A MODEL FOR PREDICTING THE GROWTH OF LISTERIA MONOCYTOGENES IN PACKAGED WHOLE MILK
ABSTRACT Experiments were conducted to determine growth characteristics of Listeria monocytogenes in sterilized whole milk at nine temperatures in the range of 277.15 to 308.15K (4 to 35C). Based on these data, the parameter values of the Baranyi dynamic growth model were statistically determined. F...
Saved in:
Published in | Journal of food process engineering Vol. 24; no. 4; pp. 231 - 251 |
---|---|
Main Authors | , , |
Format | Magazine Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.10.2001
Blackwell |
Subjects | |
Online Access | Get full text |
ISSN | 0145-8876 1745-4530 |
DOI | 10.1111/j.1745-4530.2001.tb00542.x |
Cover
Abstract | ABSTRACT
Experiments were conducted to determine growth characteristics of Listeria monocytogenes in sterilized whole milk at nine temperatures in the range of 277.15 to 308.15K (4 to 35C). Based on these data, the parameter values of the Baranyi dynamic growth model were statistically determined. Finite element software, ANSYS, was used to determine temperature distributions in milk cartons subject to a time‐varying ambient temperature profile. The space‐time‐temperature data were input to the Baranyi dynamic growth model, to predict the microbial population density distribution and the average population density in the milk carton. The Baranyi dynamic growth model and the finite element model were integrated and validated using experimental results from inoculated sterilized whole milk in half‐gallon laminated paper cartons. In all experiments, the milk cartons were subjected to the same temperature profile as the Baranyi dynamic growth model. Experimental microbial counts were within predicted upper and lower bounds obtained using the integrated Baranyi dynamic growth and finite element models. In addition, the growth curve at the mean value of initial physiological state parameter for L. monocytogenes underpredicted the microbial growth (standard error = 0.54 log (cfu/mL) and maximum relative difference = 15.49%). |
---|---|
AbstractList | Experiments were conducted to determine growth characteristics of Listeria monocytogenes in sterilized whole milk at nine temperatures in the range of 277.15 to 308.15K (4 to 35C). Based on these data, the parameter values of the Baranyi dynamic growth model were statistically determined. Finite element software, ANSYS, was used to determine temperature distributions in milk cartons subject to a time‐varying ambient temperature profile. The space‐time‐temperature data were input to the Baranyi dynamic growth model, to predict the microbial population density distribution and the average population density in the milk carton. The Baranyi dynamic growth model and the finite element model were integrated and validated using experimental results from inoculated sterilized whole milk in half‐gallon laminated paper cartons. In all experiments, the milk cartons were subjected to the same temperature profile as the Baranyi dynamic growth model. Experimental microbial counts were within predicted upper and lower bounds obtained using the integrated Baranyi dynamic growth and finite element models. In addition, the growth curve at the mean value of initial physiological state parameter for
L. monocytogenes
underpredicted the microbial growth (standard error = 0.54 log (cfu/mL) and maximum relative difference = 15.49%). Experiments were conducted to determine growth characteristics of Listeria monocytogenes in sterilized whole milk at nine temperatures in the range of 277.15 to 308.15K (4 to 35C). Based on these data, the parameter values of the Baranyi dynamic growth model were statistically determined. Finite element software, ANSYS, was used to determine temperature distributions in milk cartons subject to a time-varying ambient temperature profile. The space-time-temperature data were input to the Baranyi dynamic growth model, to predict the microbial population density distribution and the average population density in the milk carton. The Baranyi dynamic growth model and the finite element model were integrated and validated using experimental results from inoculated sterilized whole milk in half-gallon laminated paper cartons. In all experiments, the milk cartons were subjected to the same temperature profile as the Baranyi dynamic growth model. Experimental microbial counts were within predicted upper and lower bounds obtained using the integrated Baranyi dynamic growth and finite element models. In addition, the growth curve at the mean value of initial physiological state parameter for L. monocytogenes underpredicted the microbial growth (standard error = 0.54 log (cfu /mL) and maximum relative difference = 15.49%). ABSTRACT Experiments were conducted to determine growth characteristics of Listeria monocytogenes in sterilized whole milk at nine temperatures in the range of 277.15 to 308.15K (4 to 35C). Based on these data, the parameter values of the Baranyi dynamic growth model were statistically determined. Finite element software, ANSYS, was used to determine temperature distributions in milk cartons subject to a time‐varying ambient temperature profile. The space‐time‐temperature data were input to the Baranyi dynamic growth model, to predict the microbial population density distribution and the average population density in the milk carton. The Baranyi dynamic growth model and the finite element model were integrated and validated using experimental results from inoculated sterilized whole milk in half‐gallon laminated paper cartons. In all experiments, the milk cartons were subjected to the same temperature profile as the Baranyi dynamic growth model. Experimental microbial counts were within predicted upper and lower bounds obtained using the integrated Baranyi dynamic growth and finite element models. In addition, the growth curve at the mean value of initial physiological state parameter for L. monocytogenes underpredicted the microbial growth (standard error = 0.54 log (cfu/mL) and maximum relative difference = 15.49%). |
Author | MOHTAR, R.H. PURI, V.M. ALAVI, S.H. |
Author_xml | – sequence: 1 givenname: S.H. surname: ALAVI fullname: ALAVI, S.H. organization: Department of Agricultural and Biological Engineering The Pennsylvania State University University Park, PA 16802 – sequence: 2 givenname: V.M. surname: PURI fullname: PURI, V.M. organization: Department of Agricultural and Biological Engineering The Pennsylvania State University University Park, PA 16802 – sequence: 3 givenname: R.H. surname: MOHTAR fullname: MOHTAR, R.H. organization: Department of Agricultural and Biological Engineering Purdue University W. Lafayette, IN 47906 |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14152951$$DView record in Pascal Francis |
BookMark | eNqVkV1v0zAUhi00JLrBf7CQ4C7Bn3HCDVSpm2TNkpIFVVxZTuRIKVky4kx0_55mrYbEDeCbY-k857F83ktw0Q-9AeAtRi4-ng97FwvGHcYpcglC2J0qhDgj7uEFWDy3LsAC4ePd94X3Clxau0eIco7IAhRLeJOvZArXeQG3hVwlYZlkESxjCaMi35UxzNcwTW5LWSQzm-XhtzKPZCZvYZLB7TLcLCO5grs4TyW8SdLNa_Cy0Z01b871CnxdyzKMnTSPknCZOjVjAjucIWK0rz1hREUx5zVlPtM1Ex4WVd0YEVCjkWg4bgSqWINwRQNGCGV1owmiV-D9yXs_Dj8ejJ3UXWtr03W6N8ODVSxAyPcI-ytIMAswfTK-O4Pa1rprRt3XrVX3Y3unx0eFGeYk4PjIfTxx9ThYO5rmN4LUnIvaq3n5al6-mnNR51zU4Tj8-Y_hup301A79NOq2-zfFp5PiZ9uZx_94XF2vt5LQ-QfOydDayRyeDXr8rjxBBVe7LFJfGC93RGxUTH8BYTSw_Q |
CODEN | JFPEDM |
CitedBy_id | crossref_primary_10_1016_j_lwt_2015_12_049 crossref_primary_10_1016_j_lwt_2007_03_010 crossref_primary_10_1016_j_ijfoodmicro_2004_10_041 crossref_primary_10_1016_j_ijfoodmicro_2009_04_014 crossref_primary_10_1111_j_1745_4530_2006_00045_x |
Cites_doi | 10.13031/2013.35133 10.4315/0022-2747-37.6.346 10.1128/aem.54.5.1104-1108.1988 10.1016/0260-8774(94)00008-W 10.1111/j.1745-4530.1998.tb00448.x 10.1016/0168-1605(94)00154-X 10.1056/NEJM198301273080407 10.4315/0362-028X-50.6.452 10.1111/j.1745-4530.1998.tb00449.x 10.1111/j.1745-4530.1996.tb00401.x 10.13031/2013.31758 10.4315/0362-028X-49.12.994 10.1111/j.1365-2621.1990.tb03946.x 10.1016/0260-8774(93)90046-M 10.13031/2013.35131 10.1056/NEJM198502143120704 10.1016/0168-1605(94)00140-2 10.13031/2013.30588 10.1111/j.1365-2672.1988.tb01898.x 10.4315/0362-028X-62.2.170 10.1056/NEJM198809293191303 10.1016/0260-8774(94)00032-5 |
ContentType | Magazine Article |
Copyright | 2002 INIST-CNRS |
Copyright_xml | – notice: 2002 INIST-CNRS |
DBID | BSCLL AAYXX CITATION IQODW 7S9 L.6 |
DOI | 10.1111/j.1745-4530.2001.tb00542.x |
DatabaseName | Istex CrossRef Pascal-Francis AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1745-4530 |
EndPage | 251 |
ExternalDocumentID | 590545 14152951 10_1111_j_1745_4530_2001_tb00542_x JFPE231 ark_67375_WNG_Q45TW27K_H |
Genre | article |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29K 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8VB 930 A03 A8Z AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACKIV ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFZJQ AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG COF CS3 D-E D-F D-I DC6 DCZOG DPXWK DR2 DRFUL DROCM DRSTM DU5 EBO EBS EBU EJD ESTFP F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IX1 J0M K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MK~ MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NHB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QWB R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TH9 UB1 W8V W99 WBFHL WBKPD WIH WIK WOHZO WQJ WRC WXSBR WYISQ XG1 ZL0 ZZTAW ~IA ~KM ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ AHQJS ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY IQODW 7S9 L.6 |
ID | FETCH-LOGICAL-c4471-5402ea8a67e7b3155c3484ac47617bcfe793ea07f51f70b4f01b3942234cfa203 |
IEDL.DBID | DR2 |
ISSN | 0145-8876 |
IngestDate | Fri Jul 11 05:38:34 EDT 2025 Fri Jul 11 03:54:00 EDT 2025 Mon Jul 21 09:17:59 EDT 2025 Tue Jul 01 03:01:39 EDT 2025 Thu Apr 24 23:04:23 EDT 2025 Wed Jan 22 16:21:59 EST 2025 Wed Oct 30 09:51:34 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Performance evaluation Microorganism growth Temperature Microbiological testing Dairy product Listeria monocytogenes Shelf life Time Sterilized milk Warehousing Predictive microbiology Distribution Food preservation Bacteria Mathematical model Biological contamination |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4471-5402ea8a67e7b3155c3484ac47617bcfe793ea07f51f70b4f01b3942234cfa203 |
Notes | istex:3E96044742CB220006EA98E9284DDF944B8B14D3 ArticleID:JFPE231 ark:/67375/WNG-Q45TW27K-H ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PQID | 21491320 |
PQPubID | 23462 |
PageCount | 21 |
ParticipantIDs | proquest_miscellaneous_49008624 proquest_miscellaneous_21491320 pascalfrancis_primary_14152951 crossref_primary_10_1111_j_1745_4530_2001_tb00542_x crossref_citationtrail_10_1111_j_1745_4530_2001_tb00542_x wiley_primary_10_1111_j_1745_4530_2001_tb00542_x_JFPE231 istex_primary_ark_67375_WNG_Q45TW27K_H |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2001 |
PublicationDateYYYYMMDD | 2001-10-01 |
PublicationDate_xml | – month: 10 year: 2001 text: October 2001 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Malden, MA |
PublicationTitle | Journal of food process engineering |
PublicationYear | 2001 |
Publisher | Blackwell Publishing Ltd Blackwell |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Blackwell |
References | LIN, Y.E., ANANTHESWARAN, R.C. and PURI, V.M. 1995. Finite element analysis of microwave heating of solid foods. J. Food Eng. 25, 85-112. ROSENOW, E.M. and MARTH, E.H. 1987. Growth of Listeria monocytogenes in skim, whole and chocolate milk, and in whipping cream during incubation at 4, 8, 13, 21 and 35°C. J. Food Prot. 50(6), 452-459. WHITE, F.M. 1988. Heat and Mass Transfer. Addison-Wesley Publishing Co., Reading , MA . VILAYANNUR, R.S., PURI, V.M. and ANANTHESWARAN, R.C. 1998a. Size and shape effect on non-uniformity of temperature and moisture distributions in microwave heated food materials - Part I Simulation. J. Food Process Engineering 21, 209-233. JIANG, H., THOMPSON, D.R. and MOREY, R.V. 1987. Finite element model of temperature distribution in broccoli stalks during forced-air processing. Trans. ASAE 30, 1473-1477. LINNAN, M.J. et al. 1988. Epidemic listeriosis associated with Mexican-style cheese. New Eng. J. Med. 319(13), 823-828. SCHLECH, W.F. et al. 1983. Epidemic listeriosis - evidence for transmission by food. New Eng. J. Med. 304(4), 203-206. VAN IMPE, J.F., NICOLAI, B.M., SCHELLEKENS, M., MARTENS, T. and BAERDEMAKER, J.D. 1995. Predictive microbiology in a dynamic environment: a system theory approach. Intern. J. Food Microbiol. 25, 227-249. BARNARD, S.E. 1974. Flavor and shelf life of fluid milk. J. Milk and Food Technol. 37(6), 346-349. GUSTAFSON, R.J., THOMPSON, D.R. and SOKHANSANJ, S. 1979. Temperature and stress analysis of corn kernels - finite element analysis. Trans. ASAE 22, 955-960. MISRA, R.N. and YOUNG, J.H. 1979. Finite element approach for solution of transient heat transfer in spheres. Trans. ASAE 22, 944-949. BAZAN, T., CHAU, K.V. and BAIRD, C.D. 1989. Heat transfer simulation of bulk cooling of foods. ASAE Paper No. 89-6559, ASAE, St. Joseph , MI . KUMAR, A., BHATACHARYA, M. and BLAYCOCK, J. 1990. Numerical simulation of natural convection heating of canned thick viscous liquid food products. J Food Sci. 55, 1403-1411, 1420. PURI, V.M. and ANANTHESWARAN, R.C. 1993. The finite element methods in food processing: A review. J. Food Eng. 19, 247-274. JUNTILLA, J.R., NIEMALA, S.I. and HIRN, J. 1988. Minimum growth temperature of Listeria monocytogenes and non-haemolytic Listeria. J. Appl. Bacteriol. 65, 321-327. ANSYS User's Manual. 1994. Swanson Analytical Systems, Inc., Houston , PA . RADHAKRISHNAN, S. and PURI, V.M. 1999. Growth modeling of Listeria monocytogenes in Camembert cheese. ASAE Paper No. 99-6061, ASAE, St. Joseph , MI . ALAVI, S.H., PURI, V.M., KNABEL, S.J., MOHTAR, R.H. and WHITING, R.C. 1999. Development and validation of a dynamic growth model for Listeria monocytogenes in fluid whole milk. J. Food Prot. 62(5), 170-176. DONNELLY, C.W. and BRIGGS, E.H. 1986. Psychrotrophic growth and thermal inactivation of Listeria monocytogenes as a function of milk composition. J. Food Prot. 49(12), 994-998. STRINGER, L.J., DIEHL, K.C., WILSON, J.M. and HACKNEY, C.R. 1989. Cooling rates for boxed fish. ASAE Paper No. 89-6120, ASAE, St. Joseph , MI . PAN, J.C. and BHOWMIK, S.R. 1991. The finite element analysis of transient heat transfer in fresh tomatoes during cooling. Trans. ASAE 34, 972-976. GERALD, C.F. and WHEATLEY, P.O. 1999. Applied Numerical Analysis. Sixth Edition. Addison Wesley, Reading , MA . WALKER, S.J. and STRINGER, M.F. 1987. Growth of Listeria monocytogenes and Aeromonas hydrophila at chill temperatures. J. Appl. Bacteriol. 63, XX. ZHOU, L., PURI, V.M., ANANTHESWARAN, R.C. and YEH, G. 1995. Finite element modeling of heat and mass transfer in food materials during microwave heating - model development and validation. J. Food Eng. 25, 509-529. BLANKENSHIP, L.C., CRAVER, S.E., LEFFLER, R.G. and CUSTER, C. 1988. Growth of Clostridium perfringens in cooked chili during cooling. Appl. Environ. Microbiol. 54, 1104-1108. CARROLL, N., MOHTAR, R.H. and SEGERLIND, L.J. 1996. Predicting the cooling time for irregular shaped food products. J. Food Process Engineering 19, 385-401. McMEEKIN, T.A., OLLEY, J.N., ROSS, T. and RATHKOWSKY, D.A. 1993. Predictive Microbiology - Theory and Application. John Wiley & Sons, New York . GUSTAFSON, R.J., THOMPSON, D.R. and SOKHANSANJ, S. 1977. Temperature and stress analysis of corn kernels using the finite element method. ASAE Paper No. 77-5514, ASAE, St. Joseph , MI . BARANYI, J., ROBINSON, T.P., KALOTI, A. and MACKEY, B.M. 1995. Predicting growth of Brocothorix thermosphacta at changing temperature. Intern. J. Food Microbiol. 27, 61-75. VILAYANNUR, R.S., PURI, V.M. and ANANTHESWARAN, R.C. 1998b. Size and shape effect on non-uniformity of temperature and moisture distributions in microwave heated food materials - Part II Experimental validation. J. Food Process Engineering 21, 235-248. FLEMING, D.W. et al. 1985. Pasteurized milk as a vehicle of infection in an outbreak of listeriosis. New Eng. J. Med. 312(7), 404-407. 1974; 37 1990; 55 1996; 19 1987; 30 1991; 34 1987; 50 1988; 54 1994 1993 1999; 62 1992 1999 1977 1983; 304 1993; 19 1987; 63 1995; 27 1995; 25 1986; 49 1988; 65 1998b; 21 1985; 312 1985 1988; 319 1979; 22 1989 1998a; 21 1988 BAZAN T. (e_1_2_1_7_1) 1989 BARNARD S.E. (e_1_2_1_5_1) 1974; 37 STRINGER L.J. (e_1_2_1_28_1) 1989 (e_1_2_1_3_1) 1994 DONNELLY C.W. (e_1_2_1_10_1) 1986; 49 WHITE F.M. (e_1_2_1_33_1) 1988 e_1_2_1_23_1 e_1_2_1_24_1 McMEEKIN T.A. (e_1_2_1_20_1) 1993 e_1_2_1_21_1 e_1_2_1_22_1 e_1_2_1_27_1 e_1_2_1_26_1 e_1_2_1_29_1 GERALD C.F. (e_1_2_1_12_1) 1999 ALAVI S.H. (e_1_2_1_2_1) 1999; 62 RADHAKRISHNAN S. (e_1_2_1_25_1) 1999 WALKER S.J. (e_1_2_1_32_1) 1987; 63 e_1_2_1_31_1 e_1_2_1_30_1 e_1_2_1_6_1 e_1_2_1_35_1 e_1_2_1_4_1 e_1_2_1_34_1 e_1_2_1_11_1 e_1_2_1_16_1 e_1_2_1_17_1 e_1_2_1_14_1 GUSTAFSON R.J. (e_1_2_1_13_1) 1977 e_1_2_1_15_1 BLANKENSHIP L.C. (e_1_2_1_8_1) 1988; 54 e_1_2_1_9_1 e_1_2_1_18_1 e_1_2_1_19_1 |
References_xml | – reference: GUSTAFSON, R.J., THOMPSON, D.R. and SOKHANSANJ, S. 1979. Temperature and stress analysis of corn kernels - finite element analysis. Trans. ASAE 22, 955-960. – reference: ROSENOW, E.M. and MARTH, E.H. 1987. Growth of Listeria monocytogenes in skim, whole and chocolate milk, and in whipping cream during incubation at 4, 8, 13, 21 and 35°C. J. Food Prot. 50(6), 452-459. – reference: PURI, V.M. and ANANTHESWARAN, R.C. 1993. The finite element methods in food processing: A review. J. Food Eng. 19, 247-274. – reference: LIN, Y.E., ANANTHESWARAN, R.C. and PURI, V.M. 1995. Finite element analysis of microwave heating of solid foods. J. Food Eng. 25, 85-112. – reference: VILAYANNUR, R.S., PURI, V.M. and ANANTHESWARAN, R.C. 1998a. Size and shape effect on non-uniformity of temperature and moisture distributions in microwave heated food materials - Part I Simulation. J. Food Process Engineering 21, 209-233. – reference: ANSYS User's Manual. 1994. Swanson Analytical Systems, Inc., Houston , PA . – reference: VAN IMPE, J.F., NICOLAI, B.M., SCHELLEKENS, M., MARTENS, T. and BAERDEMAKER, J.D. 1995. Predictive microbiology in a dynamic environment: a system theory approach. Intern. J. Food Microbiol. 25, 227-249. – reference: WALKER, S.J. and STRINGER, M.F. 1987. Growth of Listeria monocytogenes and Aeromonas hydrophila at chill temperatures. J. Appl. Bacteriol. 63, XX. – reference: MISRA, R.N. and YOUNG, J.H. 1979. Finite element approach for solution of transient heat transfer in spheres. Trans. ASAE 22, 944-949. – reference: STRINGER, L.J., DIEHL, K.C., WILSON, J.M. and HACKNEY, C.R. 1989. Cooling rates for boxed fish. ASAE Paper No. 89-6120, ASAE, St. Joseph , MI . – reference: BARANYI, J., ROBINSON, T.P., KALOTI, A. and MACKEY, B.M. 1995. Predicting growth of Brocothorix thermosphacta at changing temperature. Intern. J. Food Microbiol. 27, 61-75. – reference: KUMAR, A., BHATACHARYA, M. and BLAYCOCK, J. 1990. Numerical simulation of natural convection heating of canned thick viscous liquid food products. J Food Sci. 55, 1403-1411, 1420. – reference: PAN, J.C. and BHOWMIK, S.R. 1991. The finite element analysis of transient heat transfer in fresh tomatoes during cooling. Trans. ASAE 34, 972-976. – reference: DONNELLY, C.W. and BRIGGS, E.H. 1986. Psychrotrophic growth and thermal inactivation of Listeria monocytogenes as a function of milk composition. J. Food Prot. 49(12), 994-998. – reference: McMEEKIN, T.A., OLLEY, J.N., ROSS, T. and RATHKOWSKY, D.A. 1993. Predictive Microbiology - Theory and Application. John Wiley & Sons, New York . – reference: BLANKENSHIP, L.C., CRAVER, S.E., LEFFLER, R.G. and CUSTER, C. 1988. Growth of Clostridium perfringens in cooked chili during cooling. Appl. Environ. Microbiol. 54, 1104-1108. – reference: RADHAKRISHNAN, S. and PURI, V.M. 1999. Growth modeling of Listeria monocytogenes in Camembert cheese. ASAE Paper No. 99-6061, ASAE, St. Joseph , MI . – reference: WHITE, F.M. 1988. Heat and Mass Transfer. Addison-Wesley Publishing Co., Reading , MA . – reference: BARNARD, S.E. 1974. Flavor and shelf life of fluid milk. J. Milk and Food Technol. 37(6), 346-349. – reference: ZHOU, L., PURI, V.M., ANANTHESWARAN, R.C. and YEH, G. 1995. Finite element modeling of heat and mass transfer in food materials during microwave heating - model development and validation. J. Food Eng. 25, 509-529. – reference: SCHLECH, W.F. et al. 1983. Epidemic listeriosis - evidence for transmission by food. New Eng. J. Med. 304(4), 203-206. – reference: GUSTAFSON, R.J., THOMPSON, D.R. and SOKHANSANJ, S. 1977. Temperature and stress analysis of corn kernels using the finite element method. ASAE Paper No. 77-5514, ASAE, St. Joseph , MI . – reference: JIANG, H., THOMPSON, D.R. and MOREY, R.V. 1987. Finite element model of temperature distribution in broccoli stalks during forced-air processing. Trans. ASAE 30, 1473-1477. – reference: JUNTILLA, J.R., NIEMALA, S.I. and HIRN, J. 1988. Minimum growth temperature of Listeria monocytogenes and non-haemolytic Listeria. J. Appl. Bacteriol. 65, 321-327. – reference: ALAVI, S.H., PURI, V.M., KNABEL, S.J., MOHTAR, R.H. and WHITING, R.C. 1999. Development and validation of a dynamic growth model for Listeria monocytogenes in fluid whole milk. J. Food Prot. 62(5), 170-176. – reference: BAZAN, T., CHAU, K.V. and BAIRD, C.D. 1989. Heat transfer simulation of bulk cooling of foods. ASAE Paper No. 89-6559, ASAE, St. Joseph , MI . – reference: LINNAN, M.J. et al. 1988. Epidemic listeriosis associated with Mexican-style cheese. New Eng. J. Med. 319(13), 823-828. – reference: CARROLL, N., MOHTAR, R.H. and SEGERLIND, L.J. 1996. Predicting the cooling time for irregular shaped food products. J. Food Process Engineering 19, 385-401. – reference: GERALD, C.F. and WHEATLEY, P.O. 1999. Applied Numerical Analysis. Sixth Edition. Addison Wesley, Reading , MA . – reference: FLEMING, D.W. et al. 1985. Pasteurized milk as a vehicle of infection in an outbreak of listeriosis. New Eng. J. Med. 312(7), 404-407. – reference: VILAYANNUR, R.S., PURI, V.M. and ANANTHESWARAN, R.C. 1998b. Size and shape effect on non-uniformity of temperature and moisture distributions in microwave heated food materials - Part II Experimental validation. J. Food Process Engineering 21, 235-248. – year: 1985 – volume: 65 start-page: 321 year: 1988 end-page: 327 article-title: Minimum growth temperature of and non‐haemolytic Listeria publication-title: J. Appl. Bacteriol. – year: 1989 – volume: 22 start-page: 944 year: 1979 end-page: 949 article-title: Finite element approach for solution of transient heat transfer in spheres publication-title: Trans. ASAE – volume: 304 start-page: 203 issue: 4 year: 1983 end-page: 206 article-title: Epidemic listeriosis – evidence for transmission by food publication-title: New Eng. J. Med. – volume: 25 start-page: 85 year: 1995 end-page: 112 article-title: Finite element analysis of microwave heating of solid foods publication-title: J. Food Eng. – volume: 319 start-page: 823 issue: 13 year: 1988 end-page: 828 article-title: Epidemic listeriosis associated with Mexican‐style cheese publication-title: New Eng. J. Med. – year: 1977 – volume: 19 start-page: 247 year: 1993 end-page: 274 article-title: The finite element methods in food processing: A review publication-title: J. Food Eng. – year: 1992 – volume: 55 start-page: 1403 year: 1990 end-page: 1411 article-title: Numerical simulation of natural convection heating of canned thick viscous liquid food products publication-title: J Food Sci. – year: 1994 – volume: 50 start-page: 452 issue: 6 year: 1987 end-page: 459 article-title: Growth of in skim, whole and chocolate milk, and in whipping cream during incubation at 4, 8, 13, 21 and 35°C publication-title: J. Food Prot. – volume: 21 start-page: 209 year: 1998a end-page: 233 article-title: Size and shape effect on non‐uniformity of temperature and moisture distributions in microwave heated food materials — Part I Simulation publication-title: J. Food Process Engineering – volume: 25 start-page: 227 year: 1995 end-page: 249 article-title: Predictive microbiology in a dynamic environment: a system theory approach publication-title: Intern. J. Food Microbiol. – volume: 54 start-page: 1104 year: 1988 end-page: 1108 article-title: Growth of in cooked chili during cooling publication-title: Appl. Environ. Microbiol. – volume: 63 start-page: XX year: 1987 article-title: Growth of at chill temperatures publication-title: J. Appl. Bacteriol. – volume: 25 start-page: 509 year: 1995 end-page: 529 article-title: Finite element modeling of heat and mass transfer in food materials during microwave heating — model development and validation publication-title: J. Food Eng. – volume: 19 start-page: 385 year: 1996 end-page: 401 article-title: Predicting the cooling time for irregular shaped food products publication-title: J. Food Process Engineering – volume: 62 start-page: 170 issue: 5 year: 1999 end-page: 176 article-title: Development and validation of a dynamic growth model for in fluid whole milk publication-title: J. Food Prot. – volume: 312 start-page: 404 issue: 7 year: 1985 end-page: 407 article-title: Pasteurized milk as a vehicle of infection in an outbreak of listeriosis publication-title: New Eng. J. Med. – volume: 22 start-page: 955 year: 1979 end-page: 960 article-title: Temperature and stress analysis of corn kernels — finite element analysis publication-title: Trans. ASAE – year: 1988 – volume: 30 start-page: 1473 year: 1987 end-page: 1477 article-title: Finite element model of temperature distribution in broccoli stalks during forced‐air processing publication-title: Trans. ASAE – volume: 21 start-page: 235 year: 1998b end-page: 248 article-title: Size and shape effect on non‐uniformity of temperature and moisture distributions in microwave heated food materials — Part II Experimental validation publication-title: J. Food Process Engineering – volume: 34 start-page: 972 year: 1991 end-page: 976 article-title: The finite element analysis of transient heat transfer in fresh tomatoes during cooling publication-title: Trans. ASAE – year: 1993 – volume: 37 start-page: 346 issue: 6 year: 1974 end-page: 349 article-title: Flavor and shelf life of fluid milk publication-title: J. Milk and Food Technol. – volume: 27 start-page: 61 year: 1995 end-page: 75 article-title: Predicting growth of at changing temperature publication-title: Intern. J. Food Microbiol. – volume: 49 start-page: 994 issue: 12 year: 1986 end-page: 998 article-title: Psychrotrophic growth and thermal inactivation of as a function of milk composition publication-title: J. Food Prot. – year: 1999 – ident: e_1_2_1_14_1 doi: 10.13031/2013.35133 – volume: 37 start-page: 346 issue: 6 year: 1974 ident: e_1_2_1_5_1 article-title: Flavor and shelf life of fluid milk publication-title: J. Milk and Food Technol. doi: 10.4315/0022-2747-37.6.346 – volume: 54 start-page: 1104 year: 1988 ident: e_1_2_1_8_1 article-title: Growth of Clostridium perfringens in cooked chili during cooling publication-title: Appl. Environ. Microbiol. doi: 10.1128/aem.54.5.1104-1108.1988 – ident: e_1_2_1_18_1 doi: 10.1016/0260-8774(94)00008-W – ident: e_1_2_1_30_1 doi: 10.1111/j.1745-4530.1998.tb00448.x – ident: e_1_2_1_4_1 doi: 10.1016/0168-1605(94)00154-X – ident: e_1_2_1_23_1 – volume-title: Heat transfer simulation of bulk cooling of foods year: 1989 ident: e_1_2_1_7_1 – ident: e_1_2_1_34_1 – ident: e_1_2_1_27_1 doi: 10.1056/NEJM198301273080407 – ident: e_1_2_1_26_1 doi: 10.4315/0362-028X-50.6.452 – ident: e_1_2_1_31_1 doi: 10.1111/j.1745-4530.1998.tb00449.x – volume-title: ANSYS User's Manual year: 1994 ident: e_1_2_1_3_1 – ident: e_1_2_1_9_1 doi: 10.1111/j.1745-4530.1996.tb00401.x – ident: e_1_2_1_22_1 doi: 10.13031/2013.31758 – volume: 49 start-page: 994 issue: 12 year: 1986 ident: e_1_2_1_10_1 article-title: Psychrotrophic growth and thermal inactivation of Listeria monocytogenes as a function of milk composition publication-title: J. Food Prot. doi: 10.4315/0362-028X-49.12.994 – ident: e_1_2_1_17_1 doi: 10.1111/j.1365-2621.1990.tb03946.x – ident: e_1_2_1_24_1 doi: 10.1016/0260-8774(93)90046-M – volume-title: Predictive Microbiology – Theory and Application year: 1993 ident: e_1_2_1_20_1 – ident: e_1_2_1_21_1 doi: 10.13031/2013.35131 – volume-title: Applied Numerical Analysis year: 1999 ident: e_1_2_1_12_1 – ident: e_1_2_1_11_1 doi: 10.1056/NEJM198502143120704 – ident: e_1_2_1_6_1 – ident: e_1_2_1_29_1 doi: 10.1016/0168-1605(94)00140-2 – ident: e_1_2_1_15_1 doi: 10.13031/2013.30588 – volume-title: Growth modeling of Listeria monocytogenes in Camembert cheese year: 1999 ident: e_1_2_1_25_1 – ident: e_1_2_1_16_1 doi: 10.1111/j.1365-2672.1988.tb01898.x – volume-title: Temperature and stress analysis of corn kernels using the finite element method year: 1977 ident: e_1_2_1_13_1 – volume-title: Heat and Mass Transfer year: 1988 ident: e_1_2_1_33_1 – volume: 62 start-page: 170 issue: 5 year: 1999 ident: e_1_2_1_2_1 article-title: Development and validation of a dynamic growth model for Listeria monocytogenes in fluid whole milk publication-title: J. Food Prot. doi: 10.4315/0362-028X-62.2.170 – ident: e_1_2_1_19_1 doi: 10.1056/NEJM198809293191303 – volume: 63 start-page: XX year: 1987 ident: e_1_2_1_32_1 article-title: Growth of Listeria monocytogenes and Aeromonas hydrophila at chill temperatures publication-title: J. Appl. Bacteriol. – volume-title: Cooling rates for boxed fish year: 1989 ident: e_1_2_1_28_1 – ident: e_1_2_1_35_1 doi: 10.1016/0260-8774(94)00032-5 |
SSID | ssj0035502 |
Score | 1.1805743 |
Snippet | ABSTRACT
Experiments were conducted to determine growth characteristics of Listeria monocytogenes in sterilized whole milk at nine temperatures in the range of... Experiments were conducted to determine growth characteristics of Listeria monocytogenes in sterilized whole milk at nine temperatures in the range of 277.15... |
SourceID | proquest pascalfrancis crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 231 |
SubjectTerms | Biological and medical sciences Finite element method food contamination Food industries Food microbiology food processing quality Fundamental and applied biological sciences. Psychology General aspects Growth kinetics Handling, storage, packaging, transport heat transfer Listeria monocytogenes Mathematical models microbiological quality Microbiology Microorganisms milk Milk and cheese industries. Ice creams pasteurization Physiology plate count prediction spatial distribution Statistical methods temperature Thermal effects |
Title | A MODEL FOR PREDICTING THE GROWTH OF LISTERIA MONOCYTOGENES IN PACKAGED WHOLE MILK |
URI | https://api.istex.fr/ark:/67375/WNG-Q45TW27K-H/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1745-4530.2001.tb00542.x https://www.proquest.com/docview/21491320 https://www.proquest.com/docview/49008624 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9NAEF2hcoFL-RQuUPaAuDnyx64_jlHixG4Su6SuUk6rXWd9KaSoSaSqv74za8ckCCRA3L22djyz-5799g0hH92ah64OuL0EjgwERbq24sha6wjwiKqdWOPh5FkepJfs7Ipftcej8SxM4w_RfXDDyjDrNRa4VOvDIg8Ztxn3HaR5bvONk3k9RJSuH6CR_nDeeUnBvmoEiPgbzYbKCloH0k7W88tbHexWjzHwd6ielGsIYN10vjiApvsA1-xQo2PybTe3Rphy3dtuVK-6_8n28X9N_hk53llT036TfM_JI716QZ7uORy-JPM-nRXDZEqBbFJ428NsUGb5mJZpQsfzYlGmtBjRaXYBqDrDa_Ni8KUsUFB3QbOcnvcHk_44GdJFWkwTOsumk1fkcpSUg9Ru2zjYFYOtD6UXnpaRDEIdKh_wS-WziMmKQXaEqqo1LBFaOmHN3Tp0FKsdV_kxA9zCqlp6jv-aHK1uVvoNoZ4HCScV9qTRLF7yaAlsDG4O2aWYEy0tEu9el6haj3NstfFV7HEdCJzAwGEHTle0gRN3FvG7sd8bp48_GvXJZEU3RN5eo1Yu5GKRj8VnxsuFF05EapHTg7T58QyEUIBzLfJhl0cCShz_28iVvtmuhQcsFk-6__4KFhtqyiwSmaz5iwmIs9F5AiD_5N-HviVPjDLPSBzfkaPN7Va_B6i2UaemBB8A5pclJg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JbtswECWC5ND2kq6ouiQ8FL3J0EJa0tGwZUuxltRR4PREkDJ1SaEUiQ0E-frMSJZqFy3QFr2TEjicId8jH2cI-WRX3LP1kJsr4MhAUKRtKo6stfIBj6jKCjQ-Tk6zYXTJzq741QFJu7cwbX6I_sANI6NZrzHA8UB6P8o9xk3GXQt5nt0ecjJnAJDyiAHyQC42WfTZpGBnbSSIeJFmQmwNtzlIe2HPL7-1t18doenvUT8p78CEVVv7Yg-c7kLcZo-aHpO6G10rTbkebNZqUD78lPjxvw3_OTnuslPTUet_L8iBrl-SZztJDl-RxYim-SRMKPBNChM-icdFnM1oEYV0tsiXRUTzKU3iCwDWMbbN8vHXIkdN3QWNM3o-Gs9Hs3BCl1GehDSNk_lrcjkNi3Fkbis5mCWD3Q_VF46Wvhx62lMuQJjSZT6TJQMH8VRZaVgltLS8ituVZylWWbZyAwbQhZWVdCz3DTmsb2r9llDHAZ-TCsvSaBasuL8CQgYfBwdTzPJXBgm6-RLlNs05Vtv4JnboDhhOoOGwCKcttoYT9wZx-77f22Qff9Trc-MWfRd5e41yOY-LZTYTXxgvlo43F5FBTvb85sc_EEUB1DXIaedIAqIcr25krW82d8IBIouP3X_fggUNO2UG8Ru3-YsBiLPpeQg4_92_dz0lT6IiTUQSZ_P35Gkj1GsUjx_I4fp2oz8CclurkyYeHwFp-ilF |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLbQJiF42biJwNj8gHhLlYtze6zapMmaJqXL1PFkxYn9stFNWytN_HrOSdLQIpAA8W4n8vE59vfZn88h5KOpHM-UrqPXwJGBoJSmLhxkrcoHPCKUEUh8nDzL3PiSnV85V93zaHwL0-aH6A_cMDKa9RoD_K5W-0HuMUdnjm0gzTPbM05mDQBRHjIXoAVCpEWfTAo21kaBiPdoOoSW26Ug7XU9v_zW3nZ1iJZ_RPlk-QAWVG3piz1suotwmy0qOiJft4NrlSnXg81aDKpvP-V9_F-jPyZH29zUdNh63wvyRK5ekuc7KQ5fkcWQzvJxmFJgmxSme5yMiiSb0CIO6WSRL4uY5hFNkwuA1Qm2zfLRlyJHRd0FTTI6H46mw0k4pss4T0M6S9Lpa3IZhcUo1rs6DnrFYO9D7YUlS790PekJGwBMZTOflRUD9_BEpSSsEbI0POWYyjMEU4Yp7IABcGGVKi3DfkMOVrcr-ZZQywKPKwUWpZEsqB2_BjoGHwf3Eszwa40E2-niVZfkHGtt3PAdsgOG42g4LMFp8s5w_FEjdt_3rk318Ue9PjVe0Xcp769RLOc5fJlN-GfmFEvLm_JYI6d7bvPjH4ihAOhq5GzrRxxiHC9uypW83TxwC2gsPnX_fQsWNNyUacRvvOYvBsDPo3kIKP_dv3c9I0_n44inSTZ9T541Kr1G7nhCDtb3G_kBYNtanDbR-B2gUCf0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+model+for+predicting+the+growth+of+listeria+monocytogenes+in+packaged+whole+milk&rft.jtitle=Journal+of+food+process+engineering&rft.au=Alavi%2C+SH&rft.au=Puri%2C+V+M&rft.au=Mohtar%2C+R+H&rft.date=2001-10-01&rft.issn=0145-8876&rft.volume=24&rft.issue=4&rft.spage=231&rft.epage=251&rft_id=info:doi/10.1111%2Fj.1745-4530.2001.tb00542.x&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=590545 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0145-8876&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0145-8876&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0145-8876&client=summon |