Dynamic Absorption Enhancement and Equivalent Resonant Circuit Modeling of Tunable Graphene-Metal Hybrid Antenna
Plasmonic antennas are attractive optical components of the optoelectronic devices, operating in the far-infrared regime for sensing and imaging applications. However, low optical absorption hinders its potential applications, and their performance is limited due to fixed resonance frequency. In thi...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 20; no. 11; p. 3187 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
04.06.2020
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Plasmonic antennas are attractive optical components of the optoelectronic devices, operating in the far-infrared regime for sensing and imaging applications. However, low optical absorption hinders its potential applications, and their performance is limited due to fixed resonance frequency. In this article, a novel gate tunable graphene-metal hybrid plasmonic antenna with stacking configuration is proposed and investigated to achieve tunable performance over a broad range of frequencies with enhanced absorption characteristics. The hybrid graphene-metal antenna geometry is built up with a hexagon radiator that is supported by the Al2O3 insulator layer and graphene reflector. This stacked structure is deposited in the high resistive Si wafer substrate, and the hexagon radiator itself is a sandwich structure, which is composed of gold hexagon structure and two multilayer graphene stacks. The proposed antenna characteristics i.e., tunability of frequency, the efficiency corresponding to characteristics modes, and the tuning of absorption spectra, are evaluated by full-wave numerical simulations. Besides, the unity absorption peak that was realized through the proposed geometry is sensitive to the incident angle of TM-polarized incidence waves, which can flexibly shift the maxima of the absorption peak from 30 THz to 34 THz. Finally, an equivalent resonant circuit model for the investigated antenna based on the simulations results is designed to validate the antenna performance. Parametric analysis of the proposed antenna is carried out through altering the geometric parameters and graphene parameters in the Computer Simulation Technology (CST) studio. This clearly shows that the proposed antenna has a resonance frequency at 33 THz when the graphene sheet Fermi energy is increased to 0.3 eV by applying electrostatic gate voltage. The good agreement of the simulation and equivalent circuit model results makes the graphene-metal antenna suitable for the realization of far-infrared sensing and imaging device containing graphene antenna with enhanced performance. |
---|---|
AbstractList | Plasmonic antennas are attractive optical components of the optoelectronic devices, operating in the far-infrared regime for sensing and imaging applications. However, low optical absorption hinders its potential applications, and their performance is limited due to fixed resonance frequency. In this article, a novel gate tunable graphene-metal hybrid plasmonic antenna with stacking configuration is proposed and investigated to achieve tunable performance over a broad range of frequencies with enhanced absorption characteristics. The hybrid graphene-metal antenna geometry is built up with a hexagon radiator that is supported by the Al2O3 insulator layer and graphene reflector. This stacked structure is deposited in the high resistive Si wafer substrate, and the hexagon radiator itself is a sandwich structure, which is composed of gold hexagon structure and two multilayer graphene stacks. The proposed antenna characteristics i.e., tunability of frequency, the efficiency corresponding to characteristics modes, and the tuning of absorption spectra, are evaluated by full-wave numerical simulations. Besides, the unity absorption peak that was realized through the proposed geometry is sensitive to the incident angle of TM-polarized incidence waves, which can flexibly shift the maxima of the absorption peak from 30 THz to 34 THz. Finally, an equivalent resonant circuit model for the investigated antenna based on the simulations results is designed to validate the antenna performance. Parametric analysis of the proposed antenna is carried out through altering the geometric parameters and graphene parameters in the Computer Simulation Technology (CST) studio. This clearly shows that the proposed antenna has a resonance frequency at 33 THz when the graphene sheet Fermi energy is increased to 0.3 eV by applying electrostatic gate voltage. The good agreement of the simulation and equivalent circuit model results makes the graphene-metal antenna suitable for the realization of far-infrared sensing and imaging device containing graphene antenna with enhanced performance. Plasmonic antennas are attractive optical components of the optoelectronic devices, operating in the far-infrared regime for sensing and imaging applications. However, low optical absorption hinders its potential applications, and their performance is limited due to fixed resonance frequency. In this article, a novel gate tunable graphene-metal hybrid plasmonic antenna with stacking configuration is proposed and investigated to achieve tunable performance over a broad range of frequencies with enhanced absorption characteristics. The hybrid graphene-metal antenna geometry is built up with a hexagon radiator that is supported by the Al 2 O 3 insulator layer and graphene reflector. This stacked structure is deposited in the high resistive Si wafer substrate, and the hexagon radiator itself is a sandwich structure, which is composed of gold hexagon structure and two multilayer graphene stacks. The proposed antenna characteristics i.e., tunability of frequency, the efficiency corresponding to characteristics modes, and the tuning of absorption spectra, are evaluated by full-wave numerical simulations. Besides, the unity absorption peak that was realized through the proposed geometry is sensitive to the incident angle of TM-polarized incidence waves, which can flexibly shift the maxima of the absorption peak from 30 THz to 34 THz. Finally, an equivalent resonant circuit model for the investigated antenna based on the simulations results is designed to validate the antenna performance. Parametric analysis of the proposed antenna is carried out through altering the geometric parameters and graphene parameters in the Computer Simulation Technology (CST) studio. This clearly shows that the proposed antenna has a resonance frequency at 33 THz when the graphene sheet Fermi energy is increased to 0.3 eV by applying electrostatic gate voltage. The good agreement of the simulation and equivalent circuit model results makes the graphene-metal antenna suitable for the realization of far-infrared sensing and imaging device containing graphene antenna with enhanced performance. |
Author | Nawi, Illani Siddiqui, Muhammad Aadil Witjaksono, Gunawan Junaid, Muhammad Khattak, Muhammad Irfan Tansu, Nelson Ullah, Zaka Magsi, Saeed Ahmed |
AuthorAffiliation | 2 Department of Information Technology, BRI Institute of Technology & Business, Jakarta 12550, Indonesia; gunawan.witjaksono@bri-institute.ac.id 3 Center for Photonics and Nanoelectronics, Department of Electrical and Computer Engineering, Lehigh University, 7 Asa Drive, Bethlehem, PA 18015, USA; tansu@lehigh.edu 4 Department of Electrical Communication Engineering, University of Engineering and Technology, Peshawar 25120, Pakistan; m.i.khattak@uetpeshawar.edu.pk 1 Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, Perak 32610, Malaysia; illani.nawi@utp.edu.my (I.N.); muhammad_17000796@utp.edu.my (M.J.); muhammad_18003606@utp.edu.my (M.A.S.); saeed_19001716@utp.edu.my (S.A.M.) |
AuthorAffiliation_xml | – name: 3 Center for Photonics and Nanoelectronics, Department of Electrical and Computer Engineering, Lehigh University, 7 Asa Drive, Bethlehem, PA 18015, USA; tansu@lehigh.edu – name: 2 Department of Information Technology, BRI Institute of Technology & Business, Jakarta 12550, Indonesia; gunawan.witjaksono@bri-institute.ac.id – name: 1 Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, Perak 32610, Malaysia; illani.nawi@utp.edu.my (I.N.); muhammad_17000796@utp.edu.my (M.J.); muhammad_18003606@utp.edu.my (M.A.S.); saeed_19001716@utp.edu.my (S.A.M.) – name: 4 Department of Electrical Communication Engineering, University of Engineering and Technology, Peshawar 25120, Pakistan; m.i.khattak@uetpeshawar.edu.pk |
Author_xml | – sequence: 1 givenname: Zaka orcidid: 0000-0002-9677-7644 surname: Ullah fullname: Ullah, Zaka – sequence: 2 givenname: Illani surname: Nawi fullname: Nawi, Illani – sequence: 3 givenname: Gunawan surname: Witjaksono fullname: Witjaksono, Gunawan – sequence: 4 givenname: Nelson surname: Tansu fullname: Tansu, Nelson – sequence: 5 givenname: Muhammad Irfan orcidid: 0000-0003-4655-938X surname: Khattak fullname: Khattak, Muhammad Irfan – sequence: 6 givenname: Muhammad orcidid: 0000-0001-8765-2623 surname: Junaid fullname: Junaid, Muhammad – sequence: 7 givenname: Muhammad Aadil surname: Siddiqui fullname: Siddiqui, Muhammad Aadil – sequence: 8 givenname: Saeed Ahmed surname: Magsi fullname: Magsi, Saeed Ahmed |
BookMark | eNpdks1q3DAURkVJaX7aRd9A0E27cKorybZmUxgm0ySQUCjpWkjy9YwGW3IkOzBvX08nhKQrfbo6HMTHPScnIQYk5DOwSyEW7HvmDECAqt-RM5BcFopzdvIqn5LznHeMcSGE-kBOBS-B16DOyHC1D6b3ji5tjmkYfQx0HbYmOOwxjNSEhq4fJ_9kusP1N-YYzBxWPrnJj_Q-Ntj5sKGxpQ9TMLZDep3MsMWAxT2OpqM3e5t8Q5dhxBDMR_K-NV3GT8_nBfnzc_2wuinufl3frpZ3hZOyGosWK9syK1tT8kYpVwMDVdalFEwuFtKWEqGap2ita520lkELEp1qWcUXXIkLcnv0NtHs9JB8b9JeR-P1v0FMG23S6F2Hmje8PPRh5yANWONsqRqUYMuaMelm14-ja5hsj42bm0imeyN9-xL8Vm_ik64FU6pks-DrsyDFxwnzqHufHXadCRinrLkEALaQIGf0y3_oLk4pzFUdKFYxoQTM1Lcj5VLMOWH78hlg-rAT-mUnxF8sRal7 |
CitedBy_id | crossref_primary_10_1016_j_physleta_2021_127523 crossref_primary_10_1007_s11082_023_04906_6 crossref_primary_10_1038_s41598_021_95896_6 crossref_primary_10_3390_molecules26216424 crossref_primary_10_1016_j_ijleo_2021_166961 crossref_primary_10_3390_s22072550 crossref_primary_10_3390_molecules25163646 crossref_primary_10_3390_molecules25184217 crossref_primary_10_3390_nano13111716 crossref_primary_10_3390_nano12142479 |
Cites_doi | 10.1109/TTHZ.2013.2283370 10.1109/LAWP.2014.2305400 10.1109/TEMC.2014.2382176 10.1109/LPT.2018.2800729 10.1016/j.spmi.2018.06.065 10.1109/JSTQE.2016.2616839 10.1038/s41598-019-45501-8 10.1007/s11468-015-0132-y 10.1364/OE.25.019185 10.1002/mmce.21103 10.3390/ma12193082 10.1016/j.carbon.2015.06.077 10.1109/LPT.2016.2596843 10.1038/srep16998 10.1038/s41566-019-0389-3 10.1109/TAP.2016.2521881 10.1021/acs.nanolett.7b00359 10.1103/PhysRevB.94.115301 10.1002/cphc.201800961 10.1063/1.4975706 10.1109/TTHZ.2013.2285615 10.1103/PhysRevLett.101.026803 10.1364/OE.27.002363 10.1038/nnano.2012.59 10.1109/TTHZ.2013.2285629 10.1002/lpor.201900250 10.1109/LMAG.2018.2878946 10.1109/LAWP.2016.2527001 10.1109/LPT.2017.2759143 10.1109/LAWP.2019.2936654 10.1109/LPT.2018.2879540 10.1109/JPHOT.2019.2900402 10.3390/s18113714 10.3390/nano8121033 10.1007/s10762-018-0516-0 10.3390/s20051401 10.1038/s41598-017-07254-0 10.1364/OE.27.034731 10.1088/1367-2630/15/1/015010 10.1109/TEMC.2011.2169072 10.1109/JPHOT.2019.2931586 10.1109/LPT.2016.2636813 10.1109/APS.2016.7695909 10.1364/OE.21.031824 10.1109/LPT.2015.2421302 10.1088/1612-202X/aab445 10.3390/electronics7110285 10.1016/j.mattod.2018.01.007 10.1103/PhysRevLett.98.206805 10.1364/OE.27.002317 |
ContentType | Journal Article |
Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 by the authors. 2020 |
Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 by the authors. 2020 |
DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PIMPY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s20113187 |
DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) ProQuest - Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Central China ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete Health Research Premium Collection ProQuest Medical Library ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest One Academic ProQuest Medical Library (Alumni) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 7X7 name: Health & Medical Collection url: https://search.proquest.com/healthcomplete sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_2d255127b2d24a1bacb58de41b57004c 10_3390_s20113187 |
GroupedDBID | --- 123 2WC 3V. 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABJCF ABUWG ADBBV AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KB. KQ8 L6V M1P M48 M7S MODMG M~E OK1 P2P P62 PDBOC PIMPY PQQKQ PROAC PSQYO RIG RNS RPM TUS UKHRP XSB ~8M 7XB 8FK AZQEC DWQXO K9. PQEST PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c446t-fe6bf0b4fa52d88c710185754304994b54e16c71ebbcfc4bb01f14ec8f0629283 |
IEDL.DBID | RPM |
ISSN | 1424-8220 |
IngestDate | Tue Oct 22 15:16:36 EDT 2024 Tue Sep 17 21:14:27 EDT 2024 Fri Jun 28 11:16:35 EDT 2024 Tue Nov 12 22:01:10 EST 2024 Fri Aug 23 05:29:29 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c446t-fe6bf0b4fa52d88c710185754304994b54e16c71ebbcfc4bb01f14ec8f0629283 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9677-7644 0000-0001-8765-2623 0000-0003-4655-938X |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7308850/ |
PMID | 32512718 |
PQID | 2410603831 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2d255127b2d24a1bacb58de41b57004c pubmedcentral_primary_oai_pubmedcentral_nih_gov_7308850 proquest_miscellaneous_2411109414 proquest_journals_2410603831 crossref_primary_10_3390_s20113187 |
PublicationCentury | 2000 |
PublicationDate | 20200604 |
PublicationDateYYYYMMDD | 2020-06-04 |
PublicationDate_xml | – month: 6 year: 2020 text: 20200604 day: 4 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationYear | 2020 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Lee (ref_15) 2013; 3 Chorsi (ref_7) 2017; 29 Zhang (ref_23) 2015; 5 Lin (ref_24) 2019; 13 Yu (ref_11) 2016; 28 Mishra (ref_5) 2019; 11 ref_12 Arezoomandan (ref_9) 2017; 23 Picardi (ref_20) 2019; 13 Wang (ref_14) 2019; 13 Cao (ref_37) 2015; 57 Popp (ref_51) 2019; 20 Gric (ref_30) 2018; 39 Wang (ref_31) 2017; 25 Matthaiakakis (ref_28) 2017; 7 Yu (ref_26) 2018; 122 Xiong (ref_27) 2015; 5 Wang (ref_2) 2018; 30 Moldovan (ref_40) 2015; 6 Yan (ref_44) 2012; 7 Zhang (ref_54) 2019; 18 Ji (ref_47) 2019; 27 Haque (ref_17) 2018; 21 Zhao (ref_41) 2015; 27 Svintsov (ref_52) 2016; 94 Ren (ref_45) 2013; 21 Halas (ref_21) 2013; 14 ref_29 Mishra (ref_38) 2018; 9 Song (ref_22) 2019; 9 Yu (ref_49) 2019; 27 Tamagnone (ref_35) 2014; 13 Zouaghi (ref_56) 2015; 94 ref_34 Cao (ref_36) 2016; 64 ref_33 ref_32 Giovannetti (ref_46) 2008; 101 Baqir (ref_3) 2019; 11 Guo (ref_55) 2017; 7 Wu (ref_50) 2017; 7 Lovat (ref_53) 2012; 54 Zakrajsek (ref_57) 2016; 15 Majeed (ref_10) 2017; 27 Sherrott (ref_43) 2017; 17 Chen (ref_6) 2013; 3 Dong (ref_18) 2018; 15 Charola (ref_16) 2019; 62 Liu (ref_8) 2017; 29 Koshino (ref_19) 2013; 15 Han (ref_39) 2007; 98 ref_42 He (ref_1) 2013; 3 Li (ref_48) 2019; 27 Mabrouk (ref_4) 2018; 2018 Cao (ref_13) 2018; 30 Yang (ref_25) 2016; 11 |
References_xml | – volume: 3 start-page: 757 year: 2013 ident: ref_1 article-title: Broadband THz absorbers with graphene-based anisotropic metamaterial films publication-title: IEEE Trans. Terahertz Sci. Technol. doi: 10.1109/TTHZ.2013.2283370 contributor: fullname: He – volume: 13 start-page: 313 year: 2014 ident: ref_35 article-title: Predicting input impedance and efficiency of graphene reconfigurable dipoles using a simple circuit model publication-title: IEEE Antennas Wirel. Propag. Lett. doi: 10.1109/LAWP.2014.2305400 contributor: fullname: Tamagnone – volume: 57 start-page: 734 year: 2015 ident: ref_37 article-title: Distributive Radiation and Transfer Characterization Based on the PEEC Method publication-title: IEEE Trans. Electromagn. Compat. doi: 10.1109/TEMC.2014.2382176 contributor: fullname: Cao – volume: 30 start-page: 475 year: 2018 ident: ref_13 article-title: Graphene-Silver Hybrid Metamaterial for Tunable and High Absorption at Mid-Infrared Waveband publication-title: IEEE Photonics Technol. Lett. doi: 10.1109/LPT.2018.2800729 contributor: fullname: Cao – volume: 122 start-page: 461 year: 2018 ident: ref_26 article-title: Tunable strong THz absorption assisted by graphene-dielectric stacking structure publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2018.06.065 contributor: fullname: Yu – volume: 7 start-page: 1 year: 2017 ident: ref_50 article-title: Plasmonic metamaterial for electromagnetically induced transparency analogue and ultra-high figure of merit sensor publication-title: Sci. Rep. contributor: fullname: Wu – volume: 23 start-page: 188 year: 2017 ident: ref_9 article-title: Tunable Terahertz Metamaterials Employing Layered 2-D Materials beyond Graphene publication-title: IEEE J. Sel. Top. Quantum Electron. doi: 10.1109/JSTQE.2016.2616839 contributor: fullname: Arezoomandan – volume: 9 start-page: 9036 year: 2019 ident: ref_22 article-title: Broadband and Tunable RCS Reduction using High-order Reflections and Salisbury-type Absorption Mechanisms publication-title: Sci. Rep. doi: 10.1038/s41598-019-45501-8 contributor: fullname: Song – volume: 11 start-page: 981 year: 2016 ident: ref_25 article-title: Broad Tunable Nanoantenna Based on Graphene Log-Periodic Toothed Structure publication-title: Plasmonics doi: 10.1007/s11468-015-0132-y contributor: fullname: Yang – volume: 25 start-page: 19185 year: 2017 ident: ref_31 article-title: Ultra-multiband absorption enhancement of graphene in a metal-dielectric-graphene sandwich structure covering terahertz to mid-infrared regime publication-title: Opt. Express doi: 10.1364/OE.25.019185 contributor: fullname: Wang – volume: 27 start-page: e21103 year: 2017 ident: ref_10 article-title: Pole-zero analysis and wavelength scaling of carbon nanotube antennas publication-title: Int. J. RF Microw. Comput. Aided Eng. doi: 10.1002/mmce.21103 contributor: fullname: Majeed – volume: 14 start-page: 299 year: 2013 ident: ref_21 article-title: Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays publication-title: Nano Lett. contributor: fullname: Halas – volume: 6 start-page: 1 year: 2015 ident: ref_40 article-title: Self-biased reconfigurable graphene stacks for terahertz plasmonics publication-title: Nat. Commun. contributor: fullname: Moldovan – ident: ref_42 doi: 10.3390/ma12193082 – volume: 94 start-page: 301 year: 2015 ident: ref_56 article-title: How good would the conductivity of graphene have to be to make single-layer-graphene metamaterials for terahertz frequencies feasible? publication-title: Carbon doi: 10.1016/j.carbon.2015.06.077 contributor: fullname: Zouaghi – volume: 28 start-page: 2399 year: 2016 ident: ref_11 article-title: Broadband Tunable Polarization Converter Realized by Graphene-Based Metamaterial publication-title: IEEE Photonics Technol. Lett. doi: 10.1109/LPT.2016.2596843 contributor: fullname: Yu – volume: 5 start-page: 1 year: 2015 ident: ref_27 article-title: Ultrabroadband, More than One Order Absorption Enhancement in Graphene with Plasmonic Light Trapping publication-title: Sci. Rep. doi: 10.1038/srep16998 contributor: fullname: Xiong – volume: 2018 start-page: 753 year: 2018 ident: ref_4 article-title: Frequency tunable graphene metamaterial reflectarray for terahertz applications publication-title: J. Eng. contributor: fullname: Mabrouk – volume: 13 start-page: 270 year: 2019 ident: ref_24 article-title: A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light publication-title: Nat. Photonics doi: 10.1038/s41566-019-0389-3 contributor: fullname: Lin – volume: 64 start-page: 1385 year: 2016 ident: ref_36 article-title: An Equivalent Circuit Model for Graphene-Based Terahertz Antenna Using the PEEC Method publication-title: IEEE Antennas Wirel. Propag. Lett. doi: 10.1109/TAP.2016.2521881 contributor: fullname: Cao – volume: 17 start-page: 3027 year: 2017 ident: ref_43 article-title: Experimental Demonstration of > 230° Phase Modulation in Gate-Tunable Graphene-Gold Reconfigurable Mid-Infrared Metasurfaces publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b00359 contributor: fullname: Sherrott – volume: 94 start-page: 115301 year: 2016 ident: ref_52 article-title: Plasmons in tunnel-coupled graphene layers: Backward waves with quantum cascade gain publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.94.115301 contributor: fullname: Svintsov – volume: 62 start-page: 1 year: 2019 ident: ref_16 article-title: Broadband graphene-based metasurface solar absorber publication-title: Microw. Opt. Technol. Lett. contributor: fullname: Charola – volume: 20 start-page: 31 year: 2019 ident: ref_51 article-title: Quantitative Evaluation of Infrared Absorbance Spectra—Lorentz Profile versus Lorentz Oscillator publication-title: ChemPhysChem doi: 10.1002/cphc.201800961 contributor: fullname: Popp – volume: 7 start-page: 025101 year: 2017 ident: ref_55 article-title: Absorption enhancement and total absorption in a graphene-waveguide hybrid structure publication-title: AIP Adv. doi: 10.1063/1.4975706 contributor: fullname: Guo – volume: 3 start-page: 764 year: 2013 ident: ref_15 article-title: Broadband modulation of terahertz waves with non-resonant graphene meta-devices publication-title: IEEE Trans. Terahertz Sci. Technol. doi: 10.1109/TTHZ.2013.2285615 contributor: fullname: Lee – volume: 101 start-page: 4 year: 2008 ident: ref_46 article-title: Doping graphene with metal contacts publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.026803 contributor: fullname: Giovannetti – volume: 27 start-page: 2363 year: 2019 ident: ref_47 article-title: Active multifunctional terahertz modulator based on plasmonic metasurface publication-title: Opt. Express doi: 10.1364/OE.27.002363 contributor: fullname: Ji – volume: 7 start-page: 330 year: 2012 ident: ref_44 article-title: Tunable infrared plasmonic devices using graphene/insulator stacks publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.59 contributor: fullname: Yan – volume: 3 start-page: 748 year: 2013 ident: ref_6 article-title: Terahertz metamaterial devices based on graphene nanostructures publication-title: IEEE Trans. Terahertz Sci. Technol. doi: 10.1109/TTHZ.2013.2285629 contributor: fullname: Chen – volume: 13 start-page: 1900250 year: 2019 ident: ref_20 article-title: Amplitude and Phase Control of Guided Modes Excitation from a Single Dipole Source: Engineering Far- and Near-Field Directionality publication-title: Laser Photonics Rev. doi: 10.1002/lpor.201900250 contributor: fullname: Picardi – volume: 9 start-page: 1 year: 2018 ident: ref_38 article-title: Equivalent circuit model for the design of frequency-selective, terahertz-band, graphene-based metamaterial absorbers publication-title: IEEE Magn. Lett. doi: 10.1109/LMAG.2018.2878946 contributor: fullname: Mishra – volume: 15 start-page: 1553 year: 2016 ident: ref_57 article-title: Lithographically Defined Plasmonic Graphene Antennas for Terahertz-Band Communication publication-title: IEEE Antennas Wirel. Propag. Lett. doi: 10.1109/LAWP.2016.2527001 contributor: fullname: Zakrajsek – volume: 5 start-page: 1 year: 2015 ident: ref_23 article-title: Tunable broadband plasmonic field enhancement on a graphene surface using a normal-incidence plane wave at mid-infrared frequencies publication-title: Sci. Rep. contributor: fullname: Zhang – volume: 29 start-page: 1998 year: 2017 ident: ref_8 article-title: Active Control of Near-Field Coupling in a Terahertz Metal-Graphene Metamaterial publication-title: IEEE Photonics Technol. Lett. doi: 10.1109/LPT.2017.2759143 contributor: fullname: Liu – volume: 18 start-page: 2031 year: 2019 ident: ref_54 article-title: Input impedance and efficiency analysis of graphene-based plasmonic nanoantenna using theory of characteristic modes publication-title: IEEE Antennas Wirel. Propag. Lett. doi: 10.1109/LAWP.2019.2936654 contributor: fullname: Zhang – volume: 30 start-page: 2147 year: 2018 ident: ref_2 article-title: Dynamically Tunable Fano Resonance Based on Graphene Metamaterials publication-title: IEEE Photonics Technol. Lett. doi: 10.1109/LPT.2018.2879540 contributor: fullname: Wang – volume: 11 start-page: 1 year: 2019 ident: ref_5 article-title: Cascaded Graphene Frequency Selective Surface Integrated Tunable Broadband Terahertz Metamaterial Absorber publication-title: IEEE Photonics J. doi: 10.1109/JPHOT.2019.2900402 contributor: fullname: Mishra – ident: ref_33 doi: 10.3390/s18113714 – ident: ref_32 doi: 10.3390/nano8121033 – volume: 39 start-page: 1028 year: 2018 ident: ref_30 article-title: Tunable Plasmonic Properties and Absorption Enhancement in Terahertz Photoconductive Antenna Based on Optimized Plasmonic Nanostructures publication-title: J. Infrared Millim. Terahertz Waves doi: 10.1007/s10762-018-0516-0 contributor: fullname: Gric – ident: ref_29 doi: 10.3390/s20051401 – volume: 7 start-page: 1 year: 2017 ident: ref_28 article-title: Tuneable strong optical absorption in a graphene-insulator-metal hybrid plasmonic device publication-title: Sci. Rep. doi: 10.1038/s41598-017-07254-0 contributor: fullname: Matthaiakakis – volume: 27 start-page: 34731 year: 2019 ident: ref_49 article-title: Metal-graphene hybridized plasmon induced transparency in the terahertz frequencies publication-title: Opt. Express doi: 10.1364/OE.27.034731 contributor: fullname: Yu – volume: 15 start-page: 015010 year: 2013 ident: ref_19 article-title: Stacking-dependent optical absorption in multilayer graphene publication-title: New J. Phys. doi: 10.1088/1367-2630/15/1/015010 contributor: fullname: Koshino – volume: 54 start-page: 101 year: 2012 ident: ref_53 article-title: Equivalent circuit for electromagnetic interaction and transmission through graphene sheets publication-title: IEEE Trans. Electromagn. Compat. doi: 10.1109/TEMC.2011.2169072 contributor: fullname: Lovat – volume: 11 start-page: 1 year: 2019 ident: ref_3 article-title: Tunable plasmon induced transparency in graphene and hyperbolic metamaterial-based structur publication-title: IEEE Photonics J. doi: 10.1109/JPHOT.2019.2931586 contributor: fullname: Baqir – volume: 29 start-page: 228 year: 2017 ident: ref_7 article-title: Tunable Plasmonic Optoelectronic Devices Based on Graphene Metasurfaces publication-title: IEEE Photonics Technol. Lett. doi: 10.1109/LPT.2016.2636813 contributor: fullname: Chorsi – ident: ref_12 doi: 10.1109/APS.2016.7695909 – volume: 13 start-page: 1 year: 2019 ident: ref_14 article-title: Design, Fabrication, and Modulation of THz Bandpass Metamaterials publication-title: Laser Photonics Rev. contributor: fullname: Wang – volume: 21 start-page: 31824 year: 2013 ident: ref_45 article-title: Tuning optical responses of metallic dipole nanoantenna using graphene publication-title: Opt. Express doi: 10.1364/OE.21.031824 contributor: fullname: Ren – volume: 27 start-page: 1321 year: 2015 ident: ref_41 article-title: Plasmon-induced transparency in metamaterial based on graphene and split-ring resonators publication-title: IEEE Photonics Technol. Lett. doi: 10.1109/LPT.2015.2421302 contributor: fullname: Zhao – volume: 15 start-page: 056202 year: 2018 ident: ref_18 article-title: A tunable plasmonic nano-antenna based on metal-graphene double-nanorods publication-title: Laser Phys. Lett. doi: 10.1088/1612-202X/aab445 contributor: fullname: Dong – ident: ref_34 doi: 10.3390/electronics7110285 – volume: 21 start-page: 223 year: 2018 ident: ref_17 article-title: Application of graphene-based flexible antennas in consumer electronic devices publication-title: Mater. Today doi: 10.1016/j.mattod.2018.01.007 contributor: fullname: Haque – volume: 98 start-page: 1 year: 2007 ident: ref_39 article-title: Energy band-gap engineering of graphene nanoribbons publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.206805 contributor: fullname: Han – volume: 27 start-page: 2317 year: 2019 ident: ref_48 article-title: Terahertz electric field modulated mode coupling in graphene-metal hybrid metamaterials publication-title: Opt. Express doi: 10.1364/OE.27.002317 contributor: fullname: Li |
SSID | ssj0023338 |
Score | 2.4179778 |
Snippet | Plasmonic antennas are attractive optical components of the optoelectronic devices, operating in the far-infrared regime for sensing and imaging applications.... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database |
StartPage | 3187 |
SubjectTerms | Absorption spectra Aluminum oxide Antennas Chemical vapor deposition Computer simulation Design Efficiency Equivalent circuits Far infrared radiation Graphene Infrared imaging Investigations Metals Multilayers optical antenna Optical components Optoelectronic devices Parametric analysis plasmonic Plasmonics Polymethyl methacrylate Radiators Sandwich structures Silicon substrates surface plasmons terahertz tunability |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQEwyITxEoyCDWqHHiOMlYSkuFBFMrdYtix1azJKVNBv49d05aNRMLS5TYHpx7tu_OPr8j5EUwIUXItRuAQ-1yLqWbaHzIMPNBHUOJjfL9ErMF_1iGy4NUXxgT1tIDt4Ib-jkYvcyPJLzwjMlMyTDONWfSMrMru_p6yc6Z6lytADyvlkcI-zDcopqD0Rv1tI8l6e9Zlv24yANFMz0nZ52FSEdtzy7IkS4vyekBb-AVWb-1eeTpSG6rjZ30dFKuEEDc7KNZmdPJd1PAKMJP3KLHeBc6LjaqKWqKCdDwGjqtDJ039vYUfUfmalj43E8N9jid_eBVLjrCCPcyuyaL6WQ-nrld6gRXgX9Xu0YLaTzJTRb6eRyrCIm5wDLjeKqWgPy5ZgJKARZlFCDkMcO4VrHxBEAUBzfkuKxKfUuoEoYrPLBTLOOBSiRLpAwYA0QkKDftkOedSNN1y5CRgmeBck_3cnfIKwp73wBJrW0BQJ12UKd_Qe2QwQ6qtJtp2xQsEE944Gczhzztq2GO4MFHVuqqsW2QWJUz7pCoB3GvQ_2aslhZtm1YAuM49O7-4w_uyYmP_jru4vABOa43jX4Ao6aWj3b8_gLB5veD priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED7xWGBAPEWgIINYo8aJ46QTKlCokGCiUrcodhzaJWnTZuDfc-empVlYIsW2Est353v4_B3Ag-RSyVAYN0CH2hVCKbdn6KHC1Ed1jC02y_dTDkfifRyOm4DbokmrXO-JdqPOSk0x8i5qGk966E_xx9ncpapRdLralNDYhX3ue5JSuqLxn8MVoP-1QhOimXQXpOyQh6OWDrJQ_S37sp0duaVuXo_hqLETWX9F2BPYMcUpHG6hB57B7GVVTZ711aKsrOizQTEhMlLIj6VFxgbzeoq8RK8UqKesF_Y8rXQ9XTIqg0aX0VmZs6_a3qFib4Rfjduf-2HQKmfDH7rQxfqU516k5zB6HXw9D92mgIKr0ctburmRKveUyNPQz-JYRwTPhfaZoLO1HlJBGC6xFYmjc4108njOhdFx7kkkVBxcwF5RFuYSmJa50HRsp3kqAt1TvKdUwHmkfIUqzjhwv17SZLbCyUjQv6B1Tzbr7sATLfZmAEFb24ay-k4aSUn8DL0c7uOHM1-kXKVahXFmBFcWil870FmTKmnkbZH8cYcDd5tulBQ6_kgLU9Z2DMGrCi4ciFokbk2o3VNMJxZzGzfCOA69q_9_fg0HPvnjFKURHdhbVrW5QaNlqW4tZ_4CHW_vBw priority: 102 providerName: ProQuest – databaseName: Scholars Portal Open Access Journals dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5RuNADanmoodvKRVwDsTPxZg-o2tLdrpDgxErcothxYCWULNmNVP49M96HiNRjL5FiW3nM2J757PE3AOdaaqMTdGFMgDpENCYcOL6YJFdkjqnER_ne6ckUbx6Shx3Y5NhcC3DxT2jH-aSmzfPF35fXnzTgrxhx0hsuF2zEqG_2P8CeQgLoHMGH280EFRMMW5EKdZt3TJFn7O-4md0gyXdWZ_wJDtbuohiu9PsZdlx1CB_fkQgewfz3Kqm8GJpF3fgZQIyqJ9Ymr_yJvCrE6KWdUZfiW16v5-AXcT1rbDtbCs6GxmfSRV2K-9YfpRJ_mMaaZsHw1pFcxOSVz3WJIYe7V_kxTMej--tJuM6jEFoCe8uwdNqUkcEyT1SRprbPLF3kpiFvsQ1IGeikplLSkS0tqSuSpURn0zLSpK80PoHdqq7cFxBWl2h5987KHGM7MHJgTCxl3yhDls4FcLYRaTZf0WVkBDNY7tlW7gH8YmFvGzDDtS-om8dsPWAyVRDYkYoeXCjMpcmtSdLCoTSekd8G0NuoKtv0mozckUhHBLplAD-21TRgeBckr1zd-jbMsooSA-h3VNz5oG5NNXvy1Ns0H6ZpEp3-jz_4CvuKwTsv6WAPdpdN676Rh7M0333_fQPa5P13 priority: 102 providerName: Scholars Portal |
Title | Dynamic Absorption Enhancement and Equivalent Resonant Circuit Modeling of Tunable Graphene-Metal Hybrid Antenna |
URI | https://www.proquest.com/docview/2410603831 https://search.proquest.com/docview/2411109414 https://pubmed.ncbi.nlm.nih.gov/PMC7308850 https://doaj.org/article/2d255127b2d24a1bacb58de41b57004c |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb5swFH7qj8t2mLZu09i6yJ12pcFgjHNMs6RRpVTV1Eq5IeyYFWk1WRIO--_3ngNRuO5igQEF8T3nvc9-_h7Ad8mllqmwYYKEOhRC63BkqdFpEaM7xh6f5Xsv50_ibpkuTyDt9sL4pH2jq2v3--XaVc8-t3L9YoZdntjwYTFBq1QqjYancIqHHUVvWVaCpGsvIUQ_P9ySh0PDpWp7CTnzjOp7HPkgL9Xfiy_72ZFH7mb2Ft60cSIb79_nHZxYdwGvj9QD38P6x76aPBvrbb3xQ59N3TPBSFN-rHArNv3TVGhLdEoT9ZT1wibVxjTVjlEZNNqMzuqSPTZ-DxW7Jf1q_PsLFxajcjb_Sxu62Jjy3F3xAZ5m08fJPGwLKIQGWd4uLK3UZaRFWaTxSimTkTwXxmeC1tZGiIKwXGIvgmNKgzhFvOTCGlVGEoFSyUc4c7Wzn4AZWQpDy3aGFyIxI81HWiecZzrW6OJsAN-6T5qv9zoZOfILgiA_QBDADX3sww0kbe076s2vvAU4j1fIchAmjQei4LowOlUrK7j2UvwmgMsOqrwdb9sc45BIRsi2eQBXh8s4Umj5o3C2bvw9JK8quAgg60Hce6H-FTRBr7ndmtzn_37yC7yKiarTBI64hLPdprFfMZ7Z6QFa8TLDVs1uB3B-M71_-DnwcwPYLoQaePv-B4-C_Uk |
link.rule.ids | 230,315,730,783,787,867,888,2109,2228,12068,12777,21400,24330,27936,27937,31731,31732,33385,33386,33756,33757,43322,43612,43817,53804,53806,74073,74363,74630 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED5BGYAB8RSBAgaxRsSJ46YTKlAorwqhIrFFseNAl6S0zcC_585NC1lYIsW2Estn--47n78DOJdcKhkK4wYIqF0hlHLbhh4qTHxUx1hio3z7svcmHt7D98rhNqnCKud7ot2o00KTj_wCNY0nPcRT_HL05VLWKDpdrVJoLMMKUVUh-Fq56vZfXheQK0AENuMTor5cTEjd4Sxu1bSQJeuvWZj1-Mg_Cud2EzYqS5F1ZqLdgiWTb8P6H_7AHRjdzPLJs46aFGO7-Fk3_yRBktOPJXnKul_lEGcTvZKrnuJe2PVwrMvhlFEiNLqOzoqMDUp7i4rdEYM1boDus0G7nPW-6UoX61Cke57swtttd3Ddc6sUCq5GnDd1MyNV5imRJaGfRpFuEUEXWmiCTtfaKAdhuMRSFI_ONErK4xkXRkeZJ1FUUbAHjbzIzT4wLTOh6eBO80QEuq14W6mA85byFSo548DZfEjj0YwpI0aEQeMeL8bdgSsa7EUDIre2BcX4I67WSuyniHO4jx9OfZFwlWgVRqkRXFkyfu1Acy6quFpxk_h3fjhwuqjGtUIHIEluitK2IYJVwYUDrZqIax2q1-TDT8u6jVthFIXewf8_P4HV3uD5KX667z8ewppP6Jx8NqIJjem4NEdowkzVcTVPfwCPPvNd |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT9swFH9iRZrGYYJ9aGF8eNOuUePEcdLTVKClsK1CE0jcotixRy9JaZsD_z3vuW5HLlwixbYSy-_5ffn59wB-SC6VTIUJE3SoQyGUCgeGHiotY1TH2OKyfKdycieu79N7n_-09GmVG5noBHXVaIqR91HTRDJCf4r3rU-LuLkY_5w_hlRBik5afTmNN7CbCZlEPdg9G01v_m7drwS9sTW2EM2rvyTVhxyddTSSA-7vWJvdXMkXyme8D--91ciGazIfwI6pP8DeCyzBjzC_WNeWZ0O1bBZOELBR_UBEpQAgK-uKjR7bGXIWvVLYnnJg2PlsodvZilFRNLqazhrLblt3o4pdEpo1CsPwj0EbnU2e6HoXG1LWe11-grvx6PZ8EvpyCqFGn28VWiOVjZSwZRpXea4zAutCa03QSdsAaSIMl9iKpNJWI9UibrkwOreRRLLlyWfo1U1tvgDT0gpNh3ialyLRA8UHSiWcZypWqPBMAN83S1rM16gZBXobtO7Fdt0DOKPF3g4goGvX0Cz-FX7fFHGFPg-P8cNVLEquSq3SvDKCKwfMrwM42pCq8LtvWfznlQC-bbtx39BhSFmbpnVjCGxVcBFA1iFxZ0Ldnnr24BC4USzmeRodvv7zU3iLLFr8vpr--grvYnLUKXwjjqC3WrTmGK2ZlTrxbPoMpB_3iw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Absorption+Enhancement+and+Equivalent+Resonant+Circuit+Modeling+of+Tunable+Graphene-Metal+Hybrid+Antenna&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Zaka+Ullah&rft.au=Illani+Nawi&rft.au=Gunawan+Witjaksono&rft.au=Nelson+Tansu&rft.date=2020-06-04&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=20&rft.issue=11&rft.spage=3187&rft_id=info:doi/10.3390%2Fs20113187&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2d255127b2d24a1bacb58de41b57004c |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |