Investigational treatment of rheumatoid arthritis with a vibrotactile device applied to the external ear

Rheumatoid arthritis (RA) is a chronic and debilitating inflammatory disease characterized by extensive joint tissue inflammation. Implantable bioelectronic devices targeting the inflammatory reflex reduce TNF production and inflammation in preclinical models of inflammatory disease, and in patients...

Full description

Saved in:
Bibliographic Details
Published inBioelectronic medicine Vol. 5; no. 1; pp. 4 - 11
Main Authors Addorisio, Meghan E., Imperato, Gavin H., de Vos, Alex F., Forti, Steve, Goldstein, Richard S., Pavlov, Valentin A., van der Poll, Tom, Yang, Huan, Diamond, Betty, Tracey, Kevin J., Chavan, Sangeeta S.
Format Journal Article
LanguageEnglish
Published England BioMed Central 17.04.2019
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Rheumatoid arthritis (RA) is a chronic and debilitating inflammatory disease characterized by extensive joint tissue inflammation. Implantable bioelectronic devices targeting the inflammatory reflex reduce TNF production and inflammation in preclinical models of inflammatory disease, and in patients with RA and Crohn's disease. Here, we assessed the effect of applying a vibrotactile device to the cymba concha of the external ear on inflammatory responses in healthy subjects, as well as its effect on disease activity in RA patients. Six healthy subjects received vibrotactile treatment at the cymba concha, and TNF production was analyzed at different time points post-stimulation. In a separate study, nineteen healthy subjects were enrolled in a randomized cross-over study, and effects of vibrotactile treatment at either the cymba concha or gastrocnemius on cytokine levels were assessed. In addition, the clinical efficacy of vibrotactile treatment on disease activity in RA was assessed in nine patients with RA in a prospective interventional study. Vibrotactile treatment at the cymba concha reduced TNF levels, and the suppressive effect persisted up to 24 h. In the cross-over study with 19 healthy subjects, vibrotactile treatment at the cymba concha but not at the gastrocnemius significantly reduced TNF, IL-1β, and IL-6 levels compared to pre-treatment baseline (TNF  < 0.05, IL-6  < 0.01, IL-1β  < 0.001). In healthy subjects, vibrotactile treatment at the cymba concha inhibited TNF by 80%, IL-6 by 73%, and IL-1β by 50% as compared to pre-treatment baseline levels. In RA patients, a significant decrease in DAS28-CRP scores was observed two days post-vibrotactile stimulation at the cymba concha (DAS28-CRP score pre-treatment = 4.19 ± 0.33 vs post-treatment = 3.12 ± 0.25,  < 0.05). Disease activity remained significantly reduced 7 days following vibrotactile treatment (DAS28-CRP score 7 days post-treatment = 2.79 ± 0.21,  < 0.01). In addition, a persistent improvement in visual analogue scale scores, a patient derived measure of global health assessment, was observed in RA patients following vibrotactile treatment. Application of a vibrotactile device to the cymba concha inhibits peripheral blood production of TNF, IL-1β, and IL-6 in healthy subjects, and attenuates systemic inflammatory responses in RA patients. ClinicalTrials.gov Identifier: NCT01569789 and NCT00859859. The AMC trial conducted in The Netherlands does not have a ClinicalTrials.gov Identifier.
AbstractList Background Rheumatoid arthritis (RA) is a chronic and debilitating inflammatory disease characterized by extensive joint tissue inflammation. Implantable bioelectronic devices targeting the inflammatory reflex reduce TNF production and inflammation in preclinical models of inflammatory disease, and in patients with RA and Crohn’s disease. Here, we assessed the effect of applying a vibrotactile device to the cymba concha of the external ear on inflammatory responses in healthy subjects, as well as its effect on disease activity in RA patients. Methods Six healthy subjects received vibrotactile treatment at the cymba concha, and TNF production was analyzed at different time points post-stimulation. In a separate study, nineteen healthy subjects were enrolled in a randomized cross-over study, and effects of vibrotactile treatment at either the cymba concha or gastrocnemius on cytokine levels were assessed. In addition, the clinical efficacy of vibrotactile treatment on disease activity in RA was assessed in nine patients with RA in a prospective interventional study. Results Vibrotactile treatment at the cymba concha reduced TNF levels, and the suppressive effect persisted up to 24 h. In the cross-over study with 19 healthy subjects, vibrotactile treatment at the cymba concha but not at the gastrocnemius significantly reduced TNF, IL-1β, and IL-6 levels compared to pre-treatment baseline (TNF p < 0.05, IL-6 p < 0.01, IL-1β p < 0.001). In healthy subjects, vibrotactile treatment at the cymba concha inhibited TNF by 80%, IL-6 by 73%, and IL-1β by 50% as compared to pre-treatment baseline levels. In RA patients, a significant decrease in DAS28-CRP scores was observed two days post-vibrotactile stimulation at the cymba concha (DAS28-CRP score pre-treatment = 4.19 ± 0.33 vs post-treatment = 3.12 ± 0.25, p < 0.05). Disease activity remained significantly reduced 7 days following vibrotactile treatment (DAS28-CRP score 7 days post-treatment = 2.79 ± 0.21, p < 0.01). In addition, a persistent improvement in visual analogue scale scores, a patient derived measure of global health assessment, was observed in RA patients following vibrotactile treatment. Conclusion Application of a vibrotactile device to the cymba concha inhibits peripheral blood production of TNF, IL-1β, and IL-6 in healthy subjects, and attenuates systemic inflammatory responses in RA patients. Trial registrations ClinicalTrials.gov Identifier: NCT01569789 and NCT00859859. The AMC trial conducted in The Netherlands does not have a ClinicalTrials.gov Identifier.
Abstract Background Rheumatoid arthritis (RA) is a chronic and debilitating inflammatory disease characterized by extensive joint tissue inflammation. Implantable bioelectronic devices targeting the inflammatory reflex reduce TNF production and inflammation in preclinical models of inflammatory disease, and in patients with RA and Crohn’s disease. Here, we assessed the effect of applying a vibrotactile device to the cymba concha of the external ear on inflammatory responses in healthy subjects, as well as its effect on disease activity in RA patients. Methods Six healthy subjects received vibrotactile treatment at the cymba concha, and TNF production was analyzed at different time points post-stimulation. In a separate study, nineteen healthy subjects were enrolled in a randomized cross-over study, and effects of vibrotactile treatment at either the cymba concha or gastrocnemius on cytokine levels were assessed. In addition, the clinical efficacy of vibrotactile treatment on disease activity in RA was assessed in nine patients with RA in a prospective interventional study. Results Vibrotactile treatment at the cymba concha reduced TNF levels, and the suppressive effect persisted up to 24 h. In the cross-over study with 19 healthy subjects, vibrotactile treatment at the cymba concha but not at the gastrocnemius significantly reduced TNF, IL-1β, and IL-6 levels compared to pre-treatment baseline (TNF p < 0.05, IL-6 p < 0.01, IL-1β p < 0.001). In healthy subjects, vibrotactile treatment at the cymba concha inhibited TNF by 80%, IL-6 by 73%, and IL-1β by 50% as compared to pre-treatment baseline levels. In RA patients, a significant decrease in DAS28-CRP scores was observed two days post-vibrotactile stimulation at the cymba concha (DAS28-CRP score pre-treatment = 4.19 ± 0.33 vs post-treatment = 3.12 ± 0.25, p < 0.05). Disease activity remained significantly reduced 7 days following vibrotactile treatment (DAS28-CRP score 7 days post-treatment = 2.79 ± 0.21, p < 0.01). In addition, a persistent improvement in visual analogue scale scores, a patient derived measure of global health assessment, was observed in RA patients following vibrotactile treatment. Conclusion Application of a vibrotactile device to the cymba concha inhibits peripheral blood production of TNF, IL-1β, and IL-6 in healthy subjects, and attenuates systemic inflammatory responses in RA patients. Trial registrations ClinicalTrials.gov Identifier: NCT01569789 and NCT00859859. The AMC trial conducted in The Netherlands does not have a ClinicalTrials.gov Identifier.
Rheumatoid arthritis (RA) is a chronic and debilitating inflammatory disease characterized by extensive joint tissue inflammation. Implantable bioelectronic devices targeting the inflammatory reflex reduce TNF production and inflammation in preclinical models of inflammatory disease, and in patients with RA and Crohn's disease. Here, we assessed the effect of applying a vibrotactile device to the cymba concha of the external ear on inflammatory responses in healthy subjects, as well as its effect on disease activity in RA patients.BACKGROUNDRheumatoid arthritis (RA) is a chronic and debilitating inflammatory disease characterized by extensive joint tissue inflammation. Implantable bioelectronic devices targeting the inflammatory reflex reduce TNF production and inflammation in preclinical models of inflammatory disease, and in patients with RA and Crohn's disease. Here, we assessed the effect of applying a vibrotactile device to the cymba concha of the external ear on inflammatory responses in healthy subjects, as well as its effect on disease activity in RA patients.Six healthy subjects received vibrotactile treatment at the cymba concha, and TNF production was analyzed at different time points post-stimulation. In a separate study, nineteen healthy subjects were enrolled in a randomized cross-over study, and effects of vibrotactile treatment at either the cymba concha or gastrocnemius on cytokine levels were assessed. In addition, the clinical efficacy of vibrotactile treatment on disease activity in RA was assessed in nine patients with RA in a prospective interventional study.METHODSSix healthy subjects received vibrotactile treatment at the cymba concha, and TNF production was analyzed at different time points post-stimulation. In a separate study, nineteen healthy subjects were enrolled in a randomized cross-over study, and effects of vibrotactile treatment at either the cymba concha or gastrocnemius on cytokine levels were assessed. In addition, the clinical efficacy of vibrotactile treatment on disease activity in RA was assessed in nine patients with RA in a prospective interventional study.Vibrotactile treatment at the cymba concha reduced TNF levels, and the suppressive effect persisted up to 24 h. In the cross-over study with 19 healthy subjects, vibrotactile treatment at the cymba concha but not at the gastrocnemius significantly reduced TNF, IL-1β, and IL-6 levels compared to pre-treatment baseline (TNF p < 0.05, IL-6 p < 0.01, IL-1β p < 0.001). In healthy subjects, vibrotactile treatment at the cymba concha inhibited TNF by 80%, IL-6 by 73%, and IL-1β by 50% as compared to pre-treatment baseline levels. In RA patients, a significant decrease in DAS28-CRP scores was observed two days post-vibrotactile stimulation at the cymba concha (DAS28-CRP score pre-treatment = 4.19 ± 0.33 vs post-treatment = 3.12 ± 0.25, p < 0.05). Disease activity remained significantly reduced 7 days following vibrotactile treatment (DAS28-CRP score 7 days post-treatment = 2.79 ± 0.21, p < 0.01). In addition, a persistent improvement in visual analogue scale scores, a patient derived measure of global health assessment, was observed in RA patients following vibrotactile treatment.RESULTSVibrotactile treatment at the cymba concha reduced TNF levels, and the suppressive effect persisted up to 24 h. In the cross-over study with 19 healthy subjects, vibrotactile treatment at the cymba concha but not at the gastrocnemius significantly reduced TNF, IL-1β, and IL-6 levels compared to pre-treatment baseline (TNF p < 0.05, IL-6 p < 0.01, IL-1β p < 0.001). In healthy subjects, vibrotactile treatment at the cymba concha inhibited TNF by 80%, IL-6 by 73%, and IL-1β by 50% as compared to pre-treatment baseline levels. In RA patients, a significant decrease in DAS28-CRP scores was observed two days post-vibrotactile stimulation at the cymba concha (DAS28-CRP score pre-treatment = 4.19 ± 0.33 vs post-treatment = 3.12 ± 0.25, p < 0.05). Disease activity remained significantly reduced 7 days following vibrotactile treatment (DAS28-CRP score 7 days post-treatment = 2.79 ± 0.21, p < 0.01). In addition, a persistent improvement in visual analogue scale scores, a patient derived measure of global health assessment, was observed in RA patients following vibrotactile treatment.Application of a vibrotactile device to the cymba concha inhibits peripheral blood production of TNF, IL-1β, and IL-6 in healthy subjects, and attenuates systemic inflammatory responses in RA patients.CONCLUSIONApplication of a vibrotactile device to the cymba concha inhibits peripheral blood production of TNF, IL-1β, and IL-6 in healthy subjects, and attenuates systemic inflammatory responses in RA patients.ClinicalTrials.gov Identifier: NCT01569789 and NCT00859859. The AMC trial conducted in The Netherlands does not have a ClinicalTrials.gov Identifier.TRIAL REGISTRATIONSClinicalTrials.gov Identifier: NCT01569789 and NCT00859859. The AMC trial conducted in The Netherlands does not have a ClinicalTrials.gov Identifier.
Rheumatoid arthritis (RA) is a chronic and debilitating inflammatory disease characterized by extensive joint tissue inflammation. Implantable bioelectronic devices targeting the inflammatory reflex reduce TNF production and inflammation in preclinical models of inflammatory disease, and in patients with RA and Crohn's disease. Here, we assessed the effect of applying a vibrotactile device to the cymba concha of the external ear on inflammatory responses in healthy subjects, as well as its effect on disease activity in RA patients. Six healthy subjects received vibrotactile treatment at the cymba concha, and TNF production was analyzed at different time points post-stimulation. In a separate study, nineteen healthy subjects were enrolled in a randomized cross-over study, and effects of vibrotactile treatment at either the cymba concha or gastrocnemius on cytokine levels were assessed. In addition, the clinical efficacy of vibrotactile treatment on disease activity in RA was assessed in nine patients with RA in a prospective interventional study. Vibrotactile treatment at the cymba concha reduced TNF levels, and the suppressive effect persisted up to 24 h. In the cross-over study with 19 healthy subjects, vibrotactile treatment at the cymba concha but not at the gastrocnemius significantly reduced TNF, IL-1β, and IL-6 levels compared to pre-treatment baseline (TNF  < 0.05, IL-6  < 0.01, IL-1β  < 0.001). In healthy subjects, vibrotactile treatment at the cymba concha inhibited TNF by 80%, IL-6 by 73%, and IL-1β by 50% as compared to pre-treatment baseline levels. In RA patients, a significant decrease in DAS28-CRP scores was observed two days post-vibrotactile stimulation at the cymba concha (DAS28-CRP score pre-treatment = 4.19 ± 0.33 vs post-treatment = 3.12 ± 0.25,  < 0.05). Disease activity remained significantly reduced 7 days following vibrotactile treatment (DAS28-CRP score 7 days post-treatment = 2.79 ± 0.21,  < 0.01). In addition, a persistent improvement in visual analogue scale scores, a patient derived measure of global health assessment, was observed in RA patients following vibrotactile treatment. Application of a vibrotactile device to the cymba concha inhibits peripheral blood production of TNF, IL-1β, and IL-6 in healthy subjects, and attenuates systemic inflammatory responses in RA patients. ClinicalTrials.gov Identifier: NCT01569789 and NCT00859859. The AMC trial conducted in The Netherlands does not have a ClinicalTrials.gov Identifier.
ArticleNumber 4
Author de Vos, Alex F.
Forti, Steve
Addorisio, Meghan E.
Diamond, Betty
Pavlov, Valentin A.
van der Poll, Tom
Yang, Huan
Chavan, Sangeeta S.
Tracey, Kevin J.
Goldstein, Richard S.
Imperato, Gavin H.
Author_xml – sequence: 1
  givenname: Meghan E.
  surname: Addorisio
  fullname: Addorisio, Meghan E.
– sequence: 2
  givenname: Gavin H.
  surname: Imperato
  fullname: Imperato, Gavin H.
– sequence: 3
  givenname: Alex F.
  surname: de Vos
  fullname: de Vos, Alex F.
– sequence: 4
  givenname: Steve
  surname: Forti
  fullname: Forti, Steve
– sequence: 5
  givenname: Richard S.
  surname: Goldstein
  fullname: Goldstein, Richard S.
– sequence: 6
  givenname: Valentin A.
  surname: Pavlov
  fullname: Pavlov, Valentin A.
– sequence: 7
  givenname: Tom
  surname: van der Poll
  fullname: van der Poll, Tom
– sequence: 8
  givenname: Huan
  surname: Yang
  fullname: Yang, Huan
– sequence: 9
  givenname: Betty
  surname: Diamond
  fullname: Diamond, Betty
– sequence: 10
  givenname: Kevin J.
  surname: Tracey
  fullname: Tracey, Kevin J.
– sequence: 11
  givenname: Sangeeta S.
  surname: Chavan
  fullname: Chavan, Sangeeta S.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32232095$$D View this record in MEDLINE/PubMed
BookMark eNp9kk9v1DAQxS1UREvpB-CCLHHhkuJ_cbwXJFQBXakSFzhbE2e88SobL46zhW-P0y1V2wMnW57fe5oZv9fkZIwjEvKWs0vOjf44KSGkqhhfVYwJVqkX5ExIKSpjjD55dD8lF9O0ZayQUhmhX5FTWaSCreoz0q_HA045bCCHOMJAc0LIOxwzjZ6mHucd5Bg6Cin3KeQw0duQewr0ENoUM7gcBqQdHoJDCvv9ELCjOdLcI8XfGdNiipDekJcehgkv7s9z8vPrlx9X19XN92_rq883lVOqUVWjPdbC-A4lrDoUrvVOSWRNLWXTtgyVaLlvHPdGAXcagGvoQJeaqp1n8pysj75dhK3dp7CD9MdGCPbuIaaNLaMEN6BtWAfMe90K1imHGqSvVd02GlrBufDF69PRaz-3O-xc2UqC4Ynp08oYeruJh-K8MkItzXy4N0jx11z2bHdhcjgMMGKcJyukqUWjtJIFff8M3cZ5WV6haqW1EbWpC_XucUcPrfz70ALwI-BSnKaE_gHhzC65scfc2JIGu-TGqqJpnmlcyHd5KEOF4T_Kv9fvySw
CitedBy_id crossref_primary_10_3390_ph16081089
crossref_primary_10_3389_fnhum_2022_862443
crossref_primary_10_1016_j_bbih_2021_100273
crossref_primary_10_1186_s42234_021_00084_6
crossref_primary_10_1016_S2665_9913_20_30448_3
crossref_primary_10_3389_fneur_2022_897124
crossref_primary_10_1159_000518176
crossref_primary_10_1186_s42234_021_00069_5
crossref_primary_10_1016_S2665_9913_20_30425_2
crossref_primary_10_1016_j_rhum_2021_07_001
crossref_primary_10_2217_bem_2020_0001
crossref_primary_10_1097_WCO_0000000000001036
crossref_primary_10_1007_s40620_024_02121_4
crossref_primary_10_1016_j_neuron_2022_09_003
crossref_primary_10_1093_ndt_gfaa200
crossref_primary_10_1093_intimm_dxab014
crossref_primary_10_1093_ibd_izad211
crossref_primary_10_1371_journal_pone_0301154
crossref_primary_10_3389_fnhum_2021_785620
crossref_primary_10_1159_000524646
crossref_primary_10_3389_fped_2021_668457
crossref_primary_10_7554_eLife_100088
crossref_primary_10_1016_S1169_8330_21_00111_3
crossref_primary_10_1016_j_pmn_2024_11_006
crossref_primary_10_5057_isase_2024_C000019
crossref_primary_10_3389_fnagi_2023_1173987
crossref_primary_10_2174_0122103031288230240424043423
crossref_primary_10_1073_pnas_1919040116
crossref_primary_10_1136_annrheumdis_2020_217872
crossref_primary_10_7554_eLife_100088_3
crossref_primary_10_1016_j_autrev_2022_103230
crossref_primary_10_3390_s22207884
crossref_primary_10_1016_j_autrev_2022_103231
crossref_primary_10_5535_arm_22119
crossref_primary_10_1186_s42234_020_00044_6
crossref_primary_10_3389_fnins_2021_664740
crossref_primary_10_3390_ijerph19084847
crossref_primary_10_1007_s10286_024_01095_4
crossref_primary_10_3390_jcm11041087
crossref_primary_10_1016_j_brs_2024_04_002
crossref_primary_10_3389_felec_2025_1503425
crossref_primary_10_5057_ijae_IJAE_D_23_00019
crossref_primary_10_1007_s10787_021_00812_z
crossref_primary_10_1186_s42234_023_00124_3
crossref_primary_10_1016_j_bbi_2023_12_008
crossref_primary_10_1016_j_neurom_2024_12_007
crossref_primary_10_1016_j_pharmthera_2025_108831
crossref_primary_10_14814_phy2_70230
crossref_primary_10_1113_JP281189
crossref_primary_10_1186_s42234_024_00163_4
crossref_primary_10_3389_fnins_2024_1527842
crossref_primary_10_1093_intimm_dxab073
crossref_primary_10_1073_pnas_2021758118
crossref_primary_10_1016_S2665_9913_23_00007_3
crossref_primary_10_1016_j_jbspin_2021_105149
crossref_primary_10_1111_ner_13458
crossref_primary_10_1136_bmjopen_2021_056169
crossref_primary_10_3389_fmed_2020_589079
crossref_primary_10_5057_ijae_IJAE_D_23_00008
crossref_primary_10_1093_oxfimm_iqad003
crossref_primary_10_3389_fnins_2021_671767
crossref_primary_10_1016_j_pharmthera_2020_107794
crossref_primary_10_1038_s41598_021_03401_w
crossref_primary_10_1016_j_xcrm_2022_100696
Cites_doi 10.1126/science.1209985
10.1016/j.rdc.2009.10.001
10.3389/fimmu.2018.02648
10.1038/nature01339
10.1146/annurev-immunol-042617-053158
10.1016/j.nicl.2016.12.016
10.1111/j.1528-1167.2012.03492.x
10.1038/330662a0
10.1084/jem.20120571
10.1016/j.brs.2014.11.018
10.1016/j.immuni.2017.06.008
10.4049/jimmunol.1601613
10.1073/pnas.1719083115
10.1371/journal.pone.0104530
10.1093/intimm/dxu102
10.1212/WNL.59.6_suppl_4.S3
10.1186/1472-6882-14-203
10.2119/molmed.2009.00039
10.1016/j.brs.2018.04.004
10.1146/annurev-immunol-020711-075015
10.1016/j.brs.2016.02.001
10.1073/pnas.1605635113
10.1111/ner.12541
10.1002/art.11407
10.1111/ner.12398
10.1111/j.1600-065X.2012.01138.x
10.3389/fpsyt.2018.00020
10.1016/j.brs.2013.01.011
10.3760/cma.j.issn.0366-6999.20131511
10.1016/j.neurobiolaging.2015.02.023
10.1111/nmo.12792
10.1002/acr.21649
10.1038/nature01321
10.1038/35013070
10.3389/fnhum.2013.00602
10.1016/j.jad.2016.02.031
10.7874/jao.2015.19.3.159
10.1155/2012/935187
10.1016/j.brs.2014.09.009
10.1016/j.jstrokecerebrovasdis.2018.02.056
10.1016/S0140-6736(16)30173-8
10.1007/s00702-007-0755-z
10.1515/BMT.2008.022
10.1111/joim.12624
10.1002/ca.1089
ContentType Journal Article
Copyright The Author(s) 2019.
2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
The Author(s) 2019
Copyright_xml – notice: The Author(s) 2019.
– notice: 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
– notice: The Author(s) 2019
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s42234-019-0020-4
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X7
  name: ProQuest Health & Medical Collection
  url: https://search.proquest.com/healthcomplete
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2332-8886
EndPage 11
ExternalDocumentID oai_doaj_org_article_70da0ff6b20d4ce6a3f545b76ab2112f
PMC7098240
32232095
10_1186_s42234_019_0020_4
Genre Journal Article
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GrantInformation_xml – fundername: ;
  grantid: 1R35GM118182-01
– fundername: ;
  grantid: 1P01AI102852-01A1
GroupedDBID 0R~
53G
7X7
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAYXX
ABUWG
ADBBV
ADUKV
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
BCNDV
BENPR
BFQNJ
BMC
C6C
CCPQU
CITATION
EBLON
EBS
EJD
FYUFA
GROUPED_DOAJ
HMCUK
IAO
IHR
ITC
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
RBZ
ROL
RPM
RSV
SOJ
UKHRP
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c4474-76fe528fde3a9de2cbfc43e075337bb0e42b1f7c1f84a1c6aa16ada67bb45cf03
IEDL.DBID 7X7
ISSN 2332-8886
IngestDate Wed Aug 27 01:07:03 EDT 2025
Thu Aug 21 13:55:59 EDT 2025
Fri Jul 11 09:28:54 EDT 2025
Tue Jul 01 10:43:58 EDT 2025
Mon Jul 21 05:54:10 EDT 2025
Thu Apr 24 23:11:12 EDT 2025
Tue Jul 01 03:30:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords TNF
rheumatoid arthritis
taVNS
Auricular vagus nerve
Language English
License The Author(s) 2019.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4474-76fe528fde3a9de2cbfc43e075337bb0e42b1f7c1f84a1c6aa16ada67bb45cf03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2546682585?pq-origsite=%requestingapplication%
PMID 32232095
PQID 2546682585
PQPubID 5068538
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_70da0ff6b20d4ce6a3f545b76ab2112f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7098240
proquest_miscellaneous_2385274643
proquest_journals_2546682585
pubmed_primary_32232095
crossref_primary_10_1186_s42234_019_0020_4
crossref_citationtrail_10_1186_s42234_019_0020_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190417
PublicationDateYYYYMMDD 2019-04-17
PublicationDate_xml – month: 4
  year: 2019
  text: 20190417
  day: 17
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: New York
– name: London
PublicationTitle Bioelectronic medicine
PublicationTitleAlternate Bioelectron Med
PublicationYear 2019
Publisher BioMed Central
BMC
Publisher_xml – name: BioMed Central
– name: BMC
References 20_CR2
TP Zanos (20_CR47) 2018; 115
KJ Tracey (20_CR42) 2002; 420
N Yakunina (20_CR46) 2017; 20
SS Chavan (20_CR10) 2017; 198
20_CR7
E Frangos (20_CR13) 2015; 8
20_CR5
J Fransen (20_CR14) 2003; 49
P Rong (20_CR34) 2014; 127
J Amaya-Amaya (20_CR1) 2012; 2012
J Fang (20_CR12) 2017; 14
20_CR36
20_CR11
F Huang (20_CR18) 2014; 14
T Kraus (20_CR23) 2007; 114
L Tarnawski (20_CR41) 2018; 9
SS Chavan (20_CR9) 2017; 46
B Krause (20_CR25) 2013; 7
I Lerman (20_CR26) 2016; 19
HJ Shim (20_CR38) 2015; 19
LE Goehler (20_CR16) 2000
TR Henry (20_CR17) 2002; 59
H Wang (20_CR45) 2003; 421
HIL Jacobs (20_CR20) 2015; 36
BW Badran (20_CR6) 2018; 11
M Rosas-Ballina (20_CR37) 2011; 334
PS Olofsson (20_CR30) 2017; 282
PS Olofsson (20_CR29) 2012; 248
FA Koopman (20_CR22) 2016; 113
U Andersson (20_CR3) 2012; 209
LV Borovikova (20_CR8) 2000; 405
J Kong (20_CR21) 2018; 9
AP Trevizol (20_CR44) 2016; 9
J Fransen (20_CR15) 2009; 35
JS Smolen (20_CR39) 2016; 388
T Kraus (20_CR24) 2013; 6
P Rong (20_CR35) 2016; 195
JN Redgrave (20_CR33) 2018; 27
VA Pavlov (20_CR31) 2018; 36
C Monaco (20_CR28) 2015; 27
H Stefan (20_CR40) 2012; 53
20_CR43
JM Huston (20_CR19) 2007; 35
YA Levine (20_CR27) 2014; 9
U Andersson (20_CR4) 2012; 30
ET Peuker (20_CR32) 2002; 15
References_xml – volume: 334
  start-page: 98
  year: 2011
  ident: 20_CR37
  publication-title: Science
  doi: 10.1126/science.1209985
– volume: 35
  start-page: 745
  year: 2009
  ident: 20_CR15
  publication-title: Rheum Dis Clin North Am
  doi: 10.1016/j.rdc.2009.10.001
– volume: 9
  start-page: 2648
  year: 2018
  ident: 20_CR41
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2018.02648
– volume: 421
  start-page: 384
  year: 2003
  ident: 20_CR45
  publication-title: Nature
  doi: 10.1038/nature01339
– volume: 36
  start-page: 783
  year: 2018
  ident: 20_CR31
  publication-title: Annu Rev Immunol
  doi: 10.1146/annurev-immunol-042617-053158
– volume: 14
  start-page: 105
  year: 2017
  ident: 20_CR12
  publication-title: NeuroImage Clin
  doi: 10.1016/j.nicl.2016.12.016
– volume: 53
  start-page: e115
  year: 2012
  ident: 20_CR40
  publication-title: Epilepsia
  doi: 10.1111/j.1528-1167.2012.03492.x
– ident: 20_CR43
  doi: 10.1038/330662a0
– volume: 209
  start-page: 1057
  year: 2012
  ident: 20_CR3
  publication-title: J Exp Med
  doi: 10.1084/jem.20120571
– volume: 8
  start-page: 624
  year: 2015
  ident: 20_CR13
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2014.11.018
– volume: 46
  start-page: 927
  year: 2017
  ident: 20_CR9
  publication-title: Immunity
  doi: 10.1016/j.immuni.2017.06.008
– volume: 198
  start-page: 3389
  year: 2017
  ident: 20_CR10
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1601613
– volume: 115
  start-page: E4843
  year: 2018
  ident: 20_CR47
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1719083115
– volume: 9
  start-page: e104530
  year: 2014
  ident: 20_CR27
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0104530
– volume: 27
  start-page: 55
  year: 2015
  ident: 20_CR28
  publication-title: Int Immunol
  doi: 10.1093/intimm/dxu102
– volume: 59
  start-page: S3
  year: 2002
  ident: 20_CR17
  publication-title: Neurology
  doi: 10.1212/WNL.59.6_suppl_4.S3
– volume: 14
  start-page: 203
  year: 2014
  ident: 20_CR18
  publication-title: BMC Complement Altern Med
  doi: 10.1186/1472-6882-14-203
– ident: 20_CR36
  doi: 10.2119/molmed.2009.00039
– volume: 11
  start-page: 699
  year: 2018
  ident: 20_CR6
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2018.04.004
– volume: 30
  start-page: 313
  year: 2012
  ident: 20_CR4
  publication-title: Annu Rev Immunol
  doi: 10.1146/annurev-immunol-020711-075015
– start-page: 49
  volume-title: Autonomic Neuroscience: Basic and Clinical vol. 85
  year: 2000
  ident: 20_CR16
– volume: 9
  start-page: 453
  year: 2016
  ident: 20_CR44
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2016.02.001
– volume: 113
  start-page: 8284
  year: 2016
  ident: 20_CR22
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1605635113
– volume: 20
  start-page: 290
  year: 2017
  ident: 20_CR46
  publication-title: Neuromodulation Technol Neural Interface
  doi: 10.1111/ner.12541
– volume: 49
  start-page: S214
  year: 2003
  ident: 20_CR14
  publication-title: Arthritis Rheum
  doi: 10.1002/art.11407
– volume: 19
  start-page: 283
  year: 2016
  ident: 20_CR26
  publication-title: Neuromodulation Technol Neural Interface
  doi: 10.1111/ner.12398
– volume: 248
  start-page: 188
  year: 2012
  ident: 20_CR29
  publication-title: Immunol Rev
  doi: 10.1111/j.1600-065X.2012.01138.x
– volume: 9
  start-page: 20
  year: 2018
  ident: 20_CR21
  publication-title: Front Psychiatry
  doi: 10.3389/fpsyt.2018.00020
– volume: 6
  start-page: 798
  year: 2013
  ident: 20_CR24
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2013.01.011
– volume: 127
  start-page: 300
  year: 2014
  ident: 20_CR34
  publication-title: Chin Med J (Engl)
  doi: 10.3760/cma.j.issn.0366-6999.20131511
– volume: 36
  start-page: 1860
  year: 2015
  ident: 20_CR20
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2015.02.023
– ident: 20_CR7
  doi: 10.1111/nmo.12792
– ident: 20_CR2
  doi: 10.1002/acr.21649
– volume: 420
  start-page: 853
  year: 2002
  ident: 20_CR42
  publication-title: Nature
  doi: 10.1038/nature01321
– volume: 405
  start-page: 458
  year: 2000
  ident: 20_CR8
  publication-title: Nature
  doi: 10.1038/35013070
– volume: 7
  start-page: 602
  year: 2013
  ident: 20_CR25
  publication-title: Front Hum Neurosci
  doi: 10.3389/fnhum.2013.00602
– volume: 195
  start-page: 172
  year: 2016
  ident: 20_CR35
  publication-title: J Affect Disord
  doi: 10.1016/j.jad.2016.02.031
– volume: 19
  start-page: 159
  year: 2015
  ident: 20_CR38
  publication-title: J Audiol Otol
  doi: 10.7874/jao.2015.19.3.159
– volume: 2012
  start-page: 1
  year: 2012
  ident: 20_CR1
  publication-title: Arthritis
  doi: 10.1155/2012/935187
– ident: 20_CR5
  doi: 10.1016/j.brs.2014.09.009
– volume: 27
  start-page: 1998
  year: 2018
  ident: 20_CR33
  publication-title: J Stroke Cerebrovasc Dis
  doi: 10.1016/j.jstrokecerebrovasdis.2018.02.056
– volume: 388
  start-page: 2023
  year: 2016
  ident: 20_CR39
  publication-title: Lancet
  doi: 10.1016/S0140-6736(16)30173-8
– volume: 35
  start-page: 2762
  year: 2007
  ident: 20_CR19
  publication-title: Crit Care Med
– volume: 114
  start-page: 1485
  year: 2007
  ident: 20_CR23
  publication-title: J Neural Transm
  doi: 10.1007/s00702-007-0755-z
– ident: 20_CR11
  doi: 10.1515/BMT.2008.022
– volume: 282
  start-page: 3
  year: 2017
  ident: 20_CR30
  publication-title: J Intern Med
  doi: 10.1111/joim.12624
– volume: 15
  start-page: 35
  year: 2002
  ident: 20_CR32
  publication-title: Clin Anat
  doi: 10.1002/ca.1089
SSID ssj0001934826
Score 2.3479137
Snippet Rheumatoid arthritis (RA) is a chronic and debilitating inflammatory disease characterized by extensive joint tissue inflammation. Implantable bioelectronic...
Background Rheumatoid arthritis (RA) is a chronic and debilitating inflammatory disease characterized by extensive joint tissue inflammation. Implantable...
Abstract Background Rheumatoid arthritis (RA) is a chronic and debilitating inflammatory disease characterized by extensive joint tissue inflammation....
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 4
SubjectTerms Auricular vagus nerve
Crohn's disease
Cytokines
Disease
Human subjects
Medical research
Physiology
Rheumatoid arthritis
Signal transduction
taVNS
TNF
Vagus nerve
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9UwEA-yJy-i-FVdJYInIWzTTNPmqOKyCHpyYW8hHxPewtLK7nv79zvT9pX3RPTitUlLOp2P3yTT3wjxXicMNjqnijZFAZmTioQyFOYcbYacouP_nb99txeX8PWqvTpo9cU1YTM98Cy4s67OoS7FxqbOkNAGUyjox86GSLlLU9j7Usw7SKam3RXHpC12OcbUvT27AwqEXHDhFEMkBUeBaOLr_xPI_L1W8iD4nD8WjxbUKD_Oq30iHuDwVGwOODIYT8u1aFyORd5ucEdodLzOkl5yM3EXSd51lUHeU448bvmXhhuUGdlZyDDDUbkdJWFCuWeHlmQJz8Tl-Zcfny_U0jhBJQCur7QF26YvGU1wGZsUSwKDhA6M6WKsEZqoS5d06SHoZEPQNuRgaQzaVGrzXJwM44AvhTRNQLCoA3k2ivUQULvouhSBnkDeshL1Xoo-Lazi3Nzixk_ZRW_9LHhPgvcseA-V-LDe8nOm1Pjb5E_8adaJzIY9XSAd8YuO-H_pSCVO9x_WLyZ657kRgKX8uG8r8W4dJuPiE5Mw4LijOaZvKW0n1FaJF7MerCshT2hI8-ju7khDjpZ6PDJcbyYC7652PSGpV__j3V6Lh82k1KB0dypOtrc7fEM4aRvfTibxC7vWE3s
  priority: 102
  providerName: Directory of Open Access Journals
Title Investigational treatment of rheumatoid arthritis with a vibrotactile device applied to the external ear
URI https://www.ncbi.nlm.nih.gov/pubmed/32232095
https://www.proquest.com/docview/2546682585
https://www.proquest.com/docview/2385274643
https://pubmed.ncbi.nlm.nih.gov/PMC7098240
https://doaj.org/article/70da0ff6b20d4ce6a3f545b76ab2112f
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZtcumlpPTlNl1U6KkgYlmyZJ9KsySEQkMpDexN6NkNBDvdR39_Zmytky0lR1uyEaOZ0Tej0SdCPnEfrXJtyxIXiUkwJ-YAZbAYglNBBu9aPO_8_VJdXMlvi3qRE27rXFa584mDow69xxz5CfK2KwhnmvrL7R-Gt0bh7mq-QuMpOUTqMizp0gt9n2NpkbpF5c1M3qiTtYTlEMsuWoZAicm95Whg7f8f1Py3YvLBEnR-RJ5n7Ei_jpP9gjyJ3UuyfMCUgaiaTqXjtE90tYxbwKT9daCgI8uBwYhi7pVa-hci5X6DBxtuIg0RXQa1Iyilm54CMqQ7jmgK9vCKXJ2f_ZpfsHx9AvNSYpWlSrGumhSisG2IlXfJSxEBIwihnSujrBxP2vPUSMu9spYrG6yCNln7VIrX5KDru_iWUFHZKFXkFvwbrPjSRt66Vnsn4Q_gMwtS7qRofOYWxysubswQYzTKjII3IHiDgjeyIJ-nT25HYo3HOp_i1EwdkRN7eNGvfptsYkaXwZYpKVeVQfqorEgAD51W1kGUW6WCHO8m1mRDXZt7tSrIx6kZTAz3TWwX-y30EU0NwTtgt4K8GfVgGgn4Q1EBTC2I3tOQvaHut3TXy4HGW5dtA3jq3ePDek-eVYO6Ssb1MTnYrLbxA-CgjZsNyj4jh6dnlz9-wtNczWdDTuEOdLoNzA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QEuCMQrUMBIcEGymtiOkxwQotBqS9sVQq3Um_GTrVQlZR8g_hS_kXEe2y5CvfUaO5Y1nhl_Y4-_AXidWa-lqSoaMh6oQHOiBlEG9c4Z6YSzporvnY8mcnwiPp_mpxvwZ3gLE9MqB5_YOmrX2HhGvh152yWGM2X-_uIHjVWj4u3qUEKjU4sD__sXhmzzd_ufcH3fMLa3e_xxTPuqAtQKEZMPZfA5K4PzXFfOM2uCFdzj1sl5YUzqBTNZKGwWSqEzK7XOpHZaYpvIbUg5jnsLNgXHUGYEmzu7ky9fL091qkgWI_vr06yU23OBG3BM9KhohGZUrG2AbZ2A_4Hbf3M0r2x6e_fgbo9WyYdOve7Dhq8fwPQKN0fE8WSVrE6aQGZTv0QU3Jw5glo5bTmTSDztJZr8xNi8WcSnFOeeOB-dFNEdDCaLhiAWJQMrNUFRP4STGxHtIxjVTe2fAOFMeyF9ptGjIsYQ2meVqQprBI6AXjqBdJCisj2beSyqca7aqKaUqhO8QsGrKHglEni7-uWio_K4rvNOXJpVx8jC3X5oZt9Vb9SqSJ1OQ5CGpU5YLzUPCEhNIbXBuJqFBLaGhVW9a5irS0VO4NWqGY063tTo2jdL7MPLnBUC0WICjzs9WM0EPTBnCIwTKNY0ZG2q6y312bQlDi_SqkQE9_T6ab2E2-Pjo0N1uD85eAZ3WKu6gmbFFowWs6V_jihsYV70qk_g201b21-WoUpn
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxUxEA61gvgiire1VSPoixDO5rLJ7oOIWg-t1eKDhfMWc_UUym49l4p_zV_nZG_tEelbXzfZECYzk2-SyTcIvaQuGGmrikTKIxFgTsQCyiDBeyu98M5W6b3zlyO5fyw-zYrZFvozvIVJaZWDT2wdtW9cOiOfJN52CeFMWUxinxbxdW_69uwnSRWk0k3rUE6jU5HD8PsXhG_LNwd7sNavGJt-_PZhn_QVBogTIiUiyhgKVkYfuKl8YM5GJ3iAbZRzZW0eBLM0KkdjKQx10hgqjTcS2kThYs5h3BvopuIFTTamZurifKdKtDGyv0ilpZwsBWzFKeWjIgmkEbGxFbYVA_4Hc__N1ry0_U3vojs9bsXvOkW7h7ZCfR_NL7F0JESPx7R13ES8mIc14OHmxGPQz3nLnoTTuS82-Byi9GaVHlWcBuxDclfYdIAYrxoMqBQP_NQYBP0AHV-LYB-i7bqpw2OEOTNByEAN-FZAG8IEWtlKOStgBPDXGcoHKWrX85qn8hqnuo1vSqk7wWsQvE6C1yJDr8dfzjpSj6s6v09LM3ZMfNzth2bxQ_fmrVXuTR6jtCz3wgVpeARoapU0FiJsFjO0Oyys7p3EUl-odIZejM1g3unOxtShWUMfXhZMCcCNGXrU6cE4E_DFnAFEzpDa0JCNqW621CfzlkJc5VUJWO7J1dN6jm6BjenPB0eHO-g2azVXEKp20fZqsQ5PAY6t7LNW7zH6ft2G9hcWV003
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigational+treatment+of+rheumatoid+arthritis+with+a+vibrotactile+device+applied+to+the+external+ear&rft.jtitle=Bioelectronic+medicine&rft.au=Addorisio%2C+Meghan+E.&rft.au=Imperato%2C+Gavin+H.&rft.au=de+Vos%2C+Alex+F.&rft.au=Forti%2C+Steve&rft.date=2019-04-17&rft.pub=BioMed+Central&rft.eissn=2332-8886&rft.volume=5&rft_id=info:doi/10.1186%2Fs42234-019-0020-4&rft_id=info%3Apmid%2F32232095&rft.externalDocID=PMC7098240
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2332-8886&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2332-8886&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2332-8886&client=summon