TFE Terpolymers: Once Promising – Are There Still Perspectives in the 21st Century: Synthesis, Characterization, and Properties‐Part I
Polytetrafluoroethylene (PTFE) exhibits outstanding properties such as high‐temperature stability, low surface tension, and chemical resistance against most solvents, strong acids, and bases. However, these traits make it challenging to subject PTFE to standard polymer processing procedures, such as...
Saved in:
Published in | Macromolecular rapid communications. Vol. 45; no. 18; pp. e2400294 - n/a |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.09.2024
Wiley-VCH Verlag |
Subjects | |
Online Access | Get full text |
ISSN | 1022-1336 1521-3927 1521-3927 |
DOI | 10.1002/marc.202400294 |
Cover
Loading…
Abstract | Polytetrafluoroethylene (PTFE) exhibits outstanding properties such as high‐temperature stability, low surface tension, and chemical resistance against most solvents, strong acids, and bases. However, these traits make it challenging to subject PTFE to standard polymer processing procedures, such as thermoforming and hot incremental forming. While polymer processing at temperatures above the melting point of PTFE is already demanding, the typically large molar mass of PTFE results in extremely high melt viscosities, complicating the processing of PTFE. Also, PTFE tends to decompose at temperatures close to its melting point. Therefore, fluoropolymers obtained by copolymerizing tetrafluoroethylene (TFE) with various co‐monomers are studied as alternatives to PTFE (e.g., fluorinated ethylene‐propylene (FEP)), combining its advantages with better processability. TFE terpolymers have emerged as desirable PTFE alternatives. This review provides an overview of the synthesis with various comonomers and microstructural analysis of PTFE terpolymers and the relationships between the microstructures of TFE terpolymers and their properties.
PTFE decomposes at temperatures close to its melting point. Therefore, TFE terpolymers have emerged as desirable PTFE alternatives, where these TFE terpolymers combine PTFE's advantages with better processability. Currently, fluoropolymers have reached a new era. The present review summarizes the synthesis, detailed characterization, and structure‐property correlations of the fluoropolymers and ends with a future perspective on the use of fluoropolymers. |
---|---|
AbstractList | Polytetrafluoroethylene (PTFE) exhibits outstanding properties such as high‐temperature stability, low surface tension, and chemical resistance against most solvents, strong acids, and bases. However, these traits make it challenging to subject PTFE to standard polymer processing procedures, such as thermoforming and hot incremental forming. While polymer processing at temperatures above the melting point of PTFE is already demanding, the typically large molar mass of PTFE results in extremely high melt viscosities, complicating the processing of PTFE. Also, PTFE tends to decompose at temperatures close to its melting point. Therefore, fluoropolymers obtained by copolymerizing tetrafluoroethylene (TFE) with various co‐monomers are studied as alternatives to PTFE (e.g., fluorinated ethylene‐propylene (FEP)), combining its advantages with better processability. TFE terpolymers have emerged as desirable PTFE alternatives. This review provides an overview of the synthesis with various comonomers and microstructural analysis of PTFE terpolymers and the relationships between the microstructures of TFE terpolymers and their properties.
PTFE decomposes at temperatures close to its melting point. Therefore, TFE terpolymers have emerged as desirable PTFE alternatives, where these TFE terpolymers combine PTFE's advantages with better processability. Currently, fluoropolymers have reached a new era. The present review summarizes the synthesis, detailed characterization, and structure‐property correlations of the fluoropolymers and ends with a future perspective on the use of fluoropolymers. Polytetrafluoroethylene (PTFE) exhibits outstanding properties such as high‐temperature stability, low surface tension, and chemical resistance against most solvents, strong acids, and bases. However, these traits make it challenging to subject PTFE to standard polymer processing procedures, such as thermoforming and hot incremental forming. While polymer processing at temperatures above the melting point of PTFE is already demanding, the typically large molar mass of PTFE results in extremely high melt viscosities, complicating the processing of PTFE. Also, PTFE tends to decompose at temperatures close to its melting point. Therefore, fluoropolymers obtained by copolymerizing tetrafluoroethylene (TFE) with various co‐monomers are studied as alternatives to PTFE (e.g., fluorinated ethylene‐propylene (FEP)), combining its advantages with better processability. TFE terpolymers have emerged as desirable PTFE alternatives. This review provides an overview of the synthesis with various comonomers and microstructural analysis of PTFE terpolymers and the relationships between the microstructures of TFE terpolymers and their properties. Polytetrafluoroethylene (PTFE) exhibits outstanding properties such as high-temperature stability, low surface tension, and chemical resistance against most solvents, strong acids, and bases. However, these traits make it challenging to subject PTFE to standard polymer processing procedures, such as thermoforming and hot incremental forming. While polymer processing at temperatures above the melting point of PTFE is already demanding, the typically large molar mass of PTFE results in extremely high melt viscosities, complicating the processing of PTFE. Also, PTFE tends to decompose at temperatures close to its melting point. Therefore, fluoropolymers obtained by copolymerizing tetrafluoroethylene (TFE) with various co-monomers are studied as alternatives to PTFE (e.g., fluorinated ethylene-propylene (FEP)), combining its advantages with better processability. TFE terpolymers have emerged as desirable PTFE alternatives. This review provides an overview of the synthesis with various comonomers and microstructural analysis of PTFE terpolymers and the relationships between the microstructures of TFE terpolymers and their properties.Polytetrafluoroethylene (PTFE) exhibits outstanding properties such as high-temperature stability, low surface tension, and chemical resistance against most solvents, strong acids, and bases. However, these traits make it challenging to subject PTFE to standard polymer processing procedures, such as thermoforming and hot incremental forming. While polymer processing at temperatures above the melting point of PTFE is already demanding, the typically large molar mass of PTFE results in extremely high melt viscosities, complicating the processing of PTFE. Also, PTFE tends to decompose at temperatures close to its melting point. Therefore, fluoropolymers obtained by copolymerizing tetrafluoroethylene (TFE) with various co-monomers are studied as alternatives to PTFE (e.g., fluorinated ethylene-propylene (FEP)), combining its advantages with better processability. TFE terpolymers have emerged as desirable PTFE alternatives. This review provides an overview of the synthesis with various comonomers and microstructural analysis of PTFE terpolymers and the relationships between the microstructures of TFE terpolymers and their properties. |
Author | Ok, Salim Steinhart, Martin Améduri, Bruno Scheler, Ulrich |
Author_xml | – sequence: 1 givenname: Salim surname: Ok fullname: Ok, Salim email: sok@uos.de organization: Kuwait Institute for Scientific Research – sequence: 2 givenname: Martin surname: Steinhart fullname: Steinhart, Martin organization: Universität Osnabrück – sequence: 3 givenname: Ulrich surname: Scheler fullname: Scheler, Ulrich organization: Leibniz‐Institut für Polymerforschung Dresden e.V. Dresden – sequence: 4 givenname: Bruno orcidid: 0000-0003-4217-6664 surname: Améduri fullname: Améduri, Bruno email: bruno.ameduri@enscm.fr organization: Univ. Montpellier, CNRS, ENSCM |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39108073$$D View this record in MEDLINE/PubMed https://hal.science/hal-04671308$$DView record in HAL |
BookMark | eNqFkU1rGzEQhpeS0ny01x6LoJcWsu7ow15tbsYkTcAlpnHPQtbO1gprrSNpU9xTzjkF-g_zS6qtkxQCpRdJMzzvO2je_WzHtQ6z7C2FAQVgn1bamwEDJlJRihfZHh0ymvOSFTvpDYzllPPRbrYfwiUASAHsVbbLSwoSCr6X3c5Pjskc_bptNiv04YicO4Nk5tuVDdZ9J_c3v8jYI5kvMZ0X0TYNmSVwjSbaawzEOhKXSBgNkUzQxc5vjsjFxqVmsOGQTJbaaxPR25862tYdEu2qfsAafbQY7m_uZtpHcvY6e1nrJuCbh_sg-3ZyPJ-c5tPzz2eT8TQ3QhQi50KwSiICGBCwKBZQ1lCPUBoxpJSyCiWtal2JEa2FrDjq0vCh5HRRSV7Vgh9kH7e-S92otbdphRvVaqtOx1PV90CMCspBXtPEftiya99edRiiSmsx2DTaYdsFlahSFqWkve37Z-hl23mXfqI4pUNelCCKRL17oLrFCqun-Y-JJEBsAePbEDzWytj4Z3HRa9soCqoPXvXBq6fgk2zwTPbo_E9BuRX8sA1u_kOrL-Ovk7_a38lUwKs |
CitedBy_id | crossref_primary_10_1002_marc_202400412 crossref_primary_10_3390_polym16182607 |
Cites_doi | 10.3390/molecules28227564 10.1002/app.1993.070480713 10.1016/0032-3861(86)90302-2 10.1002/app.35624 10.1002/mame.201000433 10.1002/polb.24886 10.1007/s00397-011-0584-8 10.1039/D2CS00763K 10.1002/app.26052 10.1016/j.compositesb.2013.10.054 10.1366/000370208783575573 10.1080/15583724.2019.1636390 10.1002/(SICI)1099-0518(19991101)37:21<3991::AID-POLA13>3.0.CO;2-Y 10.1109/TDEI.2012.6259984 10.1002/marc.202100567 10.1016/j.mtchem.2020.100412 10.5254/1.3534971 10.1002/pen.20877 10.1002/pola.1992.080300613 10.1021/la0505972 10.1021/ma3020307 10.1016/0032-3861(96)87261-2 10.1002/app.23885 10.1021/ma400683w 10.1016/j.polymer.2005.01.095 10.1016/j.compscitech.2005.09.001 10.1002/0471440264.pst137.pub2 10.1016/j.jfluchem.2003.12.010 10.1021/ma971269e 10.1016/S0022-1139(96)03534-8 10.1002/polb.24308 10.1007/s00397-008-0342-8 10.1016/j.aiepr.2022.08.002 10.1021/ma051391a 10.1016/0032-3950(81)90019-8 10.1021/acs.macromol.8b01286 10.1093/icb/42.6.1081 10.1016/j.eurpolymj.2013.12.006 10.1021/ma010461k 10.1002/3527606726 10.1002/pola.27549 10.1021/ma0626867 10.1021/acsami.9b16228 10.1021/cr800187m 10.1016/j.jfluchem.2017.08.002 10.1021/ma980745d 10.3390/app2020496 10.1021/acs.macromol.5b00200 10.1021/acs.langmuir.9b03908 10.1021/ma990982w 10.5254/1.3547736 10.1002/mame.200400269 10.1016/S0022-1139(03)00075-7 10.1177/0954008314529601 10.1007/s00289-016-1639-x 10.1016/0079-6700(89)90003-8 10.1007/s11433-019-9600-4 10.1016/j.jaap.2013.06.008 10.1016/j.polymer.2009.07.029 10.1007/s10965-022-03006-5 10.1002/pi.5904 10.1179/17535557A15Y.000000015 10.1021/jp409384g 10.1039/D2CS00558A 10.1002/mrc.4156 10.1007/BF00265461 10.1021/ma00177a021 10.1002/ieam.4646 10.1295/polymj.17.253 10.1016/S0032-3861(00)00832-6 10.1016/S0014-3057(99)00158-5 10.1016/0032-3861(87)90408-3 10.1002/marc.200500077 10.1002/pola.20015 10.1002/pc.23532 10.1021/ma047792s 10.1002/047147875X 10.1016/0014-3057(91)90230-L 10.1021/acs.chemrev.8b00458 10.1039/D0CS00258E 10.5772/58496 10.1002/app.29679 10.1515/pjct-2016-0050 10.1002/app.1971.070151103 10.1081/MA-200056331 10.1002/app.37830 10.1002/macp.201900573 10.1002/(SICI)1097-0126(199902)48:2<92::AID-PI100>3.0.CO;2-3 10.1002/marc.202200737 10.1002/smll.202311570 10.1002/marc.201800876 10.1002/app.1991.070420614 10.1016/j.polymer.2004.01.052 10.1007/b136245 10.1080/15583724.2013.808666 10.1038/pj.2012.177 10.1016/j.eurpolymj.2017.05.042 10.1016/j.polymer.2008.10.009 10.1002/pi.4518 10.1002/app.24798 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION NPM 7SR 7U5 8FD JG9 JQ2 L7M 7X8 1XC VOOES |
DOI | 10.1002/marc.202400294 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace ProQuest Computer Science Collection MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3927 |
EndPage | n/a |
ExternalDocumentID | oai_HAL_hal_04671308v1 39108073 10_1002_marc_202400294 MARC202400294 |
Genre | reviewArticle Journal Article Review |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA GYXMG H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6T MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RX1 RYL SAMSI SUPJJ TUS UB1 V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZY4 ZZTAW ~IA ~WT AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION NPM 7SR 7U5 8FD JG9 JQ2 L7M 7X8 1XC VOOES |
ID | FETCH-LOGICAL-c4474-3442d8ee00c040b7b09f0f6e8c451112de81dfad461f48d3ea9c35831bd83df43 |
IEDL.DBID | DR2 |
ISSN | 1022-1336 1521-3927 |
IngestDate | Fri May 09 12:12:52 EDT 2025 Fri Jul 11 06:05:36 EDT 2025 Mon Jul 14 20:54:18 EDT 2025 Thu Apr 03 07:06:16 EDT 2025 Tue Jul 01 03:31:52 EDT 2025 Thu Apr 24 22:56:58 EDT 2025 Sun Jul 06 04:45:31 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Keywords | synthesis characterization TFE‐based terpolymers TFE-based terpolymers |
Language | English |
License | 2024 Wiley‐VCH GmbH. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4474-3442d8ee00c040b7b09f0f6e8c451112de81dfad461f48d3ea9c35831bd83df43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-4217-6664 |
OpenAccessLink | https://hal.science/hal-04671308 |
PMID | 39108073 |
PQID | 3115379047 |
PQPubID | 1016394 |
PageCount | 24 |
ParticipantIDs | hal_primary_oai_HAL_hal_04671308v1 proquest_miscellaneous_3089879814 proquest_journals_3115379047 pubmed_primary_39108073 crossref_citationtrail_10_1002_marc_202400294 crossref_primary_10_1002_marc_202400294 wiley_primary_10_1002_marc_202400294_MARC202400294 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2024 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: September 2024 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Macromolecular rapid communications. |
PublicationTitleAlternate | Macromol Rapid Commun |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc Wiley-VCH Verlag |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley-VCH Verlag |
References | 2005; 290 2007; 105 2012; 124 2006; 39 1999; 48 2014; 26 2009; 112 1973 2012; 19 2020; 13 2020; 12 1970 2024 2012; 127 2016; 37 2001; 42 2022; 29 1977 1985; 17 2005; 184 1971; 15 2013; 53 1982 2017; 201 1993; 48 2004; 42 2023; 52 2016; 19 2015; 53 2004; 45 1998 1997 1996 2020; 36 1994 2021; 50 1976; 49 1981; 23 1992; 30 2023; 44 2019; 40 2022; 5 2017; 55 1999; 37 2008; 49 2004; 57 1986; 27 2009; 109 2012; 45 2006; 101 2006; 102 2017; 1 2021; 20 2017; 2 2004; 125 1997; 82 2020; 63 2023; 6 2019; 57 2015; 30 2019; 59 2005; 21 2016; 73 2014; 63 2005; 26 1979; 76 1996; 37 2009; 48 2015; 48 2020; 1 2023; 28 2000 2002; 42 2009; 50 2006; 66 2019; 68 1991; 42 1941 1982; 7 2014; 58 2019; 119 2008; 62 2005; 38 2014; 51 2003; 122 2014; 118 2012 2013; 46 2013; 45 2022; 51 2017; 22 2002; 35 2023; 19 2009 2008 2005; 42 2005 2020; 221 2004 2022; 43 2002 2003; 76 2005; 46 2011; 296 2017; 94 2012; 2 1991; 27 1987; 20 2014; 109 2000; 36 2023 2022 2020 2000; 33 1997; 79 2011; 50 2019 2017 2015 2018; 51 2007; 40 2013 1998; 31 1989; 14 1969 1987; 28 2007; 47 1967 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_52_1 Grainger D. W. (e_1_2_9_10_1) 2020 e_1_2_9_79_1 e_1_2_9_33_1 e_1_2_9_90_1 e_1_2_9_71_1 Siengchin S. (e_1_2_9_93_1) 2012; 127 e_1_2_9_126_1 e_1_2_9_122_1 Scheirs J. (e_1_2_9_14_1) 1997 e_1_2_9_141_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 Zhang S. (e_1_2_9_114_1) 2012; 19 Ameduri B. (e_1_2_9_131_1) 2022 Zen H. A. (e_1_2_9_103_1) 2017; 22 Moggi G. (e_1_2_9_87_1) 1982; 7 e_1_2_9_60_1 Huber S. (e_1_2_9_54_1) 2009 e_1_2_9_2_1 e_1_2_9_138_1 e_1_2_9_111_1 e_1_2_9_134_1 e_1_2_9_115_1 Ameduri B. (e_1_2_9_132_1) 2023; 6 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_130_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_102_1 e_1_2_9_125_1 e_1_2_9_38_1 e_1_2_9_140_1 e_1_2_9_121_1 e_1_2_9_19_1 Sherrell P. C. (e_1_2_9_133_1) 2024 Ebnesajjad S. (e_1_2_9_3_1) 2017 Hercules D. A. (e_1_2_9_15_1) 2017 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_61_1 e_1_2_9_84_1 Honda S. (e_1_2_9_129_1) 2022; 43 e_1_2_9_23_1 e_1_2_9_65_1 e_1_2_9_80_1 Rost P. (e_1_2_9_94_1) 2000 e_1_2_9_5_1 Arcella V. (e_1_2_9_46_1) 1997 e_1_2_9_1_1 e_1_2_9_137_1 (e_1_2_9_85_1) 2019 e_1_2_9_9_1 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_110_1 Arcella V. (e_1_2_9_77_1) 1997; 79 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_92_1 e_1_2_9_109_1 Painter P. C. (e_1_2_9_58_1) 1994 Yi K. W. (e_1_2_9_119_1) 2020; 63 Heidarian J. (e_1_2_9_106_1) 2016; 19 e_1_2_9_101_1 e_1_2_9_128_1 Améduri B. (e_1_2_9_6_1) 2017 e_1_2_9_105_1 e_1_2_9_124_1 e_1_2_9_39_1 e_1_2_9_120_1 e_1_2_9_16_1 e_1_2_9_143_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 Li C. (e_1_2_9_118_1) 2020; 13 Howe P. W. A. (e_1_2_9_136_1) 2020; 1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_4_1 Pellerite M. (e_1_2_9_47_1) 2005; 46 e_1_2_9_113_1 e_1_2_9_117_1 e_1_2_9_28_1 e_1_2_9_74_1 Schmiegel W. W. (e_1_2_9_31_1) 2004; 57 e_1_2_9_51_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 Liu Y. (e_1_2_9_107_1) 2015; 30 e_1_2_9_97_1 e_1_2_9_108_1 e_1_2_9_70_1 e_1_2_9_127_1 e_1_2_9_100_1 Schmiegel W. W. (e_1_2_9_56_1) 1979; 76 e_1_2_9_123_1 e_1_2_9_104_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_142_1 Hull D. E. (e_1_2_9_44_1) 1997 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_112_1 e_1_2_9_139_1 e_1_2_9_116_1 e_1_2_9_135_1 e_1_2_9_25_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 37 start-page: 831 year: 1996 publication-title: Polymer – volume: 35 start-page: 3569 year: 2002 publication-title: Macromolecules – volume: 49 start-page: 367 year: 1976 publication-title: Rubber Chem. Technol. – year: 2005 – volume: 48 start-page: 1249 year: 1993 publication-title: J. Appl. Polym. Sci. – volume: 52 start-page: 4208 year: 2023 publication-title: Chem. Soc. Rev. – volume: 40 start-page: 2409 year: 2007 publication-title: Macromolecules – volume: 50 start-page: 577 year: 2011 publication-title: Rheol. Acta – volume: 27 start-page: 1331 year: 1991 publication-title: Eur. Polym. J. – volume: 14 start-page: 251 year: 1989 publication-title: Prog. Polym. Sci. – volume: 20 start-page: 2754 year: 1987 publication-title: Macromolecules – volume: 20 year: 2021 publication-title: Materials, Today Chem – year: 1998 – volume: 122 start-page: 11 year: 2003 publication-title: J. Fluor. Chem. – volume: 5 start-page: 248 year: 2022 publication-title: Adv. Indust. Engin. Polym. Res. – volume: 12 start-page: 38 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 109 start-page: 6632 year: 2009 publication-title: Chem. Rev. – volume: 45 start-page: 2237 year: 2004 publication-title: Polymer – volume: 31 start-page: 2252 year: 1998 publication-title: Macromolecules – volume: 42 start-page: 1081 year: 2002 publication-title: Integr. Comp. Biol. – volume: 23 start-page: 711 year: 1981 publication-title: Polymer Science U.S.S.R – volume: 58 start-page: 166 year: 2014 publication-title: Composites: Part B – volume: 39 start-page: 2316 year: 2006 publication-title: Macromolecules – year: 1969 – year: 2008 – year: 2022 – volume: 21 start-page: 6150 year: 2005 publication-title: Langmuir – volume: 49 start-page: 5497 year: 2008 publication-title: Polymer – volume: 53 start-page: 1171 year: 2015 publication-title: J. Polym. Sc. Part A Polym. Chem. – volume: 55 start-page: 643 year: 2017 publication-title: J. Polym. Sci. Part B: Polym. Phys. – year: 2023 publication-title: Encycl. Polym. Sci. Technol. – volume: 46 start-page: 741 year: 2005 publication-title: Polym. Prepr. – volume: 26 start-page: 926 year: 2005 publication-title: Macromol. Rapid Commun. – year: 2019 – volume: 48 start-page: 92 year: 1999 publication-title: Polym. Int. – volume: 17 start-page: 253 year: 1985 publication-title: Polym. J. – volume: 2 year: 2017 – volume: 76 start-page: 220 year: 2003 publication-title: Rubber Chem. Technol. – volume: 290 start-page: 122 year: 2005 publication-title: J. Macromol. Mater. Eng. – volume: 19 start-page: 1158 year: 2012 publication-title: IEEE Trans. Electr. Insul. – volume: 29 start-page: 174 year: 2022 publication-title: J. Polym. Res. – volume: 37 start-page: 3991 year: 1999 publication-title: J. Polym. Sci.: Part A: Polym. Chem. – year: 1973 – volume: 125 start-page: 735 year: 2004 publication-title: J. Fluor. Chem. – volume: 102 start-page: 4484 year: 2006 publication-title: J. Appl. Polym. Sci. – volume: 15 start-page: 2639 year: 1971 publication-title: J. Appl. Polym. Sci. – volume: 48 start-page: 509 year: 2009 publication-title: Rheol. Acta – volume: 73 start-page: 3033 year: 2016 publication-title: Polym. Bull. – year: 1967 – volume: 40 year: 2019 publication-title: Macromol. Rapid Commun. – year: 2002 – volume: 76 start-page: 39 year: 1979 publication-title: Macromol. Chem. – volume: 82 start-page: 13 year: 1997 publication-title: J. Fluorine Chem. – year: 1970 – volume: 19 start-page: 132 year: 2016 publication-title: Pol. J. Chem. Tech. – volume: 63 start-page: 338 year: 2014 publication-title: Polym. Int. – volume: 26 start-page: 779 year: 2014 publication-title: High Perform. Polym. – volume: 68 start-page: 1952 year: 2019 publication-title: Polym. Intern. – volume: 22 year: 2017 publication-title: RevistaMateria – volume: 118 start-page: 238 year: 2014 publication-title: J. Phys. Chem. A – year: 2013 – volume: 221 year: 2020 publication-title: Macromol. Chem. Phys. – year: 2009 – volume: 184 start-page: 127 year: 2005 publication-title: Adv. Polym. Sci. – volume: 119 start-page: 1763 year: 2019 publication-title: Chem. Rev. – volume: 1 start-page: 118 year: 2020 publication-title: Prog. Nuc. Magn. Reson. Spec. – volume: 48 start-page: 3563 year: 2015 publication-title: Macromolecules – volume: 201 start-page: 55 year: 2017 publication-title: J. Fluor. Chem. – volume: 53 start-page: 130 year: 2015 publication-title: Magn. Reson. Chem. – year: 1994 – volume: 112 start-page: 3597 year: 2009 publication-title: J. Appl. Polym. Sci. – volume: 30 start-page: 1077 year: 1992 publication-title: J. Polym. Sci.: Part A: Polym. Chem. – volume: 51 start-page: 8584 year: 2022 publication-title: Chem. Soc. Rev. – year: 1982 – volume: 63 year: 2020 publication-title: Sci. China Phys. Mech. Ast. – volume: 53 start-page: 460 year: 2013 publication-title: Polym. Rev. – volume: 79 start-page: 345 year: 1997 publication-title: Chim. Ind. – volume: 36 start-page: 1035 year: 2000 publication-title: Eur. Polym. J. – volume: 105 start-page: 435 year: 2007 publication-title: J. Appl. Polym. Sci. – volume: 6 start-page: 18 year: 2023 publication-title: Chem. Regul. Law Rev. – volume: 37 start-page: 3341 year: 2016 publication-title: Polym. Comp. – volume: 57 start-page: 313 year: 2004 publication-title: KGK Kautschuk Gummi Kunststoffe – year: 2004 – volume: 33 start-page: 1656 year: 2000 publication-title: Macromolecules – volume: 57 start-page: 1402 year: 2019 publication-title: J. Polym. Sci., Part B: Polym. Phys. – year: 1997 – volume: 46 start-page: 3069 year: 2005 publication-title: Polymer – volume: 59 start-page: 739 year: 2019 publication-title: Polym. Rev. – year: 2015 – volume: 28 start-page: 7564 year: 2023 publication-title: Molecules – year: 1941 – volume: 45 start-page: 545 year: 2013 publication-title: Polym. J. – volume: 66 start-page: 1431 year: 2006 publication-title: Compos. Sci. Technol. – volume: 296 start-page: 843 year: 2011 publication-title: Macromol. Mater. Eng. – volume: 45 start-page: 9682 year: 2012 publication-title: Macromolecules – volume: 30 start-page: 150 year: 2015 publication-title: Mater. Tech.: Adv. Func. Mater. – volume: 36 start-page: 2493 year: 2020 publication-title: Langmuir – volume: 50 start-page: 4612 year: 2009 publication-title: Polymer – volume: 38 start-page: 5560 year: 2005 publication-title: Macromolecules – volume: 101 start-page: 2407 year: 2006 publication-title: J. Appl. Polym. Sci. – year: 1996 – year: 2000 – volume: 7 start-page: 115 year: 1982 publication-title: Polym. Bull. – volume: 42 start-page: 1693 year: 2004 publication-title: J. Polym. Sci.: Polym. Chem. – volume: 124 start-page: 5056 year: 2012 publication-title: J. Appl. Polym. Sci. – volume: 44 year: 2023 publication-title: Macromol. Rapid Comm. – volume: 13 year: 2020 publication-title: Appl. Phys. Lett. – year: 1977 – volume: 127 start-page: 919 year: 2012 publication-title: J. Appl. Polym. Sci. – volume: 47 start-page: 1777 year: 2007 publication-title: Polym. Eng. Sci. – volume: 19 start-page: 326 year: 2023 publication-title: Integr. Environ. Assess. Manag. – year: 2012 – volume: 51 start-page: 136 year: 2014 publication-title: Eur. Polym. J. – volume: 1 year: 2017 – volume: 94 start-page: 322 year: 2017 publication-title: Euro. Polym. J. – volume: 42 start-page: 587 year: 2005 publication-title: J. Macromol. Sci. Part A – volume: 46 start-page: 4892 year: 2013 publication-title: Macromolecules – volume: 50 start-page: 5435 year: 2021 publication-title: Chem. Soc. Rev. – volume: 31 start-page: 8192 year: 1998 publication-title: Macromolecules – year: 2020 – volume: 27 start-page: 905 year: 1986 publication-title: Polymer – volume: 42 start-page: 1607 year: 1991 publication-title: J. Appl. Polym. Sci. – volume: 28 start-page: 224 year: 1987 publication-title: Polymer – volume: 43 year: 2022 publication-title: Macromol. Rapid Comm. – volume: 2 start-page: 496 year: 2012 publication-title: Appl. Sci. – volume: 42 start-page: 4619 year: 2001 publication-title: Polymer – year: 2024 publication-title: Small – year: 2017 – volume: 62 start-page: 142 year: 2008 publication-title: Appl. Spectrosc. – volume: 51 start-page: 6724 year: 2018 publication-title: Macromolecules – volume: 109 start-page: 283 year: 2014 publication-title: J. Anal. Appl. Pyrolysis – volume-title: The Society of the Plastics Industry. The Guide to the Safe Handling of Fluoropolymer Resins‐Fifth Edition BP‐101 year: 2019 ident: e_1_2_9_85_1 – ident: e_1_2_9_130_1 doi: 10.3390/molecules28227564 – ident: e_1_2_9_17_1 – ident: e_1_2_9_78_1 – ident: e_1_2_9_20_1 – ident: e_1_2_9_82_1 doi: 10.1002/app.1993.070480713 – ident: e_1_2_9_48_1 doi: 10.1016/0032-3861(86)90302-2 – ident: e_1_2_9_109_1 doi: 10.1002/app.35624 – ident: e_1_2_9_84_1 doi: 10.1002/mame.201000433 – ident: e_1_2_9_16_1 – ident: e_1_2_9_138_1 doi: 10.1002/polb.24886 – ident: e_1_2_9_92_1 doi: 10.1007/s00397-011-0584-8 – ident: e_1_2_9_134_1 doi: 10.1039/D2CS00763K – ident: e_1_2_9_100_1 doi: 10.1002/app.26052 – ident: e_1_2_9_104_1 doi: 10.1016/j.compositesb.2013.10.054 – ident: e_1_2_9_13_1 doi: 10.1366/000370208783575573 – ident: e_1_2_9_127_1 doi: 10.1080/15583724.2019.1636390 – ident: e_1_2_9_24_1 doi: 10.1002/(SICI)1099-0518(19991101)37:21<3991::AID-POLA13>3.0.CO;2-Y – volume: 19 start-page: 1158 year: 2012 ident: e_1_2_9_114_1 publication-title: IEEE Trans. Electr. Insul. doi: 10.1109/TDEI.2012.6259984 – volume: 43 year: 2022 ident: e_1_2_9_129_1 publication-title: Macromol. Rapid Comm. doi: 10.1002/marc.202100567 – ident: e_1_2_9_12_1 doi: 10.1016/j.mtchem.2020.100412 – volume: 1 start-page: 118 year: 2020 ident: e_1_2_9_136_1 publication-title: Prog. Nuc. Magn. Reson. Spec. – ident: e_1_2_9_90_1 doi: 10.5254/1.3534971 – ident: e_1_2_9_99_1 doi: 10.1002/pen.20877 – ident: e_1_2_9_22_1 – ident: e_1_2_9_79_1 – ident: e_1_2_9_30_1 doi: 10.1002/pola.1992.080300613 – volume-title: Fundamentals of Polymer Science year: 1994 ident: e_1_2_9_58_1 – ident: e_1_2_9_66_1 doi: 10.1021/la0505972 – ident: e_1_2_9_72_1 doi: 10.1021/ma3020307 – ident: e_1_2_9_86_1 doi: 10.1016/0032-3861(96)87261-2 – ident: e_1_2_9_98_1 doi: 10.1002/app.23885 – volume-title: in Modern Fluoropolymers year: 1997 ident: e_1_2_9_46_1 – ident: e_1_2_9_28_1 – ident: e_1_2_9_73_1 doi: 10.1021/ma400683w – ident: e_1_2_9_112_1 doi: 10.1016/j.polymer.2005.01.095 – volume-title: Modern Fluoropolymers year: 1997 ident: e_1_2_9_14_1 – volume-title: In Plastics Design Library, Applied Plastics Engineering Handbook, Second Edition year: 2017 ident: e_1_2_9_3_1 – ident: e_1_2_9_1_1 – ident: e_1_2_9_97_1 doi: 10.1016/j.compscitech.2005.09.001 – ident: e_1_2_9_51_1 doi: 10.1002/0471440264.pst137.pub2 – ident: e_1_2_9_29_1 doi: 10.1016/j.jfluchem.2003.12.010 – ident: e_1_2_9_67_1 doi: 10.1021/ma971269e – volume: 6 start-page: 18 year: 2023 ident: e_1_2_9_132_1 publication-title: Chem. Regul. Law Rev. – ident: e_1_2_9_37_1 doi: 10.1016/S0022-1139(96)03534-8 – ident: e_1_2_9_74_1 doi: 10.1002/polb.24308 – ident: e_1_2_9_91_1 doi: 10.1007/s00397-008-0342-8 – ident: e_1_2_9_135_1 doi: 10.1016/j.aiepr.2022.08.002 – ident: e_1_2_9_9_1 doi: 10.1021/ma051391a – ident: e_1_2_9_21_1 – ident: e_1_2_9_61_1 doi: 10.1016/0032-3950(81)90019-8 – ident: e_1_2_9_126_1 doi: 10.1021/acs.macromol.8b01286 – ident: e_1_2_9_123_1 doi: 10.1093/icb/42.6.1081 – ident: e_1_2_9_57_1 doi: 10.1016/j.eurpolymj.2013.12.006 – ident: e_1_2_9_25_1 doi: 10.1021/ma010461k – ident: e_1_2_9_65_1 doi: 10.1002/3527606726 – ident: e_1_2_9_140_1 doi: 10.1002/pola.27549 – ident: e_1_2_9_81_1 doi: 10.1021/ma0626867 – ident: e_1_2_9_137_1 doi: 10.1021/acsami.9b16228 – ident: e_1_2_9_18_1 – ident: e_1_2_9_34_1 – ident: e_1_2_9_7_1 doi: 10.1021/cr800187m – ident: e_1_2_9_53_1 doi: 10.1016/j.jfluchem.2017.08.002 – ident: e_1_2_9_63_1 doi: 10.1021/ma980745d – ident: e_1_2_9_5_1 doi: 10.3390/app2020496 – ident: e_1_2_9_69_1 doi: 10.1021/acs.macromol.5b00200 – ident: e_1_2_9_42_1 – ident: e_1_2_9_121_1 doi: 10.1021/acs.langmuir.9b03908 – volume: 13 year: 2020 ident: e_1_2_9_118_1 publication-title: Appl. Phys. Lett. – ident: e_1_2_9_76_1 doi: 10.1021/ma990982w – ident: e_1_2_9_120_1 doi: 10.5254/1.3547736 – volume: 46 start-page: 741 year: 2005 ident: e_1_2_9_47_1 publication-title: Polym. Prepr. – volume-title: Emissions from Incineration of Fluoropolymer Materials, Norwegian Institute for Air Research year: 2009 ident: e_1_2_9_54_1 – ident: e_1_2_9_111_1 doi: 10.1002/mame.200400269 – ident: e_1_2_9_115_1 – ident: e_1_2_9_27_1 doi: 10.1016/S0022-1139(03)00075-7 – ident: e_1_2_9_68_1 doi: 10.1177/0954008314529601 – volume-title: Fluorinated Polymers: Applications year: 2017 ident: e_1_2_9_15_1 – ident: e_1_2_9_102_1 doi: 10.1007/s00289-016-1639-x – volume-title: Royal Society of Chemistry year: 2022 ident: e_1_2_9_131_1 – ident: e_1_2_9_89_1 doi: 10.1016/0079-6700(89)90003-8 – volume: 63 year: 2020 ident: e_1_2_9_119_1 publication-title: Sci. China Phys. Mech. Ast. doi: 10.1007/s11433-019-9600-4 – ident: e_1_2_9_49_1 doi: 10.1016/j.jaap.2013.06.008 – ident: e_1_2_9_43_1 – ident: e_1_2_9_32_1 doi: 10.1016/j.polymer.2009.07.029 – ident: e_1_2_9_95_1 doi: 10.1007/s10965-022-03006-5 – ident: e_1_2_9_124_1 doi: 10.1002/pi.5904 – volume: 30 start-page: 150 year: 2015 ident: e_1_2_9_107_1 publication-title: Mater. Tech.: Adv. Func. Mater. doi: 10.1179/17535557A15Y.000000015 – ident: e_1_2_9_71_1 doi: 10.1021/jp409384g – volume: 22 year: 2017 ident: e_1_2_9_103_1 publication-title: RevistaMateria – ident: e_1_2_9_141_1 doi: 10.1039/D2CS00558A – ident: e_1_2_9_2_1 – ident: e_1_2_9_38_1 – ident: e_1_2_9_60_1 – ident: e_1_2_9_70_1 doi: 10.1002/mrc.4156 – volume-title: Fluorinated Polymers: Synthesis, Properties, Processing and Simulation year: 2017 ident: e_1_2_9_6_1 – volume: 7 start-page: 115 year: 1982 ident: e_1_2_9_87_1 publication-title: Polym. Bull. doi: 10.1007/BF00265461 – volume: 57 start-page: 313 year: 2004 ident: e_1_2_9_31_1 publication-title: KGK Kautschuk Gummi Kunststoffe – ident: e_1_2_9_41_1 – ident: e_1_2_9_62_1 doi: 10.1021/ma00177a021 – volume: 79 start-page: 345 year: 1997 ident: e_1_2_9_77_1 publication-title: Chim. Ind. – ident: e_1_2_9_4_1 doi: 10.1002/ieam.4646 – ident: e_1_2_9_55_1 doi: 10.1295/polymj.17.253 – ident: e_1_2_9_88_1 doi: 10.1016/S0032-3861(00)00832-6 – ident: e_1_2_9_36_1 doi: 10.1016/S0014-3057(99)00158-5 – ident: e_1_2_9_50_1 doi: 10.1016/0032-3861(87)90408-3 – ident: e_1_2_9_113_1 doi: 10.1002/marc.200500077 – ident: e_1_2_9_40_1 doi: 10.1002/pola.20015 – ident: e_1_2_9_105_1 doi: 10.1002/pc.23532 – ident: e_1_2_9_26_1 doi: 10.1021/ma047792s – ident: e_1_2_9_59_1 doi: 10.1002/047147875X – volume-title: in Modern Fluoropolymers year: 1997 ident: e_1_2_9_44_1 – ident: e_1_2_9_39_1 doi: 10.1016/0014-3057(91)90230-L – ident: e_1_2_9_125_1 doi: 10.1021/acs.chemrev.8b00458 – volume: 76 start-page: 39 year: 1979 ident: e_1_2_9_56_1 publication-title: Macromol. Chem. – ident: e_1_2_9_11_1 doi: 10.1039/D0CS00258E – ident: e_1_2_9_19_1 – ident: e_1_2_9_143_1 doi: 10.5772/58496 – ident: e_1_2_9_108_1 doi: 10.1002/app.29679 – volume: 19 start-page: 132 year: 2016 ident: e_1_2_9_106_1 publication-title: Pol. J. Chem. Tech. doi: 10.1515/pjct-2016-0050 – ident: e_1_2_9_80_1 doi: 10.1002/app.1971.070151103 – ident: e_1_2_9_96_1 doi: 10.1081/MA-200056331 – volume: 127 start-page: 919 year: 2012 ident: e_1_2_9_93_1 publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.37830 – volume-title: Biomaterials Science, Fourth Edition year: 2020 ident: e_1_2_9_10_1 – ident: e_1_2_9_8_1 doi: 10.1002/macp.201900573 – ident: e_1_2_9_139_1 – ident: e_1_2_9_83_1 doi: 10.1002/(SICI)1097-0126(199902)48:2<92::AID-PI100>3.0.CO;2-3 – ident: e_1_2_9_128_1 doi: 10.1002/marc.202200737 – year: 2024 ident: e_1_2_9_133_1 publication-title: Small doi: 10.1002/smll.202311570 – ident: e_1_2_9_117_1 – ident: e_1_2_9_142_1 doi: 10.1002/marc.201800876 – volume-title: Automotive Fuel Containment year: 2000 ident: e_1_2_9_94_1 – ident: e_1_2_9_23_1 doi: 10.1002/app.1991.070420614 – ident: e_1_2_9_35_1 doi: 10.1016/j.polymer.2004.01.052 – ident: e_1_2_9_52_1 doi: 10.1007/b136245 – ident: e_1_2_9_64_1 – ident: e_1_2_9_122_1 doi: 10.1080/15583724.2013.808666 – ident: e_1_2_9_33_1 doi: 10.1038/pj.2012.177 – ident: e_1_2_9_116_1 doi: 10.1016/j.eurpolymj.2017.05.042 – ident: e_1_2_9_75_1 doi: 10.1016/j.polymer.2008.10.009 – ident: e_1_2_9_101_1 doi: 10.1002/pi.4518 – ident: e_1_2_9_45_1 – ident: e_1_2_9_110_1 doi: 10.1002/app.24798 |
SSID | ssj0008402 |
Score | 2.461375 |
SecondaryResourceType | review_article |
Snippet | Polytetrafluoroethylene (PTFE) exhibits outstanding properties such as high‐temperature stability, low surface tension, and chemical resistance against most... Polytetrafluoroethylene (PTFE) exhibits outstanding properties such as high-temperature stability, low surface tension, and chemical resistance against most... |
SourceID | hal proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2400294 |
SubjectTerms | Acid resistance characterization Chemical Sciences Copolymerization Fluoropolymers Melting point Melting points Microstructural analysis Microstructure Polymers Polytetrafluoroethylene Propylene Surface stability Surface tension Synthesis Terpolymers Tetrafluoroethylene TFE‐based terpolymers Thermoforming |
Title | TFE Terpolymers: Once Promising – Are There Still Perspectives in the 21st Century: Synthesis, Characterization, and Properties‐Part I |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmarc.202400294 https://www.ncbi.nlm.nih.gov/pubmed/39108073 https://www.proquest.com/docview/3115379047 https://www.proquest.com/docview/3089879814 https://hal.science/hal-04671308 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdgPMAL3x-BMRmExMuyObab2HurwqqCVqjWTtpbFH9EVFTptKRI42nPPCHxH-4v4a5pUwpCSPASJc5Zdpyz786--x0hr2IRGysLHRZ5IUMpmQl1x_MwZoZZ7oVRFmOHB-_j_ol8d9o5_SmKv8GHaDfccGYs1muc4Lmp9tegoQj1APYd-kByjYCg6LCFWtHxGj8KrJfmuBMsLjDG4hVqI-P7m9U3pNL1j-gT-bvCuam_LgRQ7w7JV11v_E4-7c1rs2e__ILq-D_fdpfcXmqntNuw0z1yzZf3yc10lRTuAfk67h3SMWbmml7gjvcB_QBcQ4fnM6AAKUivLr9DdU-B_eA6qifTKR2uAzorOikp6JyUR1VN00biHdDRRQmF1aTapWmLIN0EiO7SvHTYwBl6gPvq6vLbENidvn1ITnqH47QfLtM5hFbKRIZCSu6U94xZWDlMYpguWBF7ZREjLeLOg-5c5E7GUSGVEz7XVnSUiIxTwhVSPCJb5az0TwiNtLXKOdaxzEqbGGVE7F2sCuYY91IFJFz9zswusc4x5cY0a1CaeYYjnLUjHJDXLf1Zg_LxR8qXwB0tEYJz97tHGZYxkDmgEajPUUC2V8yTLZeEKkNYI5FoJpOAvGhfw8_BE5q89LM50DClVaJVBO08bpiubUpodAdNRED4gnX-0tFs0D1O26en_1LpGbmF941H3TbZqs_n_jmoYLXZITe6bwZHo53FdPsBRZUqPg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYeBgvwPgMjGEQEi_L5thu4uytilZ10I5q6yTeovgjoqJKpyVFGk975gmJ_3B_CXdNk6oghAQvkeKcZcc---7su98R8iYUoTYyj_08y6UvJdN-3HHcD5lmhjuhlcHY4eFJ2D-X7z52Gm9CjIWp8SHaAzdcGYv9Ghc4HkgfrFBDEesBDDx0guSx3CC3Ma33wqo6XSFIgf1SX3iCzQXmWNjgNjJ-sF5_TS5tfEKvyN9VznUNdiGCeveIbjpfe5583p9Xet98_QXX8b_-7j65u1RQabfmqG1yyxUPyFbS5IV7SL6Ne0d0jMm5pld46H1IPwDj0NHlDChAENKb6x9Q3VHgQHieVZPplI5WMZ0lnRQU1E7Kg7KiSS30DunZVQGF5aTco0kLIl3HiO7RrLDYwAU6gbvy5vr7CDieHj8i572jcdL3lxkdfCNlJH0hJbfKOcYMbB460izOWR46ZRAmLeDWgfqcZ1aGQS6VFS6LjegoEWirhM2leEw2i1nhnhIaxMYoa1nHMCNNpJUWobOhypll3EnlEb-Zz9Qs4c4x68Y0rYGaeYojnLYj7JG3Lf1FDfTxR8rXwB4tEeJz97uDFMsYiB1QCtSXwCM7Dfeky12hTBHZSEQxk5FHXrWfYXLwkiYr3GwONEzFKopVAO08qbmubUrE6BEaCY_wBe_8paPpsHuatG_P_qXSS7LVHw8H6eD45P1zcgfLawe7HbJZXc7dC9DIKr27WHM_AXFVLMU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLfYkIAL3x-BAQYhcVk2J3YdZ7cqW9XBNqqtk3aL4i9RUaXVkiKN086ckPgP95fwXDcpBSEkuESK8yw79s9-79nPPyP0hlMuFbNpaAvLQsaIDNOOiUNOJFGxoVIod3b48Ij3T9m7s87ZT6f4PT9Eu-DmRsZ8vnYDfKrt9pI01FE9gH_nYiDjlK2h64wT4XC9e7wkkAL3xe93gssF3hhvaBtJvL2af0UtrX10QZG_W5yrBuxcA_XuoKKpuw88-bQ1q-WW-vILreP__NxddHthnuKux9M9dM2U99HNrLkV7gH6Ouzt4aG7mmt84Za8d_AHgA0enE9AAtQgvrr8DtkNBvzB86Qejcd4sDzRWeFRicHoxHFU1TjzKm8Hn1yUkFiNqk2ctRTS_oToJi5K7QqYuhBwU11dfhsA3vH-Q3Ta2xtm_XBxn0OoGEtYSBmLtTCGEAVTh0wkSS2x3AjlSNKiWBswnm2hGY8sE5qaIlW0I2gktaDaMvoIrZeT0jxBOEqVElqTjiKKqUQKSbnRXFiiSWyYCFDYdGeuFmTn7s6Nce5pmuPctXDetnCA3rbyU0_z8UfJ14COVsixc_e7B7lLI6B0wCQQn6MAbTTgyRdzQpU7XiOapIQlAXrVfobOcVs0RWkmM5ABCIskFRGU89iDri2Kpi4eNKEBiufQ-UtF88Pucda-Pf2XTC_RjcFuLz_YP3r_DN1yyT66bgOt1-cz8xzMsVq-mI-4H-FpK30 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TFE+Terpolymers%3A+Once+Promising+%E2%80%93+Are+There+Still+Perspectives+in+the+21st+Century%3A+Synthesis%2C+Characterization%2C+and+Properties%E2%80%90Part+I&rft.jtitle=Macromolecular+rapid+communications.&rft.au=Ok%2C+Salim&rft.au=Steinhart%2C+Martin&rft.au=Scheler%2C+Ulrich&rft.au=Am%C3%A9duri%2C+Bruno&rft.date=2024-09-01&rft.issn=1022-1336&rft.eissn=1521-3927&rft_id=info:doi/10.1002%2Fmarc.202400294&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_marc_202400294 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-1336&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-1336&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-1336&client=summon |