Generative adversarial networks to create synthetic motion capture datasets including subject and gait characteristics
Resource-intensive motion capture (mocap) systems challenge predictive deep learning applications, requiring large and diverse datasets. We tackled this by modifying generative adversarial networks (GANs) into conditional GANs (cGANs) that can generate diverse mocap data, including 15 marker traject...
Saved in:
Published in | Journal of biomechanics Vol. 177; p. 112358 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.12.2024
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Resource-intensive motion capture (mocap) systems challenge predictive deep learning applications, requiring large and diverse datasets. We tackled this by modifying generative adversarial networks (GANs) into conditional GANs (cGANs) that can generate diverse mocap data, including 15 marker trajectories, lower limb joint angles, and 3D ground reaction forces (GRFs), based on specified subject and gait characteristics. The cGAN comprised 1) an encoder compressing mocap data to a latent vector, 2) a decoder reconstructing the mocap data from the latent vector with specific conditions and 3) a discriminator distinguishing random vectors with conditions from encoded latent vectors with conditions. Single-conditional models were trained separately for age, sex, leg length, mass, and walking speed, while an additional model (Multi-cGAN) combined all conditions simultaneously to generate synthetic data. All models closely replicated the training dataset (<8.1 % of the gait cycle different between experimental and synthetic kinematics and GRFs), while a subset with narrow condition ranges was best replicated by the Multi-cGAN, producing similar kinematics (<1°) and GRFs (<0.02 body-weight) averaged by walking speeds. Multi-cGAN also generated synthetic datasets and results for three previous studies using reported mean and standard deviation of subject and gait characteristics. Additionally, unseen test data was best predicted by the walking speed-conditional, showcasing synthetic data diversity. The same model also matched the dynamical consistency of the experimental data (32 % average difference throughout the gait cycle), meaning that transforming the gait cycle data to the original time domain yielded accurate derivative calculations. Importantly, synthetic data poses no privacy concerns, potentially facilitating data sharing. |
---|---|
AbstractList | Resource-intensive motion capture (mocap) systems challenge predictive deep learning applications, requiring large and diverse datasets. We tackled this by modifying generative adversarial networks (GANs) into conditional GANs (cGANs) that can generate diverse mocap data, including 15 marker trajectories, lower limb joint angles, and 3D ground reaction forces (GRFs), based on specified subject and gait characteristics. The cGAN comprised 1) an encoder compressing mocap data to a latent vector, 2) a decoder reconstructing the mocap data from the latent vector with specific conditions and 3) a discriminator distinguishing random vectors with conditions from encoded latent vectors with conditions. Single-conditional models were trained separately for age, sex, leg length, mass, and walking speed, while an additional model (Multi-cGAN) combined all conditions simultaneously to generate synthetic data. All models closely replicated the training dataset (<8.1 % of the gait cycle different between experimental and synthetic kinematics and GRFs), while a subset with narrow condition ranges was best replicated by the Multi-cGAN, producing similar kinematics (<1°) and GRFs (<0.02 body-weight) averaged by walking speeds. Multi-cGAN also generated synthetic datasets and results for three previous studies using reported mean and standard deviation of subject and gait characteristics. Additionally, unseen test data was best predicted by the walking speed-conditional, showcasing synthetic data diversity. The same model also matched the dynamical consistency of the experimental data (32 % average difference throughout the gait cycle), meaning that transforming the gait cycle data to the original time domain yielded accurate derivative calculations. Importantly, synthetic data poses no privacy concerns, potentially facilitating data sharing. Resource-intensive motion capture (mocap) systems challenge predictive deep learning applications, requiring large and diverse datasets. We tackled this by modifying generative adversarial networks (GANs) into conditional GANs (cGANs) that can generate diverse mocap data, including 15 marker trajectories, lower limb joint angles, and 3D ground reaction forces (GRFs), based on specified subject and gait characteristics. The cGAN comprised 1) an encoder compressing mocap data to a latent vector, 2) a decoder reconstructing the mocap data from the latent vector with specific conditions and 3) a discriminator distinguishing random vectors with conditions from encoded latent vectors with conditions. Single-conditional models were trained separately for age, sex, leg length, mass, and walking speed, while an additional model (Multi-cGAN) combined all conditions simultaneously to generate synthetic data. All models closely replicated the training dataset (<8.1 % of the gait cycle different between experimental and synthetic kinematics and GRFs), while a subset with narrow condition ranges was best replicated by the Multi-cGAN, producing similar kinematics (<1°) and GRFs (<0.02 body-weight) averaged by walking speeds. Multi-cGAN also generated synthetic datasets and results for three previous studies using reported mean and standard deviation of subject and gait characteristics. Additionally, unseen test data was best predicted by the walking speed-conditional, showcasing synthetic data diversity. The same model also matched the dynamical consistency of the experimental data (32 % average difference throughout the gait cycle), meaning that transforming the gait cycle data to the original time domain yielded accurate derivative calculations. Importantly, synthetic data poses no privacy concerns, potentially facilitating data sharing.Resource-intensive motion capture (mocap) systems challenge predictive deep learning applications, requiring large and diverse datasets. We tackled this by modifying generative adversarial networks (GANs) into conditional GANs (cGANs) that can generate diverse mocap data, including 15 marker trajectories, lower limb joint angles, and 3D ground reaction forces (GRFs), based on specified subject and gait characteristics. The cGAN comprised 1) an encoder compressing mocap data to a latent vector, 2) a decoder reconstructing the mocap data from the latent vector with specific conditions and 3) a discriminator distinguishing random vectors with conditions from encoded latent vectors with conditions. Single-conditional models were trained separately for age, sex, leg length, mass, and walking speed, while an additional model (Multi-cGAN) combined all conditions simultaneously to generate synthetic data. All models closely replicated the training dataset (<8.1 % of the gait cycle different between experimental and synthetic kinematics and GRFs), while a subset with narrow condition ranges was best replicated by the Multi-cGAN, producing similar kinematics (<1°) and GRFs (<0.02 body-weight) averaged by walking speeds. Multi-cGAN also generated synthetic datasets and results for three previous studies using reported mean and standard deviation of subject and gait characteristics. Additionally, unseen test data was best predicted by the walking speed-conditional, showcasing synthetic data diversity. The same model also matched the dynamical consistency of the experimental data (32 % average difference throughout the gait cycle), meaning that transforming the gait cycle data to the original time domain yielded accurate derivative calculations. Importantly, synthetic data poses no privacy concerns, potentially facilitating data sharing. Resource-intensive motion capture (mocap) systems challenge predictive deep learning applications, requiring large and diverse datasets. We tackled this by modifying generative adversarial networks (GANs) into conditional GANs (cGANs) that can generate diverse mocap data, including 15 marker trajectories, lower limb joint angles, and 3D ground reaction forces (GRFs), based on specified subject and gait characteristics. The cGAN comprised 1) an encoder compressing mocap data to a latent vector, 2) a decoder reconstructing the mocap data from the latent vector with specific conditions and 3) a discriminator distinguishing random vectors with conditions from encoded latent vectors with conditions. Single-conditional models were trained separately for age, sex, leg length, mass, and walking speed, while an additional model (Multi-cGAN) combined all conditions simultaneously to generate synthetic data. All models closely replicated the training dataset (<8.1 % of the gait cycle different between experimental and synthetic kinematics and GRFs), while a subset with narrow condition ranges was best replicated by the Multi-cGAN, producing similar kinematics (<1°) and GRFs (<0.02 body-weight) averaged by walking speeds. Multi-cGAN also generated synthetic datasets and results for three previous studies using reported mean and standard deviation of subject and gait characteristics. Additionally, unseen test data was best predicted by the walking speed-conditional, showcasing synthetic data diversity. The same model also matched the dynamical consistency of the experimental data (32 % average difference throughout the gait cycle), meaning that transforming the gait cycle data to the original time domain yielded accurate derivative calculations. Importantly, synthetic data poses no privacy concerns, potentially facilitating data sharing. |
ArticleNumber | 112358 |
Author | McGregor, Alison H. Melis, Alessandro Modenese, Luca Bicer, Metin Phillips, Andrew T.M. |
Author_xml | – sequence: 1 givenname: Metin orcidid: 0000-0002-9491-2080 surname: Bicer fullname: Bicer, Metin organization: Department of Civil and Environmental Engineering, Imperial College London, London, UK – sequence: 2 givenname: Andrew T.M. orcidid: 0000-0001-6618-0145 surname: Phillips fullname: Phillips, Andrew T.M. organization: Department of Civil and Environmental Engineering, Imperial College London, London, UK – sequence: 3 givenname: Alessandro orcidid: 0000-0002-8261-0421 surname: Melis fullname: Melis, Alessandro organization: Vivacity, London, UK – sequence: 4 givenname: Alison H. orcidid: 0000-0003-4672-332X surname: McGregor fullname: McGregor, Alison H. organization: Department of Surgery and Cancer, Imperial College London, London, UK – sequence: 5 givenname: Luca orcidid: 0000-0003-1402-5359 surname: Modenese fullname: Modenese, Luca email: l.modenese@unsw.edu.au organization: Department of Civil and Environmental Engineering, Imperial College London, London, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39509807$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkcFu1DAURS1URKeFX6gssWGTwc9OYmeDQBUUpEpsYG059kvHaWIPtjNo_p5U07LoBlZvc-7R070X5CzEgIRcAdsCg_b9uB17H2e0uy1nvN4CcNGoF2QDSoqKC8XOyIYxDlXHO3ZOLnIeGWOylt0rci66hnWKyQ053GDAZIo_IDXugCmb5M1EA5bfMd1nWiK1CU1Bmo-h7LB4S-dYfAzUmn1ZElJnislYMvXBTovz4Y7mpR_RFmqCo3fGF2p3JhlbMPm8GvJr8nIwU8Y3j_eS_Pzy-cf11-r2-82360-3la3rtlRDj6ZveNOq1hreg-BsGBS3IKVrhXKdhFY0jRkEANbAlDTSDUzwvm0G1TpxSd6dvPsUfy2Yi559tjhNJmBcshbAlQAFElb07TN0jEsK63crVUPDoW7ZSl09Uks_o9P75GeTjvqp0RVoT4BNMeeEw18EmH6YTo_6aTr9MJ0-TbcGP56CuPZx8Jh0th6DRefTWqV20f9b8eGZwk4-eGumezz-j-APdyO6-Q |
Cites_doi | 10.1109/CVPR.2019.00453 10.1016/j.jbiomech.2013.07.031 10.1016/j.jbiomech.2021.110451 10.1016/j.jbiomech.2018.09.009 10.1016/S0003-9993(98)90013-2 10.3389/fbioe.2020.00041 10.3390/s21175876 10.1016/j.jbiomech.2008.03.015 10.1038/s41597-019-0124-4 10.1016/j.gaitpost.2009.07.002 10.1016/0966-6362(94)90106-6 10.1016/j.gaitpost.2021.05.014 10.1371/journal.pcbi.1006223 10.1016/j.compmedimag.2019.101684 10.1016/j.jbiomech.2022.111301 10.1016/0966-6362(95)01057-2 10.1155/2017/6432969 10.1016/j.jbiomech.2017.04.014 10.1109/TBME.2016.2586891 10.1007/978-3-319-66179-7_48 10.1038/s41598-019-45397-4 10.1109/CVPR.2017.632 10.1016/j.gaitpost.2014.12.011 10.1016/j.otsr.2011.08.015 10.1115/1.4029304 10.1080/14763141.2016.1246603 |
ContentType | Journal Article |
Copyright | 2024 The Authors Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved. 2024. The Authors |
Copyright_xml | – notice: 2024 The Authors – notice: Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved. – notice: 2024. The Authors |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7TB 7TS 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. LK8 M0S M1P M2O M7P MBDVC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
DOI | 10.1016/j.jbiomech.2024.112358 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Mechanical & Transportation Engineering Abstracts Physical Education Index ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Research Library Biological Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China Physical Education Index ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Research Library Prep |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Anatomy & Physiology |
EISSN | 1873-2380 |
ExternalDocumentID | 39509807 10_1016_j_jbiomech_2024_112358 S0021929024004366 |
Genre | Journal Article |
GroupedDBID | --- --K --M --Z -~X .1- .55 .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29J 4.4 457 4G. 53G 5GY 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8G5 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQQT AAQXK AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACNNM ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AHMBA AI. AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BHPHI BJAXD BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBD EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GNUQQ GUQSH HCIFZ HEE HMCUK HMK HMO HVGLF HZ~ H~9 I-F IHE J1W JJJVA KOM LK8 M1P M29 M2O M31 M41 M7P ML~ MO0 MVM N9A O-L O9- OAUVE OH. OHT OT. OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SJN SPC SPCBC SSH SST SSZ T5K UKHRP UPT VH1 WUQ X7M XOL XPP YQT Z5R ZGI ZMT ~G- 3V. 6I. AACTN AAFTH AFCTW AFFDN AFKWA AJOXV ALIPV AMFUW F3I RIG YCJ AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7QP 7TB 7TS 7XB 8FD 8FK FR3 K9. MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 |
ID | FETCH-LOGICAL-c446t-fbeab525686ca2b1320ff82c177d638d9716355af311e41087a7df032b65f86d3 |
IEDL.DBID | .~1 |
ISSN | 0021-9290 1873-2380 |
IngestDate | Fri Jul 11 00:36:42 EDT 2025 Wed Aug 13 08:04:49 EDT 2025 Thu Apr 03 07:03:45 EDT 2025 Tue Jul 01 00:44:26 EDT 2025 Sat Dec 14 16:14:51 EST 2024 Tue Aug 26 16:32:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Gait Conditional Generative Adversarial Networks Synthetic Mocap Dataset |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c446t-fbeab525686ca2b1320ff82c177d638d9716355af311e41087a7df032b65f86d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6618-0145 0000-0003-1402-5359 0000-0002-8261-0421 0000-0003-4672-332X 0000-0002-9491-2080 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0021929024004366 |
PMID | 39509807 |
PQID | 3141521460 |
PQPubID | 1226346 |
ParticipantIDs | proquest_miscellaneous_3128318171 proquest_journals_3141521460 pubmed_primary_39509807 crossref_primary_10_1016_j_jbiomech_2024_112358 elsevier_sciencedirect_doi_10_1016_j_jbiomech_2024_112358 elsevier_clinicalkey_doi_10_1016_j_jbiomech_2024_112358 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2024 2024-12-00 2024-Dec 20241201 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: December 2024 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Kidlington |
PublicationTitle | Journal of biomechanics |
PublicationTitleAlternate | J Biomech |
PublicationYear | 2024 |
Publisher | Elsevier Ltd Elsevier Limited |
Publisher_xml | – sequence: 0 name: Elsevier Ltd – name: Elsevier Ltd – name: Elsevier Limited |
References | Røislien, Skare, Gustavsen, Broch, Rennie, Opheim (b0130) 2009; 30 Kerrigan, Todd, Della Croce, Lipsitz, Collins (b0065) 1998; 79 Schreiber, Moissenet (b0145) 2019; 6 Nie, D., Trullo, R., Lian, J., Petitjean, C., Ruan, S., Wang, Q., Shen, D., 2017. Medical image synthesis with context-aware generative adversarial networks. In MICCAI 2017 Proceedings, Part III 20. Choi, Biswal, Malin, Duke, Stewart, Sun (b0025) 2017 Rajagopal, Dembia, DeMers, Delp, Hicks, Delp (b0115) 2016; 63 Knudson (b0070) 2017; 16 Bicer, Phillips, Melis, McGregor, Modenese (b0010) 2022; 144 Hof (b0050) 1996; 3 Kouyoumdjian, Coulomb, Sanchez, Asencio (b0075) 2012; 98 Armanious, Jiang, Fischer, Küstner, Hepp, Nikolaou, Gatidis, Yang (b0005) 2020; 79 Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (b0035) 2014 Bruening, Frimenko, Goodyear, Bowden, Fullenkamp (b0015) 2015; 41 Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A., 2017. Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE conference on computer vision and pattern recognition. Karras, T., Laine, S., Aila, T., 2019. A style-based generator architecture for generative adversarial networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 4401-4410. Salimans, Goodfellow, Zaremba, Cheung, Radford, Chen (b0140) 2016; 29 Moissenet, Leboeuf, Armand (b0085) 2019; 9 Zhou, S., Gordon, M.L., Krishna, R., Narcomey, A., Fei-Fei, L., Bernstein, M.S., 2019. Hype: A benchmark for human eye perceptual evaluation of generative models. arXiv preprint arXiv:1904.01121. Sharifi Renani, Eustace, Myers, Clary (b0160) 2021; 21 Esteban, C., Hyland, S.L., Rätsch, G., 2017. Real-valued (medical) time series generation with recurrent conditional gans. arXiv preprint arXiv:1706.02633. Raissi, M., Perdikaris, P., Karniadakis, G.E., 2017. Physics informed deep learning (part i): Data-driven solutions of nonlinear partial differential equations. arXiv preprint arXiv:1711.10561. Halilaj, Rajagopal, Fiterau, Hicks, Hastie, Delp (b0040) 2018; 81 Robinson, Vanrenterghem, Pataky (b0125) 2021; 122 Weinhandl, Irmischer, Sievert (b0165) 2017 Pataky, Robinson, Vanrenterghem (b0105) 2013; 46 Mirza, M., Osindero, S., 2014. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784. Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., Chen, M., 2022. Hierarchical text-conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 1, 3. Xu, Skoularidou, Cuesta-Infante, Veeramachaneni (b0170) 2019; 32 Nigg, Fisher, Ronsky (b0100) 1994; 2 Schwartz, Rozumalski, Trost (b0150) 2008; 41 Hicks, Uchida, Seth, Rajagopal, Delp (b0045) 2015; 137 Mundt, Koeppe, David, Witter, Bamer, Potthast, Markert (b0090) 2020; 8 Chehab, Andriacchi, Favre (b0020) 2017; 58 Rowe, Beauchamp, Wilson (b0135) 2021; 88 Seth, Hicks, Uchida, Habib, Dembia, Dunne, Ong, DeMers, Rajagopal, Millard (b0155) 2018; 14 Rajagopal (10.1016/j.jbiomech.2024.112358_b0115) 2016; 63 Rowe (10.1016/j.jbiomech.2024.112358_b0135) 2021; 88 Hof (10.1016/j.jbiomech.2024.112358_b0050) 1996; 3 10.1016/j.jbiomech.2024.112358_b0175 10.1016/j.jbiomech.2024.112358_b0055 10.1016/j.jbiomech.2024.112358_b0110 Bicer (10.1016/j.jbiomech.2024.112358_b0010) 2022; 144 Nigg (10.1016/j.jbiomech.2024.112358_b0100) 1994; 2 Kouyoumdjian (10.1016/j.jbiomech.2024.112358_b0075) 2012; 98 Moissenet (10.1016/j.jbiomech.2024.112358_b0085) 2019; 9 Halilaj (10.1016/j.jbiomech.2024.112358_b0040) 2018; 81 Kerrigan (10.1016/j.jbiomech.2024.112358_b0065) 1998; 79 10.1016/j.jbiomech.2024.112358_b0080 10.1016/j.jbiomech.2024.112358_b0060 Robinson (10.1016/j.jbiomech.2024.112358_b0125) 2021; 122 Hicks (10.1016/j.jbiomech.2024.112358_b0045) 2015; 137 Salimans (10.1016/j.jbiomech.2024.112358_b0140) 2016; 29 Weinhandl (10.1016/j.jbiomech.2024.112358_b0165) 2017 Mundt (10.1016/j.jbiomech.2024.112358_b0090) 2020; 8 Schwartz (10.1016/j.jbiomech.2024.112358_b0150) 2008; 41 Knudson (10.1016/j.jbiomech.2024.112358_b0070) 2017; 16 10.1016/j.jbiomech.2024.112358_b0120 Pataky (10.1016/j.jbiomech.2024.112358_b0105) 2013; 46 Schreiber (10.1016/j.jbiomech.2024.112358_b0145) 2019; 6 Chehab (10.1016/j.jbiomech.2024.112358_b0020) 2017; 58 Choi (10.1016/j.jbiomech.2024.112358_b0025) 2017 10.1016/j.jbiomech.2024.112358_b0095 10.1016/j.jbiomech.2024.112358_b0030 Røislien (10.1016/j.jbiomech.2024.112358_b0130) 2009; 30 Goodfellow (10.1016/j.jbiomech.2024.112358_b0035) 2014 Seth (10.1016/j.jbiomech.2024.112358_b0155) 2018; 14 Xu (10.1016/j.jbiomech.2024.112358_b0170) 2019; 32 Bruening (10.1016/j.jbiomech.2024.112358_b0015) 2015; 41 Sharifi Renani (10.1016/j.jbiomech.2024.112358_b0160) 2021; 21 Armanious (10.1016/j.jbiomech.2024.112358_b0005) 2020; 79 |
References_xml | – volume: 98 start-page: 17 year: 2012 end-page: 23 ident: b0075 article-title: Clinical evaluation of hip joint rotation range of motion in adults publication-title: Orthop. Traumatol. Surg. Res. – volume: 6 start-page: 111 year: 2019 ident: b0145 article-title: A multimodal dataset of human gait at different walking speeds established on injury-free adult participants publication-title: Sci. Data – volume: 2 start-page: 213 year: 1994 end-page: 220 ident: b0100 article-title: Gait characteristics as a function of age and gender publication-title: Gait Posture – volume: 14 start-page: e1006223 year: 2018 ident: b0155 article-title: Opensim: Simulating musculoskeletal dynamics and neuromuscular control to study human and animal movement publication-title: PLoS Comput. Biol. – volume: 81 start-page: 1 year: 2018 end-page: 11 ident: b0040 article-title: Machine learning in human movement biomechanics: Best practices, common pitfalls, and new opportunities publication-title: J. Biomech. – volume: 9 start-page: 9510 year: 2019 ident: b0085 article-title: Lower limb sagittal gait kinematics can be predicted based on walking speed, gender, age and bmi publication-title: Sci. Rep. – volume: 79 year: 2020 ident: b0005 article-title: Medgan: Medical image translation using gans publication-title: Comput. Med. Imaging Graph. – volume: 41 start-page: 540 year: 2015 end-page: 545 ident: b0015 article-title: Sex differences in whole body gait kinematics at preferred speeds publication-title: Gait Posture – volume: 3 start-page: 222 year: 1996 end-page: 223 ident: b0050 article-title: Scaling gait data to body size publication-title: Gait Posture – volume: 63 start-page: 2068 year: 2016 end-page: 2079 ident: b0115 article-title: Full-body musculoskeletal model for muscle-driven simulation of human gait publication-title: IEEE Trans. Biomed. Eng. – volume: 79 start-page: 317 year: 1998 end-page: 322 ident: b0065 article-title: Biomechanical gait alterations independent of speed in the healthy elderly: Evidence for specific limiting impairments publication-title: Arch. Phys. Med. Rehabil. – start-page: 1 year: 2017 end-page: 7 ident: b0165 article-title: Effects of gait speed of femoroacetabular joint forces publication-title: Appl. Bionics Biomech. – volume: 41 start-page: 1639 year: 2008 end-page: 1650 ident: b0150 article-title: The effect of walking speed on the gait of typically developing children publication-title: J. Biomech. – reference: Esteban, C., Hyland, S.L., Rätsch, G., 2017. Real-valued (medical) time series generation with recurrent conditional gans. arXiv preprint arXiv:1706.02633. – volume: 8 start-page: 41 year: 2020 ident: b0090 article-title: Estimation of gait mechanics based on simulated and measured imu data using an artificial neural network publication-title: Front. Bioeng. Biotechnol. – reference: Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., Chen, M., 2022. Hierarchical text-conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 1, 3. – volume: 46 start-page: 2394 year: 2013 end-page: 2401 ident: b0105 article-title: Vector field statistical analysis of kinematic and force trajectories publication-title: J. Biomech. – volume: 21 start-page: 5876 year: 2021 ident: b0160 article-title: The use of synthetic imu signals in the training of deep learning models significantly improves the accuracy of joint kinematic predictions publication-title: Sensors – start-page: 2672 year: 2014 end-page: 2680 ident: b0035 article-title: Generative adversarial nets publication-title: Int. Conf. Neural Inf. Process. Syst. – reference: Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A., 2017. Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE conference on computer vision and pattern recognition. – volume: 29 start-page: 2234 year: 2016 end-page: 2242 ident: b0140 article-title: Improved techniques for training gans publication-title: Advances in neural information processing systems. – volume: 144 year: 2022 ident: b0010 article-title: Generative deep learning applied to biomechanics: A new augmentation technique for motion capture datasets publication-title: J. Biomech. – volume: 16 start-page: 425 year: 2017 end-page: 433 ident: b0070 article-title: Confidence crisis of results in biomechanics research publication-title: Sports Biomech. – volume: 58 start-page: 11 year: 2017 end-page: 20 ident: b0020 article-title: Speed, age, sex, and body mass index provide a rigorous basis for comparing the kinematic and kinetic profiles of the lower extremity during walking publication-title: J. Biomech. – reference: Karras, T., Laine, S., Aila, T., 2019. A style-based generator architecture for generative adversarial networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 4401-4410. – volume: 137 year: 2015 ident: b0045 article-title: Is my model good enough? Best practices for verification and validation of musculoskeletal models and simulations of movement publication-title: J. Biomech. Eng. – volume: 122 year: 2021 ident: b0125 article-title: Sample size estimation for biomechanical waveforms: Current practice, recommendations and a comparison to discrete power analysis publication-title: J. Biomech. – start-page: 286 year: 2017 end-page: 305 ident: b0025 article-title: Generating multi-label discrete patient records using generative adversarial networks publication-title: Machine learning for healthcare conference – reference: Zhou, S., Gordon, M.L., Krishna, R., Narcomey, A., Fei-Fei, L., Bernstein, M.S., 2019. Hype: A benchmark for human eye perceptual evaluation of generative models. arXiv preprint arXiv:1904.01121. – volume: 30 start-page: 441 year: 2009 end-page: 445 ident: b0130 article-title: Simultaneous estimation of effects of gender, age and walking speed on kinematic gait data publication-title: Gait Posture – reference: Mirza, M., Osindero, S., 2014. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784. – volume: 32 year: 2019 ident: b0170 article-title: Modeling tabular data using conditional gan publication-title: Advances in Neural Information Processing Systems – volume: 88 start-page: 109 year: 2021 end-page: 115 ident: b0135 article-title: Age and sex differences in normative gait patterns publication-title: Gait Posture – reference: Raissi, M., Perdikaris, P., Karniadakis, G.E., 2017. Physics informed deep learning (part i): Data-driven solutions of nonlinear partial differential equations. arXiv preprint arXiv:1711.10561. – reference: Nie, D., Trullo, R., Lian, J., Petitjean, C., Ruan, S., Wang, Q., Shen, D., 2017. Medical image synthesis with context-aware generative adversarial networks. In MICCAI 2017 Proceedings, Part III 20. – ident: 10.1016/j.jbiomech.2024.112358_b0060 doi: 10.1109/CVPR.2019.00453 – volume: 46 start-page: 2394 year: 2013 ident: 10.1016/j.jbiomech.2024.112358_b0105 article-title: Vector field statistical analysis of kinematic and force trajectories publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2013.07.031 – volume: 122 year: 2021 ident: 10.1016/j.jbiomech.2024.112358_b0125 article-title: Sample size estimation for biomechanical waveforms: Current practice, recommendations and a comparison to discrete power analysis publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2021.110451 – ident: 10.1016/j.jbiomech.2024.112358_b0120 – volume: 81 start-page: 1 year: 2018 ident: 10.1016/j.jbiomech.2024.112358_b0040 article-title: Machine learning in human movement biomechanics: Best practices, common pitfalls, and new opportunities publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2018.09.009 – volume: 79 start-page: 317 year: 1998 ident: 10.1016/j.jbiomech.2024.112358_b0065 article-title: Biomechanical gait alterations independent of speed in the healthy elderly: Evidence for specific limiting impairments publication-title: Arch. Phys. Med. Rehabil. doi: 10.1016/S0003-9993(98)90013-2 – volume: 8 start-page: 41 year: 2020 ident: 10.1016/j.jbiomech.2024.112358_b0090 article-title: Estimation of gait mechanics based on simulated and measured imu data using an artificial neural network publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2020.00041 – volume: 21 start-page: 5876 year: 2021 ident: 10.1016/j.jbiomech.2024.112358_b0160 article-title: The use of synthetic imu signals in the training of deep learning models significantly improves the accuracy of joint kinematic predictions publication-title: Sensors doi: 10.3390/s21175876 – volume: 41 start-page: 1639 year: 2008 ident: 10.1016/j.jbiomech.2024.112358_b0150 article-title: The effect of walking speed on the gait of typically developing children publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2008.03.015 – volume: 6 start-page: 111 year: 2019 ident: 10.1016/j.jbiomech.2024.112358_b0145 article-title: A multimodal dataset of human gait at different walking speeds established on injury-free adult participants publication-title: Sci. Data doi: 10.1038/s41597-019-0124-4 – ident: 10.1016/j.jbiomech.2024.112358_b0030 – volume: 30 start-page: 441 year: 2009 ident: 10.1016/j.jbiomech.2024.112358_b0130 article-title: Simultaneous estimation of effects of gender, age and walking speed on kinematic gait data publication-title: Gait Posture doi: 10.1016/j.gaitpost.2009.07.002 – volume: 2 start-page: 213 year: 1994 ident: 10.1016/j.jbiomech.2024.112358_b0100 article-title: Gait characteristics as a function of age and gender publication-title: Gait Posture doi: 10.1016/0966-6362(94)90106-6 – volume: 88 start-page: 109 year: 2021 ident: 10.1016/j.jbiomech.2024.112358_b0135 article-title: Age and sex differences in normative gait patterns publication-title: Gait Posture doi: 10.1016/j.gaitpost.2021.05.014 – volume: 14 start-page: e1006223 year: 2018 ident: 10.1016/j.jbiomech.2024.112358_b0155 article-title: Opensim: Simulating musculoskeletal dynamics and neuromuscular control to study human and animal movement publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1006223 – start-page: 286 year: 2017 ident: 10.1016/j.jbiomech.2024.112358_b0025 article-title: Generating multi-label discrete patient records using generative adversarial networks – ident: 10.1016/j.jbiomech.2024.112358_b0080 – volume: 79 year: 2020 ident: 10.1016/j.jbiomech.2024.112358_b0005 article-title: Medgan: Medical image translation using gans publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2019.101684 – volume: 144 year: 2022 ident: 10.1016/j.jbiomech.2024.112358_b0010 article-title: Generative deep learning applied to biomechanics: A new augmentation technique for motion capture datasets publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2022.111301 – start-page: 2672 year: 2014 ident: 10.1016/j.jbiomech.2024.112358_b0035 article-title: Generative adversarial nets publication-title: Int. Conf. Neural Inf. Process. Syst. – volume: 32 year: 2019 ident: 10.1016/j.jbiomech.2024.112358_b0170 article-title: Modeling tabular data using conditional gan publication-title: Advances in Neural Information Processing Systems – volume: 3 start-page: 222 year: 1996 ident: 10.1016/j.jbiomech.2024.112358_b0050 article-title: Scaling gait data to body size publication-title: Gait Posture doi: 10.1016/0966-6362(95)01057-2 – start-page: 1 year: 2017 ident: 10.1016/j.jbiomech.2024.112358_b0165 article-title: Effects of gait speed of femoroacetabular joint forces publication-title: Appl. Bionics Biomech. doi: 10.1155/2017/6432969 – volume: 58 start-page: 11 year: 2017 ident: 10.1016/j.jbiomech.2024.112358_b0020 article-title: Speed, age, sex, and body mass index provide a rigorous basis for comparing the kinematic and kinetic profiles of the lower extremity during walking publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2017.04.014 – volume: 63 start-page: 2068 year: 2016 ident: 10.1016/j.jbiomech.2024.112358_b0115 article-title: Full-body musculoskeletal model for muscle-driven simulation of human gait publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2016.2586891 – ident: 10.1016/j.jbiomech.2024.112358_b0095 doi: 10.1007/978-3-319-66179-7_48 – ident: 10.1016/j.jbiomech.2024.112358_b0110 – volume: 29 start-page: 2234 year: 2016 ident: 10.1016/j.jbiomech.2024.112358_b0140 article-title: Improved techniques for training gans publication-title: Advances in neural information processing systems. – volume: 9 start-page: 9510 year: 2019 ident: 10.1016/j.jbiomech.2024.112358_b0085 article-title: Lower limb sagittal gait kinematics can be predicted based on walking speed, gender, age and bmi publication-title: Sci. Rep. doi: 10.1038/s41598-019-45397-4 – ident: 10.1016/j.jbiomech.2024.112358_b0055 doi: 10.1109/CVPR.2017.632 – volume: 41 start-page: 540 year: 2015 ident: 10.1016/j.jbiomech.2024.112358_b0015 article-title: Sex differences in whole body gait kinematics at preferred speeds publication-title: Gait Posture doi: 10.1016/j.gaitpost.2014.12.011 – volume: 98 start-page: 17 year: 2012 ident: 10.1016/j.jbiomech.2024.112358_b0075 article-title: Clinical evaluation of hip joint rotation range of motion in adults publication-title: Orthop. Traumatol. Surg. Res. doi: 10.1016/j.otsr.2011.08.015 – volume: 137 year: 2015 ident: 10.1016/j.jbiomech.2024.112358_b0045 article-title: Is my model good enough? Best practices for verification and validation of musculoskeletal models and simulations of movement publication-title: J. Biomech. Eng. doi: 10.1115/1.4029304 – volume: 16 start-page: 425 year: 2017 ident: 10.1016/j.jbiomech.2024.112358_b0070 article-title: Confidence crisis of results in biomechanics research publication-title: Sports Biomech. doi: 10.1080/14763141.2016.1246603 – ident: 10.1016/j.jbiomech.2024.112358_b0175 |
SSID | ssj0007479 |
Score | 2.4621043 |
Snippet | Resource-intensive motion capture (mocap) systems challenge predictive deep learning applications, requiring large and diverse datasets. We tackled this by... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 112358 |
SubjectTerms | Adult Biomechanical Phenomena Conditional Generative Adversarial Networks Data compression Datasets Deep Learning Design Female Gait Gait - physiology Generative adversarial networks Humans Kinematics Male Middle Aged Motion Capture Movement Neural networks Neural Networks, Computer Synthetic data Synthetic Mocap Dataset Walking Walking - physiology |
SummonAdditionalLinks | – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9RAFD5oBbEPolsvq1VGEN_GZjJJJvskRSxFqE8W9i1M5iJd7OxqsoX-e8-ZmawVvD1vJsnm3L5zB3iNHoOvXC14Y4TklTOOa-sdL7xC84sSVsbZnWefmtPz6uOyXuaA25DLKiedGBW1XRuKkR9JEU1N1RTvNt84bY2i7GpeoXEb7tDoMuJqtdw5XDQbPpd4CI4woLjRIbx6u4r97TEhUVbUSSNp7fvvjdOfwGc0QicP4H5Gj-w4kfsh3HJhBgfHAT3ny2v2hsV6zhgon8H-jVGDM7h7lpPoB3CVRk2TnmOa9jEPmriQhVQRPrBxzSKWdGy4DggQ8WEsbfthRm8o5cCosHRw48Augvm6JfvHhm1PMR2mg2Vf9MXIzK-zoB_B-cmHz-9PeV6_wA36iCP3vdN9jZCobYwue-q19r4tjVDKotRaGj6FaEV7KYSrRNEqrawvZNk3tW8bKx_DXlgH9xRYv3CmRoDspTEVAqKF9K3tLS2baZrKFXM4mr57t0lTNrqp_GzVTZTqiFJdotQc1ESebuohRa3XoSH458nF7mRGGQk9_NfZw4kTuizrQ_eTM-fwavczSimlXnRw6y1dgzAOwZQSc3iSOGj3R-UCQVtbqGd_v_lzuEdvkkppDmFv_L51LxAQjf3LyPU_APiSCo4 priority: 102 providerName: ProQuest |
Title | Generative adversarial networks to create synthetic motion capture datasets including subject and gait characteristics |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0021929024004366 https://dx.doi.org/10.1016/j.jbiomech.2024.112358 https://www.ncbi.nlm.nih.gov/pubmed/39509807 https://www.proquest.com/docview/3141521460 https://www.proquest.com/docview/3128318171 |
Volume | 177 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bi9QwFA7LCqIPorNeZl2XCOJbd5ombdrHcdllVHYQcWHeQpomMsOaGWxnYV_87Z6TtOMuKAq-tPQSesm5fEnO-Q4hb2DE4ITNWVIYxhNhjU1042ySOgnuFzQsC9ydF_Nidik-LPLFHjkdcmEwrLK3_dGmB2vdn5n0f3OyWS4xxxe0LauQpAt51JF2WwiJUn7y41eYB8DlPsyDJXj3rSzh1ckq5LiHRYlMYDYNx9Lvv3dQfwKgwRGdPyaPegRJp_Eln5A960fkYOph9Pzthr6lIaYzTJaPyMNbdIMjcv-iX0g_INeRbhptHdVYk7nVKInUx6jwlnZrGvCkpe2NB5AID6Ox4g81eoPLDhSDS1vbtXTpzdUWfSBttzXO61DtG_pVLztq7vJBPyWX52dfTmdJX4IhMTBO7BJXW13nAIvKwuisxnxr58rMMCkb0NwGCagAsWjHGbOCpaXUsnEpz-oid2XR8Gdk36-9fUFoXVmTA0h23BgBoKjirmzqBgvOFIWw6ZhMhv-uNpFpQw0haCs19JTCnlKxp8ZEDt2jhjxSsHwKnMFfW1a7lnek7Z_aHg2SoHp9bxVnAQiJAj7j9e4yaCouv2hv11u8B6AcACrJxuR5lKDdh_IKgFuZysP_eLGX5AEexVibI7Lffd_aV4CYuvo4qARs5UIek3vT9x9nc9i_O5t_-vwTdHcY_g |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VIkE5IEh5BAoYCbgtXe87B4QqoEpp01Mr5Wa8Xhs1Kk5gN6D8KX4jM_Y6FInXpeeNnWxmPN83nhfAM_QYTKZzHhWKp1GmlY5kY3QUmxLhF09Y4np3To6L8Wn2fppPN-B7qIWhtMpgE52hbuaK7sh3U-6gJivi14vPEU2NouhqGKHh1eJQr76hy9a-OniL8n2eJPvvTt6Mo36qQKTQ9ekiU2tZ54j0VaFkUlMJsTFVonhZNqiMDfVUQhCWJuVcZzyuSlk2Jk6TushNVTQp7nsFriLwxuTsldO1g0e96PuUEh4h7YgvVCTPXs5cPb0LgCQZVe6kNGb-92D4J7LrQG__Ftzs2Srb8-p1Gza0HcD2nkVP_dOKvWAuf9RdzA_gxoXWhgO4NumD9tvw1be2JrvKJM1_biVpPbM-A71l3Zw57qpZu7JISPHLmJ8uxJRcUIiDUSJrq7uWnVl1viS8Ze2ypjskJm3DPsqzjqlfe0_fgdNLEcxd2LRzq-8Dq0da5UjITapUhgRslJqqqRsablMUmY6HsBv-d7HwXT1ESHebiSApQZISXlJDKIN4RKhZRSsrEHj-uXK0XtmzGs9W_mvtTtAE0duWVvw8CUN4un6MVoFCPdLq-ZI-g7QRyVvJh3DPa9D6RdMRksQqLh_8ffMncH18MjkSRwfHhw9hi36VT-PZgc3uy1I_QjLW1Y_dCWDw4bKP3A9H8EZv |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JbxMxFH4qqVTBAUHKEihgJOA2ZDybJweECm3UUhpViEq9uR6PjRq1k8BMQPlr_Dres2dCkdguPSeeLG_5vue3ATzDiMEmJuVBpnkcJEabQJXWBKEVCL9oYZGb3Xk4yfaOk3cn6ckafO96YaissvOJzlGXM0135MOYO6hJsnBo27KIo53x6_nngDZIUaa1W6fhVeTALL9h-Fa_2t9BWT-PovHux7d7QbthINAYBjWBLYwqUkT9PNMqKqid2No80lyIEhWzpPlKCMjKxpybhIe5UKK0YRwVWWrzrIzxuddgXVBU1IP1N7uTow8rHECi3haY8ABJSHipP3n6cuq66106JEqojyempfO_h8Y_UV8HgeNbcLPlrmzbK9ttWDNVHza3K4zbL5bsBXPVpO6avg83Lg067MPGYZvC34SvftA1eVmmaBt0rcgGWOXr0WvWzJhjsobVywrpKX4Y87uGmFZzSngwKmutTVOzs0qfLwh9Wb0o6EaJqapkn9RZw_Svk6jvwPGViOYu9KpZZe4DK0ZGp0jPbax1gnRsFNu8LEpadZNliQkHMOz-dzn3Mz5kV_w2lZ2kJElKekkNQHTikV0HK_pciTD0z5Oj1cmW43ju8l9ntzpNkK2nqeVPuxjA09XL6CMo8aMqM1vQe5BEIpUTfAD3vAatfmg8QsqYh-LB3x_-BDbQ3OT7_cnBQ7hOX8rX9GxBr_myMI-QmTXF49YEGJxetdX9AAlJTAo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generative+adversarial+networks+to+create+synthetic+motion+capture+datasets+including+subject+and+gait+characteristics&rft.jtitle=Journal+of+biomechanics&rft.au=Bicer%2C+Metin&rft.au=Phillips%2C+Andrew+T.M.&rft.au=Melis%2C+Alessandro&rft.au=McGregor%2C+Alison+H.&rft.date=2024-12-01&rft.issn=0021-9290&rft.volume=177&rft.spage=112358&rft_id=info:doi/10.1016%2Fj.jbiomech.2024.112358&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jbiomech_2024_112358 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9290&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9290&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9290&client=summon |