222413428
crossref_primary_10_1021_acsmaterialslett_3c01326
crossref_primary_10_1002_adhm_202102567
crossref_primary_10_1002_admi_202100724
crossref_primary_10_1021_acsami_1c10031
crossref_primary_10_3390_nano11061562
crossref_primary_10_1016_j_apcatb_2023_122995
crossref_primary_10_1002_anie_202217345
crossref_primary_10_1016_j_cej_2022_135837
crossref_primary_10_1039_D4EN00174E
crossref_primary_10_1021_acsnano_2c02269
crossref_primary_10_3390_pharmaceutics15020430
crossref_primary_10_1016_j_xcrp_2024_101845
crossref_primary_10_1039_D4RA01343C
crossref_primary_10_1039_D2SC03443C
crossref_primary_10_1039_D3DT03303A
crossref_primary_10_1016_j_cej_2021_131237
crossref_primary_10_1016_j_cej_2023_144514
crossref_primary_10_3390_nano12213832
crossref_primary_10_1021_acs_langmuir_3c01808
crossref_primary_10_1080_19476337_2024_2330670
crossref_primary_10_1016_j_colsurfa_2021_127915
crossref_primary_10_1021_acsanm_3c04486
crossref_primary_10_3390_antibiotics12010067
crossref_primary_10_1002_ange_202217345
crossref_primary_10_1021_acsnano_2c05821
crossref_primary_10_1155_2021_6650661
crossref_primary_10_3390_antibiotics12071127
crossref_primary_10_1002_advs_202100556
crossref_primary_10_1002_sstr_202300326
crossref_primary_10_1007_s10904_022_02234_y
crossref_primary_10_1016_j_porgcoat_2023_107852
crossref_primary_10_1021_acsanm_2c02736
crossref_primary_10_1021_acsnano_2c12488
crossref_primary_10_1007_s11947_022_02927_9
crossref_primary_10_1016_j_isci_2022_105525
crossref_primary_10_1039_D2NR01339H
crossref_primary_10_1016_j_molliq_2021_117651
crossref_primary_10_1039_D3MH01298K
Cites_doi 10.1021/jp0138476
10.1039/D0NR00834F
10.3390/ijms20102468
10.1039/C7TB01695F
10.3390/mi10020105
10.1039/C9SM01601E
10.1016/j.scitotenv.2019.04.074
10.1116/1.5022145
10.1039/C7SM00433H
10.1016/j.cis.2014.02.012
10.1021/acs.chemmater.7b02497
10.1016/j.jcis.2019.11.106
10.1186/1477-3155-10-19
10.1007/s40820-017-0186-9
10.1504/IJBNN.2013.054515
10.1128/mSystems.00821-19
10.1039/C7EN00832E
10.1126/sciadv.1600261
10.1016/j.jelechem.2020.114302
10.1016/j.biomaterials.2017.06.018
10.1016/j.colsurfb.2011.03.009
10.2147/IJN.S197737
10.1002/smll.201200528
10.1186/1556-276X-7-623
10.1039/C8NR07763K
10.1080/10590501.2015.1055161
10.1021/es403864v
10.1016/j.bpj.2012.12.046
10.1039/c3nr01990j
10.1039/C5SC00792E
10.1038/nmat2442
10.1038/srep32825
10.1038/srep24420
10.1021/la301771b
10.1039/C8NR09960J
10.1039/C9TB00102F
10.1038/nature05840
10.1371/journal.ppat.1002512
10.1002/adfm.201001924
10.1021/la302654s
10.1038/ncomms3838
10.1021/nl080080l
10.1021/acsnano.7b02035
10.1038/s41598-019-52473-2
10.1021/es203661k
10.1021/nn103077k
10.1021/nn204736b
10.1021/acsami.6b15085
10.1039/C4NR02008A
10.1038/s42003-020-0917-1
10.1007/s11051-019-4617-z
10.1021/acs.jpcc.8b07616
10.1021/ja408505n
10.1016/j.jsb.2009.07.006
10.1039/C7SM00345E
10.1016/j.jcis.2005.12.031
10.1021/acs.langmuir.8b01700
10.1039/C4SM01577K
10.1021/la302896x
10.1039/b808893d
10.1039/C5NR08542J
10.1039/C9MT00084D
10.1209/epl/i2003-00438-4
10.1103/PhysRevE.69.031903
10.1016/S1473-3099(18)30294-9
10.1186/s12951-017-0308-z
10.1002/smll.201900725
10.1007/s00775-019-01717-7
10.1021/acsnano.8b01665
10.1016/j.bbamem.2014.09.014
10.1016/j.cis.2012.06.015
10.1128/IAI.00117-16
10.1186/s11671-018-2457-x
10.1021/tx2002178
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
2020 Wiley-VCH GmbH.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
– notice: 2020 Wiley-VCH GmbH.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
1XC
VOOES
DOI 10.1002/adma.202005679
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database

MEDLINE
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1521-4095
EndPage n/a
ExternalDocumentID oai_HAL_hal_03373591v1
10_1002_adma_202005679
33179362
ADMA202005679
Genre article
Journal Article
GrantInformation_xml – fundername: ARC Industrial Transformation Training Centre
  funderid: IC180100005
– fundername: DFG
– fundername: ARC
  funderid: R17157CC
– fundername: Australian Institute of Nuclear Science and Engineering
  funderid: SFB1027
– fundername: Australian Research Council (ARC) Industrial Transformation Research Hubs Scheme
  funderid: IH130100017
– fundername: Plan Cancer
  funderid: C18038CS
– fundername: NIH
  funderid: R01GM124436
– fundername: Cancéropôle Lyon Auvergne Rhône‐Alpes
– fundername: Plan Cancer
  grantid: C18038CS
– fundername: Cancéropôle Lyon Auvergne Rhône-Alpes
– fundername: NIH HHS
  grantid: R01GM124436
– fundername: Australian Research Council (ARC) Industrial Transformation Research Hubs Scheme
  grantid: IH130100017
– fundername: ARC Industrial Transformation Training Centre
  grantid: IC180100005
– fundername: ARC
  grantid: R17157CC
– fundername: Australian Institute of Nuclear Science and Engineering
  grantid: SFB1027
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AAYOK
ABEML
ABTAH
ACBWZ
ACSCC
AFFNX
ASPBG
AVWKF
AZFZN
CGR
CUY
CVF
ECM
EIF
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
NPM
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
1XC
VOOES
ID FETCH-LOGICAL-c4479-7f366ca42e9cdd52269daa3eab7857726ebdf57f04e56283beb6630d61dbd9713
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Tue Oct 15 15:55:55 EDT 2024
Sat Aug 17 04:25:30 EDT 2024
Thu Oct 10 18:39:31 EDT 2024
Thu Sep 26 16:08:49 EDT 2024
Fri Oct 18 08:52:08 EDT 2024
Sat Aug 24 01:05:46 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 52
Keywords nanotoxicity
mechano-bactericidal activity
nanoparticles
Language English
License 2020 Wiley-VCH GmbH.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4479-7f366ca42e9cdd52269daa3eab7857726ebdf57f04e56283beb6630d61dbd9713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5509-8071
0000-0003-1878-0108
0000-0003-2086-4271
0000-0003-3542-3874
0000-0002-8897-4373
0000-0003-3634-7762
OpenAccessLink https://hal.science/hal-03373591
PMID 33179362
PQID 2473011014
PQPubID 2045203
PageCount 15
ParticipantIDs hal_primary_oai_HAL_hal_03373591v1
proquest_miscellaneous_2460084386
proquest_journals_2473011014
crossref_primary_10_1002_adma_202005679
pubmed_primary_33179362
wiley_primary_10_1002_adma_202005679_ADMA202005679
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Wiley-VCH Verlag
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley-VCH Verlag
References 2013; 3
2013; 4
2020; 561
2019; 11
2019; 10
2004; 69
2015; 33
2019; 15
2019; 14
2008; 8
2020; 12
2008; 4
2013; 5
2012; 10
2014; 136
2017; 9
2006; 298
2019; 123
2018; 6
2020; 5
2020; 3
2018; 5
2014; 208
2019; 20
2019; 21
2019; 24
2002; 106
2009; 168
2011; 21
2016; 84
2011; 24
2012; 28
2018; 34
2014; 6
2019; 673
2014; 10
2019; 7
2019; 9
2013; 48
2015; 6
2007; 447
2012
2013; 104
2017; 29
2011; 5
2018; 18
2016; 6
2016; 2
2017; 15
2015; 1848
2017; 11
2017; 13
2011; 85
2009; 8
2012; 179–182
2017; 140
2020; 872
2012; 6
2018; 12
2012; 7
2012; 46
2018; 10
2003; 62
2016; 8
2012; 8
2018; 13
e_1_2_5_25_1
e_1_2_5_48_1
e_1_2_5_23_1
e_1_2_5_46_1
e_1_2_5_21_1
e_1_2_5_44_1
Hu Y. J. (e_1_2_5_22_1) 2018; 18
e_1_2_5_67_1
e_1_2_5_69_1
Ivanova E. P. (e_1_2_5_26_1) 2013; 4
e_1_2_5_29_1
e_1_2_5_61_1
e_1_2_5_63_1
e_1_2_5_42_1
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
Linklater D. P. (e_1_2_5_65_1)
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_59_1
e_1_2_5_9_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_57_1
e_1_2_5_7_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_55_1
e_1_2_5_5_1
e_1_2_5_76_1
e_1_2_5_3_1
e_1_2_5_1_1
e_1_2_5_19_1
e_1_2_5_72_1
Olarte‐Plata J. D. (e_1_2_5_31_1) 2020; 12
e_1_2_5_74_1
e_1_2_5_30_1
e_1_2_5_53_1
e_1_2_5_51_1
e_1_2_5_28_1
e_1_2_5_49_1
Wel C. (e_1_2_5_47_1) 2016; 6
e_1_2_5_24_1
e_1_2_5_45_1
e_1_2_5_43_1
e_1_2_5_66_1
e_1_2_5_68_1
Lipomi D. J. (e_1_2_5_70_1) 2012
e_1_2_5_60_1
e_1_2_5_62_1
e_1_2_5_64_1
e_1_2_5_20_1
e_1_2_5_41_1
Bhadra C. M. (e_1_2_5_27_1) 2018; 10
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_58_1
e_1_2_5_8_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_56_1
e_1_2_5_6_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_54_1
e_1_2_5_4_1
e_1_2_5_77_1
e_1_2_5_2_1
e_1_2_5_18_1
e_1_2_5_71_1
e_1_2_5_73_1
e_1_2_5_75_1
e_1_2_5_52_1
e_1_2_5_50_1
References_xml – volume: 5
  start-page: 8340
  year: 2013
  publication-title: Nanoscale
– volume: 10
  start-page: 105
  year: 2019
  publication-title: Micromachines
– volume: 13
  year: 2018
  publication-title: Biointerphases
– volume: 3
  start-page: 205
  year: 2020
  publication-title: Commun. Biol.
– volume: 48
  start-page: 873
  year: 2013
  publication-title: Environ. Sci. Technol.
– volume: 561
  start-page: 58
  year: 2020
  publication-title: J. Colloid Interface Sci.
– volume: 298
  start-page: 50
  year: 2006
  publication-title: J. Colloid Interface Sci.
– volume: 13
  start-page: 4924
  year: 2017
  publication-title: Soft Matter
– volume: 123
  start-page: 3801
  year: 2019
  publication-title: J. Phys. Chem. C
– volume: 8
  start-page: 6527
  year: 2016
  publication-title: Nanoscale
– volume: 5
  start-page: 279
  year: 2018
  publication-title: Environ. Sci.: Nano
– volume: 33
  start-page: 286
  year: 2015
  publication-title: J. Environ. Sci. Health, Part C: Environ. Carcinog. Ecotoxicol. Rev.
– volume: 168
  start-page: 419
  year: 2009
  publication-title: J. Struct. Biol.
– volume: 7
  start-page: 4424
  year: 2019
  publication-title: J. Mater. Chem. B
– volume: 2
  year: 2016
  publication-title: Sci. Adv.
– volume: 69
  year: 2004
  publication-title: Phys. Rev. E
– volume: 11
  start-page: 6904
  year: 2017
  publication-title: ACS Nano
– volume: 24
  start-page: 1869
  year: 2011
  publication-title: Chem. Res. Toxicol.
– volume: 11
  start-page: 1265
  year: 2019
  publication-title: Metallomics
– volume: 12
  start-page: 6657
  year: 2018
  publication-title: ACS Nano
– volume: 6
  year: 2014
  publication-title: Nanoscale
– volume: 872
  year: 2020
  publication-title: J. Electroanal. Chem.
– volume: 1848
  start-page: 67
  year: 2015
  publication-title: Biochim. Biophys. Acta, Biomembr.
– volume: 18
  start-page: 597
  year: 2018
  publication-title: Lancet Infect. Dis.
– volume: 14
  start-page: 4613
  year: 2019
  publication-title: Int. J. Nanomed.
– volume: 5
  year: 2020
  publication-title: mSystems
– volume: 15
  start-page: 8951
  year: 2019
  publication-title: Soft Matter
– volume: 4
  start-page: 1191
  year: 2008
  publication-title: Mol. BioSyst.
– volume: 28
  year: 2012
  publication-title: Langmuir
– volume: 8
  year: 2012
  publication-title: PLoS Pathog.
– volume: 673
  start-page: 414
  year: 2019
  publication-title: Sci. Total Environ.
– volume: 29
  start-page: 7497
  year: 2017
  publication-title: Chem. Mater.
– volume: 8
  start-page: 941
  year: 2008
  publication-title: Nano Lett.
– volume: 6
  year: 2012
  publication-title: ACS Nano
– volume: 13
  start-page: 44
  year: 2018
  publication-title: Nanoscale Res. Lett.
– volume: 10
  start-page: 19
  year: 2012
  publication-title: J. Nanobiotechnol.
– volume: 15
  year: 2019
– volume: 46
  start-page: 1869
  year: 2012
  publication-title: Environ. Sci. Technol.
– volume: 6
  start-page: 9
  year: 2018
  publication-title: J. Mater. Chem. B
– volume: 8
  start-page: 2489
  year: 2012
  publication-title: Small
– volume: 62
  start-page: 767
  year: 2003
  publication-title: Europhys. Lett.
– volume: 4
  start-page: 2838
  year: 2013
  publication-title: Nat. Commun.
– volume: 8
  start-page: 543
  year: 2009
  publication-title: Nat. Mater.
– volume: 21
  start-page: 1558
  year: 2011
  publication-title: Adv. Funct. Mater.
– volume: 24
  start-page: 929
  year: 2019
  publication-title: JBIC, J. Biol. Inorg. Chem.
– volume: 3
  start-page: 163
  year: 2013
  publication-title: Int. J. Biomed. Nanosci. Nanotechnol.
– volume: 13
  start-page: 4644
  year: 2017
  publication-title: Soft Matter
– volume: 104
  start-page: 835
  year: 2013
  publication-title: Biophys. J.
– volume: 106
  start-page: 5543
  year: 2002
  publication-title: J. Phys. Chem. B
– volume: 5
  start-page: 1366
  year: 2011
  publication-title: ACS Nano
– volume: 12
  year: 2020
  publication-title: Nanoscale
– volume: 9
  year: 2019
  publication-title: Sci. Rep.
– volume: 10
  start-page: 9293
  year: 2014
  publication-title: Soft Matter
– year: 2012
– volume: 208
  start-page: 214
  year: 2014
  publication-title: Adv. Colloid Interface Sci.
– volume: 11
  start-page: 2767
  year: 2019
  publication-title: Nanoscale
– volume: 4
  start-page: 359
  year: 2013
  publication-title: Nat. Commun.
– volume: 136
  start-page: 5295
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 34
  year: 2018
  publication-title: Langmuir
– publication-title: Nat. Rev. Microbiol.
– volume: 21
  start-page: 186
  year: 2019
  publication-title: J. Nanopart. Res.
– volume: 9
  start-page: 1343
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 5186
  year: 2015
  publication-title: Chem. Sci.
– volume: 10
  start-page: 36
  year: 2018
  publication-title: Nano‐Micro Lett.
– volume: 6
  year: 2016
  publication-title: Sci. Rep.
– volume: 140
  start-page: 138
  year: 2017
  publication-title: Biomaterials
– volume: 85
  start-page: 360
  year: 2011
  publication-title: Colloids Surf., B
– volume: 15
  start-page: 65
  year: 2017
  publication-title: J. Nanobiotechnol.
– volume: 11
  start-page: 2282
  year: 2019
  publication-title: Nanoscale
– volume: 7
  start-page: 623
  year: 2012
  publication-title: Nanoscale Res. Lett.
– volume: 84
  start-page: 1957
  year: 2016
  publication-title: Infect. Immun.
– volume: 447
  start-page: 461
  year: 2007
  publication-title: Nature
– volume: 20
  start-page: 2468
  year: 2019
  publication-title: Int. J. Mol. Sci.
– volume: 179–182
  start-page: 142
  year: 2012
  publication-title: Adv. Colloid Interface Sci.
– ident: e_1_2_5_69_1
  doi: 10.1021/jp0138476
– volume: 12
  start-page: 11165
  year: 2020
  ident: e_1_2_5_31_1
  publication-title: Nanoscale
  doi: 10.1039/D0NR00834F
  contributor:
    fullname: Olarte‐Plata J. D.
– ident: e_1_2_5_17_1
  doi: 10.3390/ijms20102468
– ident: e_1_2_5_37_1
  doi: 10.1039/C7TB01695F
– ident: e_1_2_5_74_1
  doi: 10.3390/mi10020105
– ident: e_1_2_5_77_1
  doi: 10.1039/C9SM01601E
– ident: e_1_2_5_52_1
  doi: 10.1016/j.scitotenv.2019.04.074
– ident: e_1_2_5_4_1
  doi: 10.1116/1.5022145
– ident: e_1_2_5_48_1
  doi: 10.1039/C7SM00433H
– ident: e_1_2_5_44_1
  doi: 10.1016/j.cis.2014.02.012
– ident: e_1_2_5_33_1
  doi: 10.1021/acs.chemmater.7b02497
– ident: e_1_2_5_7_1
  doi: 10.1016/j.jcis.2019.11.106
– ident: e_1_2_5_13_1
  doi: 10.1186/1477-3155-10-19
– volume: 10
  start-page: 36
  year: 2018
  ident: e_1_2_5_27_1
  publication-title: Nano‐Micro Lett.
  doi: 10.1007/s40820-017-0186-9
  contributor:
    fullname: Bhadra C. M.
– volume-title: Polymer Science: A Comprehensive Reference
  year: 2012
  ident: e_1_2_5_70_1
  contributor:
    fullname: Lipomi D. J.
– ident: e_1_2_5_8_1
  doi: 10.1504/IJBNN.2013.054515
– ident: e_1_2_5_23_1
  doi: 10.1128/mSystems.00821-19
– ident: e_1_2_5_42_1
  doi: 10.1039/C7EN00832E
– ident: e_1_2_5_34_1
  doi: 10.1126/sciadv.1600261
– ident: e_1_2_5_51_1
  doi: 10.1016/j.jelechem.2020.114302
– ident: e_1_2_5_56_1
  doi: 10.1016/j.biomaterials.2017.06.018
– ident: e_1_2_5_14_1
  doi: 10.1016/j.colsurfb.2011.03.009
– ident: e_1_2_5_68_1
  doi: 10.2147/IJN.S197737
– ident: e_1_2_5_21_1
  doi: 10.1002/smll.201200528
– ident: e_1_2_5_65_1
  publication-title: Nat. Rev. Microbiol.
  contributor:
    fullname: Linklater D. P.
– ident: e_1_2_5_15_1
  doi: 10.1186/1556-276X-7-623
– ident: e_1_2_5_53_1
  doi: 10.1039/C8NR07763K
– ident: e_1_2_5_18_1
  doi: 10.1080/10590501.2015.1055161
– ident: e_1_2_5_35_1
  doi: 10.1021/es403864v
– ident: e_1_2_5_24_1
  doi: 10.1016/j.bpj.2012.12.046
– ident: e_1_2_5_40_1
  doi: 10.1039/c3nr01990j
– ident: e_1_2_5_41_1
  doi: 10.1039/C5SC00792E
– ident: e_1_2_5_43_1
  doi: 10.1038/nmat2442
– volume: 6
  start-page: 32825
  year: 2016
  ident: e_1_2_5_47_1
  publication-title: Sci. Rep.
  doi: 10.1038/srep32825
  contributor:
    fullname: Wel C.
– ident: e_1_2_5_67_1
  doi: 10.1038/srep24420
– ident: e_1_2_5_54_1
  doi: 10.1021/la301771b
– ident: e_1_2_5_58_1
  doi: 10.1039/C8NR09960J
– ident: e_1_2_5_28_1
  doi: 10.1039/C9TB00102F
– ident: e_1_2_5_49_1
  doi: 10.1038/nature05840
– ident: e_1_2_5_75_1
  doi: 10.1371/journal.ppat.1002512
– ident: e_1_2_5_63_1
  doi: 10.1002/adfm.201001924
– ident: e_1_2_5_29_1
  doi: 10.1021/la302654s
– ident: e_1_2_5_19_1
  doi: 10.1038/ncomms3838
– ident: e_1_2_5_62_1
  doi: 10.1021/nl080080l
– ident: e_1_2_5_11_1
  doi: 10.1021/acsnano.7b02035
– ident: e_1_2_5_16_1
  doi: 10.1038/s41598-019-52473-2
– ident: e_1_2_5_50_1
  doi: 10.1021/es203661k
– ident: e_1_2_5_59_1
  doi: 10.1021/nn103077k
– ident: e_1_2_5_5_1
  doi: 10.1021/nn204736b
– ident: e_1_2_5_66_1
  doi: 10.1021/acsami.6b15085
– ident: e_1_2_5_3_1
  doi: 10.1039/C4NR02008A
– ident: e_1_2_5_6_1
  doi: 10.1038/s42003-020-0917-1
– ident: e_1_2_5_38_1
  doi: 10.1007/s11051-019-4617-z
– ident: e_1_2_5_32_1
  doi: 10.1021/acs.jpcc.8b07616
– ident: e_1_2_5_39_1
  doi: 10.1021/ja408505n
– ident: e_1_2_5_57_1
  doi: 10.1016/j.jsb.2009.07.006
– ident: e_1_2_5_46_1
  doi: 10.1039/C7SM00345E
– ident: e_1_2_5_30_1
  doi: 10.1016/j.jcis.2005.12.031
– ident: e_1_2_5_12_1
  doi: 10.1021/acs.langmuir.8b01700
– ident: e_1_2_5_72_1
  doi: 10.1039/C4SM01577K
– ident: e_1_2_5_36_1
  doi: 10.1021/la302896x
– ident: e_1_2_5_71_1
  doi: 10.1039/b808893d
– ident: e_1_2_5_25_1
  doi: 10.1039/C5NR08542J
– ident: e_1_2_5_10_1
  doi: 10.1039/C9MT00084D
– ident: e_1_2_5_45_1
  doi: 10.1209/epl/i2003-00438-4
– ident: e_1_2_5_55_1
  doi: 10.1103/PhysRevE.69.031903
– volume: 18
  start-page: 597
  year: 2018
  ident: e_1_2_5_22_1
  publication-title: Lancet Infect. Dis.
  doi: 10.1016/S1473-3099(18)30294-9
  contributor:
    fullname: Hu Y. J.
– volume: 4
  start-page: 359
  year: 2013
  ident: e_1_2_5_26_1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3838
  contributor:
    fullname: Ivanova E. P.
– ident: e_1_2_5_2_1
  doi: 10.1186/s12951-017-0308-z
– ident: e_1_2_5_73_1
  doi: 10.1002/smll.201900725
– ident: e_1_2_5_1_1
  doi: 10.1007/s00775-019-01717-7
– ident: e_1_2_5_20_1
  doi: 10.1021/acsnano.8b01665
– ident: e_1_2_5_61_1
  doi: 10.1016/j.bbamem.2014.09.014
– ident: e_1_2_5_64_1
  doi: 10.1016/j.cis.2012.06.015
– ident: e_1_2_5_76_1
  doi: 10.1128/IAI.00117-16
– ident: e_1_2_5_9_1
  doi: 10.1186/s11671-018-2457-x
– ident: e_1_2_5_60_1
  doi: 10.1021/tx2002178
SSID ssj0009606
Score 2.680837
Snippet It is commonly accepted that nanoparticles (NPs) can kill bacteria; however, the mechanism of antimicrobial action remains obscure for large NPs that cannot...
Abstract It is commonly accepted that nanoparticles (NPs) can kill bacteria; however, the mechanism of antimicrobial action remains obscure for large NPs that...
SourceID hal
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage e2005679
SubjectTerms Anti-Bacterial Agents - chemistry
Anti-Bacterial Agents - pharmacology
Antiinfectives and antibacterials
Bacteria
Bacteriology
Biological Physics
Cell Membrane - chemistry
Cell Membrane - drug effects
Cell Membrane - metabolism
Cell membranes
Chemical Sciences
Compressing
Gold - chemistry
Hydrophobic and Hydrophilic Interactions
Life Sciences
Lipid Bilayers - chemistry
Lipid Bilayers - metabolism
Lipids
Materials science
mechano‐bactericidal activity
Medicinal Chemistry
Metal Nanoparticles - chemistry
Microbiology and Parasitology
Microfluidic devices
Nanoparticles
nanotoxicity
Physics
Pseudomonas aeruginosa
Pseudomonas aeruginosa - drug effects
Staphylococcus aureus - drug effects
Stretching
Title Antibacterial Action of Nanoparticles by Lethal Stretching of Bacterial Cell Membranes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202005679
https://www.ncbi.nlm.nih.gov/pubmed/33179362
https://www.proquest.com/docview/2473011014
https://www.proquest.com/docview/2460084386/abstract/
https://hal.science/hal-03373591
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VTuXAo9A2vBQQUk9ZsrHjJMfwWK0qlkPVRXuLPLEjEHQXQbZS-fXMOLuBLQek9pbHWBk_ZvKNPf4McKSFZtanJFApJhSgSBtkUtsA41CaqkREx7M9uFT9ofw-ikevdvE3_BDthBtbhvPXbOAaH49fSEO1cbxBPCuiEt7Bx2x6jIp-vPBHMTx3ZHsiDjIl0zlrYxgdLxZf-CstXXNO5FvAuYhf3Q-otwZ6rnqTd3LbmdbYKZ_-YnX8n7qtw-oMnfp5M5w24IMdf4KVV5yFm3CVj-sbbDieWdTti_AnlU9-mgLwWZ6dj3_8C1tTFX1e965dxiZLnbQlT-3dnT-wv0hPcrdbMOyd_zztB7PDGYJSyiQLkkooVWoZ2aw0hlFcZrQWVmOSxgTZlUVTxUlFvU8QKxVokcBNaFTXoMkoNP4My-PJ2H4FX5TIUx-hYjo1XrejkLGMQmtCtF2sIg--zTunuG84OIqGbTkquKWKtqU8OKSKtUJMnd3PLwp-FgqRiDjr_u56sDvv2mJmsI9FJJ2ro4DRg4P2NZkar59QM0ymLKP4-AGRKg--NEOi_ZQQ7OkU6Rq5jn1H0SI_G-Tt3fa_FNqBj3zdpNbswnL9MLV7BJBq3HdG8Az3qQSx
link.rule.ids 230,315,786,790,891,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6t2wPsYWyMQWCMgCbxlC2NHSd5DOumMto9oBbxZuViR5vYWgTpJPjruXOajMIDEnuMc1b86y7fnc-fAQ4LUTDrUxKoFBNyUKQNMlnYAONQmqpERMezPb5Qw6k8_xy32YR8Fqbhh-gCbqwZzl6zgnNA-viONbQwjjiIwyIqyXqwQTofs24OPt4xSDFAd3R7Ig4yJdOWtzGMjlfrr_yXepecFfk35FxFsO4XdPYIsG18k3ny5WhR41H58w9ex3v1bhu2lgDVz5sVtQNrdvYYNn-jLdyFT_msvsKG5plF3dEIf175ZKrJB1-m2vn4wx_Zmvro89Z37ZI2WepdV_PEXl_7Y3tDDSWL-wSmZ6eTk2GwvJ8hKKVMsiCphFJlISOblcYwkMtMUQhbYJLGhNqVRVPFSUULgFBWKtAi4ZvQqL5Bk5F3vAfrs_nMPgNflMjRj1Axoxpv3ZHXWEahNSHaPlaRB2_b2dFfGxoO3RAuR5pHSncj5cEb6lgnxOzZw3ykuSwUIhFx1r_te7Dfzq1e6ux3HUln7chn9OB195q0jbdQaBjmC5ZRfAOBSJUHT5s10X1KCDZ2itoauZn9R0N1Phjn3dPz_6n0Ch4MJ-ORHr2_-PACHnJ5k2mzD-v1t4V9SXipxgOnEb8AWyAI0Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED7th4S2BxgwILBBQEg8ZUtjx0kes3VVgXZCaEN7s3yxI9BGO0GKxP763Tltto4HJHiMc1Zsn-_ynX3-DPDWCMOsT1mkcswoQJEuKqRxEaaxtHWFiJ5ne3yshqfyw1l6dusUf8sP0S24sWV4f80Gfmnr_RvSUGM9bxCviqisWIV1qUTC4Vf_8w2BFONzz7Yn0qhQMl_QNsbJ_nL9pd_S6ldOivwTcS4DWP8HGjwAs2h7m3hyvjdrcK-6ukPr-D-d24L7c3galu18eggrbvIINm-RFj6GL-Wk-YYtyTOL-oMR4bQOyVFTBD5PtAvxdzhyDXUx5I3vxqdsstRBV_PQXVyEY_ed2kn-dhtOB0cnh8NofjtDVEmZFVFWC6UqIxNXVNYyjCusMcIZzPKUMLtyaOs0q0n9hLFygQ4J3cRW9SzagmLjJ7A2mU7cMwhFhbz2ESvmU-ONO4oZqyR2NkbXwzoJ4N1COfqyJeHQLd1yonmkdDdSAbyhjnVCzJ09LEeay2IhMpEWvV-9AHYWqtVzi_2pE-l9HUWMAbzuXpOt8QYKDcN0xjKK7x8QuQrgaTsluk8Jwa5OUVsTr9i_NFSX_XHZPT3_l0qv4N6n_kCP3h9_fAEbXNym2ezAWvNj5nYJLDX40tvDNS37B4A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antibacterial+Action+of+Nanoparticles+by+Lethal+Stretching+of+Bacterial+Cell+Membranes&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Linklater%2C+Denver+P&rft.au=Baulin%2C+Vladimir+A&rft.au=Le+Gu%C3%A9vel%2C+Xavier&rft.au=Fleury%2C+Jean-Baptiste&rft.date=2020-12-01&rft.pub=Wiley-VCH+Verlag&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=32&rft.issue=52&rft_id=info:doi/10.1002%2Fadma.202005679&rft_id=info%3Apmid%2F33179362&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03373591v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon