TFE Terpolymers: Once Promising – Are There Still Perspectives in the 21st Century: Synthesis, Characterization, and Properties‐Part I

Polytetrafluoroethylene (PTFE) exhibits outstanding properties such as high‐temperature stability, low surface tension, and chemical resistance against most solvents, strong acids, and bases. However, these traits make it challenging to subject PTFE to standard polymer processing procedures, such as...

Full description

Saved in:
Bibliographic Details
Published inMacromolecular rapid communications. Vol. 45; no. 18; pp. e2400294 - n/a
Main Authors Ok, Salim, Steinhart, Martin, Scheler, Ulrich, Améduri, Bruno
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.09.2024
Wiley-VCH Verlag
Subjects
Online AccessGet full text
ISSN1022-1336
1521-3927
1521-3927
DOI10.1002/marc.202400294

Cover

Loading…
Abstract Polytetrafluoroethylene (PTFE) exhibits outstanding properties such as high‐temperature stability, low surface tension, and chemical resistance against most solvents, strong acids, and bases. However, these traits make it challenging to subject PTFE to standard polymer processing procedures, such as thermoforming and hot incremental forming. While polymer processing at temperatures above the melting point of PTFE is already demanding, the typically large molar mass of PTFE results in extremely high melt viscosities, complicating the processing of PTFE. Also, PTFE tends to decompose at temperatures close to its melting point. Therefore, fluoropolymers obtained by copolymerizing tetrafluoroethylene (TFE) with various co‐monomers are studied as alternatives to PTFE (e.g., fluorinated ethylene‐propylene (FEP)), combining its advantages with better processability. TFE terpolymers have emerged as desirable PTFE alternatives. This review provides an overview of the synthesis with various comonomers and microstructural analysis of PTFE terpolymers and the relationships between the microstructures of TFE terpolymers and their properties. PTFE decomposes at temperatures close to its melting point. Therefore, TFE terpolymers have emerged as desirable PTFE alternatives, where these TFE terpolymers combine PTFE's advantages with better processability. Currently, fluoropolymers have reached a new era. The present review summarizes the synthesis, detailed characterization, and structure‐property correlations of the fluoropolymers and ends with a future perspective on the use of fluoropolymers.
AbstractList Polytetrafluoroethylene (PTFE) exhibits outstanding properties such as high‐temperature stability, low surface tension, and chemical resistance against most solvents, strong acids, and bases. However, these traits make it challenging to subject PTFE to standard polymer processing procedures, such as thermoforming and hot incremental forming. While polymer processing at temperatures above the melting point of PTFE is already demanding, the typically large molar mass of PTFE results in extremely high melt viscosities, complicating the processing of PTFE. Also, PTFE tends to decompose at temperatures close to its melting point. Therefore, fluoropolymers obtained by copolymerizing tetrafluoroethylene (TFE) with various co‐monomers are studied as alternatives to PTFE (e.g., fluorinated ethylene‐propylene (FEP)), combining its advantages with better processability. TFE terpolymers have emerged as desirable PTFE alternatives. This review provides an overview of the synthesis with various comonomers and microstructural analysis of PTFE terpolymers and the relationships between the microstructures of TFE terpolymers and their properties. PTFE decomposes at temperatures close to its melting point. Therefore, TFE terpolymers have emerged as desirable PTFE alternatives, where these TFE terpolymers combine PTFE's advantages with better processability. Currently, fluoropolymers have reached a new era. The present review summarizes the synthesis, detailed characterization, and structure‐property correlations of the fluoropolymers and ends with a future perspective on the use of fluoropolymers.
Polytetrafluoroethylene (PTFE) exhibits outstanding properties such as high‐temperature stability, low surface tension, and chemical resistance against most solvents, strong acids, and bases. However, these traits make it challenging to subject PTFE to standard polymer processing procedures, such as thermoforming and hot incremental forming. While polymer processing at temperatures above the melting point of PTFE is already demanding, the typically large molar mass of PTFE results in extremely high melt viscosities, complicating the processing of PTFE. Also, PTFE tends to decompose at temperatures close to its melting point. Therefore, fluoropolymers obtained by copolymerizing tetrafluoroethylene (TFE) with various co‐monomers are studied as alternatives to PTFE (e.g., fluorinated ethylene‐propylene (FEP)), combining its advantages with better processability. TFE terpolymers have emerged as desirable PTFE alternatives. This review provides an overview of the synthesis with various comonomers and microstructural analysis of PTFE terpolymers and the relationships between the microstructures of TFE terpolymers and their properties.
Polytetrafluoroethylene (PTFE) exhibits outstanding properties such as high-temperature stability, low surface tension, and chemical resistance against most solvents, strong acids, and bases. However, these traits make it challenging to subject PTFE to standard polymer processing procedures, such as thermoforming and hot incremental forming. While polymer processing at temperatures above the melting point of PTFE is already demanding, the typically large molar mass of PTFE results in extremely high melt viscosities, complicating the processing of PTFE. Also, PTFE tends to decompose at temperatures close to its melting point. Therefore, fluoropolymers obtained by copolymerizing tetrafluoroethylene (TFE) with various co-monomers are studied as alternatives to PTFE (e.g., fluorinated ethylene-propylene (FEP)), combining its advantages with better processability. TFE terpolymers have emerged as desirable PTFE alternatives. This review provides an overview of the synthesis with various comonomers and microstructural analysis of PTFE terpolymers and the relationships between the microstructures of TFE terpolymers and their properties.Polytetrafluoroethylene (PTFE) exhibits outstanding properties such as high-temperature stability, low surface tension, and chemical resistance against most solvents, strong acids, and bases. However, these traits make it challenging to subject PTFE to standard polymer processing procedures, such as thermoforming and hot incremental forming. While polymer processing at temperatures above the melting point of PTFE is already demanding, the typically large molar mass of PTFE results in extremely high melt viscosities, complicating the processing of PTFE. Also, PTFE tends to decompose at temperatures close to its melting point. Therefore, fluoropolymers obtained by copolymerizing tetrafluoroethylene (TFE) with various co-monomers are studied as alternatives to PTFE (e.g., fluorinated ethylene-propylene (FEP)), combining its advantages with better processability. TFE terpolymers have emerged as desirable PTFE alternatives. This review provides an overview of the synthesis with various comonomers and microstructural analysis of PTFE terpolymers and the relationships between the microstructures of TFE terpolymers and their properties.
Author Ok, Salim
Steinhart, Martin
Améduri, Bruno
Scheler, Ulrich
Author_xml – sequence: 1
  givenname: Salim
  surname: Ok
  fullname: Ok, Salim
  email: sok@uos.de
  organization: Kuwait Institute for Scientific Research
– sequence: 2
  givenname: Martin
  surname: Steinhart
  fullname: Steinhart, Martin
  organization: Universität Osnabrück
– sequence: 3
  givenname: Ulrich
  surname: Scheler
  fullname: Scheler, Ulrich
  organization: Leibniz‐Institut für Polymerforschung Dresden e.V. Dresden
– sequence: 4
  givenname: Bruno
  orcidid: 0000-0003-4217-6664
  surname: Améduri
  fullname: Améduri, Bruno
  email: bruno.ameduri@enscm.fr
  organization: Univ. Montpellier, CNRS, ENSCM
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39108073$$D View this record in MEDLINE/PubMed
https://hal.science/hal-04671308$$DView record in HAL
BookMark eNqFkU1rGzEQhpeS0ny01x6LoJcWsu7ow15tbsYkTcAlpnHPQtbO1gprrSNpU9xTzjkF-g_zS6qtkxQCpRdJMzzvO2je_WzHtQ6z7C2FAQVgn1bamwEDJlJRihfZHh0ymvOSFTvpDYzllPPRbrYfwiUASAHsVbbLSwoSCr6X3c5Pjskc_bptNiv04YicO4Nk5tuVDdZ9J_c3v8jYI5kvMZ0X0TYNmSVwjSbaawzEOhKXSBgNkUzQxc5vjsjFxqVmsOGQTJbaaxPR25862tYdEu2qfsAafbQY7m_uZtpHcvY6e1nrJuCbh_sg-3ZyPJ-c5tPzz2eT8TQ3QhQi50KwSiICGBCwKBZQ1lCPUBoxpJSyCiWtal2JEa2FrDjq0vCh5HRRSV7Vgh9kH7e-S92otbdphRvVaqtOx1PV90CMCspBXtPEftiya99edRiiSmsx2DTaYdsFlahSFqWkve37Z-hl23mXfqI4pUNelCCKRL17oLrFCqun-Y-JJEBsAePbEDzWytj4Z3HRa9soCqoPXvXBq6fgk2zwTPbo_E9BuRX8sA1u_kOrL-Ovk7_a38lUwKs
CitedBy_id crossref_primary_10_1002_marc_202400412
crossref_primary_10_3390_polym16182607
Cites_doi 10.3390/molecules28227564
10.1002/app.1993.070480713
10.1016/0032-3861(86)90302-2
10.1002/app.35624
10.1002/mame.201000433
10.1002/polb.24886
10.1007/s00397-011-0584-8
10.1039/D2CS00763K
10.1002/app.26052
10.1016/j.compositesb.2013.10.054
10.1366/000370208783575573
10.1080/15583724.2019.1636390
10.1002/(SICI)1099-0518(19991101)37:21<3991::AID-POLA13>3.0.CO;2-Y
10.1109/TDEI.2012.6259984
10.1002/marc.202100567
10.1016/j.mtchem.2020.100412
10.5254/1.3534971
10.1002/pen.20877
10.1002/pola.1992.080300613
10.1021/la0505972
10.1021/ma3020307
10.1016/0032-3861(96)87261-2
10.1002/app.23885
10.1021/ma400683w
10.1016/j.polymer.2005.01.095
10.1016/j.compscitech.2005.09.001
10.1002/0471440264.pst137.pub2
10.1016/j.jfluchem.2003.12.010
10.1021/ma971269e
10.1016/S0022-1139(96)03534-8
10.1002/polb.24308
10.1007/s00397-008-0342-8
10.1016/j.aiepr.2022.08.002
10.1021/ma051391a
10.1016/0032-3950(81)90019-8
10.1021/acs.macromol.8b01286
10.1093/icb/42.6.1081
10.1016/j.eurpolymj.2013.12.006
10.1021/ma010461k
10.1002/3527606726
10.1002/pola.27549
10.1021/ma0626867
10.1021/acsami.9b16228
10.1021/cr800187m
10.1016/j.jfluchem.2017.08.002
10.1021/ma980745d
10.3390/app2020496
10.1021/acs.macromol.5b00200
10.1021/acs.langmuir.9b03908
10.1021/ma990982w
10.5254/1.3547736
10.1002/mame.200400269
10.1016/S0022-1139(03)00075-7
10.1177/0954008314529601
10.1007/s00289-016-1639-x
10.1016/0079-6700(89)90003-8
10.1007/s11433-019-9600-4
10.1016/j.jaap.2013.06.008
10.1016/j.polymer.2009.07.029
10.1007/s10965-022-03006-5
10.1002/pi.5904
10.1179/17535557A15Y.000000015
10.1021/jp409384g
10.1039/D2CS00558A
10.1002/mrc.4156
10.1007/BF00265461
10.1021/ma00177a021
10.1002/ieam.4646
10.1295/polymj.17.253
10.1016/S0032-3861(00)00832-6
10.1016/S0014-3057(99)00158-5
10.1016/0032-3861(87)90408-3
10.1002/marc.200500077
10.1002/pola.20015
10.1002/pc.23532
10.1021/ma047792s
10.1002/047147875X
10.1016/0014-3057(91)90230-L
10.1021/acs.chemrev.8b00458
10.1039/D0CS00258E
10.5772/58496
10.1002/app.29679
10.1515/pjct-2016-0050
10.1002/app.1971.070151103
10.1081/MA-200056331
10.1002/app.37830
10.1002/macp.201900573
10.1002/(SICI)1097-0126(199902)48:2<92::AID-PI100>3.0.CO;2-3
10.1002/marc.202200737
10.1002/smll.202311570
10.1002/marc.201800876
10.1002/app.1991.070420614
10.1016/j.polymer.2004.01.052
10.1007/b136245
10.1080/15583724.2013.808666
10.1038/pj.2012.177
10.1016/j.eurpolymj.2017.05.042
10.1016/j.polymer.2008.10.009
10.1002/pi.4518
10.1002/app.24798
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
NPM
7SR
7U5
8FD
JG9
JQ2
L7M
7X8
1XC
VOOES
DOI 10.1002/marc.202400294
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList
CrossRef
PubMed

MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3927
EndPage n/a
ExternalDocumentID oai_HAL_hal_04671308v1
39108073
10_1002_marc_202400294
MARC202400294
Genre reviewArticle
Journal Article
Review
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
GYXMG
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6T
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZY4
ZZTAW
~IA
~WT
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
NPM
7SR
7U5
8FD
JG9
JQ2
L7M
7X8
1XC
VOOES
ID FETCH-LOGICAL-c4474-3442d8ee00c040b7b09f0f6e8c451112de81dfad461f48d3ea9c35831bd83df43
IEDL.DBID DR2
ISSN 1022-1336
1521-3927
IngestDate Fri May 09 12:12:52 EDT 2025
Fri Jul 11 06:05:36 EDT 2025
Mon Jul 14 20:54:18 EDT 2025
Thu Apr 03 07:06:16 EDT 2025
Tue Jul 01 03:31:52 EDT 2025
Thu Apr 24 22:56:58 EDT 2025
Sun Jul 06 04:45:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords synthesis
characterization
TFE‐based terpolymers
TFE-based terpolymers
Language English
License 2024 Wiley‐VCH GmbH.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4474-3442d8ee00c040b7b09f0f6e8c451112de81dfad461f48d3ea9c35831bd83df43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-4217-6664
OpenAccessLink https://hal.science/hal-04671308
PMID 39108073
PQID 3115379047
PQPubID 1016394
PageCount 24
ParticipantIDs hal_primary_oai_HAL_hal_04671308v1
proquest_miscellaneous_3089879814
proquest_journals_3115379047
pubmed_primary_39108073
crossref_citationtrail_10_1002_marc_202400294
crossref_primary_10_1002_marc_202400294
wiley_primary_10_1002_marc_202400294_MARC202400294
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2024
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: September 2024
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Macromolecular rapid communications.
PublicationTitleAlternate Macromol Rapid Commun
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Wiley-VCH Verlag
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley-VCH Verlag
References 2005; 290
2007; 105
2012; 124
2006; 39
1999; 48
2014; 26
2009; 112
1973
2012; 19
2020; 13
2020; 12
1970
2024
2012; 127
2016; 37
2001; 42
2022; 29
1977
1985; 17
2005; 184
1971; 15
2013; 53
1982
2017; 201
1993; 48
2004; 42
2023; 52
2016; 19
2015; 53
2004; 45
1998
1997
1996
2020; 36
1994
2021; 50
1976; 49
1981; 23
1992; 30
2023; 44
2019; 40
2022; 5
2017; 55
1999; 37
2008; 49
2004; 57
1986; 27
2009; 109
2012; 45
2006; 101
2006; 102
2017; 1
2021; 20
2017; 2
2004; 125
1997; 82
2020; 63
2023; 6
2019; 57
2015; 30
2019; 59
2005; 21
2016; 73
2014; 63
2005; 26
1979; 76
1996; 37
2009; 48
2015; 48
2020; 1
2023; 28
2000
2002; 42
2009; 50
2006; 66
2019; 68
1991; 42
1941
1982; 7
2014; 58
2019; 119
2008; 62
2005; 38
2014; 51
2003; 122
2014; 118
2012
2013; 46
2013; 45
2022; 51
2017; 22
2002; 35
2023; 19
2009
2008
2005; 42
2005
2020; 221
2004
2022; 43
2002
2003; 76
2005; 46
2011; 296
2017; 94
2012; 2
1991; 27
1987; 20
2014; 109
2000; 36
2023
2022
2020
2000; 33
1997; 79
2011; 50
2019
2017
2015
2018; 51
2007; 40
2013
1998; 31
1989; 14
1969
1987; 28
2007; 47
1967
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_52_1
Grainger D. W. (e_1_2_9_10_1) 2020
e_1_2_9_79_1
e_1_2_9_33_1
e_1_2_9_90_1
e_1_2_9_71_1
Siengchin S. (e_1_2_9_93_1) 2012; 127
e_1_2_9_126_1
e_1_2_9_122_1
Scheirs J. (e_1_2_9_14_1) 1997
e_1_2_9_141_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
Zhang S. (e_1_2_9_114_1) 2012; 19
Ameduri B. (e_1_2_9_131_1) 2022
Zen H. A. (e_1_2_9_103_1) 2017; 22
Moggi G. (e_1_2_9_87_1) 1982; 7
e_1_2_9_60_1
Huber S. (e_1_2_9_54_1) 2009
e_1_2_9_2_1
e_1_2_9_138_1
e_1_2_9_111_1
e_1_2_9_134_1
e_1_2_9_115_1
Ameduri B. (e_1_2_9_132_1) 2023; 6
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_130_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_102_1
e_1_2_9_125_1
e_1_2_9_38_1
e_1_2_9_140_1
e_1_2_9_121_1
e_1_2_9_19_1
Sherrell P. C. (e_1_2_9_133_1) 2024
Ebnesajjad S. (e_1_2_9_3_1) 2017
Hercules D. A. (e_1_2_9_15_1) 2017
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_61_1
e_1_2_9_84_1
Honda S. (e_1_2_9_129_1) 2022; 43
e_1_2_9_23_1
e_1_2_9_65_1
e_1_2_9_80_1
Rost P. (e_1_2_9_94_1) 2000
e_1_2_9_5_1
Arcella V. (e_1_2_9_46_1) 1997
e_1_2_9_1_1
e_1_2_9_137_1
(e_1_2_9_85_1) 2019
e_1_2_9_9_1
e_1_2_9_27_1
e_1_2_9_69_1
e_1_2_9_110_1
Arcella V. (e_1_2_9_77_1) 1997; 79
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_92_1
e_1_2_9_109_1
Painter P. C. (e_1_2_9_58_1) 1994
Yi K. W. (e_1_2_9_119_1) 2020; 63
Heidarian J. (e_1_2_9_106_1) 2016; 19
e_1_2_9_101_1
e_1_2_9_128_1
Améduri B. (e_1_2_9_6_1) 2017
e_1_2_9_105_1
e_1_2_9_124_1
e_1_2_9_39_1
e_1_2_9_120_1
e_1_2_9_16_1
e_1_2_9_143_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
Li C. (e_1_2_9_118_1) 2020; 13
Howe P. W. A. (e_1_2_9_136_1) 2020; 1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_4_1
Pellerite M. (e_1_2_9_47_1) 2005; 46
e_1_2_9_113_1
e_1_2_9_117_1
e_1_2_9_28_1
e_1_2_9_74_1
Schmiegel W. W. (e_1_2_9_31_1) 2004; 57
e_1_2_9_51_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
Liu Y. (e_1_2_9_107_1) 2015; 30
e_1_2_9_97_1
e_1_2_9_108_1
e_1_2_9_70_1
e_1_2_9_127_1
e_1_2_9_100_1
Schmiegel W. W. (e_1_2_9_56_1) 1979; 76
e_1_2_9_123_1
e_1_2_9_104_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_142_1
Hull D. E. (e_1_2_9_44_1) 1997
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_112_1
e_1_2_9_139_1
e_1_2_9_116_1
e_1_2_9_135_1
e_1_2_9_25_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 37
  start-page: 831
  year: 1996
  publication-title: Polymer
– volume: 35
  start-page: 3569
  year: 2002
  publication-title: Macromolecules
– volume: 49
  start-page: 367
  year: 1976
  publication-title: Rubber Chem. Technol.
– year: 2005
– volume: 48
  start-page: 1249
  year: 1993
  publication-title: J. Appl. Polym. Sci.
– volume: 52
  start-page: 4208
  year: 2023
  publication-title: Chem. Soc. Rev.
– volume: 40
  start-page: 2409
  year: 2007
  publication-title: Macromolecules
– volume: 50
  start-page: 577
  year: 2011
  publication-title: Rheol. Acta
– volume: 27
  start-page: 1331
  year: 1991
  publication-title: Eur. Polym. J.
– volume: 14
  start-page: 251
  year: 1989
  publication-title: Prog. Polym. Sci.
– volume: 20
  start-page: 2754
  year: 1987
  publication-title: Macromolecules
– volume: 20
  year: 2021
  publication-title: Materials, Today Chem
– year: 1998
– volume: 122
  start-page: 11
  year: 2003
  publication-title: J. Fluor. Chem.
– volume: 5
  start-page: 248
  year: 2022
  publication-title: Adv. Indust. Engin. Polym. Res.
– volume: 12
  start-page: 38
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 109
  start-page: 6632
  year: 2009
  publication-title: Chem. Rev.
– volume: 45
  start-page: 2237
  year: 2004
  publication-title: Polymer
– volume: 31
  start-page: 2252
  year: 1998
  publication-title: Macromolecules
– volume: 42
  start-page: 1081
  year: 2002
  publication-title: Integr. Comp. Biol.
– volume: 23
  start-page: 711
  year: 1981
  publication-title: Polymer Science U.S.S.R
– volume: 58
  start-page: 166
  year: 2014
  publication-title: Composites: Part B
– volume: 39
  start-page: 2316
  year: 2006
  publication-title: Macromolecules
– year: 1969
– year: 2008
– year: 2022
– volume: 21
  start-page: 6150
  year: 2005
  publication-title: Langmuir
– volume: 49
  start-page: 5497
  year: 2008
  publication-title: Polymer
– volume: 53
  start-page: 1171
  year: 2015
  publication-title: J. Polym. Sc. Part A Polym. Chem.
– volume: 55
  start-page: 643
  year: 2017
  publication-title: J. Polym. Sci. Part B: Polym. Phys.
– year: 2023
  publication-title: Encycl. Polym. Sci. Technol.
– volume: 46
  start-page: 741
  year: 2005
  publication-title: Polym. Prepr.
– volume: 26
  start-page: 926
  year: 2005
  publication-title: Macromol. Rapid Commun.
– year: 2019
– volume: 48
  start-page: 92
  year: 1999
  publication-title: Polym. Int.
– volume: 17
  start-page: 253
  year: 1985
  publication-title: Polym. J.
– volume: 2
  year: 2017
– volume: 76
  start-page: 220
  year: 2003
  publication-title: Rubber Chem. Technol.
– volume: 290
  start-page: 122
  year: 2005
  publication-title: J. Macromol. Mater. Eng.
– volume: 19
  start-page: 1158
  year: 2012
  publication-title: IEEE Trans. Electr. Insul.
– volume: 29
  start-page: 174
  year: 2022
  publication-title: J. Polym. Res.
– volume: 37
  start-page: 3991
  year: 1999
  publication-title: J. Polym. Sci.: Part A: Polym. Chem.
– year: 1973
– volume: 125
  start-page: 735
  year: 2004
  publication-title: J. Fluor. Chem.
– volume: 102
  start-page: 4484
  year: 2006
  publication-title: J. Appl. Polym. Sci.
– volume: 15
  start-page: 2639
  year: 1971
  publication-title: J. Appl. Polym. Sci.
– volume: 48
  start-page: 509
  year: 2009
  publication-title: Rheol. Acta
– volume: 73
  start-page: 3033
  year: 2016
  publication-title: Polym. Bull.
– year: 1967
– volume: 40
  year: 2019
  publication-title: Macromol. Rapid Commun.
– year: 2002
– volume: 76
  start-page: 39
  year: 1979
  publication-title: Macromol. Chem.
– volume: 82
  start-page: 13
  year: 1997
  publication-title: J. Fluorine Chem.
– year: 1970
– volume: 19
  start-page: 132
  year: 2016
  publication-title: Pol. J. Chem. Tech.
– volume: 63
  start-page: 338
  year: 2014
  publication-title: Polym. Int.
– volume: 26
  start-page: 779
  year: 2014
  publication-title: High Perform. Polym.
– volume: 68
  start-page: 1952
  year: 2019
  publication-title: Polym. Intern.
– volume: 22
  year: 2017
  publication-title: RevistaMateria
– volume: 118
  start-page: 238
  year: 2014
  publication-title: J. Phys. Chem. A
– year: 2013
– volume: 221
  year: 2020
  publication-title: Macromol. Chem. Phys.
– year: 2009
– volume: 184
  start-page: 127
  year: 2005
  publication-title: Adv. Polym. Sci.
– volume: 119
  start-page: 1763
  year: 2019
  publication-title: Chem. Rev.
– volume: 1
  start-page: 118
  year: 2020
  publication-title: Prog. Nuc. Magn. Reson. Spec.
– volume: 48
  start-page: 3563
  year: 2015
  publication-title: Macromolecules
– volume: 201
  start-page: 55
  year: 2017
  publication-title: J. Fluor. Chem.
– volume: 53
  start-page: 130
  year: 2015
  publication-title: Magn. Reson. Chem.
– year: 1994
– volume: 112
  start-page: 3597
  year: 2009
  publication-title: J. Appl. Polym. Sci.
– volume: 30
  start-page: 1077
  year: 1992
  publication-title: J. Polym. Sci.: Part A: Polym. Chem.
– volume: 51
  start-page: 8584
  year: 2022
  publication-title: Chem. Soc. Rev.
– year: 1982
– volume: 63
  year: 2020
  publication-title: Sci. China Phys. Mech. Ast.
– volume: 53
  start-page: 460
  year: 2013
  publication-title: Polym. Rev.
– volume: 79
  start-page: 345
  year: 1997
  publication-title: Chim. Ind.
– volume: 36
  start-page: 1035
  year: 2000
  publication-title: Eur. Polym. J.
– volume: 105
  start-page: 435
  year: 2007
  publication-title: J. Appl. Polym. Sci.
– volume: 6
  start-page: 18
  year: 2023
  publication-title: Chem. Regul. Law Rev.
– volume: 37
  start-page: 3341
  year: 2016
  publication-title: Polym. Comp.
– volume: 57
  start-page: 313
  year: 2004
  publication-title: KGK Kautschuk Gummi Kunststoffe
– year: 2004
– volume: 33
  start-page: 1656
  year: 2000
  publication-title: Macromolecules
– volume: 57
  start-page: 1402
  year: 2019
  publication-title: J. Polym. Sci., Part B: Polym. Phys.
– year: 1997
– volume: 46
  start-page: 3069
  year: 2005
  publication-title: Polymer
– volume: 59
  start-page: 739
  year: 2019
  publication-title: Polym. Rev.
– year: 2015
– volume: 28
  start-page: 7564
  year: 2023
  publication-title: Molecules
– year: 1941
– volume: 45
  start-page: 545
  year: 2013
  publication-title: Polym. J.
– volume: 66
  start-page: 1431
  year: 2006
  publication-title: Compos. Sci. Technol.
– volume: 296
  start-page: 843
  year: 2011
  publication-title: Macromol. Mater. Eng.
– volume: 45
  start-page: 9682
  year: 2012
  publication-title: Macromolecules
– volume: 30
  start-page: 150
  year: 2015
  publication-title: Mater. Tech.: Adv. Func. Mater.
– volume: 36
  start-page: 2493
  year: 2020
  publication-title: Langmuir
– volume: 50
  start-page: 4612
  year: 2009
  publication-title: Polymer
– volume: 38
  start-page: 5560
  year: 2005
  publication-title: Macromolecules
– volume: 101
  start-page: 2407
  year: 2006
  publication-title: J. Appl. Polym. Sci.
– year: 1996
– year: 2000
– volume: 7
  start-page: 115
  year: 1982
  publication-title: Polym. Bull.
– volume: 42
  start-page: 1693
  year: 2004
  publication-title: J. Polym. Sci.: Polym. Chem.
– volume: 124
  start-page: 5056
  year: 2012
  publication-title: J. Appl. Polym. Sci.
– volume: 44
  year: 2023
  publication-title: Macromol. Rapid Comm.
– volume: 13
  year: 2020
  publication-title: Appl. Phys. Lett.
– year: 1977
– volume: 127
  start-page: 919
  year: 2012
  publication-title: J. Appl. Polym. Sci.
– volume: 47
  start-page: 1777
  year: 2007
  publication-title: Polym. Eng. Sci.
– volume: 19
  start-page: 326
  year: 2023
  publication-title: Integr. Environ. Assess. Manag.
– year: 2012
– volume: 51
  start-page: 136
  year: 2014
  publication-title: Eur. Polym. J.
– volume: 1
  year: 2017
– volume: 94
  start-page: 322
  year: 2017
  publication-title: Euro. Polym. J.
– volume: 42
  start-page: 587
  year: 2005
  publication-title: J. Macromol. Sci. Part A
– volume: 46
  start-page: 4892
  year: 2013
  publication-title: Macromolecules
– volume: 50
  start-page: 5435
  year: 2021
  publication-title: Chem. Soc. Rev.
– volume: 31
  start-page: 8192
  year: 1998
  publication-title: Macromolecules
– year: 2020
– volume: 27
  start-page: 905
  year: 1986
  publication-title: Polymer
– volume: 42
  start-page: 1607
  year: 1991
  publication-title: J. Appl. Polym. Sci.
– volume: 28
  start-page: 224
  year: 1987
  publication-title: Polymer
– volume: 43
  year: 2022
  publication-title: Macromol. Rapid Comm.
– volume: 2
  start-page: 496
  year: 2012
  publication-title: Appl. Sci.
– volume: 42
  start-page: 4619
  year: 2001
  publication-title: Polymer
– year: 2024
  publication-title: Small
– year: 2017
– volume: 62
  start-page: 142
  year: 2008
  publication-title: Appl. Spectrosc.
– volume: 51
  start-page: 6724
  year: 2018
  publication-title: Macromolecules
– volume: 109
  start-page: 283
  year: 2014
  publication-title: J. Anal. Appl. Pyrolysis
– volume-title: The Society of the Plastics Industry. The Guide to the Safe Handling of Fluoropolymer Resins‐Fifth Edition BP‐101
  year: 2019
  ident: e_1_2_9_85_1
– ident: e_1_2_9_130_1
  doi: 10.3390/molecules28227564
– ident: e_1_2_9_17_1
– ident: e_1_2_9_78_1
– ident: e_1_2_9_20_1
– ident: e_1_2_9_82_1
  doi: 10.1002/app.1993.070480713
– ident: e_1_2_9_48_1
  doi: 10.1016/0032-3861(86)90302-2
– ident: e_1_2_9_109_1
  doi: 10.1002/app.35624
– ident: e_1_2_9_84_1
  doi: 10.1002/mame.201000433
– ident: e_1_2_9_16_1
– ident: e_1_2_9_138_1
  doi: 10.1002/polb.24886
– ident: e_1_2_9_92_1
  doi: 10.1007/s00397-011-0584-8
– ident: e_1_2_9_134_1
  doi: 10.1039/D2CS00763K
– ident: e_1_2_9_100_1
  doi: 10.1002/app.26052
– ident: e_1_2_9_104_1
  doi: 10.1016/j.compositesb.2013.10.054
– ident: e_1_2_9_13_1
  doi: 10.1366/000370208783575573
– ident: e_1_2_9_127_1
  doi: 10.1080/15583724.2019.1636390
– ident: e_1_2_9_24_1
  doi: 10.1002/(SICI)1099-0518(19991101)37:21<3991::AID-POLA13>3.0.CO;2-Y
– volume: 19
  start-page: 1158
  year: 2012
  ident: e_1_2_9_114_1
  publication-title: IEEE Trans. Electr. Insul.
  doi: 10.1109/TDEI.2012.6259984
– volume: 43
  year: 2022
  ident: e_1_2_9_129_1
  publication-title: Macromol. Rapid Comm.
  doi: 10.1002/marc.202100567
– ident: e_1_2_9_12_1
  doi: 10.1016/j.mtchem.2020.100412
– volume: 1
  start-page: 118
  year: 2020
  ident: e_1_2_9_136_1
  publication-title: Prog. Nuc. Magn. Reson. Spec.
– ident: e_1_2_9_90_1
  doi: 10.5254/1.3534971
– ident: e_1_2_9_99_1
  doi: 10.1002/pen.20877
– ident: e_1_2_9_22_1
– ident: e_1_2_9_79_1
– ident: e_1_2_9_30_1
  doi: 10.1002/pola.1992.080300613
– volume-title: Fundamentals of Polymer Science
  year: 1994
  ident: e_1_2_9_58_1
– ident: e_1_2_9_66_1
  doi: 10.1021/la0505972
– ident: e_1_2_9_72_1
  doi: 10.1021/ma3020307
– ident: e_1_2_9_86_1
  doi: 10.1016/0032-3861(96)87261-2
– ident: e_1_2_9_98_1
  doi: 10.1002/app.23885
– volume-title: in Modern Fluoropolymers
  year: 1997
  ident: e_1_2_9_46_1
– ident: e_1_2_9_28_1
– ident: e_1_2_9_73_1
  doi: 10.1021/ma400683w
– ident: e_1_2_9_112_1
  doi: 10.1016/j.polymer.2005.01.095
– volume-title: Modern Fluoropolymers
  year: 1997
  ident: e_1_2_9_14_1
– volume-title: In Plastics Design Library, Applied Plastics Engineering Handbook, Second Edition
  year: 2017
  ident: e_1_2_9_3_1
– ident: e_1_2_9_1_1
– ident: e_1_2_9_97_1
  doi: 10.1016/j.compscitech.2005.09.001
– ident: e_1_2_9_51_1
  doi: 10.1002/0471440264.pst137.pub2
– ident: e_1_2_9_29_1
  doi: 10.1016/j.jfluchem.2003.12.010
– ident: e_1_2_9_67_1
  doi: 10.1021/ma971269e
– volume: 6
  start-page: 18
  year: 2023
  ident: e_1_2_9_132_1
  publication-title: Chem. Regul. Law Rev.
– ident: e_1_2_9_37_1
  doi: 10.1016/S0022-1139(96)03534-8
– ident: e_1_2_9_74_1
  doi: 10.1002/polb.24308
– ident: e_1_2_9_91_1
  doi: 10.1007/s00397-008-0342-8
– ident: e_1_2_9_135_1
  doi: 10.1016/j.aiepr.2022.08.002
– ident: e_1_2_9_9_1
  doi: 10.1021/ma051391a
– ident: e_1_2_9_21_1
– ident: e_1_2_9_61_1
  doi: 10.1016/0032-3950(81)90019-8
– ident: e_1_2_9_126_1
  doi: 10.1021/acs.macromol.8b01286
– ident: e_1_2_9_123_1
  doi: 10.1093/icb/42.6.1081
– ident: e_1_2_9_57_1
  doi: 10.1016/j.eurpolymj.2013.12.006
– ident: e_1_2_9_25_1
  doi: 10.1021/ma010461k
– ident: e_1_2_9_65_1
  doi: 10.1002/3527606726
– ident: e_1_2_9_140_1
  doi: 10.1002/pola.27549
– ident: e_1_2_9_81_1
  doi: 10.1021/ma0626867
– ident: e_1_2_9_137_1
  doi: 10.1021/acsami.9b16228
– ident: e_1_2_9_18_1
– ident: e_1_2_9_34_1
– ident: e_1_2_9_7_1
  doi: 10.1021/cr800187m
– ident: e_1_2_9_53_1
  doi: 10.1016/j.jfluchem.2017.08.002
– ident: e_1_2_9_63_1
  doi: 10.1021/ma980745d
– ident: e_1_2_9_5_1
  doi: 10.3390/app2020496
– ident: e_1_2_9_69_1
  doi: 10.1021/acs.macromol.5b00200
– ident: e_1_2_9_42_1
– ident: e_1_2_9_121_1
  doi: 10.1021/acs.langmuir.9b03908
– volume: 13
  year: 2020
  ident: e_1_2_9_118_1
  publication-title: Appl. Phys. Lett.
– ident: e_1_2_9_76_1
  doi: 10.1021/ma990982w
– ident: e_1_2_9_120_1
  doi: 10.5254/1.3547736
– volume: 46
  start-page: 741
  year: 2005
  ident: e_1_2_9_47_1
  publication-title: Polym. Prepr.
– volume-title: Emissions from Incineration of Fluoropolymer Materials, Norwegian Institute for Air Research
  year: 2009
  ident: e_1_2_9_54_1
– ident: e_1_2_9_111_1
  doi: 10.1002/mame.200400269
– ident: e_1_2_9_115_1
– ident: e_1_2_9_27_1
  doi: 10.1016/S0022-1139(03)00075-7
– ident: e_1_2_9_68_1
  doi: 10.1177/0954008314529601
– volume-title: Fluorinated Polymers: Applications
  year: 2017
  ident: e_1_2_9_15_1
– ident: e_1_2_9_102_1
  doi: 10.1007/s00289-016-1639-x
– volume-title: Royal Society of Chemistry
  year: 2022
  ident: e_1_2_9_131_1
– ident: e_1_2_9_89_1
  doi: 10.1016/0079-6700(89)90003-8
– volume: 63
  year: 2020
  ident: e_1_2_9_119_1
  publication-title: Sci. China Phys. Mech. Ast.
  doi: 10.1007/s11433-019-9600-4
– ident: e_1_2_9_49_1
  doi: 10.1016/j.jaap.2013.06.008
– ident: e_1_2_9_43_1
– ident: e_1_2_9_32_1
  doi: 10.1016/j.polymer.2009.07.029
– ident: e_1_2_9_95_1
  doi: 10.1007/s10965-022-03006-5
– ident: e_1_2_9_124_1
  doi: 10.1002/pi.5904
– volume: 30
  start-page: 150
  year: 2015
  ident: e_1_2_9_107_1
  publication-title: Mater. Tech.: Adv. Func. Mater.
  doi: 10.1179/17535557A15Y.000000015
– ident: e_1_2_9_71_1
  doi: 10.1021/jp409384g
– volume: 22
  year: 2017
  ident: e_1_2_9_103_1
  publication-title: RevistaMateria
– ident: e_1_2_9_141_1
  doi: 10.1039/D2CS00558A
– ident: e_1_2_9_2_1
– ident: e_1_2_9_38_1
– ident: e_1_2_9_60_1
– ident: e_1_2_9_70_1
  doi: 10.1002/mrc.4156
– volume-title: Fluorinated Polymers: Synthesis, Properties, Processing and Simulation
  year: 2017
  ident: e_1_2_9_6_1
– volume: 7
  start-page: 115
  year: 1982
  ident: e_1_2_9_87_1
  publication-title: Polym. Bull.
  doi: 10.1007/BF00265461
– volume: 57
  start-page: 313
  year: 2004
  ident: e_1_2_9_31_1
  publication-title: KGK Kautschuk Gummi Kunststoffe
– ident: e_1_2_9_41_1
– ident: e_1_2_9_62_1
  doi: 10.1021/ma00177a021
– volume: 79
  start-page: 345
  year: 1997
  ident: e_1_2_9_77_1
  publication-title: Chim. Ind.
– ident: e_1_2_9_4_1
  doi: 10.1002/ieam.4646
– ident: e_1_2_9_55_1
  doi: 10.1295/polymj.17.253
– ident: e_1_2_9_88_1
  doi: 10.1016/S0032-3861(00)00832-6
– ident: e_1_2_9_36_1
  doi: 10.1016/S0014-3057(99)00158-5
– ident: e_1_2_9_50_1
  doi: 10.1016/0032-3861(87)90408-3
– ident: e_1_2_9_113_1
  doi: 10.1002/marc.200500077
– ident: e_1_2_9_40_1
  doi: 10.1002/pola.20015
– ident: e_1_2_9_105_1
  doi: 10.1002/pc.23532
– ident: e_1_2_9_26_1
  doi: 10.1021/ma047792s
– ident: e_1_2_9_59_1
  doi: 10.1002/047147875X
– volume-title: in Modern Fluoropolymers
  year: 1997
  ident: e_1_2_9_44_1
– ident: e_1_2_9_39_1
  doi: 10.1016/0014-3057(91)90230-L
– ident: e_1_2_9_125_1
  doi: 10.1021/acs.chemrev.8b00458
– volume: 76
  start-page: 39
  year: 1979
  ident: e_1_2_9_56_1
  publication-title: Macromol. Chem.
– ident: e_1_2_9_11_1
  doi: 10.1039/D0CS00258E
– ident: e_1_2_9_19_1
– ident: e_1_2_9_143_1
  doi: 10.5772/58496
– ident: e_1_2_9_108_1
  doi: 10.1002/app.29679
– volume: 19
  start-page: 132
  year: 2016
  ident: e_1_2_9_106_1
  publication-title: Pol. J. Chem. Tech.
  doi: 10.1515/pjct-2016-0050
– ident: e_1_2_9_80_1
  doi: 10.1002/app.1971.070151103
– ident: e_1_2_9_96_1
  doi: 10.1081/MA-200056331
– volume: 127
  start-page: 919
  year: 2012
  ident: e_1_2_9_93_1
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.37830
– volume-title: Biomaterials Science, Fourth Edition
  year: 2020
  ident: e_1_2_9_10_1
– ident: e_1_2_9_8_1
  doi: 10.1002/macp.201900573
– ident: e_1_2_9_139_1
– ident: e_1_2_9_83_1
  doi: 10.1002/(SICI)1097-0126(199902)48:2<92::AID-PI100>3.0.CO;2-3
– ident: e_1_2_9_128_1
  doi: 10.1002/marc.202200737
– year: 2024
  ident: e_1_2_9_133_1
  publication-title: Small
  doi: 10.1002/smll.202311570
– ident: e_1_2_9_117_1
– ident: e_1_2_9_142_1
  doi: 10.1002/marc.201800876
– volume-title: Automotive Fuel Containment
  year: 2000
  ident: e_1_2_9_94_1
– ident: e_1_2_9_23_1
  doi: 10.1002/app.1991.070420614
– ident: e_1_2_9_35_1
  doi: 10.1016/j.polymer.2004.01.052
– ident: e_1_2_9_52_1
  doi: 10.1007/b136245
– ident: e_1_2_9_64_1
– ident: e_1_2_9_122_1
  doi: 10.1080/15583724.2013.808666
– ident: e_1_2_9_33_1
  doi: 10.1038/pj.2012.177
– ident: e_1_2_9_116_1
  doi: 10.1016/j.eurpolymj.2017.05.042
– ident: e_1_2_9_75_1
  doi: 10.1016/j.polymer.2008.10.009
– ident: e_1_2_9_101_1
  doi: 10.1002/pi.4518
– ident: e_1_2_9_45_1
– ident: e_1_2_9_110_1
  doi: 10.1002/app.24798
SSID ssj0008402
Score 2.461375
SecondaryResourceType review_article
Snippet Polytetrafluoroethylene (PTFE) exhibits outstanding properties such as high‐temperature stability, low surface tension, and chemical resistance against most...
Polytetrafluoroethylene (PTFE) exhibits outstanding properties such as high-temperature stability, low surface tension, and chemical resistance against most...
SourceID hal
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2400294
SubjectTerms Acid resistance
characterization
Chemical Sciences
Copolymerization
Fluoropolymers
Melting point
Melting points
Microstructural analysis
Microstructure
Polymers
Polytetrafluoroethylene
Propylene
Surface stability
Surface tension
Synthesis
Terpolymers
Tetrafluoroethylene
TFE‐based terpolymers
Thermoforming
Title TFE Terpolymers: Once Promising – Are There Still Perspectives in the 21st Century: Synthesis, Characterization, and Properties‐Part I
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmarc.202400294
https://www.ncbi.nlm.nih.gov/pubmed/39108073
https://www.proquest.com/docview/3115379047
https://www.proquest.com/docview/3089879814
https://hal.science/hal-04671308
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdgPMAL3x-BMRmExMuyObab2HurwqqCVqjWTtpbFH9EVFTptKRI42nPPCHxH-4v4a5pUwpCSPASJc5Zdpyz786--x0hr2IRGysLHRZ5IUMpmQl1x_MwZoZZ7oVRFmOHB-_j_ol8d9o5_SmKv8GHaDfccGYs1muc4Lmp9tegoQj1APYd-kByjYCg6LCFWtHxGj8KrJfmuBMsLjDG4hVqI-P7m9U3pNL1j-gT-bvCuam_LgRQ7w7JV11v_E4-7c1rs2e__ILq-D_fdpfcXmqntNuw0z1yzZf3yc10lRTuAfk67h3SMWbmml7gjvcB_QBcQ4fnM6AAKUivLr9DdU-B_eA6qifTKR2uAzorOikp6JyUR1VN00biHdDRRQmF1aTapWmLIN0EiO7SvHTYwBl6gPvq6vLbENidvn1ITnqH47QfLtM5hFbKRIZCSu6U94xZWDlMYpguWBF7ZREjLeLOg-5c5E7GUSGVEz7XVnSUiIxTwhVSPCJb5az0TwiNtLXKOdaxzEqbGGVE7F2sCuYY91IFJFz9zswusc4x5cY0a1CaeYYjnLUjHJDXLf1Zg_LxR8qXwB0tEYJz97tHGZYxkDmgEajPUUC2V8yTLZeEKkNYI5FoJpOAvGhfw8_BE5q89LM50DClVaJVBO08bpiubUpodAdNRED4gnX-0tFs0D1O26en_1LpGbmF941H3TbZqs_n_jmoYLXZITe6bwZHo53FdPsBRZUqPg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYeBgvwPgMjGEQEi_L5thu4uytilZ10I5q6yTeovgjoqJKpyVFGk975gmJ_3B_CXdNk6oghAQvkeKcZcc---7su98R8iYUoTYyj_08y6UvJdN-3HHcD5lmhjuhlcHY4eFJ2D-X7z52Gm9CjIWp8SHaAzdcGYv9Ghc4HkgfrFBDEesBDDx0guSx3CC3Ma33wqo6XSFIgf1SX3iCzQXmWNjgNjJ-sF5_TS5tfEKvyN9VznUNdiGCeveIbjpfe5583p9Xet98_QXX8b_-7j65u1RQabfmqG1yyxUPyFbS5IV7SL6Ne0d0jMm5pld46H1IPwDj0NHlDChAENKb6x9Q3VHgQHieVZPplI5WMZ0lnRQU1E7Kg7KiSS30DunZVQGF5aTco0kLIl3HiO7RrLDYwAU6gbvy5vr7CDieHj8i572jcdL3lxkdfCNlJH0hJbfKOcYMbB460izOWR46ZRAmLeDWgfqcZ1aGQS6VFS6LjegoEWirhM2leEw2i1nhnhIaxMYoa1nHMCNNpJUWobOhypll3EnlEb-Zz9Qs4c4x68Y0rYGaeYojnLYj7JG3Lf1FDfTxR8rXwB4tEeJz97uDFMsYiB1QCtSXwCM7Dfeky12hTBHZSEQxk5FHXrWfYXLwkiYr3GwONEzFKopVAO08qbmubUrE6BEaCY_wBe_8paPpsHuatG_P_qXSS7LVHw8H6eD45P1zcgfLawe7HbJZXc7dC9DIKr27WHM_AXFVLMU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLfYkIAL3x-BAQYhcVk2J3YdZ7cqW9XBNqqtk3aL4i9RUaXVkiKN086ckPgP95fwXDcpBSEkuESK8yw79s9-79nPPyP0hlMuFbNpaAvLQsaIDNOOiUNOJFGxoVIod3b48Ij3T9m7s87ZT6f4PT9Eu-DmRsZ8vnYDfKrt9pI01FE9gH_nYiDjlK2h64wT4XC9e7wkkAL3xe93gssF3hhvaBtJvL2af0UtrX10QZG_W5yrBuxcA_XuoKKpuw88-bQ1q-WW-vILreP__NxddHthnuKux9M9dM2U99HNrLkV7gH6Ouzt4aG7mmt84Za8d_AHgA0enE9AAtQgvrr8DtkNBvzB86Qejcd4sDzRWeFRicHoxHFU1TjzKm8Hn1yUkFiNqk2ctRTS_oToJi5K7QqYuhBwU11dfhsA3vH-Q3Ta2xtm_XBxn0OoGEtYSBmLtTCGEAVTh0wkSS2x3AjlSNKiWBswnm2hGY8sE5qaIlW0I2gktaDaMvoIrZeT0jxBOEqVElqTjiKKqUQKSbnRXFiiSWyYCFDYdGeuFmTn7s6Nce5pmuPctXDetnCA3rbyU0_z8UfJ14COVsixc_e7B7lLI6B0wCQQn6MAbTTgyRdzQpU7XiOapIQlAXrVfobOcVs0RWkmM5ABCIskFRGU89iDri2Kpi4eNKEBiufQ-UtF88Pucda-Pf2XTC_RjcFuLz_YP3r_DN1yyT66bgOt1-cz8xzMsVq-mI-4H-FpK30
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TFE+Terpolymers%3A+Once+Promising+%E2%80%93+Are+There+Still+Perspectives+in+the+21st+Century%3A+Synthesis%2C+Characterization%2C+and+Properties%E2%80%90Part+I&rft.jtitle=Macromolecular+rapid+communications.&rft.au=Ok%2C+Salim&rft.au=Steinhart%2C+Martin&rft.au=Scheler%2C+Ulrich&rft.au=Am%C3%A9duri%2C+Bruno&rft.date=2024-09-01&rft.issn=1022-1336&rft.eissn=1521-3927&rft_id=info:doi/10.1002%2Fmarc.202400294&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_marc_202400294
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-1336&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-1336&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-1336&client=summon