All-atom de novo protein folding with a scalable evolutionary algorithm

The search for efficient and predictive methods to describe the protein folding process at the all-atom level remains an important grand-computational challenge. The development of multi-teraflop architectures, such as the IBM BlueGene used in this study, has been motivated in part by the large comp...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational chemistry Vol. 28; no. 16; pp. 2552 - 2558
Main Authors Verma, Abhinav, Gopal, Srinivasa M, Oh, Jung S, Lee, Kyu H, Wenzel, Wolfgang
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.12.2007
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The search for efficient and predictive methods to describe the protein folding process at the all-atom level remains an important grand-computational challenge. The development of multi-teraflop architectures, such as the IBM BlueGene used in this study, has been motivated in part by the large computational requirements of such studies. Here we report the predictive all-atom folding of the forty-amino acid HIV accessory protein using an evolutionary stochastic optimization technique. We implemented the optimization method as a master-client model on an IBM BlueGene, where the algorithm scales near perfectly from 64 to 4096 processors in virtual processor mode. Starting from a completely extended conformation, we optimize a population of 64 conformations of the protein in our all-atom free-energy model PFF01. Using 2048 processors the algorithm predictively folds the protein to a near-native conformation with an RMS deviation of 3.43 Å in <24 h. © 2007 Wiley Periodicals, Inc. J Comput Chem, 2007
AbstractList Abstract The search for efficient and predictive methods to describe the protein folding process at the all‐atom level remains an important grand‐computational challenge. The development of multi‐teraflop architectures, such as the IBM BlueGene used in this study, has been motivated in part by the large computational requirements of such studies. Here we report the predictive all‐atom folding of the forty‐amino acid HIV accessory protein using an evolutionary stochastic optimization technique. We implemented the optimization method as a master‐client model on an IBM BlueGene, where the algorithm scales near perfectly from 64 to 4096 processors in virtual processor mode. Starting from a completely extended conformation, we optimize a population of 64 conformations of the protein in our all‐atom free‐energy model PFF01. Using 2048 processors the algorithm predictively folds the protein to a near‐native conformation with an RMS deviation of 3.43 Å in <24 h. © 2007 Wiley Periodicals, Inc. J Comput Chem, 2007
The search for efficient and predictive methods to describe the protein folding process at the all-atom level remains an important grand-computational challenge. The development of multi-teraflop architectures, such as the IBM BlueGene used in this study, has been motivated in part by the large computational requirements of such studies. Here we report the predictive all-atom folding of the forty-amino acid HIV accessory protein using an evolutionary stochastic optimization technique. We implemented the optimization method as a master-client model on an IBM BlueGene, where the algorithm scales near perfectly from 64 to 4096 processors in virtual processor mode. Starting from a completely extended conformation, we optimize a population of 64 conformations of the protein in our all-atom free-energy model PFF01. Using 2048 processors the algorithm predictively folds the protein to a near-native conformation with an RMS deviation of 3.43 ... in <24 h. (ProQuest: ... denotes formulae/symbols omitted.)
The search for efficient and predictive methods to describe the protein folding process at the all-atom level remains an important grand-computational challenge. The development of multi-teraflop architectures, such as the IBM BlueGene used in this study, has been motivated in part by the large computational requirements of such studies. Here we report the predictive all-atom folding of the forty-amino acid HIV accessory protein using an evolutionary stochastic optimization technique. We implemented the optimization method as a master-client model on an IBM BlueGene, where the algorithm scales near perfectly from 64 to 4096 processors in virtual processor mode. Starting from a completely extended conformation, we optimize a population of 64 conformations of the protein in our all-atom free-energy model PFF01. Using 2048 processors the algorithm predictively folds the protein to a near-native conformation with an RMS deviation of 3.43 A in < 24 h.
The search for efficient and predictive methods to describe the protein folding process at the all‐atom level remains an important grand‐computational challenge. The development of multi‐teraflop architectures, such as the IBM BlueGene used in this study, has been motivated in part by the large computational requirements of such studies. Here we report the predictive all‐atom folding of the forty‐amino acid HIV accessory protein using an evolutionary stochastic optimization technique. We implemented the optimization method as a master‐client model on an IBM BlueGene, where the algorithm scales near perfectly from 64 to 4096 processors in virtual processor mode. Starting from a completely extended conformation, we optimize a population of 64 conformations of the protein in our all‐atom free‐energy model PFF01. Using 2048 processors the algorithm predictively folds the protein to a near‐native conformation with an RMS deviation of 3.43 Å in <24 h. © 2007 Wiley Periodicals, Inc. J Comput Chem, 2007
The search for efficient and predictive methods to describe the protein folding process at the all-atom level remains an important grand-computational challenge. The development of multi-teraflop architectures, such as the IBM BlueGene used in this study, has been motivated in part by the large computational requirements of such studies. Here we report the predictive all-atom folding of the forty-amino acid HIV accessory protein using an evolutionary stochastic optimization technique. We implemented the optimization method as a master-client model on an IBM BlueGene, where the algorithm scales near perfectly from 64 to 4096 processors in virtual processor mode. Starting from a completely extended conformation, we optimize a population of 64 conformations of the protein in our all-atom free-energy model PFF01. Using 2048 processors the algorithm predictively folds the protein to a near-native conformation with an RMS deviation of 3.43 A in &lt; 24 h.
Author Verma, Abhinav
Oh, Jung S.
Wenzel, Wolfgang
Gopal, Srinivasa M.
Lee, Kyu H.
Author_xml – sequence: 1
  fullname: Verma, Abhinav
– sequence: 2
  fullname: Gopal, Srinivasa M
– sequence: 3
  fullname: Oh, Jung S
– sequence: 4
  fullname: Lee, Kyu H
– sequence: 5
  fullname: Wenzel, Wolfgang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17486550$$D View this record in MEDLINE/PubMed
BookMark eNp10Mtu1DAUBmALFdFpYcELQMSiEou0x47jy7KKYACVIpVWsLMcxxk8OHGxk17eHpcMICHhjSXrO7-O_wO0N4bRIvQcwzEGICdbY44J8BoeoRUGyUop-Nc9tAIsSSlYjffRQUpbAKhqRp-gfcxpfq5hhdan3pd6CkPR2WIMN6G4jmGybiz64Ds3bopbN30rdJGM9rr1trA3wc-TC6OO94X2mxAzGJ6ix732yT7b3Yfo6u2by-ZdefZp_b45PSsNpRxKUduuM500tJUYOAgKss0vQkJHDekEJUYw2QORzHZUyJZRZq3QQDhhRFSH6GjJzWv-mG2a1OCSsd7r0YY5KSYor5lkGb76B27DHMe8myL5iIqKOqPXCzIxpBRtr66jG_LHFAb1UK3K1apf1Wb7Yhc4t4Pt_spdlxmcLODWeXv__yT1oWl-R5bLhEuTvfszoeN3xXjFa_XlfK0uxMfm8vyiUQ_-5eJ7HZTeRJfU1WcCuAIQeQ0uqp_ztZtf
CODEN JCCHDD
CitedBy_id crossref_primary_10_1063_1_3177008
crossref_primary_10_1002_jcc_21365
crossref_primary_10_1115_1_4032759
crossref_primary_10_1021_bi900702m
crossref_primary_10_1021_ja103725c
crossref_primary_10_3923_pjbs_2008_1815_1819
crossref_primary_10_1016_j_bbapap_2010_09_006
crossref_primary_10_1016_j_compbiolchem_2011_04_012
crossref_primary_10_1016_j_bpj_2008_12_3921
Cites_doi 10.1021/ja0273851
10.1016/j.chemphys.2004.12.002
10.1063/1.2138030
10.1021/bi00003a008
10.1021/ja0453681
10.1038/319199a0
10.1088/0953-8984/17/18/019
10.1063/1.1343486
10.1006/jmbi.1994.1052
10.1038/nsb0197-10
10.1103/PhysRevE.56.4890
10.1529/biophysj.105.070409
10.1002/qua.20052
10.1529/biophysj.104.040071
10.1021/bi00104a017
10.1016/j.str.2005.01.018
10.1126/science.282.5389.740
10.1103/PhysRevLett.94.018101
10.1073/pnas.0408970102
10.1063/1.1810471
10.1073/pnas.1330954100
10.1006/jcph.1999.6233
10.1016/S1535-5535(04)00203-5
10.1021/bi0017071
10.1073/pnas.95.23.13591
10.1021/ja057216r
10.1002/jcc.10297
10.1051/jcp/1968650044
10.1126/science.278.5345.1928
10.1063/1.1484389
10.1006/jmbi.1997.1010
10.1103/PhysRevLett.82.3003
10.1126/science.220.4598.671
10.1002/jcc.540120509
10.1063/1.473299
10.1063/1.2135783
10.1002/prot.20290
10.1126/science.181.4096.223
10.1103/PhysRevLett.91.158102
10.1146/annurev.physchem.48.1.545
10.1038/nature01428
10.1016/j.jmb.2003.11.033
10.1073/pnas.2335541100
10.1063/1.473525
10.1002/cphc.200500213
10.1038/nature01160
10.1063/1.1630563
10.1016/j.str.2005.03.005
10.1073/pnas.84.19.6611
ContentType Journal Article
Copyright Copyright © 2007 Wiley Periodicals, Inc.
(c) 2007 Wiley Periodicals, Inc.
Copyright John Wiley and Sons, Limited Dec 2007
Copyright_xml – notice: Copyright © 2007 Wiley Periodicals, Inc.
– notice: (c) 2007 Wiley Periodicals, Inc.
– notice: Copyright John Wiley and Sons, Limited Dec 2007
DBID FBQ
BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
JQ2
7X8
DOI 10.1002/jcc.20750
DatabaseName AGRIS
Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList CrossRef
ProQuest Computer Science Collection
MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1096-987X
EndPage 2558
ExternalDocumentID 1368363351
10_1002_jcc_20750
17486550
JCC20750
ark_67375_WNG_R8MCTNRC_0
US201300817478
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Feature
GrantInformation_xml – fundername: Secretary of State for Science and Research through the Helmholtz‐Society and the Kurt Eberhard Bode foundation
– fundername: German national science foundation
  funderid: DFG WE1863/10‐2
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
186
1L6
1OB
1OC
1ZS
31~
33P
36B
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJUZ
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABCVL
ABEFU
ABEML
ABHUG
ABIJN
ABJNI
ABLJU
ABPTK
ABPVW
ABTAH
ABWRO
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFVGU
AFZJQ
AGJLS
AI.
AIAGR
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
ESX
F00
F01
F04
F5P
FBQ
FEDTE
G-S
G.N
G8K
GNP
GODZA
H.T
H.X
HBH
HF~
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M21
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWI
RWK
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
UPT
V2E
V8K
VH1
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YCJ
YQT
ZCG
ZY4
ZZTAW
~IA
~KM
~WT
AHBTC
BSCLL
AITYG
HGLYW
OIG
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
JQ2
7X8
ID FETCH-LOGICAL-c4470-85eddcd9c4b910708409bddc890d4c2d842c869f0296ed489b646ee8a02726283
IEDL.DBID DR2
ISSN 0192-8651
IngestDate Fri Aug 16 23:46:41 EDT 2024
Thu Oct 10 20:34:40 EDT 2024
Fri Aug 23 01:19:58 EDT 2024
Sat Sep 28 07:46:33 EDT 2024
Sat Aug 24 01:01:08 EDT 2024
Wed Jan 17 05:00:07 EST 2024
Wed Dec 27 19:21:19 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License (c) 2007 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4470-85eddcd9c4b910708409bddc890d4c2d842c869f0296ed489b646ee8a02726283
Notes http://dx.doi.org/10.1002/jcc.20750
istex:14F992DC29DB797D4BF99FBF93DFD322E70715A3
German national science foundation - No. DFG WE1863/10-2
ArticleID:JCC20750
Secretary of State for Science and Research through the Helmholtz-Society and the Kurt Eberhard Bode foundation
ark:/67375/WNG-R8MCTNRC-0
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jcc.20750
PMID 17486550
PQID 222283485
PQPubID 48816
PageCount 7
ParticipantIDs proquest_miscellaneous_68475696
proquest_journals_222283485
crossref_primary_10_1002_jcc_20750
pubmed_primary_17486550
wiley_primary_10_1002_jcc_20750_JCC20750
istex_primary_ark_67375_WNG_R8MCTNRC_0
fao_agris_US201300817478
PublicationCentury 2000
PublicationDate December 2007
PublicationDateYYYYMMDD 2007-12-01
PublicationDate_xml – month: 12
  year: 2007
  text: December 2007
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
– name: New York
PublicationTitle Journal of computational chemistry
PublicationTitleAlternate J. Comput. Chem
PublicationYear 2007
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley Subscription Services, Inc
References Herges, T.; Wenzel, W. Structure 2005, 13, 661.
Mayor, U.; Guydosh, N. R.; Johnson, C. M.; Grossmann, J. G.; Sato, S.; Jas, G. S.; Freund, S. M. V.; Alonso, D. O. V.; Daggett, V.; Fersht, A. R. Nature 2003, 421, 863.
Becker, O. M.; Karplus, M. J Chem Phys 1997, 106, 1495.
Schug, A.; Herges, T.; Wenzel, W. Phys Rev Lett 2003, 91, 158102.
Zagrovic, B.; Pande, V. J Comput Chem 2003, 24, 1432.
Sharp, K. A.; Nicholls, A.; Friedman, R.; Honig, B. Biochemistry 1991, 30, 9686.
Plaxco, K. W.; Baker, D. Proc Natl Acad Sci USA 1998, 95, 13591.
Qiu, L.; Hagen, S. J. Chem Phys 2005, 312, 327.
Wales, D. J.; Dewbury, P. E. J. J Chem Phys 2004, 121, 10284.
Abagyan, R. A.; Totrov, M. J Mol Biol 1994, 235, 983.
Anfinsen, C. B. Science 1973, 181, 223.
Garcia, A.; Onuchic, J. Structure 2005, 13, 497.
Mortenson, P. N.; Wales, D. J. J Chem Phys 2004, 114, 6443.
Lazaridis, T.; Karplus, M. Science 1997, 278, 1928.
Herges, T.; Wenzel, W. Biophys J 2004, 87, 3100.
Schug, A.; Wenzel, W. J Am Chem Soc 2004, 126, 16736.
Garcia, A. E.; Onuchic, N. Proc Natl Acad Sci USA 2003, 100, 13898.
Simmerling, C.; Strockbine, B.; Roitberg, A. J Am Chem Soc 2002, 124, 11258.
Andrec, M.; Felts, A. K.; Gallicchio, E.; Levy, R. M. Proc Natl Acad Sci USA 2005, 102, 6801.
Levinthal, C. J Chim Phys 1968, 65, 44.
Schug, A.; Wenzel, W. Biophys J 2006, 90, 4273.
Kirkpatrick, S.; Gelatt, C. D.; Vecchi, M. P. Science 1983, 220, 671.
Herges, T.; Schug, A.; Wenzel, W. Int J Quant Chem 2004, 99, 854.
Carr, J. M.; Wales, D. J. J Chem Phys 2005, 123, 234901.
Wenzel, W.; Hamacher, K. Phys Rev Lett 1999, 82, 3003.
Mortenson, P. N.; Evans, D. A.; Wales, D. J. J Chem Phys 2002, 117, 1363.
Pitera, J.; Swope, W. Proc Natl Acad Sci USA 2003, 100, 7587.
Dill, K. A.; Chan, H. S. Nat Struct Biol 1997, 4, 10.
Schug, A.; Verma, A.; Herges, T.; Lee, K. H.; Wenzel, W. Chem Phys Chem 2005, 6, 2640.
Abagyan, R. A.; Totrov, M. J Comp Phys 1999, 151, 402.
Verma, A.; Schug, A.; Lee, K. H.; Wenzel, W. J Chem Phys 2006, 124, 044515.
Derreumaux, P. J Chem Phys 1997, 106, 5260.
Onuchic, J. N.; Luthey-Schulten, Z.; Wolynes, P. G. Annu Rev Phys Chem 1997, 48, 545.
Herges, T.; Wenzel, W. Phys Rev Lett 2005, 94, 018101.
Schug, A.; Herges, T.; Verma, A.; Wenzel, W. J Phys Condens Matter 2005, 17, 1641.
Nayeem, A.; Vila, J.; Scheraga, H. A. J Comp Chem 1991, 12, 594.
Duan, Y.; Kollman, P. A. Science 1998, 282, 740.
Hansmann, U. H. E. J Chem Phys 2004, 120, 417.
Daura, X.; Juan, B.; Seebach, D.; van Gunsteren, W. F.; Mark, A. E. J Mol Biol 280, 925, 1998.
Yang, W. Y.; Pitera, J. W.; Swope, W. C.; Gruebele, M. J Mol Biol 2004, 336, 241.
Herges, T.; Merlitz, H.; Wenzel, W. J Ass Lab Autom 2002, 7, 98.
Chen, J.; Im, W.; Brooks, C. L.,III. J Am Chem Soc 2006, 128, 3728.
Schug, A.; Herges, T.; Wenzel, W. Proteins 2004, 57, 792.
Avbelj, F.; Moult, J. Biochemistry 1995, 34, 755.
Withers-Ward, E. S.; Mueller, T. D.; Chen, I. S.; Feigon, J. Biochemistry 2000, 39, 14103.
Snow, C. D.; Nguyen, H.; Pande, V. S.; Gruebele, M. Nature 2002, 420, 102.
Li, Z.; Scheraga, H. A. Proc Natl Acad Sci USA 1987, 84, 6611.
Pedersen, J. T.; Moult, J. J Molec Biol 1997, 269, 240.
Leitner, D. M.; Chakravarty, C.; Hinde, R. J.; Wales, D. J. Phys Rev E 1997, 56, 363.
Eisenberg, D.; McLachlan, A. D. Nature 1986, 319, 199.
1997; 278
2004; 87
2004; 121
2006; 90
2004; 120
2004; 126
1994; 235
1991; 12
1973; 181
1991; 30
1997; 48
2005; 312
1995; 34
2002; 7
2002; 117
1999; 82
1997; 4
1968; 65
1986; 319
2004; 99
280; 925
1997; 269
2004; 336
1997; 106
1987; 84
2004; 114
2003; 91
1983; 220
2000; 39
2005; 123
2005; 102
2002; 124
2002; 420
2004; 57
1997; 56
2003; 24
1999; 151
2005; 6
2005; 94
1998; 95
2003; 421
2005; 17
2006; 128
2003; 100
1998; 282
2005; 13
2006; 124
e_1_2_6_51_2
e_1_2_6_30_2
e_1_2_6_19_2
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_15_2
e_1_2_6_36_2
e_1_2_6_20_2
e_1_2_6_41_2
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_3_2
e_1_2_6_5_2
e_1_2_6_24_2
e_1_2_6_47_2
e_1_2_6_22_2
e_1_2_6_49_2
e_1_2_6_43_2
e_1_2_6_26_2
e_1_2_6_45_2
e_1_2_6_50_2
e_1_2_6_31_2
e_1_2_6_18_2
Daura X. (e_1_2_6_2_2); 925
Mortenson P. N. (e_1_2_6_28_2) 2004; 114
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_42_2
e_1_2_6_40_2
Leitner D. M. (e_1_2_6_27_2) 1997; 56
e_1_2_6_8_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_6_2
e_1_2_6_23_2
e_1_2_6_48_2
e_1_2_6_21_2
e_1_2_6_44_2
e_1_2_6_25_2
e_1_2_6_46_2
References_xml – volume: 925
  start-page: 1998
  year: 280
  publication-title: J Mol Biol
– volume: 312
  start-page: 327
  year: 2005
  publication-title: Chem Phys
– volume: 282
  start-page: 740
  year: 1998
  publication-title: Science
– volume: 82
  start-page: 3003
  year: 1999
  publication-title: Phys Rev Lett
– volume: 84
  start-page: 6611
  year: 1987
  publication-title: Proc Natl Acad Sci USA
– volume: 421
  start-page: 863
  year: 2003
  publication-title: Nature
– volume: 13
  start-page: 497
  year: 2005
  publication-title: Structure
– volume: 106
  start-page: 5260
  year: 1997
  publication-title: J Chem Phys
– volume: 235
  start-page: 983
  year: 1994
  publication-title: J Mol Biol
– volume: 100
  start-page: 7587
  year: 2003
  publication-title: Proc Natl Acad Sci USA
– volume: 124
  start-page: 11258
  year: 2002
  publication-title: J Am Chem Soc
– volume: 151
  start-page: 402
  year: 1999
  publication-title: J Comp Phys
– volume: 30
  start-page: 9686
  year: 1991
  publication-title: Biochemistry
– volume: 12
  start-page: 594
  year: 1991
  publication-title: J Comp Chem
– volume: 106
  start-page: 1495
  year: 1997
  publication-title: J Chem Phys
– volume: 39
  start-page: 14103
  year: 2000
  publication-title: Biochemistry
– volume: 336
  start-page: 241
  year: 2004
  publication-title: J Mol Biol
– volume: 99
  start-page: 854
  year: 2004
  publication-title: Int J Quant Chem
– volume: 181
  start-page: 223
  year: 1973
  publication-title: Science
– volume: 87
  start-page: 3100
  year: 2004
  publication-title: Biophys J
– volume: 7
  start-page: 98
  year: 2002
  publication-title: J Ass Lab Autom
– volume: 4
  start-page: 10
  year: 1997
  publication-title: Nat Struct Biol
– volume: 24
  start-page: 1432
  year: 2003
  publication-title: J Comput Chem
– volume: 100
  start-page: 13898
  year: 2003
  publication-title: Proc Natl Acad Sci USA
– volume: 121
  start-page: 10284
  year: 2004
  publication-title: J Chem Phys
– volume: 56
  start-page: 363
  year: 1997
  publication-title: Phys Rev E
– volume: 120
  start-page: 417
  year: 2004
  publication-title: J Chem Phys
– volume: 57
  start-page: 792
  year: 2004
  publication-title: Proteins
– volume: 123
  start-page: 234901
  year: 2005
  publication-title: J Chem Phys
– volume: 6
  start-page: 2640
  year: 2005
  publication-title: Chem Phys Chem
– volume: 65
  start-page: 44
  year: 1968
  publication-title: J Chim Phys
– volume: 319
  start-page: 199
  year: 1986
  publication-title: Nature
– volume: 13
  start-page: 661
  year: 2005
  publication-title: Structure
– volume: 114
  start-page: 6443
  year: 2004
  publication-title: J Chem Phys
– volume: 48
  start-page: 545
  year: 1997
  publication-title: Annu Rev Phys Chem
– volume: 117
  start-page: 1363
  year: 2002
  publication-title: J Chem Phys
– volume: 278
  start-page: 1928
  year: 1997
  publication-title: Science
– volume: 91
  start-page: 158102
  year: 2003
  publication-title: Phys Rev Lett
– volume: 94
  start-page: 018101
  year: 2005
  publication-title: Phys Rev Lett
– volume: 34
  start-page: 755
  year: 1995
  publication-title: Biochemistry
– volume: 128
  start-page: 3728
  year: 2006
  publication-title: J Am Chem Soc
– volume: 220
  start-page: 671
  year: 1983
  publication-title: Science
– volume: 124
  start-page: 044515
  year: 2006
  publication-title: J Chem Phys
– volume: 126
  start-page: 16736
  year: 2004
  publication-title: J Am Chem Soc
– volume: 95
  start-page: 13591
  year: 1998
  publication-title: Proc Natl Acad Sci USA
– volume: 90
  start-page: 4273
  year: 2006
  publication-title: Biophys J
– volume: 420
  start-page: 102
  year: 2002
  publication-title: Nature
– volume: 17
  start-page: 1641
  year: 2005
  publication-title: J Phys Condens Matter
– volume: 102
  start-page: 6801
  year: 2005
  publication-title: Proc Natl Acad Sci USA
– volume: 269
  start-page: 240
  year: 1997
  publication-title: J Molec Biol
– ident: e_1_2_6_4_2
  doi: 10.1021/ja0273851
– ident: e_1_2_6_50_2
  doi: 10.1016/j.chemphys.2004.12.002
– ident: e_1_2_6_14_2
  doi: 10.1063/1.2138030
– ident: e_1_2_6_38_2
  doi: 10.1021/bi00003a008
– ident: e_1_2_6_31_2
  doi: 10.1021/ja0453681
– ident: e_1_2_6_39_2
  doi: 10.1038/319199a0
– ident: e_1_2_6_19_2
  doi: 10.1088/0953-8984/17/18/019
– volume: 114
  start-page: 6443
  year: 2004
  ident: e_1_2_6_28_2
  publication-title: J Chem Phys
  doi: 10.1063/1.1343486
  contributor:
    fullname: Mortenson P. N.
– ident: e_1_2_6_36_2
  doi: 10.1006/jmbi.1994.1052
– ident: e_1_2_6_46_2
  doi: 10.1038/nsb0197-10
– volume: 56
  start-page: 363
  year: 1997
  ident: e_1_2_6_27_2
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.56.4890
  contributor:
    fullname: Leitner D. M.
– ident: e_1_2_6_32_2
  doi: 10.1529/biophysj.105.070409
– ident: e_1_2_6_37_2
  doi: 10.1002/qua.20052
– ident: e_1_2_6_12_2
  doi: 10.1529/biophysj.104.040071
– ident: e_1_2_6_40_2
  doi: 10.1021/bi00104a017
– ident: e_1_2_6_34_2
  doi: 10.1016/j.str.2005.01.018
– ident: e_1_2_6_51_2
  doi: 10.1126/science.282.5389.740
– ident: e_1_2_6_16_2
  doi: 10.1103/PhysRevLett.94.018101
– ident: e_1_2_6_11_2
  doi: 10.1073/pnas.0408970102
– ident: e_1_2_6_30_2
  doi: 10.1063/1.1810471
– ident: e_1_2_6_5_2
  doi: 10.1073/pnas.1330954100
– ident: e_1_2_6_24_2
  doi: 10.1006/jcph.1999.6233
– ident: e_1_2_6_35_2
  doi: 10.1016/S1535-5535(04)00203-5
– ident: e_1_2_6_44_2
  doi: 10.1021/bi0017071
– ident: e_1_2_6_48_2
  doi: 10.1073/pnas.95.23.13591
– ident: e_1_2_6_7_2
  doi: 10.1021/ja057216r
– ident: e_1_2_6_49_2
  doi: 10.1002/jcc.10297
– ident: e_1_2_6_25_2
  doi: 10.1051/jcp/1968650044
– ident: e_1_2_6_8_2
  doi: 10.1126/science.278.5345.1928
– ident: e_1_2_6_29_2
  doi: 10.1063/1.1484389
– ident: e_1_2_6_41_2
  doi: 10.1006/jmbi.1997.1010
– ident: e_1_2_6_22_2
  doi: 10.1103/PhysRevLett.82.3003
– volume: 925
  start-page: 1998
  ident: e_1_2_6_2_2
  publication-title: J Mol Biol
  contributor:
    fullname: Daura X.
– ident: e_1_2_6_21_2
  doi: 10.1126/science.220.4598.671
– ident: e_1_2_6_43_2
  doi: 10.1002/jcc.540120509
– ident: e_1_2_6_47_2
  doi: 10.1063/1.473299
– ident: e_1_2_6_42_2
  doi: 10.1063/1.2135783
– ident: e_1_2_6_18_2
  doi: 10.1002/prot.20290
– ident: e_1_2_6_15_2
  doi: 10.1126/science.181.4096.223
– ident: e_1_2_6_33_2
  doi: 10.1103/PhysRevLett.91.158102
– ident: e_1_2_6_45_2
  doi: 10.1146/annurev.physchem.48.1.545
– ident: e_1_2_6_10_2
  doi: 10.1038/nature01428
– ident: e_1_2_6_6_2
  doi: 10.1016/j.jmb.2003.11.033
– ident: e_1_2_6_9_2
  doi: 10.1073/pnas.2335541100
– ident: e_1_2_6_23_2
  doi: 10.1063/1.473525
– ident: e_1_2_6_13_2
  doi: 10.1002/cphc.200500213
– ident: e_1_2_6_3_2
  doi: 10.1038/nature01160
– ident: e_1_2_6_17_2
  doi: 10.1063/1.1630563
– ident: e_1_2_6_20_2
  doi: 10.1016/j.str.2005.03.005
– ident: e_1_2_6_26_2
  doi: 10.1073/pnas.84.19.6611
SSID ssj0003564
Score 1.9824193
Snippet The search for efficient and predictive methods to describe the protein folding process at the all-atom level remains an important grand-computational...
The search for efficient and predictive methods to describe the protein folding process at the all‐atom level remains an important grand‐computational...
Abstract The search for efficient and predictive methods to describe the protein folding process at the all‐atom level remains an important grand‐computational...
SourceID proquest
crossref
pubmed
wiley
istex
fao
SourceType Aggregation Database
Index Database
Publisher
StartPage 2552
SubjectTerms Algorithms
all-atom folding
Amino acids
Atoms & subatomic particles
Computer Simulation
De Novo protein folding
evolutionary algorithm
Human Immunodeficiency Virus Proteins - chemistry
Humans
Models, Molecular
Optimization algorithms
Protein Conformation
Protein Folding
Title All-atom de novo protein folding with a scalable evolutionary algorithm
URI https://api.istex.fr/ark:/67375/WNG-R8MCTNRC-0/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcc.20750
https://www.ncbi.nlm.nih.gov/pubmed/17486550
https://www.proquest.com/docview/222283485
https://search.proquest.com/docview/68475696
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VXuDCGxrKw0IIcUmbem3HUU9VRCmVuoelK3pAshzbW0G3CdpHhTjxE_ob-0s642x2VQQS4hYltjWZGXs-2-PPAG8wQguZ5yGVirYZKQnAIhBNecWt4ja4XrT0UV8dDMXhiTxZg93uLEzLD7FccKOeEcdr6uC2mm6vSEO_OWIgzON8nYj0CBANVtRRPdlSRyGCSbWSOx2rUMa3lzVvxKJbI9sgQiXl_vgT3LyJXmP42b8HXzrB26yTs635rNpyP3_jdPzPP7sPdxewlO21fvQA1kL9EG6X3W1wj-Dj3nh89esSp-jnzAdWNxcNixwPX2s2anewGK3pMsumaHY6kMXCxcKvURRmx6fNBAucP4bh_vvj8iBdXMOQOiHyLNUyeO984USF2CLPaEpY4RtdZF447rXgTqtilPFCBS90USmhQtAWZ7xcIXx5Aut1U4cNYE5jY2q0o7W3oqel9THFVihB6TmiSuB1ZxDzvWXbMC2vMjeoFRO1ksAGmsrYUxwFzfATp71XBDZ0EUACb6P9lpXt5Iwy13JpPvc_mIE-Ko_7g9JgG5udgc2i004Np9WwntAygVfLr6hm2kKxdWjmU6MwmEtVqASetl6xEjMXdMYXW34Xbft3-c1hWcaHZ_9edBPuxEXlmEfzHNZnk3l4gWhoVr2Mbn8NRfL_0A
link.rule.ids 315,786,790,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VcigXKL9NC9RCCHFJm3ptx5G4VIGyLd09LLuiF2Q5ibdqu02q_akQJx6hz8iTMONsdlUEEuIWJbblzHg8n8fjzwCv0UMLGcculIq2GSkJwCIQDXnGreLW5S2v6U5XtQfi6ESerMC75ixMzQ-xCLiRZfj5mgycAtK7S9bQ85woCGNasN9Fc5dklu97S_KolqzJoxDDhFrJvYZXKOK7i6q3vNGdoa0Qo5J4v_0JcN7Gr94BHTyAr03X67yTi53ZNNvJv__G6vi__7YO9-fIlO3XQ-khrLjyEaylzYVwj-FwfzT6-eMGV-mXrHCsrK4r5mkezko2rDexGIV1mWUT1DydyWLuej60sS_Mjk6rMRa4fAKDgw_9tB3Ob2IIcyHiKNTSFUVeJLnIEF7EEa0KM3yjk6gQOS-04LlWyTDiiXKF0EmmhHJOW1z0coUI5imsllXpNoDlGhtTwz2tCytaWtrCZ9kKJShDR2QBvGo0Yq5qwg1TUytzg1IxXioBbKCujD3FidAMPnPafkVsQ3cBBPDGK3BR2Y4vKHktluZL96Pp6U7a7_ZSg21sNRo2c7udGE4BsZbQMoDtxVcUM-2i2NJVs4lR6M-lSlQAz-phsexmLOiYL7b81iv37_03R2nqHzb_veg2rLX7nWNzfNj9tAX3fIzZp9U8h9XpeOZeIDiaZi-9DfwCVWcD_w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VIgEX_qGhQC2EEJe0qWM7jjhVKUtb6AotXdEDkuXYTgXdJtX-VIgTj8Az8iSMnc2uikBC3KLEthyPx_PNePwZ4DlaaMazzMVc-G1GnwSgEYjGtKRaUO1MGiR92Bd7Q3ZwzI9X4FV3Fqblh1gE3LxmhPXaK_i5rbaWpKFfjGcgzLy_fpWJlHrPa3ew5I5KecsdhRAmloJvd7RCCd1aVL1kjK5UukGI6kf365_w5mX4GuxP7xZ86nrepp2cbs6m5ab59hup43_-2m24OcelZKedSHdgxdV34XrRXQd3D_Z3RqOf33-gj35GrCN1c9GQQPLwuSZVu4VFfFCXaDJBufsTWcRdzCc2doXo0UkzxgJn92HYe31U7MXzexhiw1iWxJI7a43NDSsRXGSJ9wlLfCPzxDJDrWTUSJFXCc2Fs0zmpWDCOanR5aUC8csDWK2b2q0BMRIbE9W2lFazVHJtQ44tE8zn57AygmedQNR5S7ehWmJlqnBUVBiVCNZQVEqf4DKohh-o33xFZONvAojgRZDforIen_rUtYyrj_03aiAPi6P-oFDYxnonYDXX2omiPhyWMskj2Fh8xWH2eyi6ds1sogRacy5yEcHDdlYsu5kxf8gXW34ZZPv3_quDoggPj_696AZce7_bU-_2-2_X4UYIMIecmsewOh3P3BNERtPyadCAX0DqAq4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=All-atom+de+novo+protein+folding+with+a+scalable+evolutionary+algorithm&rft.jtitle=Journal+of+computational+chemistry&rft.au=Verma%2C+Abhinav&rft.au=Gopal%2C+Srinivasa+M&rft.au=Oh%2C+Jung+S&rft.au=Lee%2C+Kyu+H&rft.date=2007-12-01&rft.issn=0192-8651&rft.volume=28&rft.issue=16&rft.spage=2552&rft_id=info:doi/10.1002%2Fjcc.20750&rft_id=info%3Apmid%2F17486550&rft.externalDocID=17486550
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0192-8651&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0192-8651&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0192-8651&client=summon