Variable selection and Bayesian model averaging in case-control studies
Covariate and confounder selection in case‐control studies is often carried out using a statistical variable selection method, such as a two‐step method or a stepwise method in logistic regression. Inference is then carried out conditionally on the selected model, but this ignores the model uncertai...
Saved in:
Published in | Statistics in medicine Vol. 20; no. 21; pp. 3215 - 3230 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
15.11.2001
Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 0277-6715 1097-0258 |
DOI | 10.1002/sim.976 |
Cover
Loading…
Abstract | Covariate and confounder selection in case‐control studies is often carried out using a statistical variable selection method, such as a two‐step method or a stepwise method in logistic regression. Inference is then carried out conditionally on the selected model, but this ignores the model uncertainty implicit in the variable selection process, and so may underestimate uncertainty about relative risks. We report on a simulation study designed to be similar to actual case‐control studies. This shows that p‐values computed after variable selection can greatly overstate the strength of conclusions. For example, for our simulated case‐control studies with 1000 subjects, of variables declared to be ‘significant’ with p‐values between 0.01 and 0.05, only 49 per cent actually were risk factors when stepwise variable selection was used. We propose Bayesian model averaging as a formal way of taking account of model uncertainty in case‐control studies. This yields an easily interpreted summary, the posterior probability that a variable is a risk factor, and our simulation study indicates this to be reasonably well calibrated in the situations simulated. The methods are applied and compared in the context of a case‐control study of cervical cancer. Copyright © 2001 John Wiley & Sons, Ltd. |
---|---|
AbstractList | Covariate and confounder selection in case-control studies is often carried out using a statistical variable selection method, such as a two-step method or a stepwise method in logistic regression. Inference is then carried out conditionally on the selected model, but this ignores the model uncertainty implicit in the variable selection process, and so may underestimate uncertainty about relative risks. We report on a simulation study designed to be similar to actual case-control studies. This shows that p-values computed after variable selection can greatly overstate the strength of conclusions. For example, for our simulated case-control studies with 1000 subjects, of variables declared to be 'significant' with p-values between 0.01 and 0.05, only 49 per cent actually were risk factors when stepwise variable selection was used. We propose Bayesian model averaging as a formal way of taking account of model uncertainty in case-control studies. This yields an easily interpreted summary, the posterior probability that a variable is a risk factor, and our simulation study indicates this to be reasonably well calibrated in the situations simulated. The methods are applied and compared in the context of a case-control study of cervical cancer.Covariate and confounder selection in case-control studies is often carried out using a statistical variable selection method, such as a two-step method or a stepwise method in logistic regression. Inference is then carried out conditionally on the selected model, but this ignores the model uncertainty implicit in the variable selection process, and so may underestimate uncertainty about relative risks. We report on a simulation study designed to be similar to actual case-control studies. This shows that p-values computed after variable selection can greatly overstate the strength of conclusions. For example, for our simulated case-control studies with 1000 subjects, of variables declared to be 'significant' with p-values between 0.01 and 0.05, only 49 per cent actually were risk factors when stepwise variable selection was used. We propose Bayesian model averaging as a formal way of taking account of model uncertainty in case-control studies. This yields an easily interpreted summary, the posterior probability that a variable is a risk factor, and our simulation study indicates this to be reasonably well calibrated in the situations simulated. The methods are applied and compared in the context of a case-control study of cervical cancer. Covariate and confounder selection in case‐control studies is often carried out using a statistical variable selection method, such as a two‐step method or a stepwise method in logistic regression. Inference is then carried out conditionally on the selected model, but this ignores the model uncertainty implicit in the variable selection process, and so may underestimate uncertainty about relative risks. We report on a simulation study designed to be similar to actual case‐control studies. This shows that p ‐values computed after variable selection can greatly overstate the strength of conclusions. For example, for our simulated case‐control studies with 1000 subjects, of variables declared to be ‘significant’ with p ‐values between 0.01 and 0.05, only 49 per cent actually were risk factors when stepwise variable selection was used. We propose Bayesian model averaging as a formal way of taking account of model uncertainty in case‐control studies. This yields an easily interpreted summary, the posterior probability that a variable is a risk factor, and our simulation study indicates this to be reasonably well calibrated in the situations simulated. The methods are applied and compared in the context of a case‐control study of cervical cancer. Copyright © 2001 John Wiley & Sons, Ltd. Covariate and confounder selection in case‐control studies is often carried out using a statistical variable selection method, such as a two‐step method or a stepwise method in logistic regression. Inference is then carried out conditionally on the selected model, but this ignores the model uncertainty implicit in the variable selection process, and so may underestimate uncertainty about relative risks. We report on a simulation study designed to be similar to actual case‐control studies. This shows that p‐values computed after variable selection can greatly overstate the strength of conclusions. For example, for our simulated case‐control studies with 1000 subjects, of variables declared to be ‘significant’ with p‐values between 0.01 and 0.05, only 49 per cent actually were risk factors when stepwise variable selection was used. We propose Bayesian model averaging as a formal way of taking account of model uncertainty in case‐control studies. This yields an easily interpreted summary, the posterior probability that a variable is a risk factor, and our simulation study indicates this to be reasonably well calibrated in the situations simulated. The methods are applied and compared in the context of a case‐control study of cervical cancer. Copyright © 2001 John Wiley & Sons, Ltd. Covariate and confounder selection in case-control studies is often carried out using a statistical variable selection method, such as a two-step method or a stepwise method in logistic regression. Inference is then carried out conditionally on the selected model, but this ignores the model uncertainty implicit in the variable selection process, and so may underestimate uncertainty about relative risks. We report on a simulation study designed to be similar to actual case-control studies. This shows that p-values computed after variable selection can greatly overstate the strength of conclusions. For example, for our simulated case-control studies with 1000 subjects, of variables declared to be 'significant' with p-values between 0.01 and 0.05, only 49 per cent actually were risk factors when stepwise variable selection was used. We propose Bayesian model averaging as a formal way of taking account of model uncertainty in case-control studies. This yields an easily interpreted summary, the posterior probability that a variable is a risk factor, and our simulation study indicates this to be reasonably well calibrated in the situations simulated. The methods are applied and compared in the context of a case-control study of cervical cancer. |
Author | Richardson, Sylvia Viallefont, Valerie Raftery, Adrian E. |
Author_xml | – sequence: 1 givenname: Valerie surname: Viallefont fullname: Viallefont, Valerie organization: INSERM-U. 170, 16 av P. Vaillant-Couturier, 94 807 Villejuif Cedex, France – sequence: 2 givenname: Adrian E. surname: Raftery fullname: Raftery, Adrian E. organization: Department of Statistics, University of Washington, Box 354322, Seattle, WA 98195-4322, U.S.A – sequence: 3 givenname: Sylvia surname: Richardson fullname: Richardson, Sylvia organization: INSERM-U. 170, 16 av P. Vaillant-Couturier, 94 807 Villejuif Cedex, France |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14097021$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/11746314$$D View this record in MEDLINE/PubMed |
BookMark | eNp10F9PFDEUh-HGYGRBwzcgc4NemMG20053LgF1JVn1wj9cNmfaM6TQ6WDPrLrf3iG7SiRw1TR58kvOu8d20pCQsQPBjwXn8g2F_rgx9RM2E7wxJZd6vsNmXBpT1kboXbZHdMW5EFqaZ2xXCKPqSqgZW3yHHKCNWBBGdGMYUgHJF6ewRgqQin7wGAv4iRkuQ7osQiocEJZuSGMeYkHjygek5-xpB5HwxfbdZ9_ev_t69qFcfl6cn50sS6eUqUvZGOXlnGvplPOVb4XgTpqq69rWOzFXNXrvlEDldds6LzQ0hivZOMTp46t99nKze5OHHyuk0faBHMYICYcVWSMr3SipJ3i4hau2R29vcughr-3f0ydwtAVADmKXIblAd05NIbkUk3u1cS4PRBm7O8LtbXw7xbdT_EmW96QLI9wmHTOE-IB_vfG_QsT1Y7P2y_nH_9YDjfj7n4Z8bWtTGW0vPi3sRbM0S_n21FbVH_Gaosk |
CitedBy_id | crossref_primary_10_1002_gepi_20353 crossref_primary_10_1371_journal_pgen_1004969 crossref_primary_10_1016_j_euroecorev_2015_04_004 crossref_primary_10_1097_01586154_201305000_00007 crossref_primary_10_1186_s12889_024_18985_x crossref_primary_10_1016_j_trd_2016_08_009 crossref_primary_10_1214_10_AOAS373 crossref_primary_10_1097_BOT_0000000000002624 crossref_primary_10_1016_j_eswa_2005_06_007 crossref_primary_10_1155_2015_420483 crossref_primary_10_1016_j_biocon_2015_03_009 crossref_primary_10_1097_QAD_0b013e32833d2132 crossref_primary_10_1097_FPC_0b013e32832e2ced crossref_primary_10_1186_s12874_023_01870_3 crossref_primary_10_1016_j_jmacro_2012_01_010 crossref_primary_10_1002_gepi_20072 crossref_primary_10_1029_2005WR004745 crossref_primary_10_1080_15287390600884941 crossref_primary_10_1086_425127 crossref_primary_10_1108_ECAM_06_2019_0304 crossref_primary_10_2147_CLEP_S378039 crossref_primary_10_1080_13854046_2012_728627 crossref_primary_10_1016_j_jhydrol_2015_06_059 crossref_primary_10_1093_bib_bbr012 crossref_primary_10_1111_j_1365_2427_2010_02421_x crossref_primary_10_1007_s00362_006_0296_9 crossref_primary_10_1371_journal_pone_0139355 crossref_primary_10_1016_j_ress_2015_06_011 crossref_primary_10_1017_S1751731109991686 crossref_primary_10_1016_j_renene_2024_122029 crossref_primary_10_1029_2022WR032365 crossref_primary_10_1016_j_najef_2017_10_005 crossref_primary_10_1007_s00382_015_2491_7 crossref_primary_10_1016_j_eja_2008_05_004 crossref_primary_10_1061__ASCE_HY_1943_7900_0001436 crossref_primary_10_1093_bioinformatics_bti319 crossref_primary_10_1007_s11258_010_9880_0 crossref_primary_10_3390_w11081707 crossref_primary_10_1016_j_ijforecast_2013_07_013 crossref_primary_10_1016_j_stamet_2005_09_009 crossref_primary_10_1002_bimj_201300259 crossref_primary_10_1111_j_1526_100X_2008_00430_x crossref_primary_10_1016_j_apgeog_2013_10_001 crossref_primary_10_1177_2515245919885617 crossref_primary_10_3390_su9050781 crossref_primary_10_3389_fpubh_2022_1014227 crossref_primary_10_1016_j_aap_2016_03_007 crossref_primary_10_1208_s12248_012_9320_2 crossref_primary_10_1016_j_celrep_2018_10_096 crossref_primary_10_1007_s00127_013_0717_8 crossref_primary_10_1186_1471_2288_10_108 crossref_primary_10_1089_aid_2018_0053 crossref_primary_10_1111_1365_2664_13052 crossref_primary_10_1371_journal_pone_0233136 crossref_primary_10_36469_jheor_2019_9729 crossref_primary_10_2460_ajvr_75_3_251 crossref_primary_10_1038_srep08131 crossref_primary_10_1016_j_foreco_2019_03_003 crossref_primary_10_1080_27660400_2022_2108353 crossref_primary_10_1186_s12862_016_0584_5 crossref_primary_10_1016_j_csda_2004_01_005 crossref_primary_10_1016_j_spinee_2023_08_018 crossref_primary_10_1016_j_renene_2009_09_003 crossref_primary_10_2139_ssrn_2054934 crossref_primary_10_1007_s00442_008_1221_9 crossref_primary_10_1021_ie801243z crossref_primary_10_1097_TA_0b013e31828cc9a0 crossref_primary_10_1007_s10531_016_1080_3 crossref_primary_10_1016_j_ijforecast_2009_08_001 crossref_primary_10_1007_s10483_016_2103_6 crossref_primary_10_1016_j_agee_2015_09_017 crossref_primary_10_1016_j_scitotenv_2018_04_273 crossref_primary_10_1111_j_1466_8238_2010_00580_x crossref_primary_10_1656_058_016_0205 crossref_primary_10_1097_TA_0b013e318224d328 crossref_primary_10_1186_s40364_018_0117_z crossref_primary_10_1097_QAD_0000000000003501 crossref_primary_10_1155_2016_7463963 crossref_primary_10_1007_s00265_015_1964_3 crossref_primary_10_1007_s11336_013_9375_8 crossref_primary_10_1016_j_advwatres_2006_11_014 crossref_primary_10_1177_0962280217747311 crossref_primary_10_3390_ijerph120809391 crossref_primary_10_1139_cjce_2015_0374 crossref_primary_10_1086_505313 crossref_primary_10_1002_gepi_21765 crossref_primary_10_1007_s00520_013_1885_5 crossref_primary_10_1016_j_ijforecast_2009_01_005 crossref_primary_10_1016_j_ins_2006_11_002 crossref_primary_10_1080_02664760903093625 crossref_primary_10_1016_j_knosys_2016_07_024 crossref_primary_10_1016_j_physa_2023_128747 crossref_primary_10_1029_2017WR022473 crossref_primary_10_1086_425150 crossref_primary_10_1002_sam_11579 crossref_primary_10_1016_j_eja_2024_127426 crossref_primary_10_1111_j_1365_2699_2006_01576_x crossref_primary_10_1002_sim_7442 crossref_primary_10_1002_gepi_22171 crossref_primary_10_1002_sim_2672 crossref_primary_10_1016_j_jhydrol_2020_125577 crossref_primary_10_1111_j_1541_0420_2011_01731_x crossref_primary_10_1093_aje_kwn339 crossref_primary_10_1016_j_cmpb_2008_08_002 crossref_primary_10_1177_1740774508101279 crossref_primary_10_1002_gepi_20542 crossref_primary_10_1016_j_foreco_2017_04_034 crossref_primary_10_1371_journal_pone_0236575 crossref_primary_10_1016_j_prevetmed_2010_06_004 crossref_primary_10_1007_s10461_016_1566_8 crossref_primary_10_1016_j_annepidem_2015_10_011 crossref_primary_10_1016_j_vaccine_2015_12_054 crossref_primary_10_1111_cobi_12083 crossref_primary_10_1080_13854040903107791 crossref_primary_10_1146_annurev_publhealth_031914_122559 crossref_primary_10_1080_14639220903470205 crossref_primary_10_1111_j_1539_6924_2011_01595_x crossref_primary_10_1007_s00027_009_0119_x crossref_primary_10_1097_QAD_0000000000002679 crossref_primary_10_1007_s11336_023_09914_9 crossref_primary_10_1161_CIRCULATIONAHA_115_011241 crossref_primary_10_1016_j_landusepol_2017_12_067 crossref_primary_10_1080_24709360_2019_1618653 crossref_primary_10_1097_PEC_0b013e3182a5cbc2 crossref_primary_10_1007_s00484_022_02262_w crossref_primary_10_1007_s11538_023_01169_w crossref_primary_10_1111_j_1469_1809_2010_00592_x crossref_primary_10_1191_1471082X05st089oa crossref_primary_10_1186_s12874_015_0066_2 crossref_primary_10_1371_journal_pone_0288000 crossref_primary_10_1002_sim_3943 crossref_primary_10_1016_j_cose_2022_103089 crossref_primary_10_1016_j_biopsych_2010_09_039 crossref_primary_10_1061__ASCE_CF_1943_5509_0001162 crossref_primary_10_1111_oik_01700 crossref_primary_10_15549_jeecar_v10i7_1388 crossref_primary_10_1016_j_agee_2012_07_011 crossref_primary_10_1111_rssa_12099 crossref_primary_10_1136_bmjopen_2014_005694 crossref_primary_10_1021_ie0498495 crossref_primary_10_1016_j_agrformet_2019_107759 crossref_primary_10_5194_acp_7_6085_2007 crossref_primary_10_1016_j_foreco_2012_08_023 crossref_primary_10_1176_appi_ajp_2014_13101355 crossref_primary_10_1111_1477_9552_12054 crossref_primary_10_1111_j_1365_2664_2007_01327_x crossref_primary_10_1513_AnnalsATS_201607_519ED crossref_primary_10_1038_s41467_018_04109_8 crossref_primary_10_1111_j_1541_0420_2009_01377_x crossref_primary_10_1534_genetics_116_193383 crossref_primary_10_1080_09603123_2011_634387 crossref_primary_10_1093_cercor_bhae214 crossref_primary_10_1158_1055_9965_EPI_14_3_EDB crossref_primary_10_1002_sim_1930 crossref_primary_10_1136_bmjopen_2016_011487 crossref_primary_10_1177_0962280215627298 crossref_primary_10_1016_j_envres_2022_113871 crossref_primary_10_1080_13854040701625846 crossref_primary_10_1002_sim_3434 crossref_primary_10_1016_j_agee_2012_05_019 crossref_primary_10_1007_s11053_018_9370_y crossref_primary_10_1016_S2055_6640_20_30045_5 crossref_primary_10_1016_j_jimonfin_2014_12_012 crossref_primary_10_1186_1471_2288_7_33 crossref_primary_10_1186_s12936_018_2491_2 crossref_primary_10_1080_00273171_2020_1778439 crossref_primary_10_3390_w10081099 crossref_primary_10_1155_2013_346045 crossref_primary_10_1073_pnas_1116442108 crossref_primary_10_1080_08870446_2020_1763995 crossref_primary_10_1016_j_advwatres_2010_05_004 crossref_primary_10_3390_nu10081104 crossref_primary_10_1016_j_envsoft_2021_105075 crossref_primary_10_1098_rstb_2020_0424 crossref_primary_10_1071_WR09054 crossref_primary_10_1073_pnas_1403649111 crossref_primary_10_1016_j_landurbplan_2011_10_011 crossref_primary_10_1214_14_BA884 crossref_primary_10_1371_journal_pone_0297450 crossref_primary_10_3917_redp_293_0355 |
Cites_doi | 10.1002/ijc.2910480102 10.1080/01621459.1995.10476572 10.1093/oxfordjournals.aje.a116944 10.1111/j.2517-6161.1995.tb02015.x 10.1007/978-1-4899-2939-6 10.1093/biomet/83.2.251 10.2307/2347266 10.2307/2685877 10.1080/01621459.1996.10476660 10.1111/j.1574-6941.2001.tb00841.x 10.1093/oxfordjournals.aje.a115101 10.2307/2983440 10.1080/01621459.1994.10476894 10.1214/ss/1177013238 10.1002/9780470316870 10.1080/01621459.1997.10473615 10.2307/2347264 |
ContentType | Journal Article |
Copyright | Copyright © 2001 John Wiley & Sons, Ltd. 2002 INIST-CNRS Copyright 2001 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: Copyright © 2001 John Wiley & Sons, Ltd. – notice: 2002 INIST-CNRS – notice: Copyright 2001 John Wiley & Sons, Ltd. |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1002/sim.976 |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Statistics Public Health |
EISSN | 1097-0258 |
EndPage | 3230 |
ExternalDocumentID | 11746314 14097021 10_1002_sim_976 SIM976 ark_67375_WNG_W9L7L2DB_3 |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GrantInformation_xml | – fundername: Office of Naval Research funderid: N00014‐96‐1‐0192 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5RE 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAWTL AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABOCM ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD EX3 F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 SUPJJ TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WOHZO WOW WQJ WRC WUP WWH WXSBR WYISQ XBAML XG1 XV2 YHZ ZGI ZZTAW ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGQPQ AGYGG CITATION AAMMB ABEML ACSCC AEFGJ AGHNM AGXDD AIDQK AIDYY AMVHM DUUFO EBD EMOBN HF~ IQODW M67 RIWAO RJQFR RYL SAMSI SV3 ZXP CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c4476-2974d28052c4cd3db110c273ffbbdc1846eddc41e4d5bbcd15a970429ceed15d3 |
IEDL.DBID | DR2 |
ISSN | 0277-6715 |
IngestDate | Fri Jul 11 15:42:24 EDT 2025 Wed Feb 19 02:32:47 EST 2025 Mon Jul 21 09:16:27 EDT 2025 Tue Jul 01 04:32:57 EDT 2025 Thu Apr 24 23:03:37 EDT 2025 Wed Jan 22 17:10:59 EST 2025 Wed Oct 30 09:52:06 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Keywords | Bayes estimation Human Statistical analysis Average Uterine cervix Case control study Malignant tumor Epidemiology Female genital diseases Statistical method Risk factor Female Uterine cervix diseases |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 Copyright 2001 John Wiley & Sons, Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4476-2974d28052c4cd3db110c273ffbbdc1846eddc41e4d5bbcd15a970429ceed15d3 |
Notes | ark:/67375/WNG-W9L7L2DB-3 ArticleID:SIM976 Office of Naval Research - No. N00014-96-1-0192 istex:E7DDEC11CAE150ED56EEAE43DA4D018A9405F612 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 11746314 |
PQID | 72359425 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_72359425 pubmed_primary_11746314 pascalfrancis_primary_14097021 crossref_primary_10_1002_sim_976 crossref_citationtrail_10_1002_sim_976 wiley_primary_10_1002_sim_976_SIM976 istex_primary_ark_67375_WNG_W9L7L2DB_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 15 November 2001 |
PublicationDateYYYYMMDD | 2001-11-15 |
PublicationDate_xml | – month: 11 year: 2001 text: 15 November 2001 day: 15 |
PublicationDecade | 2000 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: Elmont, NY – name: Chichester – name: England |
PublicationTitle | Statistics in medicine |
PublicationTitleAlternate | Statist. Med |
PublicationYear | 2001 |
Publisher | John Wiley & Sons, Ltd Wiley |
Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley |
References | Racine A, Grieve AP, Fluhler H, Smith AFM. Bayesian methods in practice: experiences in the pharmaceutical industry (with discussion). Applied Statistics 1986; 35:93-150. Madigan D, Raftery AE. Model selection and accounting for model uncertainty in graphical models using Occam's window. Journal of the American Statistical Association 1994; 89:1535-1546. Armitage P. Statistical Methods in Medical Research. Blackwell Scientific Publications: Oxford, UK, 1971. Berger JO, Delampady M. Testing precise hypotheses (with discussion). Statistical Science 1987; 3:317-352. Richardson S, Gerber M, Cénée S. The role of fat, animal protein and some vitamin consumption in breast cancer: a case-control study in southern France. International Journal of Cancer 1991; 48:1-9. Bernardo JM, Smith AFM. Bayesian Theory. Wiley: New York, 1994. Miller AJ. Subset Selection in Regression. Chapman and Hall: London, UK, 1990. Chatfield CC. Model uncertainty, data mining and statistical inference (with discussion). Journal of the Royal Statistical Society, Series A 1995; 158:419-466. Kleinbaum DG, Kupper LL, Morgenstern H. Epidemiologic ResearchPrinciples and Quantitative Methods. Lifetime Learning Publications: Belmont, CA, 1982. Breslow NE. Statistics in epidemiology: the case-control study. Journal of the American Statistical Association 1996; 91:14-28. Raftery AE. Approximate Bayes factors and accounting for model uncertainty in generalized linear models. Biometrika 1996; 83:251-266. Draper D. Assessment and propagation of model uncertainty (with discussion). Journal of the Royal Statistical Society, Series B 1995; 57:45-98. Lee PM. Bayesian Statistics: An Introduction. Oxford University Press: Oxford, U.K., 1989. Volinsky CT, Madigan D, Raftery AE, Kronmal RA. Bayesian model averaging in proportional hazard models: predicting the risk of a stroke. Applied Statistics 1997; 46:443-448. Jeffreys H. Theory of Probability. 3rd edn. Oxford University Press: Oxford, U.K., 1961. Savitz DA, Tolo K-A, Poole C. Statistical significance testing in the American Journal of Epidemiology, 1970 -1990. American Journal of Epidemiology 1994; 139(10):1047-1052. Hosmer DW, Lemeshow S. Applied Logistic Regression. Wiley: New York, 1989. Leamer EE. Specification Searches: Ad Hoc Inference With Nonexperimental Data. Wiley: New York, 1978. Hoeting JA, Raftery AE, Madigan D. A method for simultaneous variable selection and outlier identification in linear regression. Journal of Computational Statistics 1995; 22:251-271. Gelman A, Carlin JB, Stern HS, Rubin DB. Bayesian Data Analysis. Chapman and Hall: London, 1995. Mickey RM, Greenland S. The impact of confounder selection criteria on effect estimation. American Journal of Epidemiology 1989; 129(1):125-137. Rubin DB, Schenker N. Efficiently simulating the coverage properties of interval estimates. Applied Statistics 1986; 35:159-167. Raftery AE, Madigan D, Hoeting JA. Model selection and accounting for model uncertainty in linear regression models. Journal of the American Statistical Association 1997; 92:179-191. Kass RE, Raftery AE. Bayes factors. Journal of the American Statistical Association 1995; 90:773-795. Breslow NE, Day NE. Statistical Methods in Cancer Research. Vol. 1: The Analysis of Case-control Studies. IARC scientific publication no. 32: Lyon, 1980. Peters RK, Thomas D, Hagan DG, Mack TM, Henderson BE. Risk factors for invasive cervical cancer among latinas and non-latinas in Los Angeles county. Journal of the National Cancer Institute 1986; 77(5):1063-1077. Rothman KJ, Greenland S. Modern Epidemiology. 2nd edn. Lippincott, Williams & Wilkins: Philadelphia, 1998. Freedman DA. A note on screening regression equations. American Statistician 1983; 37:152-155. 1987; 3 1994; 139 1995; 90 1986; 77 1995; 57 1986; 35 1997; 46 1994; 89 1998 1996 1995 1994 1995; 158 1971 1996; 91 1983; 37 1978 1989; 129 1997; 92 1991; 48 1990 1980; 1 1995; 22 1996; 83 1961 1982 1989 Raftery AE (e_1_2_1_26_2) 1996 Jeffreys H (e_1_2_1_29_2) 1961 e_1_2_1_23_2 e_1_2_1_20_2 Leamer EE (e_1_2_1_10_2) 1978 e_1_2_1_21_2 Savitz DA (e_1_2_1_6_2) 1994; 139 Volinsky CT (e_1_2_1_27_2) 1997; 46 Raftery AE (e_1_2_1_12_2) 1995 e_1_2_1_24_2 Lee PM (e_1_2_1_19_2) 1989 Hoeting JA (e_1_2_1_18_2) 1995; 22 e_1_2_1_28_2 Kleinbaum DG (e_1_2_1_30_2) 1982 Peters RK (e_1_2_1_9_2) 1986; 77 Armitage P (e_1_2_1_31_2) 1971 Raftery AE (e_1_2_1_22_2) 1995 Breslow NE (e_1_2_1_2_2) 1980 e_1_2_1_7_2 e_1_2_1_4_2 Rothman KJ (e_1_2_1_32_2) 1998 e_1_2_1_11_2 e_1_2_1_3_2 Richardson S (e_1_2_1_25_2) 1991; 48 e_1_2_1_15_2 e_1_2_1_16_2 e_1_2_1_13_2 e_1_2_1_14_2 Hosmer DW (e_1_2_1_5_2) 1989 e_1_2_1_8_2 e_1_2_1_17_2 |
References_xml | – reference: Breslow NE, Day NE. Statistical Methods in Cancer Research. Vol. 1: The Analysis of Case-control Studies. IARC scientific publication no. 32: Lyon, 1980. – reference: Lee PM. Bayesian Statistics: An Introduction. Oxford University Press: Oxford, U.K., 1989. – reference: Volinsky CT, Madigan D, Raftery AE, Kronmal RA. Bayesian model averaging in proportional hazard models: predicting the risk of a stroke. Applied Statistics 1997; 46:443-448. – reference: Miller AJ. Subset Selection in Regression. Chapman and Hall: London, UK, 1990. – reference: Mickey RM, Greenland S. The impact of confounder selection criteria on effect estimation. American Journal of Epidemiology 1989; 129(1):125-137. – reference: Raftery AE. Approximate Bayes factors and accounting for model uncertainty in generalized linear models. Biometrika 1996; 83:251-266. – reference: Richardson S, Gerber M, Cénée S. The role of fat, animal protein and some vitamin consumption in breast cancer: a case-control study in southern France. International Journal of Cancer 1991; 48:1-9. – reference: Leamer EE. Specification Searches: Ad Hoc Inference With Nonexperimental Data. Wiley: New York, 1978. – reference: Hoeting JA, Raftery AE, Madigan D. A method for simultaneous variable selection and outlier identification in linear regression. Journal of Computational Statistics 1995; 22:251-271. – reference: Berger JO, Delampady M. Testing precise hypotheses (with discussion). Statistical Science 1987; 3:317-352. – reference: Freedman DA. A note on screening regression equations. American Statistician 1983; 37:152-155. – reference: Gelman A, Carlin JB, Stern HS, Rubin DB. Bayesian Data Analysis. Chapman and Hall: London, 1995. – reference: Raftery AE, Madigan D, Hoeting JA. Model selection and accounting for model uncertainty in linear regression models. Journal of the American Statistical Association 1997; 92:179-191. – reference: Chatfield CC. Model uncertainty, data mining and statistical inference (with discussion). Journal of the Royal Statistical Society, Series A 1995; 158:419-466. – reference: Bernardo JM, Smith AFM. Bayesian Theory. Wiley: New York, 1994. – reference: Rubin DB, Schenker N. Efficiently simulating the coverage properties of interval estimates. Applied Statistics 1986; 35:159-167. – reference: Jeffreys H. Theory of Probability. 3rd edn. Oxford University Press: Oxford, U.K., 1961. – reference: Hosmer DW, Lemeshow S. Applied Logistic Regression. Wiley: New York, 1989. – reference: Draper D. Assessment and propagation of model uncertainty (with discussion). Journal of the Royal Statistical Society, Series B 1995; 57:45-98. – reference: Savitz DA, Tolo K-A, Poole C. Statistical significance testing in the American Journal of Epidemiology, 1970 -1990. American Journal of Epidemiology 1994; 139(10):1047-1052. – reference: Rothman KJ, Greenland S. Modern Epidemiology. 2nd edn. Lippincott, Williams & Wilkins: Philadelphia, 1998. – reference: Kleinbaum DG, Kupper LL, Morgenstern H. Epidemiologic ResearchPrinciples and Quantitative Methods. Lifetime Learning Publications: Belmont, CA, 1982. – reference: Armitage P. Statistical Methods in Medical Research. Blackwell Scientific Publications: Oxford, UK, 1971. – reference: Racine A, Grieve AP, Fluhler H, Smith AFM. Bayesian methods in practice: experiences in the pharmaceutical industry (with discussion). Applied Statistics 1986; 35:93-150. – reference: Madigan D, Raftery AE. Model selection and accounting for model uncertainty in graphical models using Occam's window. Journal of the American Statistical Association 1994; 89:1535-1546. – reference: Peters RK, Thomas D, Hagan DG, Mack TM, Henderson BE. Risk factors for invasive cervical cancer among latinas and non-latinas in Los Angeles county. Journal of the National Cancer Institute 1986; 77(5):1063-1077. – reference: Kass RE, Raftery AE. Bayes factors. Journal of the American Statistical Association 1995; 90:773-795. – reference: Breslow NE. Statistics in epidemiology: the case-control study. Journal of the American Statistical Association 1996; 91:14-28. – volume: 46 start-page: 443 year: 1997 end-page: 448 article-title: Bayesian model averaging in proportional hazard models: predicting the risk of a stroke publication-title: Applied Statistics – start-page: 12 year: 1996 end-page: 353 – volume: 91 start-page: 14 year: 1996 end-page: 28 article-title: Statistics in epidemiology: the case‐control study publication-title: Journal of the American Statistical Association – volume: 1 year: 1980 – volume: 3 start-page: 317 year: 1987 end-page: 352 article-title: Testing precise hypotheses (with discussion) publication-title: Statistical Science – year: 1989 – volume: 90 start-page: 773 year: 1995 end-page: 795 article-title: Bayes factors publication-title: Journal of the American Statistical Association – year: 1971 – volume: 48 start-page: 1 year: 1991 end-page: 9 article-title: The role of fat, animal protein and some vitamin consumption in breast cancer: a case‐control study in southern France publication-title: International Journal of Cancer – volume: 37 start-page: 152 year: 1983 end-page: 155 article-title: A note on screening regression equations publication-title: American Statistician – year: 1990 – year: 1994 – volume: 57 start-page: 45 year: 1995 end-page: 98 article-title: Assessment and propagation of model uncertainty (with discussion) publication-title: Journal of the Royal Statistical Society, Series B – year: 1998 – year: 1961 – volume: 77 start-page: 1063 issue: 5 year: 1986 end-page: 1077 article-title: Risk factors for invasive cervical cancer among latinas and non‐latinas in Los Angeles county publication-title: Journal of the National Cancer Institute – volume: 139 start-page: 1047 issue: 10 year: 1994 end-page: 1052 article-title: Statistical significance testing in the American Journal of Epidemiology, 1970 –1990 publication-title: American Journal of Epidemiology – volume: 158 start-page: 419 year: 1995 end-page: 466 article-title: Model uncertainty, data mining and statistical inference (with discussion) publication-title: Journal of the Royal Statistical Society, Series A – year: 1982 – volume: 35 start-page: 159 year: 1986 end-page: 167 article-title: Efficiently simulating the coverage properties of interval estimates publication-title: Applied Statistics – start-page: 323 year: 1995 end-page: 349 – volume: 89 start-page: 1535 year: 1994 end-page: 1546 article-title: Model selection and accounting for model uncertainty in graphical models using Occam's window publication-title: Journal of the American Statistical Association – volume: 22 start-page: 251 year: 1995 end-page: 271 article-title: A method for simultaneous variable selection and outlier identification in linear regression publication-title: Journal of Computational Statistics – year: 1995 – volume: 35 start-page: 93 year: 1986 end-page: 150 article-title: Bayesian methods in practice: experiences in the pharmaceutical industry (with discussion) publication-title: Applied Statistics – volume: 92 start-page: 179 year: 1997 end-page: 191 article-title: Model selection and accounting for model uncertainty in linear regression models publication-title: Journal of the American Statistical Association – volume: 83 start-page: 251 year: 1996 end-page: 266 article-title: Approximate Bayes factors and accounting for model uncertainty in generalized linear models publication-title: Biometrika – year: 1978 – start-page: 111 year: 1995 end-page: 163 – volume: 129 start-page: 125 issue: 1 year: 1989 end-page: 137 article-title: The impact of confounder selection criteria on effect estimation publication-title: American Journal of Epidemiology – start-page: 111 volume-title: Sociological Methodology 1995 year: 1995 ident: e_1_2_1_12_2 – volume: 48 start-page: 1 year: 1991 ident: e_1_2_1_25_2 article-title: The role of fat, animal protein and some vitamin consumption in breast cancer: a case‐control study in southern France publication-title: International Journal of Cancer doi: 10.1002/ijc.2910480102 – volume: 46 start-page: 443 year: 1997 ident: e_1_2_1_27_2 article-title: Bayesian model averaging in proportional hazard models: predicting the risk of a stroke publication-title: Applied Statistics – volume-title: The Analysis of Case‐control Studies year: 1980 ident: e_1_2_1_2_2 – ident: e_1_2_1_13_2 doi: 10.1080/01621459.1995.10476572 – volume: 139 start-page: 1047 issue: 10 year: 1994 ident: e_1_2_1_6_2 article-title: Statistical significance testing in the American Journal of Epidemiology, 1970 –1990 publication-title: American Journal of Epidemiology doi: 10.1093/oxfordjournals.aje.a116944 – ident: e_1_2_1_14_2 doi: 10.1111/j.2517-6161.1995.tb02015.x – volume-title: Modern Epidemiology year: 1998 ident: e_1_2_1_32_2 – ident: e_1_2_1_8_2 doi: 10.1007/978-1-4899-2939-6 – ident: e_1_2_1_15_2 doi: 10.1093/biomet/83.2.251 – ident: e_1_2_1_23_2 doi: 10.2307/2347266 – ident: e_1_2_1_7_2 doi: 10.2307/2685877 – volume-title: Epidemiologic ResearchPrinciples and Quantitative Methods year: 1982 ident: e_1_2_1_30_2 – ident: e_1_2_1_3_2 doi: 10.1080/01621459.1996.10476660 – ident: e_1_2_1_21_2 doi: 10.1111/j.1574-6941.2001.tb00841.x – volume-title: Bayesian Statistics: An Introduction year: 1989 ident: e_1_2_1_19_2 – ident: e_1_2_1_4_2 doi: 10.1093/oxfordjournals.aje.a115101 – volume-title: Specification Searches: Ad Hoc Inference With Nonexperimental Data year: 1978 ident: e_1_2_1_10_2 – ident: e_1_2_1_16_2 doi: 10.2307/2983440 – ident: e_1_2_1_11_2 doi: 10.1080/01621459.1994.10476894 – ident: e_1_2_1_28_2 doi: 10.1214/ss/1177013238 – volume-title: Statistical Methods in Medical Research year: 1971 ident: e_1_2_1_31_2 – start-page: 323 volume-title: Bayesian Statistics 5 year: 1995 ident: e_1_2_1_22_2 – start-page: 12 volume-title: Bayesian Biostatistics year: 1996 ident: e_1_2_1_26_2 – ident: e_1_2_1_20_2 doi: 10.1002/9780470316870 – volume: 77 start-page: 1063 issue: 5 year: 1986 ident: e_1_2_1_9_2 article-title: Risk factors for invasive cervical cancer among latinas and non‐latinas in Los Angeles county publication-title: Journal of the National Cancer Institute – volume: 22 start-page: 251 year: 1995 ident: e_1_2_1_18_2 article-title: A method for simultaneous variable selection and outlier identification in linear regression publication-title: Journal of Computational Statistics – volume-title: Theory of Probability year: 1961 ident: e_1_2_1_29_2 – volume-title: Applied Logistic Regression year: 1989 ident: e_1_2_1_5_2 – ident: e_1_2_1_17_2 doi: 10.1080/01621459.1997.10473615 – ident: e_1_2_1_24_2 doi: 10.2307/2347264 |
SSID | ssj0011527 |
Score | 2.1427412 |
Snippet | Covariate and confounder selection in case‐control studies is often carried out using a statistical variable selection method, such as a two‐step method or a... Covariate and confounder selection in case-control studies is often carried out using a statistical variable selection method, such as a two-step method or a... |
SourceID | proquest pubmed pascalfrancis crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3215 |
SubjectTerms | Analysis of Variance Bayes Theorem Biological and medical sciences Biometry Case-Control Studies Female Female genital diseases Gynecology. Andrology. Obstetrics Humans Medical sciences Odds Ratio Risk Factors Tumors Uterine Cervical Neoplasms - epidemiology |
Title | Variable selection and Bayesian model averaging in case-control studies |
URI | https://api.istex.fr/ark:/67375/WNG-W9L7L2DB-3/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.976 https://www.ncbi.nlm.nih.gov/pubmed/11746314 https://www.proquest.com/docview/72359425 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6hIqFKiMdSSngUH6resq2TON4cKVBa1O0BKK16sfyKVLVNq2ZXAk78BH4jv4QZO9lleUiIUw6xrcQz4xnbM98HsF5Wdcmt4KmoK50WNpNpJblPnc-dr522oqba4fFBuXtYvD0Wxz9RfUV8iNmBG1lGWK_JwLVpN-egoe3pxRB9Ka6-lKlF4dC7GXAU78la6YKylFzEclnqudn1W_BDN2lKP1FepG5xaurIafGnoHMxhg1OaOcunPSfH3NPzobTiRnaL78gO_7X_92DO11oyl5EXboPN3wzgFvj7vJ9ALfjER-LlUsDWKZANeI8P4C9j7jppjIs1gZmHRQ3041j2_qzpzpNFih3mEbLCbxI7LRhFj3o96_fumx51saUxhU43Hn94eVu2tE0pLYoZJlmuCVxGVEj2MK63BmMKFDmeV0b4yzuIEvvnC24L5wwxjoudCXJD5J_5sLlD2GpuWz8I2AWZWVrZ6zEDpkVo5Ex3ovRlvdb2J4nsNELTdkOw5yoNM5VRF_OFM6awllLcKy-4VWE7fi9yUaQ-uy9vj6jLDcp1NHBG3VU7cv97NW2yhNYW1CL-YCEFYYxUgLPez1RaJx046IbfzltlcxyUeGqmMBqVJ95X9wJljkvElgPSvC3r1Tv98b4ePxvzZ7AcsiRozRF8RSWJtdT_wyDpolZC_bxA4sqFoY |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BK0ElxGN5hUfrQ9VbtnUSJ5sjpZRd2N0DtLQSB8uvSFUhRc2uBJz4CfxGfgkzdrKr5SEhTjnEthLPjGdsz3wfwHZeVjk3gseiKlWcmaSIy4K72LrUusoqIyqqHZ5M8-Fx9upUnLZZlVQLE_AhFgduZBl-vSYDpwPp3SVqaHP2sY_O9CqsE583sRccvFlAR_GOrpWuKPOCi1AwS113244rnmidJvUzZUaqBienCqwWfwo7V6NY74YOb8H77gdC9sl5fz7TffP1F2zH__vD23CzjU7Zs6BOd-CKq3twbdLev_fgRjjlY6F4qQcbFKsGqOe7MHqH-26qxGKNJ9dBiTNVW7avvjgq1WSedYcpNB5PjcTOambQif749r1NmGdNyGq8B8eHL46eD-OWqSE2WVbkcYK7EpsQO4LJjE2txqACxZ5WldbW4CYyd9aajLvMCq2N5UKVBblCctFc2PQ-rNUXtXsIzKCwTGW1KbBDYsRgoLVzYrDn3B625xHsdFKTpoUxJzaNDzIAMCcSZ03irEU4VtfwU0Du-L3Jjhf74r26PKdEt0LIk-lLeVKOi3FysC_TCDZX9GI5IMGFYZgUwVanKBLtky5dVO0u5o0sklSUuDBG8CDoz7IvbgbzlGcRbHst-NtXyrejCT4e_VuzLbg-PJqM5Xg0ff0YNnzKHGUtiiewNrucu6cYQ830pjeWn8zmGqA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BK1WVKh4LlPBofah6y7ZO4mRzpC1LF3ZXCCituFjxI1LVNq2aXQk48RP4jfySztjJLstDQpxyiG0lnhnP2J75PoCtNC9TrgUPRZkXYaKjLMwzbkNjY2NLU2hRUu3waJweHiWvT8TJT1RfHh9iduBGluHWazLwK1PuzEFD69OLLvrS27CcpGgqFA-9myFH8ZatlW4o04wLXy9LXXeajguOaJnm9DMlRhY1zk3pSS3-FHUuBrHOC_Xvwqf2-33yyVl3OlFd_fUXaMf_-sF7cKeJTdkLr0z34ZatOrAyam7fO7Dmz_iYL13qwCpFqh7o-QEMPuKum-qwWO2odVDerKgM2yu-WCrUZI5zhxVoOo4YiZ1WTKML_fHte5Muz2qf0_gQjvovP-wfhg1PQ6iTJEvDCPckJiJuBJ1oExuFIQUKPS5LpYzGLWRqjdEJt4kRSmnDRZFn5AjJQXNh4kewVF1W9jEwjbLSpVE6ww6RFr2eUtaK3q61u9ieB7DdCk3qBsScuDTOpYdfjiTOmsRZC3CstuGVx-34vcm2k_rsfXF9RmlumZDH41fyOB9mw-hgT8YBbCyoxXxAAgvDICmAzVZPJFonXbkUlb2c1jKLYpHjshjAulefeV_cCqYxTwLYckrwt6-U7wcjfDz5t2absPL2oC-Hg_Gbp7Dq8uUoZVE8g6XJ9dQ-xwBqojacqdwAlNkZWA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variable+selection+and+Bayesian+model+averaging+in+case-control+studies&rft.jtitle=Statistics+in+medicine&rft.au=Viallefont%2C+V&rft.au=Raftery%2C+A+E&rft.au=Richardson%2C+S&rft.date=2001-11-15&rft.issn=0277-6715&rft.volume=20&rft.issue=21&rft.spage=3215&rft_id=info:doi/10.1002%2Fsim.976&rft_id=info%3Apmid%2F11746314&rft.externalDocID=11746314 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon |