Control of Metal-Ion Composition in the Synthesis of Ternary II-II′-VI Nanoparticles by Using a Mixed-Metal Cluster Precursor Approach

The ternary molecular nanoclusters [ZnxCd10−xSe4(SePh)12(PnPr3)4] (x=1.8, 1 a; x=2.6, 1 b) were employed as single‐source precursors for the synthesis of high‐quality hexagonal ZnxCd1−xSe nanocrystals. The tellurium clusters [ZnxCd10−xTe4(TePh)12(PnPr3)4] (x=1.8, 2 a; x=2.6, 2 b) are equally conveni...

Full description

Saved in:
Bibliographic Details
Published inChemistry : a European journal Vol. 12; no. 5; pp. 1547 - 1554
Main Authors DeGroot, Marty W., Rösner, Harald, Corrigan, John F.
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 01.02.2006
WILEY‐VCH Verlag
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The ternary molecular nanoclusters [ZnxCd10−xSe4(SePh)12(PnPr3)4] (x=1.8, 1 a; x=2.6, 1 b) were employed as single‐source precursors for the synthesis of high‐quality hexagonal ZnxCd1−xSe nanocrystals. The tellurium clusters [ZnxCd10−xTe4(TePh)12(PnPr3)4] (x=1.8, 2 a; x=2.6, 2 b) are equally convenient precursors for the synthesis cubic ZnxCd1−xE nanoparticles. The thermolysis of the cluster molecules in hexadecylamine provides an efficient system in which the inherent metal‐ion stoichiometry of the clusters is retained in the nanocrystalline products, whilst also affording control of particle size within the 2–5 nm range. In all cases, the nanoparticles are monodisperse, and luminescence spectra exhibit emission energies close to the absorption edge. Analysis of the optical spectra and X‐ray diffraction patterns of these materials indicates a metal‐ion concentration gradient within the structures of the nanocrystals, with ZnII ions predominantly located near the surface of the particles. Zinc into it! Ternary Zn‐Cd‐Se and Zn‐Cd‐Te molecular nanoclusters have been employed as single‐source precursors for the synthesis of high‐quality ZnxCd1−xSe and ZnxCd1−xTe (illustrated) nanocrystals, respectively. The thermolysis of the molecular precursors in hexadecylamine solvent provides a route in which the inherent metal‐ion stoichiometry of the clusters is retained in the nanocrystalline materials.
AbstractList Abstract The ternary molecular nanoclusters [Zn x Cd 10− x Se 4 (SePh) 12 (P n Pr 3 ) 4 ] ( x =1.8, 1 a ; x =2.6, 1 b ) were employed as single‐source precursors for the synthesis of high‐quality hexagonal Zn x Cd 1− x Se nanocrystals. The tellurium clusters [Zn x Cd 10− x Te 4 (TePh) 12 (P n Pr 3 ) 4 ] ( x =1.8, 2 a ; x =2.6, 2 b ) are equally convenient precursors for the synthesis cubic Zn x Cd 1− x E nanoparticles. The thermolysis of the cluster molecules in hexadecylamine provides an efficient system in which the inherent metal‐ion stoichiometry of the clusters is retained in the nanocrystalline products, whilst also affording control of particle size within the 2–5 nm range. In all cases, the nanoparticles are monodisperse, and luminescence spectra exhibit emission energies close to the absorption edge. Analysis of the optical spectra and X‐ray diffraction patterns of these materials indicates a metal‐ion concentration gradient within the structures of the nanocrystals, with Zn II ions predominantly located near the surface of the particles.
The ternary molecular nanoclusters [Zn(x)Cd(10-x)Se4(SePh)12(PnPr3)4] (x = 1.8, 1 a; x = 2.6, 1 b) were employed as single-source precursors for the synthesis of high-quality hexagonal Zn(x)Cd(1-x)Se nanocrystals. The tellurium clusters [Zn(x)Cd(10-x)Te4(TePh)12(PnPr3)4] (x = 1.8, 2 a; x = 2.6, 2 b) are equally convenient precursors for the synthesis cubic Zn(x)Cd(1-x)E nanoparticles. The thermolysis of the cluster molecules in hexadecylamine provides an efficient system in which the inherent metal-ion stoichiometry of the clusters is retained in the nanocrystalline products, whilst also affording control of particle size within the 2-5 nm range. In all cases, the nanoparticles are monodisperse, and luminescence spectra exhibit emission energies close to the absorption edge. Analysis of the optical spectra and X-ray diffraction patterns of these materials indicates a metal-ion concentration gradient within the structures of the nanocrystals, with Zn(II) ions predominantly located near the surface of the particles.
The ternary molecular nanoclusters [ZnxCd10−xSe4(SePh)12(PnPr3)4] (x=1.8, 1 a; x=2.6, 1 b) were employed as single‐source precursors for the synthesis of high‐quality hexagonal ZnxCd1−xSe nanocrystals. The tellurium clusters [ZnxCd10−xTe4(TePh)12(PnPr3)4] (x=1.8, 2 a; x=2.6, 2 b) are equally convenient precursors for the synthesis cubic ZnxCd1−xE nanoparticles. The thermolysis of the cluster molecules in hexadecylamine provides an efficient system in which the inherent metal‐ion stoichiometry of the clusters is retained in the nanocrystalline products, whilst also affording control of particle size within the 2–5 nm range. In all cases, the nanoparticles are monodisperse, and luminescence spectra exhibit emission energies close to the absorption edge. Analysis of the optical spectra and X‐ray diffraction patterns of these materials indicates a metal‐ion concentration gradient within the structures of the nanocrystals, with ZnII ions predominantly located near the surface of the particles. Zinc into it! Ternary Zn‐Cd‐Se and Zn‐Cd‐Te molecular nanoclusters have been employed as single‐source precursors for the synthesis of high‐quality ZnxCd1−xSe and ZnxCd1−xTe (illustrated) nanocrystals, respectively. The thermolysis of the molecular precursors in hexadecylamine solvent provides a route in which the inherent metal‐ion stoichiometry of the clusters is retained in the nanocrystalline materials.
Author Corrigan, John F.
DeGroot, Marty W.
Rösner, Harald
Author_xml – sequence: 1
  givenname: Marty W.
  surname: DeGroot
  fullname: DeGroot, Marty W.
  organization: Department of Chemistry, The University of Western Ontario, London, N6 A 5B7, Canada, Fax: (+1) 519-661-3022
– sequence: 2
  givenname: Harald
  surname: Rösner
  fullname: Rösner, Harald
  organization: Institut für Nanotechnologie, Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
– sequence: 3
  givenname: John F.
  surname: Corrigan
  fullname: Corrigan, John F.
  email: corrigan@uwo.ca
  organization: Department of Chemistry, The University of Western Ontario, London, N6 A 5B7, Canada, Fax: (+1) 519-661-3022
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16317798$$D View this record in MEDLINE/PubMed
BookMark eNqFkMty0zAUhjVMGZoWtiwZrdg51cW27GXH9OKZJrQQ2qVGVk6IwJaMZA_NjiXP00fqk1QhmcKO1TmL7__PnO8IHVhnAaG3lEwpIexEr6GbMkIyQklBX6AJzRhNuMizAzQhZSqSPOPlIToK4RshpMw5f4UOac6pEGUxQb8rZwfvWuxWeAaDapPaWVy5rnfBDCbuxuJhDfjzxsYRTNiSC_BW-Q2u66SuH389JLc1nivreuUHo1sIuNngL8HYr1jhmbmHZfKnHFftGAbw-NqDHn1wHp_2vXdKr1-jlyvVBnizn8docX62qC6Tq48XdXV6leg0FfEzRqHJVwUtgLOs1GVDgAIXKV2CSgWkLOfLMtMiZ2mjOBQpiEZBRhjToBg_Ru93tfHqjxHCIDsTNLStsuDGIAURjORFGcHpDtTeheBhJXtvuvi0pERu1cutevmsPgbe7ZvHpoPlX3zvOgLlDvhpWtj8p05Wl2ezf8uTXdZEfffPWeW_y1xwkcm7-YX8dMPuzue3qfzAnwATKqLl
CitedBy_id crossref_primary_10_1039_C2CC36862E
crossref_primary_10_1246_cl_190365
crossref_primary_10_1002_adma_200802897
crossref_primary_10_1002_ejic_201000454
crossref_primary_10_1016_j_surfin_2023_103823
crossref_primary_10_1002_chin_200617226
crossref_primary_10_1016_j_poly_2015_07_005
crossref_primary_10_1002_adfm_200801016
crossref_primary_10_1002_zaac_201800503
crossref_primary_10_1039_C5DT03996G
crossref_primary_10_1039_b712235g
crossref_primary_10_1088_0957_4484_19_03_035602
crossref_primary_10_1002_zaac_201100075
crossref_primary_10_1039_b709860j
crossref_primary_10_1021_jp067833h
crossref_primary_10_1007_s10876_007_0121_1
crossref_primary_10_1021_ja203143q
crossref_primary_10_1016_j_ica_2012_05_032
crossref_primary_10_1016_j_nanoen_2018_06_073
crossref_primary_10_1021_acs_chemmater_7b03195
crossref_primary_10_1016_j_jcrysgro_2007_07_045
crossref_primary_10_1002_ejic_201000080
crossref_primary_10_1021_ic8008199
crossref_primary_10_1039_C9NJ02051A
crossref_primary_10_1039_c2ce25905b
crossref_primary_10_1088_1742_6596_1220_1_012027
crossref_primary_10_1021_ic300473u
crossref_primary_10_1002_chem_200802060
crossref_primary_10_1007_s11051_009_9683_1
crossref_primary_10_1016_j_jorganchem_2016_05_007
crossref_primary_10_1021_cm304104m
crossref_primary_10_1007_s10876_007_0159_0
crossref_primary_10_1021_ja072436l
crossref_primary_10_1016_j_jorganchem_2007_10_009
crossref_primary_10_1039_b923898k
crossref_primary_10_1515_psr_2017_0127
Cites_doi 10.1103/PhysRevB.53.16338
10.1002/anie.199727971
10.1021/cm9503137
10.1002/anie.199300411
10.1021/ja00193a079
10.1039/b002983l
10.1002/ejic.200300447
10.1146/annurev.pc.41.100190.002401
10.1016/S0921-5107(99)00254-8
10.1063/1.1687998
10.1039/a906160f
10.1021/ja00333a030
10.1063/1.447228
10.1021/cm010709k
10.1021/jp0278364
10.1063/1.462114
10.1002/ange.19931050106
10.1021/cm020040x
10.1016/0022-2313(92)90119-T
10.1002/1099-0682(200209)2002:9<2253::AID-EJIC2253>3.0.CO;2-X
10.1002/1521-3951(200103)224:1<153::AID-PSSB153>3.0.CO;2-3
10.1039/b302266h
10.1021/ar020204f
10.1002/1521-3749(200104)627:4<575::AID-ZAAC575>3.0.CO;2-L
10.1021/ja028800s
10.1039/b401559b
10.1103/PhysRevLett.65.1623
10.1002/ange.200460322
10.1002/352760247X.ch13
10.1021/jp951965l
10.1021/cm050948y
10.1021/ic951470a
10.1002/ange.200352120
10.1021/ja035096m
10.1021/ja0173167
10.1002/anie.200352120
10.1002/1521-3749(200211)628:11<2415::AID-ZAAC2415>3.0.CO;2-W
10.1021/ic0481576
10.1021/jp9810217
10.1021/nl0155126
10.1021/ja0262840
10.1002/cvde.19960020506
10.1021/ja9805425
10.1002/tcr.10002
10.1103/PhysRevB.42.11093
10.1002/ange.19901020805
10.1016/S0921-5107(99)00231-7
10.1021/la990139r
10.1021/cr00098a010
10.1016/S0020-1693(00)92328-4
10.1063/1.1485125
10.1016/j.matchemphys.2003.11.002
10.1021/cm960363r
10.1021/j100054a032
10.1002/anie.199008401
10.1021/j100066a034
10.1039/a809443h
10.1021/jp010002l
10.1021/ja00072a025
10.1021/ja0361749
10.1002/(SICI)1521-3749(1998110)624:11<1909::AID-ZAAC1909>3.0.CO;2-H
10.1021/jp971091y
10.1002/anie.200460322
10.1039/B407556K
10.1039/C39820001246
10.1016/S0375-9601(02)00680-1
10.1021/jp048071y
10.1016/0022-328X(88)89062-4
10.1021/j100122a026
10.1021/jp010617i
10.1021/cm000843p
10.1063/1.448727
10.1021/jp012018h
10.1007/BF01349680
10.1021/cm0011662
10.1063/1.373573
10.1146/annurev.matsci.30.1.475
10.1039/b312297b
10.1021/ja003055
10.1039/a805411h
10.1021/cm011154w
10.1021/ja970754m
10.1021/jp9530562
10.1039/b008376n
10.1038/39535
10.1063/1.478161
10.1146/annurev.matsci.30.1.545
10.1016/S0277-5387(00)80258-2
10.1039/a802705f
10.1021/ja0027766
10.1002/ange.19971092413
10.1557/JMR.1999.0437
10.1039/a806421k
10.1021/nl034815s
10.1021/jp9535506
10.1021/nl0155532
ContentType Journal Article
Copyright Copyright © 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: Copyright © 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
NPM
AAYXX
CITATION
7X8
DOI 10.1002/chem.200501081
DatabaseName Istex
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage 1554
ExternalDocumentID 10_1002_chem_200501081
16317798
CHEM200501081
ark_67375_WNG_RQ2WFNV4_D
Genre article
Journal Article
GroupedDBID ---
-DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGC
RNS
ROL
RWI
RX1
SUPJJ
TN5
TWZ
UB1
UPT
UQL
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
Y6R
YZZ
ZZTAW
~IA
~WT
NPM
.GJ
186
6TJ
9M8
AAYXX
ABDBF
ABEML
ACSCC
AGCDD
AI.
BZBRT
CITATION
EBD
HF~
H~9
MVM
PALCI
RIWAO
RJQFR
RYL
SAMSI
VH1
WSR
ZGI
7X8
ID FETCH-LOGICAL-c4471-321eb6f818e3259c9b0e1e3741dea47e4263d95c7624ba3e84e7bae5022cea23
IEDL.DBID DR2
ISSN 0947-6539
IngestDate Fri Aug 16 11:51:52 EDT 2024
Thu Sep 26 15:45:06 EDT 2024
Sat Sep 28 07:50:21 EDT 2024
Sat Aug 24 00:46:25 EDT 2024
Wed Oct 30 09:49:24 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4471-321eb6f818e3259c9b0e1e3741dea47e4263d95c7624ba3e84e7bae5022cea23
Notes ArticleID:CHEM200501081
istex:B86CF6CC2AE76543A3A6F37713DA2BF1965346B9
ark:/67375/WNG-RQ2WFNV4-D
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 16317798
PQID 70720689
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_70720689
crossref_primary_10_1002_chem_200501081
pubmed_primary_16317798
wiley_primary_10_1002_chem_200501081_CHEM200501081
istex_primary_ark_67375_WNG_RQ2WFNV4_D
PublicationCentury 2000
PublicationDate February 1, 2006
PublicationDateYYYYMMDD 2006-02-01
PublicationDate_xml – month: 02
  year: 2006
  text: February 1, 2006
  day: 01
PublicationDecade 2000
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationTitle Chemistry : a European journal
PublicationTitleAlternate Chemistry - A European Journal
PublicationYear 2006
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
References S. Behrens, M. Bettenhausen, A. Eichhöfer, D. Fenske, Angew. Chem. 1997, 109, 2874-2876
A. Mews, A. Eychmüller, M. Giersig, D. Schooss, H. Weller, J. Phys. Chem. 1994, 98, 934-941
M. W. DeGroot, N. J. Taylor, J. F. Corrigan, J. Mater. Chem. 2004, 14, 654-660.
N. L. Pickett, S. Lawson, W. G. Thomas, F. G. Riddell, D. F. Foster, D. J. Cole-Hamilton, J. R. Fryer, J. Mater. Chem. 1998, 8, 2769-2776.
M. A. Hines, P. Guyot-Sionnest, J. Phys. Chem. B 1998, 102, 3655-3657.
A. P. Alivisatos, J. Phys. Chem. 1996, 100, 13226-13239.
D. Battaglia, J. J. Li, Y. Wang, X. Peng, Angew. Chem. 2003, 115, 5189-5193
M. G. Bawendi, M. L. Steigerwald, L. E. Brus, Annu. Rev. Phys. Chem. 1990, 41, 477-496.
N. L. Pickett, P. O'Brien, Chem. Rec. 2001, 1, 467-479.
T. Trindade, P. O'Brien, X.-M. Zhang, Chem. Mater. 1997, 9, 523-530
A. Hässelbarth, A. Eychmüller, R. Eichburger, M. Giesi, A. Mews, H. Weller, J. Phys. Chem. 1993, 97, 5333-5340
H. Pfistner, D. Fenske, Z. Anorg. Allg. Chem. 2001, 627, 575-582
K. M. Hanif, R. W. Meulenberg, G. F. Strouse, J. Am. Chem. Soc. 2002, 124, 11495-11502.
M. G. Bawendi, W. L. Wilson, P. J. Carrol, L. E. Brus, J. Chem. Phys. 1992, 96, 946-954.
L. Ou, Z. A. Peng, X. Peng, Nano Lett. 2001, 1, 333-337
J. Roither, W. Heiss, D. V. Talapin, N. Gaponik, A. Eychmuller, Appl. Phys. Lett. 2004, 84, 2223-2225.
I. Mekis, D. V. Talapin, A. Kornowski, M. Haase, H. Weller, J. Phys. Chem. B 2003, 107, 7454-7462
N. Revaprasadu, M. A. Malik, P. O'Brien, G. Wakefield, J. Mater. Res. 1999, 14, 3237-3240
S. C. Lee, R. H. Holm, Angew. Chem., 1990, 102, 868-885
M. W. DeGroot, J. F. Corrigan, Angew. Chem. 2004, 116, 5469-5471
Z. A. Peng, X. Peng J. Am. Chem. Soc. 2001, 123, 1389-1395
Angew. Chem. Int. ed. Engl. 1990, 29, 840-857.
T. Inokuma, T. Arai, M. Ishikawa, Phys. Rev. B 1990, 42, 11093-11098.
Y.-W. Jun, J.-E. Koo, J. Cheon, Chem. Commun. 2000, 1243-1244
B. Ludolph, M. A. Malik, P. O'Brien, N. Revaprasadu, Chem. Commun. 1998, 1849-1850
F. E. Osterloh, D. P. Hewitt, Chem. Commun. 2003, 1700-1701.
H. Weller, Angew. Chem. 1993, 105, 43-55
A. L. Rogach, Mater. Sci. Eng. B 2000, 69-70, 435-440.
R. D. Adams, B. Zhang, C. J. Murphy, L. K. Yeung, Chem. Commun. 1999, 383-384.
D. V. Talapin, R. Koeppe, S. Götzinger, A. Kornowski, J. M. Lupton, A. L. Rogach, O. Benson, J. Feldmann, H. Weller, Nano Lett. 2003, 3, 1677-1681.
M. W. DeGroot, N. J. Taylor, J. F. Corrigan, Inorg. Chem. 2005, 44, 5447-5458.
C. B. Murray, C. R. Kagan, M. G. Bawendi, Annu. Rev. Mater. Sci. 2000, 30, 545-610.
M. A. El-Sayed, Acc. Chem. Res. 2004, 37, 326-333.
X. Peng, J. Wickham, A. P. Alivisatos, J. Am. Chem. Soc. 1998, 120, 5343-5344
I. G. Dance, A. Choy, M. L. Scudder, J. Am. Chem. Soc. 1984, 106, 6285-6295
Angew. Chem. Int. Ed. Engl. 1997, 36, 2797-2798.
A. Choy, D. C. Craig, I. G. Dance, M. L. Scudder, J. Chem. Soc. Chem. Commun. 1982, 1246-1247
M. A. Malik, N. Revaprasadu, P. O'Brien, Chem. Mater. 2001, 13, 913-920.
M. L. Steigerwald, Polyhedron 1994, 13, 1245-1252, and references therein.
M. W. DeGroot, N. J. Taylor, J. F. Corrigan, J. Am. Chem. Soc. 2003, 125, 864-865
A. Hässelbarth, A. Eychmüller, H. Weller, J. Lumin. 1992, 53, 113-115
A. L. Efros, M. Rosen, Annu. Rev. Mater. Sci. 2000, 30, 475-521.
J. Rodríguez-Viejo, H. Mattousi, J. R. Heine, M. K. Kuno, J. Michel, M. G. Bawendi, K. F. Jensen, J. Appl. Phys. 2000, 87, 8526-8534
C. B. Murray, D. J. Norris, M. G. Bawendi, J. Am. Chem. Soc. 1993, 115, 8706-8715.
M. D. Nyman, M. J. Hampden-Smith, E. N. Duesler, Inorg. Chem. 1996, 35, 802-803
Angew. Chem. Int. Ed. 2004, 43, 5355-5357
P. Reiss, G. Quemard, S. Carayon, J. Bleuse, F. Chandezon, A. Pron, Mater. Chem. Phys. 2004, 84, 10-13.
M. Braus, C. Burda, M. A. E1-Sayed, J. Phys. Chem. A 2001, 105, 5548-5551
L. Manna, E. C. Scher, A. P. Alivisatos, J. Am. Chem. Soc. 2000, 122, 12700-12706.
G. Ma, S.-H. Tang, W. Sun, Z. Shen, W. Huang, J. Shi, Phys. Lett. A 2002, 299, 581-585.
X. Zhong, M. Han, Z. Dong, T. J. White, W. Knoll, J. Am. Chem. Soc. 2003, 125, 8589-8594
M. Danek, K. F. Jensen, C. B. Murray, M. G. Bawendi, Chem. Mater. 1996, 8, 173-180
S. L. Cumberland, K. L. Hanif, A. Javier, G. A. Khitrov, G. F. Strouse, S. M. Woessner, C. S. Yun, Chem. Mater. 2002, 14, 1576-1584.
S. Kim, B. Fisher, H.-J. Eisler, M. Bawendi, J. Am. Chem. Soc. 2003, 125, 11466-11467
T. Trindade, P. O'Brien, N. L. Pickett, Chem. Mater. 2001, 13, 3843-3858.
W. G. J. H. M. van Sark, P. L. T. M. Frederix, D. J. Van den Heuvel, H. C. Gerritsen, A. A. Bol, J. N. J. van Lingen, C. de Mello Donegá, A. Meijerink, J. Phys. Chem. B 2001, 105, 8281-8284.
L. Vegard, Z. Phys. 1921, 5, 17-26.
Angew. Chem. Int. Ed. Engl. 1993, 32, 41-53.
D. J. Norris, M. G. Bawendi, Phys. Rev. B 1996, 53, 16338-16346.
J. E. B. Katari, V. L. Colvin, A. P. Alivisatos, J. Phys. Chem. 1994, 98, 4109-4117
A. Eichhöfer, D. Fenske, H. Pfistner, M. Wunder, Z. Anorg. Allg. Chem. 1998, 624, 1909-1914
I. G. Dance, A. Choy, M. L. Scudder, J. Am. Chem. Soc. 1984, 106, 6285-6295.
S. L. Stoll, A. G. Gillan, A. R. Barron, Chem. Vap. Deposition 1996, 2, 182-184.
M. T. Harrison, S. V. Kershaw, M. G. Burt, A. Eychmüller, H. Weller, A. L. Rogach, Mater. Sci. Eng. B 2000, 69, 355-360
R. Rossetti, R. Hull, J. M. Gibson, L. E. Brus, J. Chem. Phys. 1985, 82, 552-559
Eichhöfer, P. Deglmann, Eur. J. Inorg. Chem. 2004, 349-355
M. Lazell, P. O'Brien, Chem. Commun. 1999, 2041-2042
X. Peng, M. C. Schlamp, A. V. Kadavanich, A. P. Alivisatos, J. Am. Chem. Soc. 1997, 119, 7019-7029
J. G. Brennan, T. Siegrist, P. J. Carroll, S. M. Stuczynski, L. E. Brus, M. L. Steigerwald, J. Am. Chem. Soc. 1989, 111, 4141-4143
W. Wang, I. Germanenko, M. S. El-Shall, Chem. Mater. 2002, 14, 3028-3033
Y.-W. Jun, C.-S. Choi, J. Cheon, Chem. Commun. 2001, 101-102.
H.-J. Eisler, V. C. Sundar, M. G. Bawendi, M. Walsh, H. I. Smith, V. Klimov, Appl. Phys. Lett. 2002, 80, 4614-4616.
I. E. Gumrukcuoglu, J. Jeffery, M. F. Lappert, J. B. Pedley, A. K. Rai, J. Organomet. Chem. 1988, 341, 53-62.
A. Henglein, Chem. Rev. 1989, 89, 1861-1873.
J. F. Corrigan, M. W. DeGroot in The Chemistry of Nanomaterials: Synthesis, Properties and Applications (Eds.: C. N. R. Rao, A. Müller, A. K. Cheetham), Wiley-VCH, Weinheim, 2004, pp. 418-451.
M. A. Malik, P. O'Brien, N. Revaprasadu, Chem. Mater. 2002, 14, 2004-2010
B. O. Dabbousi, J. Rodríguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, M. G. Bawendi, J. Phys. Chem. B 1997, 101, 9463-9475
D. V. Petrov, B. S. Santos, G. A. L. Pereira, C. D. M. Donegá, J. Phys. Chem. B 2002, 106, 5325-5334.
X. Zhong, S. Liu, Z. Zhang, L. Li, Z. Wei, W. Knoll, J. Mater. Chem. 2004, 14, 2790-2794.
X. Zhong, Z. Zhang, S. Liu, M. Han, W. Knoll, J. Phys. Chem. B 2004, 108, 15552-15559.
A. Eichhöfer, E. Tröster, Eur. J. Inorg. Chem. 2002, 2253-2256
X. Zhong, R. Xie, Y. Zhang, T. Basché, W. Knoll, Chem. Mater. 2005, 17, 4038-4042.
D. L. Klein, R. Roth, A. K. L. Lim, A. P. Alivisatos, P. L. McEuen, Nature, 1997, 389, 699-701.
A. Eichhöfer, A. Aharoni, U. Banin, Z. Anorg. Allg. Chem. 2002, 628, 2415-2421
N. Revaprasadu, M. A. Malik, P. O'Brien, M. M. Zulu, G. Wakefield, J. Mater. Chem. 1998, 8, 1885-1888
M. L. Steigerwald, S. M. Stuczynski, Y. U. Kwon, D. A. Vennos, J. G. Brennan, Inorg. Chim. Acta 1993, 212, 219-224
B. A. Korgel, H. G. Monbouquette, Langmuir 2000, 16, 3588-3594
S. Krishnadasan, J. Tovilla, A. J. Vilar, A. J. deMello, J. C. deMello, J. Mater. Chem. 2004, 14, 2655-2660.
M. A. Hines, P. Guyot-Sionnest, J. Phys. Chem. 1996, 100, 468-471
D. V. Talapin, A. L. Rogach, A. Kornowski, M. Haase, H. Weller, Nano Lett. 2001, 1, 207-211
R. Rossetti, J. L. Ellison, J. M. Gibson, L. E. Brus, J. Chem. Phys. 1984, 80, 4464-4469.
Angew. Chem. Int. Ed. 2003, 42, 5035-5039.
A. L. Rogach, M. T. Harrison, S. V. Kershaw, A. Kornowski, M. G. Burt, A. Eychmüller, H. Weller, Phys. Status Solidi B 2001, 224, 153-158.
Y. Tian, T. Newton, N. A. Kotov, D. M. Guldi, J. H. Fendler, J. Phys. Chem. 1996, 100, 8927-8939
U. Banin, M. Bruchez, A. P. Alivisatos, T. Ha, S. Weiss, D. S. Chemla, J. Chem. Phys. 1999, 110, 1195-1201.
M. G. Bawendi, W. L. Wilson, L. Rothberg, P. J. Carrol, T. M. Jedju, M. L. Steigerwald, L. E. Brus, Phys. Rev. Lett. 1990, 65, 1623-1626
Z. A. Peng, X. Peng, J. Am. Chem. Soc. 2002, 124, 3343-3353
2002; 14
1989; 89
1997; 119
2000; 87
1989; 111
1996; 100
1988; 341
1992; 53
1996; 35
2001; 627
1997; 9
2001; 224
1992; 96
2001; 105
1990; 41
1997; 389
1990; 42
2000; 16
2001
2000
2004; 37
1999; 14
1997; 101
2002; 106
2003; 3
1982
2002; 628
2000; 122
1993; 212
2003; 125
2001; 13
1996; 2
1996; 8
1998; 120
2001; 123
2004 2004; 116 43
1984; 80
2004; 84
2000; 69
1984; 106
1997 1997; 109 36
2002; 299
1998
2000; 69–70
2004
2003
1985; 82
2002; 80
2002
2004; 108
2005; 44
1996; 53
1999
1990; 65
1921; 5
2003; 107
2003 2003; 115 42
1990 1990; 102 29
2002; 124
2004; 14
2000; 30
1993; 97
1998; 624
1999; 110
1994; 13
2001; 1
1993 1993; 105 32
2005; 17
1998; 102
1993; 115
1994; 98
1998; 8
e_1_2_6_72_2
e_1_2_6_53_2
e_1_2_6_95_2
e_1_2_6_30_2
e_1_2_6_91_2
e_1_2_6_19_2
e_1_2_6_34_2
e_1_2_6_11_2
e_1_2_6_38_2
e_1_2_6_76_2
e_1_2_6_15_2
e_1_2_6_57_2
e_1_2_6_99_2
e_1_2_6_102_2
e_1_2_6_83_2
e_1_2_6_64_2
e_1_2_6_41_2
e_1_2_6_60_2
e_1_2_6_9_2
e_1_2_6_5_2
e_1_2_6_22_2
e_1_2_6_49_2
e_1_2_6_1_2
e_1_2_6_49_3
e_1_2_6_87_2
e_1_2_6_26_2
e_1_2_6_45_2
e_1_2_6_50_2
e_1_2_6_73_2
e_1_2_6_96_2
e_1_2_6_31_2
e_1_2_6_92_2
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_58_2
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_54_2
e_1_2_6_77_2
e_1_2_6_61_2
e_1_2_6_84_2
e_1_2_6_101_3
e_1_2_6_42_2
e_1_2_6_105_2
e_1_2_6_80_2
e_1_2_6_80_3
e_1_2_6_101_2
e_1_2_6_6_2
e_1_2_6_23_2
e_1_2_6_69_2
e_1_2_6_2_2
e_1_2_6_42_3
e_1_2_6_65_2
e_1_2_6_88_2
e_1_2_6_27_2
e_1_2_6_46_2
e_1_2_6_51_2
e_1_2_6_97_2
e_1_2_6_74_2
e_1_2_6_93_2
e_1_2_6_70_2
e_1_2_6_13_2
e_1_2_6_59_2
e_1_2_6_32_2
e_1_2_6_17_2
e_1_2_6_55_2
e_1_2_6_36_2
e_1_2_6_78_2
e_1_2_6_62_2
e_1_2_6_104_2
e_1_2_6_85_2
e_1_2_6_20_2
e_1_2_6_81_2
e_1_2_6_100_2
e_1_2_6_7_2
e_1_2_6_3_2
e_1_2_6_24_2
e_1_2_6_47_2
e_1_2_6_28_2
e_1_2_6_43_2
e_1_2_6_66_2
e_1_2_6_89_2
e_1_2_6_52_2
e_1_2_6_75_2
e_1_2_6_94_2
e_1_2_6_71_2
e_1_2_6_90_2
e_1_2_6_18_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_56_2
e_1_2_6_79_2
e_1_2_6_98_2
e_1_2_6_103_2
e_1_2_6_63_2
e_1_2_6_86_2
e_1_2_6_40_2
Corrigan J. F. (e_1_2_6_68_2) 2004
e_1_2_6_82_2
e_1_2_6_8_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_48_2
e_1_2_6_21_2
e_1_2_6_44_2
e_1_2_6_67_2
e_1_2_6_25_2
e_1_2_6_67_3
References_xml – volume: 100
  start-page: 13226
  year: 1996
  end-page: 13239
  publication-title: J. Phys. Chem.
– volume: 106
  start-page: 5325
  year: 2002
  end-page: 5334
  publication-title: J. Phys. Chem. B
– volume: 37
  start-page: 326
  year: 2004
  end-page: 333
  publication-title: Acc. Chem. Res.
– volume: 110
  start-page: 1195
  year: 1999
  end-page: 1201
  publication-title: J. Chem. Phys.
– volume: 53
  start-page: 16338
  year: 1996
  end-page: 16346
  publication-title: Phys. Rev. B
– volume: 69–70
  start-page: 435
  year: 2000
  end-page: 440
  publication-title: Mater. Sci. Eng. B
– volume: 65
  start-page: 1623
  year: 1990
  end-page: 1626
  publication-title: Phys. Rev. Lett.
– volume: 105
  start-page: 5548
  year: 2001
  end-page: 5551
  publication-title: J. Phys. Chem. A
– volume: 97
  start-page: 5333
  year: 1993
  end-page: 5340
  publication-title: J. Phys. Chem.
– volume: 101
  start-page: 9463
  year: 1997
  end-page: 9475
  publication-title: J. Phys. Chem. B
– volume: 628
  start-page: 2415
  year: 2002
  end-page: 2421
  publication-title: Z. Anorg. Allg. Chem.
– volume: 98
  start-page: 4109
  year: 1994
  end-page: 4117
  publication-title: J. Phys. Chem.
– start-page: 1243
  year: 2000
  end-page: 1244
  publication-title: Chem. Commun.
– volume: 1
  start-page: 467
  year: 2001
  end-page: 479
  publication-title: Chem. Rec.
– volume: 30
  start-page: 475
  year: 2000
  end-page: 521
  publication-title: Annu. Rev. Mater. Sci.
– volume: 111
  start-page: 4141
  year: 1989
  end-page: 4143
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 3843
  year: 2001
  end-page: 3858
  publication-title: Chem. Mater.
– volume: 212
  start-page: 219
  year: 1993
  end-page: 224
  publication-title: Inorg. Chim. Acta
– volume: 341
  start-page: 53
  year: 1988
  end-page: 62
  publication-title: J. Organomet. Chem.
– volume: 14
  start-page: 3028
  year: 2002
  end-page: 3033
  publication-title: Chem. Mater.
– volume: 8
  start-page: 1885
  year: 1998
  end-page: 1888
  publication-title: J. Mater. Chem.
– volume: 98
  start-page: 934
  year: 1994
  end-page: 941
  publication-title: J. Phys. Chem.
– volume: 624
  start-page: 1909
  year: 1998
  end-page: 1914
  publication-title: Z. Anorg. Allg. Chem.
– volume: 35
  start-page: 802
  year: 1996
  end-page: 803
  publication-title: Inorg. Chem.
– volume: 1
  start-page: 333
  year: 2001
  end-page: 337
  publication-title: Nano Lett.
– volume: 119
  start-page: 7019
  year: 1997
  end-page: 7029
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 913
  year: 2001
  end-page: 920
  publication-title: Chem. Mater.
– volume: 30
  start-page: 545
  year: 2000
  end-page: 610
  publication-title: Annu. Rev. Mater. Sci.
– volume: 105
  start-page: 8281
  year: 2001
  end-page: 8284
  publication-title: J. Phys. Chem. B
– volume: 224
  start-page: 153
  year: 2001
  end-page: 158
  publication-title: Phys. Status Solidi B
– volume: 123
  start-page: 1389
  year: 2001
  end-page: 1395
  publication-title: J. Am. Chem. Soc.
– volume: 116 43
  start-page: 5469 5355
  year: 2004 2004
  end-page: 5471 5357
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 80
  start-page: 4464
  year: 1984
  end-page: 4469
  publication-title: J. Chem. Phys.
– start-page: 2253
  year: 2002
  end-page: 2256
  publication-title: Eur. J. Inorg. Chem.
– start-page: 1700
  year: 2003
  end-page: 1701
  publication-title: Chem. Commun.
– start-page: 349
  year: 2004
  end-page: 355
  publication-title: Eur. J. Inorg. Chem.
– volume: 14
  start-page: 1576
  year: 2002
  end-page: 1584
  publication-title: Chem. Mater.
– volume: 106
  start-page: 6285
  year: 1984
  end-page: 6295
  publication-title: J. Am. Chem. Soc.
– volume: 42
  start-page: 11093
  year: 1990
  end-page: 11098
  publication-title: Phys. Rev. B
– volume: 84
  start-page: 2223
  year: 2004
  end-page: 2225
  publication-title: Appl. Phys. Lett.
– volume: 107
  start-page: 7454
  year: 2003
  end-page: 7462
  publication-title: J. Phys. Chem. B
– volume: 80
  start-page: 4614
  year: 2002
  end-page: 4616
  publication-title: Appl. Phys. Lett.
– volume: 14
  start-page: 2790
  year: 2004
  end-page: 2794
  publication-title: J. Mater. Chem.
– volume: 2
  start-page: 182
  year: 1996
  end-page: 184
  publication-title: Chem. Vap. Deposition
– volume: 14
  start-page: 2655
  year: 2004
  end-page: 2660
  publication-title: J. Mater. Chem.
– volume: 17
  start-page: 4038
  year: 2005
  end-page: 4042
  publication-title: Chem. Mater.
– volume: 124
  start-page: 11495
  year: 2002
  end-page: 11502
  publication-title: J. Am. Chem. Soc.
– start-page: 418
  year: 2004
  end-page: 451
– volume: 100
  start-page: 468
  year: 1996
  end-page: 471
  publication-title: J. Phys. Chem.
– volume: 41
  start-page: 477
  year: 1990
  end-page: 496
  publication-title: Annu. Rev. Phys. Chem.
– start-page: 101
  year: 2001
  end-page: 102
  publication-title: Chem. Commun.
– volume: 100
  start-page: 8927
  year: 1996
  end-page: 8939
  publication-title: J. Phys. Chem.
– volume: 5
  start-page: 17
  year: 1921
  end-page: 26
  publication-title: Z. Phys.
– volume: 14
  start-page: 3237
  year: 1999
  end-page: 3240
  publication-title: J. Mater. Res.
– volume: 389
  start-page: 699
  year: 1997
  end-page: 701
  publication-title: Nature
– volume: 87
  start-page: 8526
  year: 2000
  end-page: 8534
  publication-title: J. Appl. Phys.
– volume: 3
  start-page: 1677
  year: 2003
  end-page: 1681
  publication-title: Nano Lett.
– volume: 125
  start-page: 8589
  year: 2003
  end-page: 8594
  publication-title: J. Am. Chem. Soc.
– volume: 14
  start-page: 2004
  year: 2002
  end-page: 2010
  publication-title: Chem. Mater.
– volume: 69
  start-page: 355
  year: 2000
  end-page: 360
  publication-title: Mater. Sci. Eng. B
– volume: 44
  start-page: 5447
  year: 2005
  end-page: 5458
  publication-title: Inorg. Chem.
– volume: 627
  start-page: 575
  year: 2001
  end-page: 582
  publication-title: Z. Anorg. Allg. Chem.
– volume: 53
  start-page: 113
  year: 1992
  end-page: 115
  publication-title: J. Lumin.
– volume: 120
  start-page: 5343
  year: 1998
  end-page: 5344
  publication-title: J. Am. Chem. Soc.
– start-page: 1849
  year: 1998
  end-page: 1850
  publication-title: Chem. Commun.
– volume: 108
  start-page: 15552
  year: 2004
  end-page: 15559
  publication-title: J. Phys. Chem. B
– volume: 96
  start-page: 946
  year: 1992
  end-page: 954
  publication-title: J. Chem. Phys.
– volume: 82
  start-page: 552
  year: 1985
  end-page: 559
  publication-title: J. Chem. Phys.
– volume: 109 36
  start-page: 2874 2797
  year: 1997 1997
  end-page: 2876 2798
  publication-title: Angew. Chem. Angew. Chem. Int. Ed. Engl.
– volume: 1
  start-page: 207
  year: 2001
  end-page: 211
  publication-title: Nano Lett.
– start-page: 383
  year: 1999
  end-page: 384
  publication-title: Chem. Commun.
– volume: 299
  start-page: 581
  year: 2002
  end-page: 585
  publication-title: Phys. Lett. A
– volume: 122
  start-page: 12700
  year: 2000
  end-page: 12706
  publication-title: J. Am. Chem. Soc.
– volume: 115 42
  start-page: 5189 5035
  year: 2003 2003
  end-page: 5193 5039
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 14
  start-page: 654
  year: 2004
  end-page: 660
  publication-title: J. Mater. Chem.
– volume: 84
  start-page: 10
  year: 2004
  end-page: 13
  publication-title: Mater. Chem. Phys.
– volume: 8
  start-page: 173
  year: 1996
  end-page: 180
  publication-title: Chem. Mater.
– start-page: 2041
  year: 1999
  end-page: 2042
  publication-title: Chem. Commun.
– volume: 124
  start-page: 3343
  year: 2002
  end-page: 3353
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 1245
  year: 1994
  end-page: 1252
  publication-title: Polyhedron
– volume: 105 32
  start-page: 43 41
  year: 1993 1993
  end-page: 55 53
  publication-title: Angew. Chem. Angew. Chem. Int. Ed. Engl.
– start-page: 1246
  year: 1982
  end-page: 1247
  publication-title: J. Chem. Soc. Chem. Commun.
– volume: 115
  start-page: 8706
  year: 1993
  end-page: 8715
  publication-title: J. Am. Chem. Soc.
– volume: 125
  start-page: 11466
  year: 2003
  end-page: 11467
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 523
  year: 1997
  end-page: 530
  publication-title: Chem. Mater.
– volume: 102 29
  start-page: 868 840
  year: 1990 1990
  end-page: 885 857
  publication-title: Angew. Chem. Angew. Chem. Int. ed. Engl.
– volume: 102
  start-page: 3655
  year: 1998
  end-page: 3657
  publication-title: J. Phys. Chem. B
– volume: 125
  start-page: 864
  year: 2003
  end-page: 865
  publication-title: J. Am. Chem. Soc.
– volume: 89
  start-page: 1861
  year: 1989
  end-page: 1873
  publication-title: Chem. Rev.
– volume: 16
  start-page: 3588
  year: 2000
  end-page: 3594
  publication-title: Langmuir
– volume: 8
  start-page: 2769
  year: 1998
  end-page: 2776
  publication-title: J. Mater. Chem.
– ident: e_1_2_6_60_2
  doi: 10.1103/PhysRevB.53.16338
– ident: e_1_2_6_80_3
  doi: 10.1002/anie.199727971
– ident: e_1_2_6_97_2
– ident: e_1_2_6_82_2
  doi: 10.1021/cm9503137
– ident: e_1_2_6_2_2
– ident: e_1_2_6_49_3
  doi: 10.1002/anie.199300411
– ident: e_1_2_6_9_2
  doi: 10.1021/ja00193a079
– ident: e_1_2_6_13_2
  doi: 10.1039/b002983l
– ident: e_1_2_6_77_2
  doi: 10.1002/ejic.200300447
– ident: e_1_2_6_53_2
  doi: 10.1146/annurev.pc.41.100190.002401
– ident: e_1_2_6_35_2
  doi: 10.1016/S0921-5107(99)00254-8
– ident: e_1_2_6_64_2
  doi: 10.1063/1.1687998
– ident: e_1_2_6_7_2
  doi: 10.1039/a906160f
– ident: e_1_2_6_20_2
  doi: 10.1021/ja00333a030
– ident: e_1_2_6_56_2
  doi: 10.1063/1.447228
– ident: e_1_2_6_19_2
  doi: 10.1021/cm010709k
– ident: e_1_2_6_90_2
  doi: 10.1021/jp0278364
– ident: e_1_2_6_59_2
  doi: 10.1063/1.462114
– ident: e_1_2_6_49_2
  doi: 10.1002/ange.19931050106
– ident: e_1_2_6_32_2
  doi: 10.1021/cm020040x
– ident: e_1_2_6_87_2
  doi: 10.1016/0022-2313(92)90119-T
– ident: e_1_2_6_76_2
  doi: 10.1002/1099-0682(200209)2002:9<2253::AID-EJIC2253>3.0.CO;2-X
– ident: e_1_2_6_36_2
  doi: 10.1002/1521-3951(200103)224:1<153::AID-PSSB153>3.0.CO;2-3
– ident: e_1_2_6_22_2
  doi: 10.1039/b302266h
– ident: e_1_2_6_51_2
  doi: 10.1021/ar020204f
– ident: e_1_2_6_79_2
  doi: 10.1002/1521-3749(200104)627:4<575::AID-ZAAC575>3.0.CO;2-L
– ident: e_1_2_6_45_2
  doi: 10.1021/ja028800s
– ident: e_1_2_6_65_2
  doi: 10.1039/b401559b
– ident: e_1_2_6_58_2
  doi: 10.1103/PhysRevLett.65.1623
– ident: e_1_2_6_42_2
  doi: 10.1002/ange.200460322
– start-page: 418
  volume-title: The Chemistry of Nanomaterials: Synthesis, Properties and Applications
  year: 2004
  ident: e_1_2_6_68_2
  doi: 10.1002/352760247X.ch13
  contributor:
    fullname: Corrigan J. F.
– ident: e_1_2_6_54_2
– ident: e_1_2_6_38_2
– ident: e_1_2_6_95_2
  doi: 10.1021/jp951965l
– ident: e_1_2_6_102_2
  doi: 10.1021/cm050948y
– ident: e_1_2_6_72_2
  doi: 10.1021/ic951470a
– ident: e_1_2_6_23_2
– ident: e_1_2_6_101_2
  doi: 10.1002/ange.200352120
– ident: e_1_2_6_39_2
  doi: 10.1021/ja035096m
– ident: e_1_2_6_24_2
  doi: 10.1021/ja0173167
– ident: e_1_2_6_101_3
  doi: 10.1002/anie.200352120
– ident: e_1_2_6_75_2
  doi: 10.1002/1521-3749(200211)628:11<2415::AID-ZAAC2415>3.0.CO;2-W
– ident: e_1_2_6_43_2
  doi: 10.1021/ic0481576
– ident: e_1_2_6_105_2
  doi: 10.1021/jp9810217
– ident: e_1_2_6_89_2
  doi: 10.1021/nl0155126
– ident: e_1_2_6_21_2
  doi: 10.1021/ja0262840
– ident: e_1_2_6_17_2
  doi: 10.1002/cvde.19960020506
– ident: e_1_2_6_28_2
  doi: 10.1021/ja9805425
– ident: e_1_2_6_44_2
– ident: e_1_2_6_15_2
  doi: 10.1002/tcr.10002
– ident: e_1_2_6_57_2
  doi: 10.1103/PhysRevB.42.11093
– ident: e_1_2_6_67_2
  doi: 10.1002/ange.19901020805
– ident: e_1_2_6_62_2
  doi: 10.1016/S0921-5107(99)00231-7
– ident: e_1_2_6_33_2
  doi: 10.1021/la990139r
– ident: e_1_2_6_48_2
  doi: 10.1021/cr00098a010
– ident: e_1_2_6_74_2
– ident: e_1_2_6_10_2
  doi: 10.1016/S0020-1693(00)92328-4
– ident: e_1_2_6_30_2
  doi: 10.1063/1.1485125
– ident: e_1_2_6_61_2
  doi: 10.1016/j.matchemphys.2003.11.002
– ident: e_1_2_6_3_2
  doi: 10.1021/cm960363r
– ident: e_1_2_6_99_2
  doi: 10.1021/j100054a032
– ident: e_1_2_6_92_2
– ident: e_1_2_6_67_3
  doi: 10.1002/anie.199008401
– ident: e_1_2_6_12_2
– ident: e_1_2_6_27_2
  doi: 10.1021/j100066a034
– ident: e_1_2_6_73_2
  doi: 10.1039/a809443h
– ident: e_1_2_6_100_2
  doi: 10.1021/jp010002l
– ident: e_1_2_6_1_2
  doi: 10.1021/ja00072a025
– ident: e_1_2_6_98_2
  doi: 10.1021/ja0361749
– ident: e_1_2_6_78_2
  doi: 10.1002/(SICI)1521-3749(1998110)624:11<1909::AID-ZAAC1909>3.0.CO;2-H
– ident: e_1_2_6_85_2
  doi: 10.1021/jp971091y
– ident: e_1_2_6_42_3
  doi: 10.1002/anie.200460322
– ident: e_1_2_6_37_2
  doi: 10.1039/B407556K
– ident: e_1_2_6_70_2
  doi: 10.1039/C39820001246
– ident: e_1_2_6_63_2
  doi: 10.1016/S0375-9601(02)00680-1
– ident: e_1_2_6_40_2
  doi: 10.1021/jp048071y
– ident: e_1_2_6_104_2
  doi: 10.1016/0022-328X(88)89062-4
– ident: e_1_2_6_88_2
  doi: 10.1021/j100122a026
– ident: e_1_2_6_34_2
  doi: 10.1021/jp010617i
– ident: e_1_2_6_41_2
– ident: e_1_2_6_16_2
  doi: 10.1021/cm000843p
– ident: e_1_2_6_55_2
  doi: 10.1063/1.448727
– ident: e_1_2_6_96_2
  doi: 10.1021/jp012018h
– ident: e_1_2_6_69_2
– ident: e_1_2_6_103_2
  doi: 10.1007/BF01349680
– ident: e_1_2_6_8_2
  doi: 10.1021/cm0011662
– ident: e_1_2_6_84_2
  doi: 10.1063/1.373573
– ident: e_1_2_6_52_2
  doi: 10.1146/annurev.matsci.30.1.475
– ident: e_1_2_6_46_2
  doi: 10.1039/b312297b
– ident: e_1_2_6_29_2
  doi: 10.1021/ja003055
– ident: e_1_2_6_81_2
– ident: e_1_2_6_4_2
  doi: 10.1039/a805411h
– ident: e_1_2_6_93_2
  doi: 10.1021/cm011154w
– ident: e_1_2_6_83_2
  doi: 10.1021/ja970754m
– ident: e_1_2_6_94_2
  doi: 10.1021/jp9530562
– ident: e_1_2_6_31_2
– ident: e_1_2_6_14_2
  doi: 10.1039/b008376n
– ident: e_1_2_6_66_2
  doi: 10.1038/39535
– ident: e_1_2_6_71_2
  doi: 10.1021/ja00333a030
– ident: e_1_2_6_86_2
  doi: 10.1063/1.478161
– ident: e_1_2_6_50_2
  doi: 10.1146/annurev.matsci.30.1.545
– ident: e_1_2_6_11_2
  doi: 10.1016/S0277-5387(00)80258-2
– ident: e_1_2_6_5_2
  doi: 10.1039/a802705f
– ident: e_1_2_6_25_2
  doi: 10.1021/ja0027766
– ident: e_1_2_6_80_2
  doi: 10.1002/ange.19971092413
– ident: e_1_2_6_6_2
  doi: 10.1557/JMR.1999.0437
– ident: e_1_2_6_18_2
  doi: 10.1039/a806421k
– ident: e_1_2_6_91_2
  doi: 10.1021/nl034815s
– ident: e_1_2_6_47_2
  doi: 10.1021/jp9535506
– ident: e_1_2_6_26_2
  doi: 10.1021/nl0155532
SSID ssj0009633
Score 2.061024
Snippet The ternary molecular nanoclusters [ZnxCd10−xSe4(SePh)12(PnPr3)4] (x=1.8, 1 a; x=2.6, 1 b) were employed as single‐source precursors for the synthesis of...
The ternary molecular nanoclusters [Zn(x)Cd(10-x)Se4(SePh)12(PnPr3)4] (x = 1.8, 1 a; x = 2.6, 1 b) were employed as single-source precursors for the synthesis...
Abstract The ternary molecular nanoclusters [Zn x Cd 10− x Se 4 (SePh) 12 (P n Pr 3 ) 4 ] ( x =1.8, 1 a ; x =2.6, 1 b ) were employed as single‐source...
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 1547
SubjectTerms cadmium
chalcogens
cluster compounds
nanostructures
zinc
Title Control of Metal-Ion Composition in the Synthesis of Ternary II-II′-VI Nanoparticles by Using a Mixed-Metal Cluster Precursor Approach
URI https://api.istex.fr/ark:/67375/WNG-RQ2WFNV4-D/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.200501081
https://www.ncbi.nlm.nih.gov/pubmed/16317798
https://search.proquest.com/docview/70720689
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLVQWcAGyrOhPLxAsEqbSZw4WVZThg7SjKAMbXeWndxIo6IEJTNShxWf0G_hk_gS7rWTGQYhIcEmViRbfl3bx9fHx4y9TEHKQmrtSxFo8lYlflZGmmh_5SDNhclL8ndMpsnJJ_HuIr745Ra_04dYO9xoZNj5mga4Nu3hRjQU62Rvkse4o7B3rweRJE7X8elGPwqty70lL6RPGqy9amMQHm4n31qVblIDX_0Jcm4jWLsEje4y3RfeMU8uD5YLc5B__U3X8X9qt8vudPiUHzmDusduQHWf3Rr2z8I9YNdDR27ndckngND9x7frcV1xmlg6AhifVxxxJf-4qjBo5y3FnZHjsVnx8ZgS4Oc7hmdjjtM77ts7eh43K25JDFzzyfwKCoxjM-HDz0uSdODvGzogaOuGH3Vq6A_ZbPRmNjzxu2cd_FzgUuhH4QBMUiJSgAg3X3lmAhhAhNCmAC0kkIR8kcU5TtPC6AhSAdJoiBFt5KDD6BHbqeoK9hhPMalEgIIoB02tzLUWkOmsCCKdFkIIj73ue1V9ceIdysk0h4oaWK0b2GOvbKevo-nmkihvMlbn07fq9EN4PpqeCXXssRe9VShseDpd0RXUy1bJQIZBkmYee-yMZZNlgiBNZqnHQtvlfymLIjGM9d-Tf0m0z247VxHRbp6ynUWzhGcInhbmuR0gPwHjGBU2
link.rule.ids 315,783,787,1378,27937,27938,46731
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dbtMwFD5C28W44R8WfjZfILjKliZOnFxO3UoDawWjbNxZduJI1VCC0lZaueIR9iw80p5k58RJqyIkJLhJFMmW_86xP598_gzwOjZC5EIpV3BPUbQqcpMiUET7K3pxxnVWULxjNI6GX_j7r2HHJqSzMFYfYhVwI89o5mtycApIH65VQ7FRzVHyELcUdPh6G30-IN88PlsrSKF92dvkuXBJhbXTbfT8w838G-vSNnXx1Z9A5yaGbRahwX3QXfUt9-TyYDHXB9mP35Qd_6t9D-BeC1HZkbWph3DHlI9gp9_dDPcYrvuW386qgo0Movebn9dpVTKaW1oOGJuWDKEl-7ws8TWbzijthGKP9ZKlKWXAxy98n6cMZ3jcurcMPaaXrOExMMVG0yuTY5qmENb_tiBVB_axpn8Es6pmR60g-hOYDE4m_aHb3uzgZhxXQzfwe0ZHBYIFE-D-K0u0Z3omQHSTG8WFIRX5PAkznKm5VoGJuRFamRABR2aUHzyFrbIqzS6wGLMKxCgIdNDaikwpbhKV5F6g4pxz7sDbbljld6vfIa1Ssy-pg-Wqgx1404z6KpmqL4n1JkJ5MX4nzz75F4PxOZfHDux3ZiGx4-kHiypNtZhJ4Qnfi-LEgWfWWtZFRojTRBI74Ddj_pe6SNLDWH09_5dM-7AznIxO5Wk6_vAC7trIEbFwXsLWvF6YV4il5nqv8ZZbF8kZTw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Control+of+Metal-Ion+Composition+in+the+Synthesis+of+Ternary+II-II%E2%80%B2-VI+Nanoparticles+by+Using+a+Mixed-Metal+Cluster+Precursor+Approach&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=DeGroot%2C+Marty+W.&rft.au=R%C3%B6sner%2C+Harald&rft.au=Corrigan%2C+John+F.&rft.date=2006-02-01&rft.pub=WILEY-VCH+Verlag&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=12&rft.issue=5&rft.spage=1547&rft.epage=1554&rft_id=info:doi/10.1002%2Fchem.200501081&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_RQ2WFNV4_D
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon