NiCo/NiCo–OH and NiFe/NiFe–OH core shell nanostructures for water splitting electrocatalysis at large currents
[Display omitted] Core-shell bimetallic alloy/oxyhydroxide electrocatalyst can stably drive the water splitting electrocatalysis at 1000 mA cm−2 for 300 h without significant performance decay. •Alloy/(oxy)hydroxide electrodes were designed by a rapid electrodeposition method.•The core-shell heteros...
Saved in:
Published in | Applied catalysis. B, Environmental Vol. 278; p. 119326 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
05.12.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
Core-shell bimetallic alloy/oxyhydroxide electrocatalyst can stably drive the water splitting electrocatalysis at 1000 mA cm−2 for 300 h without significant performance decay.
•Alloy/(oxy)hydroxide electrodes were designed by a rapid electrodeposition method.•The core-shell heterostructure exposes abundant active sites and accelerates the charge transfer.•The device can steadily catalyze water splitting at 1 A cm−2 for at least 300 h.
A big challenge in practical water splitting is the sluggish reaction kinetics at high current densities that essentially requires efficient electrocatalysts to lower the overpotentials. While exciting progress has been made in noble metal-based catalysts, earth-abundant materials that can actively catalyze the water splitting at high current densities (e.g. ≥500 mA cm−2) are rare. In this work, we show that a rational design of the catalysts could promote the charge transfer, facilitate the gas release, as well as boost the surface active sites, and therefore significantly enhance the electrocatalytic activity toward both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Using NiCo/NiCo−OH and NiFe/NiFe−OH as examples, we achieved ultralow overpotentials of 184 and 296 mV at 500 mA cm−2 in 1M KOH for HER and OER, respectively. More importantly, the alkaline electrolyzer based on these two materials is able to actively drive the overall water splitting at 1000 mA cm−2 for at least 300 h at a low cell voltage without significant performance decay, which is much superior to the state-of-the-art 20 % Pt/C||RuO2 combination. Our work points out a promising pathway to achieve inexpensive electrocatalysts for practical water splitting at high currents. |
---|---|
AbstractList | A big challenge in practical water splitting is the sluggish reaction kinetics at high current densities that essentially requires efficient electrocatalysts to lower the overpotentials. While exciting progress has been made in noble metal-based catalysts, earth-abundant materials that can actively catalyze the water splitting at high current densities (e.g. ≥500 mA cm−2) are rare. In this work, we show that a rational design of the catalysts could promote the charge transfer, facilitate the gas release, as well as boost the surface active sites, and therefore significantly enhance the electrocatalytic activity toward both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Using NiCo/NiCo−OH and NiFe/NiFe−OH as examples, we achieved ultralow overpotentials of 184 and 296 mV at 500 mA cm−2 in 1M KOH for HER and OER, respectively. More importantly, the alkaline electrolyzer based on these two materials is able to actively drive the overall water splitting at 1000 mA cm−2 for at least 300 h at a low cell voltage without significant performance decay, which is much superior to the state-of-the-art 20 % Pt/C||RuO2 combination. Our work points out a promising pathway to achieve inexpensive electrocatalysts for practical water splitting at high currents. [Display omitted] Core-shell bimetallic alloy/oxyhydroxide electrocatalyst can stably drive the water splitting electrocatalysis at 1000 mA cm−2 for 300 h without significant performance decay. •Alloy/(oxy)hydroxide electrodes were designed by a rapid electrodeposition method.•The core-shell heterostructure exposes abundant active sites and accelerates the charge transfer.•The device can steadily catalyze water splitting at 1 A cm−2 for at least 300 h. A big challenge in practical water splitting is the sluggish reaction kinetics at high current densities that essentially requires efficient electrocatalysts to lower the overpotentials. While exciting progress has been made in noble metal-based catalysts, earth-abundant materials that can actively catalyze the water splitting at high current densities (e.g. ≥500 mA cm−2) are rare. In this work, we show that a rational design of the catalysts could promote the charge transfer, facilitate the gas release, as well as boost the surface active sites, and therefore significantly enhance the electrocatalytic activity toward both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Using NiCo/NiCo−OH and NiFe/NiFe−OH as examples, we achieved ultralow overpotentials of 184 and 296 mV at 500 mA cm−2 in 1M KOH for HER and OER, respectively. More importantly, the alkaline electrolyzer based on these two materials is able to actively drive the overall water splitting at 1000 mA cm−2 for at least 300 h at a low cell voltage without significant performance decay, which is much superior to the state-of-the-art 20 % Pt/C||RuO2 combination. Our work points out a promising pathway to achieve inexpensive electrocatalysts for practical water splitting at high currents. |
ArticleNumber | 119326 |
Author | Zeng, Ye Ming, Fangwang Zhu, Weijie Wang, Zhoucheng Yu, Huanhuan Chen, Weixin Liang, Hanfeng |
Author_xml | – sequence: 1 givenname: Weijie surname: Zhu fullname: Zhu, Weijie organization: College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China – sequence: 2 givenname: Weixin surname: Chen fullname: Chen, Weixin organization: College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China – sequence: 3 givenname: Huanhuan surname: Yu fullname: Yu, Huanhuan organization: College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China – sequence: 4 givenname: Ye surname: Zeng fullname: Zeng, Ye organization: College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China – sequence: 5 givenname: Fangwang orcidid: 0000-0003-4574-9720 surname: Ming fullname: Ming, Fangwang organization: Materials Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia – sequence: 6 givenname: Hanfeng orcidid: 0000-0002-1778-3975 surname: Liang fullname: Liang, Hanfeng email: hanfeng.liang@kaust.edu.sa, hfliang@xmu.edu.cn organization: College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China – sequence: 7 givenname: Zhoucheng surname: Wang fullname: Wang, Zhoucheng email: zcwang@xmu.edu.cn organization: College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China |
BookMark | eNqFkM1qGzEUhUVJIU7SN8hC0PXY-rNGzqIQTNMUQrLJXkjynVRmIrlXmpTs-g59wzxJZaarLtrNvXA45_58Z-Qk5QSEXHK25Izr1X7pDsFVvxRMNIlvpNDvyIKbXnbSGHlCFmwjdCdlL0_JWSl7xpiQwiwI3sdtXh3L289fD7fUpR29jzewOpZZChmBlm8wjjS5lEvFKdQJodAhI_3hKiAthzHWGtMThRFCxdzOceNriYW6SkeHT0DDhAiplgvyfnBjgQ9_-jl5vPn8uL3t7h6-fN1e33VBKV27wXuntNaKMeiV8T70blhLIfoBtJFKG93aWnlveuUHMSguvRJCNWWz8_KcfJzHHjB_n6BUu88TprbRNo_ZrPmam-a6ml0BcykIgw2xuhpzqujiaDmzR8R2b2fE9ojYzohbWP0VPmB8dvj6v9inOQbt-5cIaEuIkALsIjZ4dpfjvwf8Bq9lm-o |
CitedBy_id | crossref_primary_10_1016_j_apcatb_2020_119647 crossref_primary_10_1016_j_apcatb_2022_121608 crossref_primary_10_1016_j_jmst_2020_11_071 crossref_primary_10_1002_smll_202403612 crossref_primary_10_1016_j_cej_2022_136031 crossref_primary_10_1016_j_electacta_2023_141862 crossref_primary_10_1142_S179329202230002X crossref_primary_10_1002_adfm_202214792 crossref_primary_10_1016_j_apcatb_2021_119882 crossref_primary_10_1016_j_cej_2021_131133 crossref_primary_10_1002_smll_202403971 crossref_primary_10_1016_j_cej_2021_131253 crossref_primary_10_1016_j_apcatb_2021_119920 crossref_primary_10_1002_cssc_202002873 crossref_primary_10_1016_j_ccr_2024_216112 crossref_primary_10_1021_acsaem_1c02930 crossref_primary_10_1039_D1TA00693B crossref_primary_10_1016_j_jcis_2023_04_086 crossref_primary_10_1021_acsanm_2c00774 crossref_primary_10_3390_nano13132012 crossref_primary_10_1016_j_cej_2021_133047 crossref_primary_10_1016_j_jallcom_2024_177889 crossref_primary_10_1039_D3NJ03909A crossref_primary_10_1039_D4QI02487G crossref_primary_10_1016_j_apsusc_2021_150440 crossref_primary_10_1021_acsaem_1c02531 crossref_primary_10_1016_j_mtnano_2021_100146 crossref_primary_10_1039_D2TA05872C crossref_primary_10_1016_j_jcis_2024_07_174 crossref_primary_10_1002_smtd_202200484 crossref_primary_10_1016_j_apcatb_2021_120641 crossref_primary_10_1016_j_ijhydene_2022_03_139 crossref_primary_10_1016_j_ces_2022_117769 crossref_primary_10_1039_D2TA09276J crossref_primary_10_1016_j_jallcom_2024_178041 crossref_primary_10_1007_s43979_024_00101_y crossref_primary_10_1016_j_jallcom_2021_162533 crossref_primary_10_1002_smll_202101003 crossref_primary_10_1007_s11051_022_05505_4 crossref_primary_10_1021_acsanm_3c05983 crossref_primary_10_1016_j_cej_2021_134247 crossref_primary_10_1039_D2TA06813C crossref_primary_10_1016_j_jelechem_2022_116573 crossref_primary_10_1016_j_jmst_2024_03_084 crossref_primary_10_1007_s12274_023_5453_0 crossref_primary_10_1016_j_cej_2022_135517 crossref_primary_10_1016_j_jcis_2022_02_007 crossref_primary_10_1002_cssc_202402533 crossref_primary_10_1016_j_ijhydene_2022_08_261 crossref_primary_10_1016_j_apcatb_2021_120937 crossref_primary_10_1016_j_apsusc_2022_155044 crossref_primary_10_1016_j_ijhydene_2023_01_318 crossref_primary_10_1007_s12678_022_00808_5 crossref_primary_10_1002_slct_202200091 crossref_primary_10_1016_j_jechem_2022_02_010 crossref_primary_10_1016_j_jcis_2023_03_018 crossref_primary_10_1039_D0SE01805H crossref_primary_10_1016_j_ijhydene_2022_07_262 crossref_primary_10_1002_smll_202406465 crossref_primary_10_1016_j_apsusc_2022_154905 crossref_primary_10_1002_anie_202406711 crossref_primary_10_1016_j_jechem_2022_03_025 crossref_primary_10_1021_jacs_4c00948 crossref_primary_10_1039_D1SE01855H crossref_primary_10_1002_cey2_532 crossref_primary_10_1007_s12598_023_02587_4 crossref_primary_10_1039_D1TA02995A crossref_primary_10_1016_j_apcatb_2021_120148 crossref_primary_10_1016_j_ijhydene_2024_03_179 crossref_primary_10_1016_j_apcatb_2021_120660 crossref_primary_10_1080_15567036_2021_1897195 crossref_primary_10_1016_j_joei_2024_101693 crossref_primary_10_1016_j_fuel_2024_133135 crossref_primary_10_1016_j_apsusc_2024_160649 crossref_primary_10_1016_j_apcatb_2021_120668 crossref_primary_10_1016_j_jallcom_2022_167942 crossref_primary_10_1016_j_cej_2021_130357 crossref_primary_10_1016_j_renene_2022_05_124 crossref_primary_10_1039_D0QI01179G crossref_primary_10_1002_smll_202403005 crossref_primary_10_1016_j_ijhydene_2022_07_252 crossref_primary_10_1039_D1DT04346C crossref_primary_10_12677_NAT_2022_123013 crossref_primary_10_1016_j_cej_2022_139175 crossref_primary_10_1002_aenm_202201713 crossref_primary_10_1016_j_cej_2024_157106 crossref_primary_10_1016_j_apcatb_2021_120395 crossref_primary_10_1149_1945_7111_aceeb9 crossref_primary_10_1002_ange_202406711 crossref_primary_10_2139_ssrn_4174946 crossref_primary_10_1016_j_esci_2023_100156 crossref_primary_10_1002_smll_202203173 crossref_primary_10_1016_j_ces_2024_120919 crossref_primary_10_1016_j_mtener_2024_101737 crossref_primary_10_1039_D1NR00605C crossref_primary_10_1002_cctc_202100707 crossref_primary_10_1016_j_ijhydene_2023_10_233 crossref_primary_10_1016_j_jcis_2022_05_051 crossref_primary_10_3390_nano14030243 crossref_primary_10_1016_j_ijhydene_2024_11_348 crossref_primary_10_1021_acs_inorgchem_2c02560 crossref_primary_10_1016_j_fuel_2024_133302 crossref_primary_10_1007_s10800_021_01601_w crossref_primary_10_1016_j_ijhydene_2022_02_144 crossref_primary_10_1021_acsomega_3c00322 crossref_primary_10_1002_aenm_202402633 crossref_primary_10_1016_j_jallcom_2022_168683 crossref_primary_10_1016_S1872_2067_24_60076_8 crossref_primary_10_1002_cey2_392 crossref_primary_10_1039_D4DT01366B crossref_primary_10_1039_D4TA04428B crossref_primary_10_1002_smll_202407349 crossref_primary_10_1039_D1NR02592A crossref_primary_10_1016_j_apcatb_2021_120160 crossref_primary_10_1016_j_jallcom_2024_173888 crossref_primary_10_1021_acsaem_1c01884 crossref_primary_10_1039_D2CC02423C crossref_primary_10_1016_j_apcatb_2021_120049 crossref_primary_10_1038_s41467_022_31077_x crossref_primary_10_1016_j_apsusc_2022_155537 crossref_primary_10_1016_j_ijhydene_2021_03_113 crossref_primary_10_1039_D1NA00006C crossref_primary_10_1002_aesr_202200178 crossref_primary_10_1016_j_apcatb_2024_124074 crossref_primary_10_1016_j_cclet_2021_12_028 crossref_primary_10_1002_adfm_202308198 crossref_primary_10_1007_s10971_022_05793_1 crossref_primary_10_1016_j_electacta_2024_144803 crossref_primary_10_1021_acssuschemeng_1c01867 crossref_primary_10_3390_ma15072342 crossref_primary_10_1007_s10008_024_06106_y crossref_primary_10_1039_D1SE01608C crossref_primary_10_1016_j_jechem_2024_10_047 crossref_primary_10_1002_smll_202309906 crossref_primary_10_1016_j_jallcom_2022_165061 crossref_primary_10_1021_acsanm_1c03625 crossref_primary_10_1016_j_apcatb_2021_120455 crossref_primary_10_1016_j_jiec_2025_03_026 crossref_primary_10_1002_advs_202308477 crossref_primary_10_1039_D3QI00714F crossref_primary_10_1016_j_rinma_2024_100625 crossref_primary_10_1039_D4TA02679A crossref_primary_10_1016_j_jpcs_2023_111242 crossref_primary_10_3390_app13169343 crossref_primary_10_1016_j_memsci_2024_122903 crossref_primary_10_1016_j_jssc_2021_122108 crossref_primary_10_1016_j_ijhydene_2021_11_167 crossref_primary_10_1016_j_cej_2024_157275 crossref_primary_10_1002_aenm_202202286 crossref_primary_10_1016_j_apcatb_2021_120063 crossref_primary_10_1016_j_apcatb_2021_120580 crossref_primary_10_1016_j_apsusc_2025_162383 crossref_primary_10_1149_1945_7111_ad2597 crossref_primary_10_1016_j_apsusc_2021_150706 crossref_primary_10_1016_j_apcatb_2021_120106 crossref_primary_10_1016_j_apcatb_2024_123972 crossref_primary_10_3390_nano13152244 crossref_primary_10_1016_j_cej_2024_149486 crossref_primary_10_1016_j_apsusc_2022_154669 crossref_primary_10_1016_j_ijhydene_2021_04_092 crossref_primary_10_3390_coatings13061102 crossref_primary_10_1016_j_cej_2021_128879 crossref_primary_10_1016_j_ijhydene_2024_02_196 crossref_primary_10_1016_j_jcis_2024_08_005 crossref_primary_10_1021_acs_energyfuels_3c02823 crossref_primary_10_1088_2399_1984_ac9022 crossref_primary_10_1016_j_jcis_2025_02_165 crossref_primary_10_1016_j_ijhydene_2022_03_075 crossref_primary_10_1002_cctc_202100981 crossref_primary_10_1016_j_fuel_2022_127253 crossref_primary_10_1016_j_jcis_2022_06_051 crossref_primary_10_1039_D3QM00722G crossref_primary_10_1002_adfm_202009779 crossref_primary_10_1007_s10311_022_01454_5 crossref_primary_10_1039_D1NR08035K crossref_primary_10_1039_D3TA05699F crossref_primary_10_1016_j_apcatb_2022_121226 crossref_primary_10_1016_j_cej_2023_142280 crossref_primary_10_1039_D3SE01488F crossref_primary_10_1016_j_electacta_2021_138932 crossref_primary_10_1016_j_ijhydene_2025_01_455 crossref_primary_10_1016_j_cej_2020_128331 crossref_primary_10_1016_j_apcatb_2022_122311 crossref_primary_10_1039_D2SE01200F |
Cites_doi | 10.1021/acs.nanolett.6b03803 10.1016/j.apcatb.2016.11.050 10.1021/ja510442p 10.1002/anie.201610211 10.1109/JPROC.2011.2156750 10.1016/j.apcatb.2019.117970 10.1007/s40843-017-9017-6 10.1016/j.apcatb.2019.118199 10.1016/j.apcatb.2018.04.009 10.1002/sia.1984 10.1021/acsenergylett.7b00206 10.1016/j.apcatb.2018.05.080 10.1021/nl504872s 10.1038/nchem.1634 10.1039/C6TA06496E 10.1002/cctc.201901707 10.1021/ja407115p 10.1038/s41560-019-0355-9 10.1016/j.joule.2017.07.011 10.1039/C7TA02968C 10.1021/acs.chemmater.5b02177 10.1021/jacs.5b10699 10.1016/j.nanoen.2019.103880 10.1016/j.apcatb.2016.05.027 10.1016/j.apsusc.2010.10.051 10.1021/acsenergylett.7b00679 10.1039/C5TA07586F 10.1021/ar00051a007 10.1002/sia.3026 10.1016/j.apcatb.2018.09.064 10.1016/j.susc.2006.01.041 10.1038/s41467-018-06728-7 10.1039/C6CS00328A 10.1039/C5TA09125J 10.1021/acscatal.7b02079 10.1002/adfm.201803291 10.1021/acs.chemmater.8b01334 10.1016/j.apcatb.2016.03.032 10.1039/C4SC01065E 10.1016/0360-3199(83)90162-3 10.1039/C8TA11223A 10.1002/adfm.201902180 10.1016/j.apcatb.2018.09.082 10.1021/acscatal.5b01657 10.1007/s40820-019-0299-4 10.1039/C4CS00448E 10.1021/acsami.9b06502 10.1039/c2jm30221g 10.1002/celc.201801104 10.1021/acs.chemmater.6b01963 10.1021/acscatal.8b04502 10.1016/j.nanoen.2017.05.022 10.1016/j.nanoen.2012.12.004 10.1016/j.nanoen.2014.11.021 10.1002/aenm.201703189 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright Elsevier BV Dec 5, 2020 |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright Elsevier BV Dec 5, 2020 |
DBID | AAYXX CITATION 7SR 7ST 7U5 8BQ 8FD C1K FR3 JG9 KR7 L7M SOI |
DOI | 10.1016/j.apcatb.2020.119326 |
DatabaseName | CrossRef Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Materials Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Environmental Sciences |
EISSN | 1873-3883 |
ExternalDocumentID | 10_1016_j_apcatb_2020_119326 S0926337320307414 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABNUV ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPD SSG SSZ T5K ~02 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AHHHB AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- SCE SEW SSH VH1 WUQ XPP 7SR 7ST 7U5 8BQ 8FD C1K EFKBS FR3 JG9 KR7 L7M SOI |
ID | FETCH-LOGICAL-c446t-fbba4666400e748bbc7af53227fe683468668354bb874bf2f413b42244bb9db3 |
IEDL.DBID | .~1 |
ISSN | 0926-3373 |
IngestDate | Wed Aug 13 02:39:14 EDT 2025 Tue Jul 01 04:35:07 EDT 2025 Thu Apr 24 22:58:20 EDT 2025 Sat Mar 02 16:00:53 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Hydrogen evolution reaction Large current densities Core-shell electrocatalysts Oxygen evolution reaction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c446t-fbba4666400e748bbc7af53227fe683468668354bb874bf2f413b42244bb9db3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1778-3975 0000-0003-4574-9720 |
OpenAccessLink | http://hdl.handle.net/10754/664332 |
PQID | 2448951518 |
PQPubID | 2045281 |
ParticipantIDs | proquest_journals_2448951518 crossref_citationtrail_10_1016_j_apcatb_2020_119326 crossref_primary_10_1016_j_apcatb_2020_119326 elsevier_sciencedirect_doi_10_1016_j_apcatb_2020_119326 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-12-05 |
PublicationDateYYYYMMDD | 2020-12-05 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Applied catalysis. B, Environmental |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Liang, Meng, Cabán-Acevedo, Li, Forticaux, Xiu, Wang, Jin (bib0075) 2015; 15 Liang, Gandi, Xia, Hedhili, Anjum, Schwingenschlögl, Alshareef (bib0140) 2017; 2 Zhuo, Cabán-Acevedo, Liang, Samad, Ding, Fu, Li, Jin (bib0120) 2015; 5 Li, Yin, Wang, Lu, Zhang, Liu, Yan, Song, Luo (bib0105) 2018; 239 Zhao, Rui, Dou, Sun (bib0045) 2018; 28 Cheng, Pan, Lei, Jin, Yang, Li, Zhang, Lei, Yuan, Hou (bib0145) 2019; 7 Zhang, Shi, Xue, Zhang, Liang, Zhang (bib0220) 2017; 60 McCrory, Jung, Ferrer, Chatman, Peters, Jaramillo (bib0015) 2015; 137 Pu, Wei, Chen, Mu (bib0125) 2016; 196 Ursua, Gandia, Sanchis (bib0010) 2011; 100 Yu, Wang, Liu, Sun, Yang, Qiu (bib0180) 2019; 63 Cheng, Lei, Yang, Yang, Li, Lu, Zhang, Lei, Hou, Ostrikov (bib0100) 2018; 5 Liang, Shi, Zhang, Ming, Wang, Zhuo, Wang (bib0095) 2016; 28 Liu, Wang, Wu, Li, Zhao, Zhao, Li (bib0170) 2020; 260 Gupta, Patel, Fernandes, Kadrekar, Dashora, Yadav, Bhattacharyya, Jha, Miotello, Kothari (bib0155) 2016; 192 Chang, Lv, Li, Ge, Liu, Xing (bib0285) 2017; 204 Jung, McCrory, Ferrer, Peters, Jaramillo (bib0020) 2016; 4 Wang, Zhang, Zhang, Zhang, Tang, Li, Wang (bib0200) 2019; 9 Liu, Hu, Wu, Wang, Zhang, Cui, He, Du (bib0265) 2019; 258 Liang, Gandi, Anjum, Wang, Schwingenschlögl, Alshareef (bib0110) 2016; 16 Jin (bib0115) 2017; 2 Niu, Jiang, Tang, Yuan, Luo, Hu (bib0215) 2019; 29 Grosvenor, Biesinger, Smart, McIntyre (bib0230) 2006; 600 Huang, Song, Du, Xi, Dou, Nsanzimana, Wang, Xu, Wang (bib0240) 2019; 4 Yan, Sun, Wei, Zhang, Fan, Wei (bib0210) 2012; 22 Song, Li, Yang, Han, Liao, Sun (bib0190) 2018; 9 Rafailović, Gammer, Rentenberger, Trišović, Kleber, Peter Karnthaler (bib0195) 2013; 2 Lei, Lyu, Si, Yang, Li, Lei, Wen, Wu, Hou (bib0040) 2019; 11 Hu, Zhang, Jiang, Lin, An, Zhou, Leung, Yang (bib0245) 2017; 1 Xu, Jiang, Zhang, Hu, Li (bib0260) 2019; 242 Yao, Wang, Hu, Komarneni (bib0150) 2018; 233 Dang, Liang, Zhuo, Lamb, Sheng, Yang, Jin (bib0135) 2018; 30 Cao, Wang, Chen, Lei, Yang, Li, Lei, Hou, Ostrikov (bib0165) 2019 Shi, Liang, Ming, Wang (bib0065) 2017; 56 Sayeed, Herd, O’Mullane (bib0205) 2016; 4 Sun, Yan, Liu, Xu, Cheng, Chen (bib0175) 2019 Xu, Jiang, Zhang, Hu, Li (bib0270) 2019; 242 Nong, Gan, Willinger, Teschner, Strasser (bib0280) 2014; 5 Grosvenor, Kobe, Biesinger, McIntyre (bib0250) 2004; 36 Ming, Liang, Shi, Xu, Mei, Wang (bib0080) 2016; 4 Chen, Wang, Miao, Yang, Liu (bib0290) 2015; 11 Zou, Zhang (bib0050) 2015; 44 Mallouk (bib0030) 2013; 5 Yang, Dang, Shearer, Sheng, Li, Chen, Xiao, Zhang, Hamers, Jin (bib0130) 2018; 8 LeRoy (bib0035) 1983; 8 Brenner (bib0185) 2013 Chen, Dang, Liang, Bi, Gerken, Jin, Alp, Stahl (bib0070) 2015; 137 McCrory, Jung, Peters, Jaramillo (bib0025) 2013; 135 Liang, Li, Meng, Dang, Zhuo, Forticaux, Wang, Jin (bib0085) 2015; 27 Biesinger, Payne, Lau, Gerson, Smart (bib0225) 2009; 41 Xu, Liang, Ming, Qi, Xie, Wang (bib0090) 2017; 7 Wang, Cao, Lei, Dai, Yang, Li, Zhang, Yuan, Lei, Hou (bib0160) 2019; 11 Yang, Zhang, Xiao, Shi, Cao, Tang, Gao (bib0255) 2019; 242 Zhang, Li, Nordlund, Chen, Fan, Zhang, Sheng, Daniel, Sun (bib0295) 2018; 9 Bard, Fox (bib0005) 1995; 28 Biesinger, Payne, Grosvenor, Lau, Gerson, Smart (bib0235) 2011; 257 Yu, Cheng, Luo (bib0275) 2017; 5 Suen, Hung, Quan, Zhang, Xu, Chen (bib0055) 2017; 46 Tahir, Pan, Idrees, Zhang, Wang, Zou, Wang (bib0060) 2017; 37 Liu (10.1016/j.apcatb.2020.119326_bib0170) 2020; 260 Yao (10.1016/j.apcatb.2020.119326_bib0150) 2018; 233 LeRoy (10.1016/j.apcatb.2020.119326_bib0035) 1983; 8 Huang (10.1016/j.apcatb.2020.119326_bib0240) 2019; 4 Rafailović (10.1016/j.apcatb.2020.119326_bib0195) 2013; 2 Nong (10.1016/j.apcatb.2020.119326_bib0280) 2014; 5 Liang (10.1016/j.apcatb.2020.119326_bib0095) 2016; 28 Lei (10.1016/j.apcatb.2020.119326_bib0040) 2019; 11 Suen (10.1016/j.apcatb.2020.119326_bib0055) 2017; 46 Shi (10.1016/j.apcatb.2020.119326_bib0065) 2017; 56 Li (10.1016/j.apcatb.2020.119326_bib0105) 2018; 239 Sun (10.1016/j.apcatb.2020.119326_bib0175) 2019 Liang (10.1016/j.apcatb.2020.119326_bib0075) 2015; 15 Chen (10.1016/j.apcatb.2020.119326_bib0290) 2015; 11 McCrory (10.1016/j.apcatb.2020.119326_bib0015) 2015; 137 Hu (10.1016/j.apcatb.2020.119326_bib0245) 2017; 1 Bard (10.1016/j.apcatb.2020.119326_bib0005) 1995; 28 Ming (10.1016/j.apcatb.2020.119326_bib0080) 2016; 4 Grosvenor (10.1016/j.apcatb.2020.119326_bib0250) 2004; 36 Jin (10.1016/j.apcatb.2020.119326_bib0115) 2017; 2 Yang (10.1016/j.apcatb.2020.119326_bib0255) 2019; 242 Jung (10.1016/j.apcatb.2020.119326_bib0020) 2016; 4 Wang (10.1016/j.apcatb.2020.119326_bib0160) 2019; 11 Yu (10.1016/j.apcatb.2020.119326_bib0180) 2019; 63 Tahir (10.1016/j.apcatb.2020.119326_bib0060) 2017; 37 Zhao (10.1016/j.apcatb.2020.119326_bib0045) 2018; 28 Dang (10.1016/j.apcatb.2020.119326_bib0135) 2018; 30 Cao (10.1016/j.apcatb.2020.119326_bib0165) 2019 Yu (10.1016/j.apcatb.2020.119326_bib0275) 2017; 5 Pu (10.1016/j.apcatb.2020.119326_bib0125) 2016; 196 Cheng (10.1016/j.apcatb.2020.119326_bib0100) 2018; 5 Biesinger (10.1016/j.apcatb.2020.119326_bib0225) 2009; 41 Grosvenor (10.1016/j.apcatb.2020.119326_bib0230) 2006; 600 Cheng (10.1016/j.apcatb.2020.119326_bib0145) 2019; 7 Sayeed (10.1016/j.apcatb.2020.119326_bib0205) 2016; 4 Mallouk (10.1016/j.apcatb.2020.119326_bib0030) 2013; 5 Liang (10.1016/j.apcatb.2020.119326_bib0110) 2016; 16 Zhang (10.1016/j.apcatb.2020.119326_bib0220) 2017; 60 Gupta (10.1016/j.apcatb.2020.119326_bib0155) 2016; 192 Xu (10.1016/j.apcatb.2020.119326_bib0090) 2017; 7 Zhuo (10.1016/j.apcatb.2020.119326_bib0120) 2015; 5 Zou (10.1016/j.apcatb.2020.119326_bib0050) 2015; 44 Song (10.1016/j.apcatb.2020.119326_bib0190) 2018; 9 Niu (10.1016/j.apcatb.2020.119326_bib0215) 2019; 29 Yang (10.1016/j.apcatb.2020.119326_bib0130) 2018; 8 Chang (10.1016/j.apcatb.2020.119326_bib0285) 2017; 204 Yan (10.1016/j.apcatb.2020.119326_bib0210) 2012; 22 Liang (10.1016/j.apcatb.2020.119326_bib0085) 2015; 27 Biesinger (10.1016/j.apcatb.2020.119326_bib0235) 2011; 257 Chen (10.1016/j.apcatb.2020.119326_bib0070) 2015; 137 Liang (10.1016/j.apcatb.2020.119326_bib0140) 2017; 2 Liu (10.1016/j.apcatb.2020.119326_bib0265) 2019; 258 Ursua (10.1016/j.apcatb.2020.119326_bib0010) 2011; 100 Wang (10.1016/j.apcatb.2020.119326_bib0200) 2019; 9 Xu (10.1016/j.apcatb.2020.119326_bib0260) 2019; 242 Zhang (10.1016/j.apcatb.2020.119326_bib0295) 2018; 9 McCrory (10.1016/j.apcatb.2020.119326_bib0025) 2013; 135 Xu (10.1016/j.apcatb.2020.119326_bib0270) 2019; 242 Brenner (10.1016/j.apcatb.2020.119326_bib0185) 2013 |
References_xml | – volume: 5 start-page: 2955 year: 2014 end-page: 2963 ident: bib0280 article-title: IrO publication-title: Chem. Sci. – volume: 27 start-page: 5702 year: 2015 end-page: 5711 ident: bib0085 article-title: Porous two-dimensional nanosheets converted from layered double hydroxides and their applications in electrocatalytic water splitting publication-title: Chem. Mater. – volume: 8 start-page: 401 year: 1983 end-page: 417 ident: bib0035 article-title: Industrial water electrolysis: present and future publication-title: Int. J. Hydrogen Energy – volume: 9 start-page: 1 year: 2018 end-page: 10 ident: bib0295 article-title: Dendritic core-shell nickel-iron-copper metal/metal oxide electrode for efficient electrocatalytic water oxidation publication-title: Nat. Commun. – volume: 5 start-page: 3866 year: 2018 end-page: 3872 ident: bib0100 article-title: Efficient Electrocatalytic Oxygen evolution at extremely high current density over 3D ultrasmall zero‐valent iron‐coupled nickel sulfide nanosheets publication-title: ChemElectroChem – volume: 233 start-page: 226 year: 2018 end-page: 233 ident: bib0150 article-title: Novel hydrothermal electrodeposition to fabricate mesoporous film of Ni publication-title: Appl. Catal. B – volume: 56 start-page: 573 year: 2017 end-page: 577 ident: bib0065 article-title: Efficient overall water‐splitting electrocatalysis using lepidocrocite VOOH hollow nanospheres publication-title: Angew. Chem. Int. Ed. – volume: 37 start-page: 136 year: 2017 end-page: 157 ident: bib0060 article-title: Electrocatalytic oxygen evolution reaction for energy conversion and storage: a comprehensive review publication-title: Nano Energy – volume: 600 start-page: 1771 year: 2006 end-page: 1779 ident: bib0230 article-title: New interpretations of XPS spectra of nickel metal and oxides publication-title: Surf. Sci. – volume: 5 start-page: 6355 year: 2015 end-page: 6361 ident: bib0120 article-title: High-performance electrocatalysis for hydrogen evolution reaction using Se-doped pyrite-phase nickel diphosphide nanostructures publication-title: ACS Catal. – volume: 60 start-page: 324 year: 2017 end-page: 334 ident: bib0220 article-title: In situ electrochemically converting Fe publication-title: Sci. China Mater. – volume: 63 year: 2019 ident: bib0180 article-title: A hierarchically porous and hydrophilic 3D nickel-iron/MXene electrode for accelerating oxygen and hydrogen evolution at high current densities publication-title: Nano Energy – volume: 28 start-page: 141 year: 1995 end-page: 145 ident: bib0005 article-title: Artificial photosynthesis: solar splitting of water to hydrogen and oxygen publication-title: Acc. Chem. Res. – volume: 242 start-page: 60 year: 2019 end-page: 66 ident: bib0260 article-title: Heterogeneous interface engineered atomic configuration on ultrathin Ni(OH) publication-title: Appl. Catal. B – volume: 239 start-page: 537 year: 2018 end-page: 544 ident: bib0105 article-title: Engineering MoS publication-title: Appl. Catal. B – volume: 9 start-page: 1489 year: 2019 end-page: 1502 ident: bib0200 article-title: Theoretical expectation and experimental implementation of in situ Al-doped CoS publication-title: ACS Cataly. – volume: 36 start-page: 1564 year: 2004 end-page: 1574 ident: bib0250 article-title: Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds publication-title: Surf. Interface Anal. – year: 2019 ident: bib0175 article-title: Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution publication-title: Adv. Mater. – volume: 5 start-page: 11229 year: 2017 end-page: 11235 ident: bib0275 article-title: Hierarchical NiFeP microflowers directly grown on Ni foam for efficient electrocatalytic oxygen evolution publication-title: J. Mater. Chem. A Mater. Energy Sustain. – volume: 9 start-page: 4531 year: 2018 ident: bib0190 article-title: Interfacing nickel nitride and nickel boosts both electrocatalytic hydrogen evolution and oxidation reactions publication-title: Nat. Commun. – start-page: 67 year: 2019 ident: bib0165 article-title: Nitrogen-doped carbon-encased bimetallic selenide for high-performance water electrolysis publication-title: Nano-Micro Lett.11 – volume: 2 start-page: 523 year: 2013 end-page: 529 ident: bib0195 article-title: Enhanced oxygen evolution and reduction reactions of porous ternary NiCoFe foam electrodes prepared by dynamic hydrogen template deposition publication-title: Nano Energy – volume: 4 start-page: 329 year: 2019 end-page: 338 ident: bib0240 article-title: Chemical and structural origin of lattice oxygen oxidation in Co–Zn oxyhydroxide oxygen evolution electrocatalysts publication-title: Nat. Energy – volume: 28 year: 2018 ident: bib0045 article-title: Heterostructures for electrochemical hydrogen evolution reaction: a review publication-title: Adv. Funct. Mater. – year: 2013 ident: bib0185 article-title: Electrodeposition of Alloys: Principles and Practice – volume: 257 start-page: 2717 year: 2011 end-page: 2730 ident: bib0235 article-title: Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni publication-title: Appl. Surf. Sci. – volume: 15 start-page: 1421 year: 2015 end-page: 1427 ident: bib0075 article-title: Hydrothermal continuous flow synthesis and exfoliation of NiCo layered double hydroxide nanosheets for enhanced oxygen evolution catalysis publication-title: Nano Lett. – volume: 4 start-page: 3068 year: 2016 end-page: 3076 ident: bib0020 article-title: Benchmarking nanoparticulate metal oxide electrocatalysts for the alkaline water oxidation reaction publication-title: J. Mater. Chem. A Mater. Energy Sustain. – volume: 137 start-page: 4347 year: 2015 end-page: 4357 ident: bib0015 article-title: Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices publication-title: J. Am. Chem. Soc. – volume: 44 start-page: 5148 year: 2015 end-page: 5180 ident: bib0050 article-title: Noble metal-free hydrogen evolution catalysts for water splitting publication-title: Chem. Soc. Rev. – volume: 7 start-page: 6394 year: 2017 end-page: 6399 ident: bib0090 article-title: Prussian blue analogues derived penroseite (Ni,Co)Se publication-title: ACS Catal. – volume: 30 start-page: 4321 year: 2018 end-page: 4330 ident: bib0135 article-title: Direct synthesis and anion exchange of noncarbonate-intercalated NiFe-layered double hydroxides and the influence on electrocatalysis publication-title: Chem. Mater. – volume: 1 start-page: 383 year: 2017 end-page: 393 ident: bib0245 article-title: Nanohybridization of MoS publication-title: Joule – volume: 192 start-page: 126 year: 2016 end-page: 133 ident: bib0155 article-title: Co–Ni–B nanocatalyst for efficient hydrogen evolution reaction in wide pH range publication-title: Appl. Catal. B – volume: 2 start-page: 1035 year: 2017 end-page: 1042 ident: bib0140 article-title: Amorphous NiFe-OH/NiFeP electrocatalyst fabricated at low temperature for water oxidation applications publication-title: ACS Energy Lett. – volume: 16 start-page: 7718 year: 2016 end-page: 7725 ident: bib0110 article-title: Plasma-assisted synthesis of NiCoP for efficient overall water splitting publication-title: Nano Lett. – volume: 5 start-page: 362 year: 2013 end-page: 363 ident: bib0030 article-title: Water electrolysis: divide and conquer publication-title: Nat. Chem. – volume: 137 start-page: 15090 year: 2015 end-page: 15093 ident: bib0070 article-title: Operando analysis of NiFe and Fe oxyhydroxide electrocatalysts for water oxidation: detection of Fe publication-title: J. Am. Chem. Soc. – volume: 100 start-page: 410 year: 2011 end-page: 426 ident: bib0010 article-title: Hydrogen production from water electrolysis: current status and future trends publication-title: Proc. IEEE – volume: 46 start-page: 337 year: 2017 end-page: 365 ident: bib0055 article-title: Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives publication-title: Chem. Soc. Rev. – volume: 4 start-page: 15148 year: 2016 end-page: 15155 ident: bib0080 article-title: MOF-derived Co-doped nickel selenide/C electrocatalysts supported on Ni foam for overall water splitting publication-title: J. Mater. Chem. A Mater. Energy Sustain. – volume: 11 start-page: 5855 year: 2019 end-page: 5874 ident: bib0040 article-title: Nanostructured carbon based heterogeneous electrocatalysts for oxygen evolution reaction in alkaline media publication-title: ChemCatChem – volume: 260 year: 2020 ident: bib0170 article-title: 3D porous network heterostructure NiCe@NiFe electrocatalyst for efficient oxygen evolution reaction at large current densities publication-title: Appl. Catal. B – volume: 41 start-page: 324 year: 2009 end-page: 332 ident: bib0225 article-title: X-ray photoelectron spectroscopic chemical state quantification of mixed nickel metal, oxide and hydroxide systems publication-title: Surf. Interface Anal. – volume: 242 start-page: 132 year: 2019 end-page: 139 ident: bib0255 article-title: CoNiSe publication-title: Appl. Catal. B – volume: 204 start-page: 486 year: 2017 end-page: 496 ident: bib0285 article-title: Core-shell structured Ni publication-title: Appl. Catal. B – volume: 242 start-page: 60 year: 2019 end-page: 66 ident: bib0270 article-title: Heterogeneous interface engineered atomic configuration on ultrathin Ni(OH) publication-title: Appl. Catal. B – volume: 22 start-page: 11494 year: 2012 end-page: 11502 ident: bib0210 article-title: Fabrication and electrochemical performances of hierarchical porous Ni(OH) publication-title: J. Mater. Chem. – volume: 258 year: 2019 ident: bib0265 article-title: Hierarchical nanocomposite electrocatalyst of bimetallic zeolitic imidazolate framework and MoS publication-title: Appl. Catal. B – volume: 135 start-page: 16977 year: 2013 end-page: 16987 ident: bib0025 article-title: Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 27743 year: 2019 end-page: 27750 ident: bib0160 article-title: Strongly coupled 3D N-Doped MoO publication-title: ACS Appl. Mater. Interfaces – volume: 8 year: 2018 ident: bib0130 article-title: Highly active trimetallic NiFeCr layered double hydroxide electrocatalysts for oxygen evolution reaction publication-title: Adv. Energy Mater. – volume: 29 year: 2019 ident: bib0215 article-title: Autogenous growth of hierarchical NiFe(OH) publication-title: Adv. Funct. Mater. – volume: 4 start-page: 991 year: 2016 end-page: 999 ident: bib0205 article-title: Direct electrochemical formation of nanostructured amorphous Co(OH) publication-title: J. Mater. Chem. A Mater. Energy Sustain. – volume: 196 start-page: 193 year: 2016 end-page: 198 ident: bib0125 article-title: Flexible molybdenum phosphide nanosheet array electrodes for hydrogen evolution reaction in a wide pH range publication-title: Appl. Catal. B – volume: 28 start-page: 5587 year: 2016 end-page: 5591 ident: bib0095 article-title: Solution growth of vertical VS publication-title: Chem. Mater. – volume: 2 start-page: 1937 year: 2017 end-page: 1938 ident: bib0115 article-title: Are metal chalcogenides, nitrides, and phosphides oxygen evolution catalysts or bifunctional catalysts? publication-title: ACS Energy Lett. – volume: 7 start-page: 965 year: 2019 end-page: 971 ident: bib0145 article-title: A strongly coupled 3D ternary Fe publication-title: J. Mater. Chem. A Mater. Energy Sustain. – volume: 11 start-page: 333 year: 2015 end-page: 340 ident: bib0290 article-title: A flexible high-performance oxygen evolution electrode with three-dimensional NiCo publication-title: Nano Energy – volume: 16 start-page: 7718 year: 2016 ident: 10.1016/j.apcatb.2020.119326_bib0110 article-title: Plasma-assisted synthesis of NiCoP for efficient overall water splitting publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b03803 – volume: 204 start-page: 486 year: 2017 ident: 10.1016/j.apcatb.2020.119326_bib0285 article-title: Core-shell structured Ni12P5/Ni3(PO4)2 hollow spheres as difunctional and efficient electrocatalysts for overall water electrolysis publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2016.11.050 – volume: 137 start-page: 4347 year: 2015 ident: 10.1016/j.apcatb.2020.119326_bib0015 article-title: Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices publication-title: J. Am. Chem. Soc. doi: 10.1021/ja510442p – volume: 56 start-page: 573 year: 2017 ident: 10.1016/j.apcatb.2020.119326_bib0065 article-title: Efficient overall water‐splitting electrocatalysis using lepidocrocite VOOH hollow nanospheres publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201610211 – volume: 100 start-page: 410 year: 2011 ident: 10.1016/j.apcatb.2020.119326_bib0010 article-title: Hydrogen production from water electrolysis: current status and future trends publication-title: Proc. IEEE doi: 10.1109/JPROC.2011.2156750 – volume: 258 year: 2019 ident: 10.1016/j.apcatb.2020.119326_bib0265 article-title: Hierarchical nanocomposite electrocatalyst of bimetallic zeolitic imidazolate framework and MoS2 sheets for non-Pt methanol oxidation and water splitting publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2019.117970 – volume: 60 start-page: 324 year: 2017 ident: 10.1016/j.apcatb.2020.119326_bib0220 article-title: In situ electrochemically converting Fe2O3-Ni(OH)2 to NiFe2O4-NiOOH: a highly efficient electrocatalyst towards water oxidation publication-title: Sci. China Mater. doi: 10.1007/s40843-017-9017-6 – volume: 260 year: 2020 ident: 10.1016/j.apcatb.2020.119326_bib0170 article-title: 3D porous network heterostructure NiCe@NiFe electrocatalyst for efficient oxygen evolution reaction at large current densities publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2019.118199 – volume: 233 start-page: 226 year: 2018 ident: 10.1016/j.apcatb.2020.119326_bib0150 article-title: Novel hydrothermal electrodeposition to fabricate mesoporous film of Ni0.8Fe0.2 nanosheets for high performance oxygen evolution reaction publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2018.04.009 – volume: 36 start-page: 1564 year: 2004 ident: 10.1016/j.apcatb.2020.119326_bib0250 article-title: Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds publication-title: Surf. Interface Anal. doi: 10.1002/sia.1984 – volume: 2 start-page: 1035 year: 2017 ident: 10.1016/j.apcatb.2020.119326_bib0140 article-title: Amorphous NiFe-OH/NiFeP electrocatalyst fabricated at low temperature for water oxidation applications publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00206 – volume: 239 start-page: 537 year: 2018 ident: 10.1016/j.apcatb.2020.119326_bib0105 article-title: Engineering MoS2 nanomesh with holes and lattice defects for highly active hydrogen evolution reaction publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2018.05.080 – volume: 15 start-page: 1421 year: 2015 ident: 10.1016/j.apcatb.2020.119326_bib0075 article-title: Hydrothermal continuous flow synthesis and exfoliation of NiCo layered double hydroxide nanosheets for enhanced oxygen evolution catalysis publication-title: Nano Lett. doi: 10.1021/nl504872s – volume: 5 start-page: 362 year: 2013 ident: 10.1016/j.apcatb.2020.119326_bib0030 article-title: Water electrolysis: divide and conquer publication-title: Nat. Chem. doi: 10.1038/nchem.1634 – volume: 4 start-page: 15148 year: 2016 ident: 10.1016/j.apcatb.2020.119326_bib0080 article-title: MOF-derived Co-doped nickel selenide/C electrocatalysts supported on Ni foam for overall water splitting publication-title: J. Mater. Chem. A Mater. Energy Sustain. doi: 10.1039/C6TA06496E – volume: 11 start-page: 5855 year: 2019 ident: 10.1016/j.apcatb.2020.119326_bib0040 article-title: Nanostructured carbon based heterogeneous electrocatalysts for oxygen evolution reaction in alkaline media publication-title: ChemCatChem doi: 10.1002/cctc.201901707 – volume: 135 start-page: 16977 year: 2013 ident: 10.1016/j.apcatb.2020.119326_bib0025 article-title: Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction publication-title: J. Am. Chem. Soc. doi: 10.1021/ja407115p – volume: 4 start-page: 329 year: 2019 ident: 10.1016/j.apcatb.2020.119326_bib0240 article-title: Chemical and structural origin of lattice oxygen oxidation in Co–Zn oxyhydroxide oxygen evolution electrocatalysts publication-title: Nat. Energy doi: 10.1038/s41560-019-0355-9 – volume: 1 start-page: 383 year: 2017 ident: 10.1016/j.apcatb.2020.119326_bib0245 article-title: Nanohybridization of MoS2 with layered double hydroxides efficiently synergizes the hydrogen evolution in alkaline media publication-title: Joule doi: 10.1016/j.joule.2017.07.011 – volume: 5 start-page: 11229 year: 2017 ident: 10.1016/j.apcatb.2020.119326_bib0275 article-title: Hierarchical NiFeP microflowers directly grown on Ni foam for efficient electrocatalytic oxygen evolution publication-title: J. Mater. Chem. A Mater. Energy Sustain. doi: 10.1039/C7TA02968C – volume: 27 start-page: 5702 year: 2015 ident: 10.1016/j.apcatb.2020.119326_bib0085 article-title: Porous two-dimensional nanosheets converted from layered double hydroxides and their applications in electrocatalytic water splitting publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b02177 – volume: 137 start-page: 15090 year: 2015 ident: 10.1016/j.apcatb.2020.119326_bib0070 article-title: Operando analysis of NiFe and Fe oxyhydroxide electrocatalysts for water oxidation: detection of Fe4+ by Mossbauer spectroscopy publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b10699 – volume: 63 year: 2019 ident: 10.1016/j.apcatb.2020.119326_bib0180 article-title: A hierarchically porous and hydrophilic 3D nickel-iron/MXene electrode for accelerating oxygen and hydrogen evolution at high current densities publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.103880 – volume: 196 start-page: 193 year: 2016 ident: 10.1016/j.apcatb.2020.119326_bib0125 article-title: Flexible molybdenum phosphide nanosheet array electrodes for hydrogen evolution reaction in a wide pH range publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2016.05.027 – volume: 257 start-page: 2717 year: 2011 ident: 10.1016/j.apcatb.2020.119326_bib0235 article-title: Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2010.10.051 – volume: 2 start-page: 1937 year: 2017 ident: 10.1016/j.apcatb.2020.119326_bib0115 article-title: Are metal chalcogenides, nitrides, and phosphides oxygen evolution catalysts or bifunctional catalysts? publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00679 – volume: 4 start-page: 3068 year: 2016 ident: 10.1016/j.apcatb.2020.119326_bib0020 article-title: Benchmarking nanoparticulate metal oxide electrocatalysts for the alkaline water oxidation reaction publication-title: J. Mater. Chem. A Mater. Energy Sustain. doi: 10.1039/C5TA07586F – year: 2019 ident: 10.1016/j.apcatb.2020.119326_bib0175 article-title: Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution publication-title: Adv. Mater. – volume: 28 start-page: 141 year: 1995 ident: 10.1016/j.apcatb.2020.119326_bib0005 article-title: Artificial photosynthesis: solar splitting of water to hydrogen and oxygen publication-title: Acc. Chem. Res. doi: 10.1021/ar00051a007 – volume: 41 start-page: 324 year: 2009 ident: 10.1016/j.apcatb.2020.119326_bib0225 article-title: X-ray photoelectron spectroscopic chemical state quantification of mixed nickel metal, oxide and hydroxide systems publication-title: Surf. Interface Anal. doi: 10.1002/sia.3026 – volume: 242 start-page: 60 year: 2019 ident: 10.1016/j.apcatb.2020.119326_bib0260 article-title: Heterogeneous interface engineered atomic configuration on ultrathin Ni(OH)2/Ni3S2 nanoforests for efficient water splitting publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2018.09.064 – volume: 600 start-page: 1771 year: 2006 ident: 10.1016/j.apcatb.2020.119326_bib0230 article-title: New interpretations of XPS spectra of nickel metal and oxides publication-title: Surf. Sci. doi: 10.1016/j.susc.2006.01.041 – volume: 9 start-page: 4531 year: 2018 ident: 10.1016/j.apcatb.2020.119326_bib0190 article-title: Interfacing nickel nitride and nickel boosts both electrocatalytic hydrogen evolution and oxidation reactions publication-title: Nat. Commun. doi: 10.1038/s41467-018-06728-7 – volume: 46 start-page: 337 year: 2017 ident: 10.1016/j.apcatb.2020.119326_bib0055 article-title: Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00328A – volume: 4 start-page: 991 year: 2016 ident: 10.1016/j.apcatb.2020.119326_bib0205 article-title: Direct electrochemical formation of nanostructured amorphous Co(OH)2 on gold electrodes with enhanced activity for the oxygen evolution reaction publication-title: J. Mater. Chem. A Mater. Energy Sustain. doi: 10.1039/C5TA09125J – volume: 242 start-page: 60 year: 2019 ident: 10.1016/j.apcatb.2020.119326_bib0270 article-title: Heterogeneous interface engineered atomic configuration on ultrathin Ni(OH)2/Ni3S2 nanoforests for efficient water splitting publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2018.09.064 – volume: 7 start-page: 6394 year: 2017 ident: 10.1016/j.apcatb.2020.119326_bib0090 article-title: Prussian blue analogues derived penroseite (Ni,Co)Se2 nanocages anchored on 3D graphene aerogel for efficient water splitting publication-title: ACS Catal. doi: 10.1021/acscatal.7b02079 – volume: 28 year: 2018 ident: 10.1016/j.apcatb.2020.119326_bib0045 article-title: Heterostructures for electrochemical hydrogen evolution reaction: a review publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201803291 – volume: 30 start-page: 4321 year: 2018 ident: 10.1016/j.apcatb.2020.119326_bib0135 article-title: Direct synthesis and anion exchange of noncarbonate-intercalated NiFe-layered double hydroxides and the influence on electrocatalysis publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b01334 – volume: 192 start-page: 126 year: 2016 ident: 10.1016/j.apcatb.2020.119326_bib0155 article-title: Co–Ni–B nanocatalyst for efficient hydrogen evolution reaction in wide pH range publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2016.03.032 – volume: 5 start-page: 2955 year: 2014 ident: 10.1016/j.apcatb.2020.119326_bib0280 article-title: IrOx core-shell nanocatalysts for cost-and energy-efficient electrochemical water splitting publication-title: Chem. Sci. doi: 10.1039/C4SC01065E – volume: 8 start-page: 401 year: 1983 ident: 10.1016/j.apcatb.2020.119326_bib0035 article-title: Industrial water electrolysis: present and future publication-title: Int. J. Hydrogen Energy doi: 10.1016/0360-3199(83)90162-3 – volume: 7 start-page: 965 year: 2019 ident: 10.1016/j.apcatb.2020.119326_bib0145 article-title: A strongly coupled 3D ternary Fe2O3@Ni2P/Ni(PO3)2 hybrid for enhanced electrocatalytic oxygen evolution at ultra-high current densities publication-title: J. Mater. Chem. A Mater. Energy Sustain. doi: 10.1039/C8TA11223A – volume: 29 year: 2019 ident: 10.1016/j.apcatb.2020.119326_bib0215 article-title: Autogenous growth of hierarchical NiFe(OH)x/FeS nanosheet-on-microsheet arrays for synergistically enhanced high-output water oxidation publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201902180 – volume: 242 start-page: 132 year: 2019 ident: 10.1016/j.apcatb.2020.119326_bib0255 article-title: CoNiSe2 heteronanorods decorated with layered-double-hydroxides for efficient hydrogen evolution publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2018.09.082 – volume: 5 start-page: 6355 year: 2015 ident: 10.1016/j.apcatb.2020.119326_bib0120 article-title: High-performance electrocatalysis for hydrogen evolution reaction using Se-doped pyrite-phase nickel diphosphide nanostructures publication-title: ACS Catal. doi: 10.1021/acscatal.5b01657 – start-page: 67 year: 2019 ident: 10.1016/j.apcatb.2020.119326_bib0165 article-title: Nitrogen-doped carbon-encased bimetallic selenide for high-performance water electrolysis publication-title: Nano-Micro Lett.11 doi: 10.1007/s40820-019-0299-4 – volume: 44 start-page: 5148 year: 2015 ident: 10.1016/j.apcatb.2020.119326_bib0050 article-title: Noble metal-free hydrogen evolution catalysts for water splitting publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00448E – volume: 11 start-page: 27743 year: 2019 ident: 10.1016/j.apcatb.2020.119326_bib0160 article-title: Strongly coupled 3D N-Doped MoO2/Ni3S2 hybrid for high current density hydrogen evolution electrocatalysis and biomass upgrading publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b06502 – volume: 22 start-page: 11494 year: 2012 ident: 10.1016/j.apcatb.2020.119326_bib0210 article-title: Fabrication and electrochemical performances of hierarchical porous Ni(OH)2 nanoflakes anchored on graphene sheets publication-title: J. Mater. Chem. doi: 10.1039/c2jm30221g – volume: 5 start-page: 3866 year: 2018 ident: 10.1016/j.apcatb.2020.119326_bib0100 article-title: Efficient Electrocatalytic Oxygen evolution at extremely high current density over 3D ultrasmall zero‐valent iron‐coupled nickel sulfide nanosheets publication-title: ChemElectroChem doi: 10.1002/celc.201801104 – volume: 28 start-page: 5587 year: 2016 ident: 10.1016/j.apcatb.2020.119326_bib0095 article-title: Solution growth of vertical VS2 nanoplate arrays for electrocatalytic hydrogen evolution publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b01963 – year: 2013 ident: 10.1016/j.apcatb.2020.119326_bib0185 – volume: 9 start-page: 1489 year: 2019 ident: 10.1016/j.apcatb.2020.119326_bib0200 article-title: Theoretical expectation and experimental implementation of in situ Al-doped CoS2 nanowires on dealloying-derived nanoporous intermetallic substrate as an efficient electrocatalyst for boosting hydrogen production publication-title: ACS Cataly. doi: 10.1021/acscatal.8b04502 – volume: 37 start-page: 136 year: 2017 ident: 10.1016/j.apcatb.2020.119326_bib0060 article-title: Electrocatalytic oxygen evolution reaction for energy conversion and storage: a comprehensive review publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.05.022 – volume: 2 start-page: 523 year: 2013 ident: 10.1016/j.apcatb.2020.119326_bib0195 article-title: Enhanced oxygen evolution and reduction reactions of porous ternary NiCoFe foam electrodes prepared by dynamic hydrogen template deposition publication-title: Nano Energy doi: 10.1016/j.nanoen.2012.12.004 – volume: 11 start-page: 333 year: 2015 ident: 10.1016/j.apcatb.2020.119326_bib0290 article-title: A flexible high-performance oxygen evolution electrode with three-dimensional NiCo2O4 core-shell nanowires publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.11.021 – volume: 8 year: 2018 ident: 10.1016/j.apcatb.2020.119326_bib0130 article-title: Highly active trimetallic NiFeCr layered double hydroxide electrocatalysts for oxygen evolution reaction publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703189 – volume: 9 start-page: 1 year: 2018 ident: 10.1016/j.apcatb.2020.119326_bib0295 article-title: Dendritic core-shell nickel-iron-copper metal/metal oxide electrode for efficient electrocatalytic water oxidation publication-title: Nat. Commun. |
SSID | ssj0002328 |
Score | 2.6712441 |
Snippet | [Display omitted]
Core-shell bimetallic alloy/oxyhydroxide electrocatalyst can stably drive the water splitting electrocatalysis at 1000 mA cm−2 for 300 h... A big challenge in practical water splitting is the sluggish reaction kinetics at high current densities that essentially requires efficient electrocatalysts... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 119326 |
SubjectTerms | Catalysts Charge transfer Core-shell electrocatalysts Core-shell structure Current density Electrocatalysts High current Hydrogen evolution reaction Hydrogen evolution reactions Intermetallic compounds Iron compounds Large current densities Nickel compounds Noble metals Oxygen evolution reaction Oxygen evolution reactions Reaction kinetics Splitting Water currents Water splitting |
Title | NiCo/NiCo–OH and NiFe/NiFe–OH core shell nanostructures for water splitting electrocatalysis at large currents |
URI | https://dx.doi.org/10.1016/j.apcatb.2020.119326 https://www.proquest.com/docview/2448951518 |
Volume | 278 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5ED-pBdFV8rJKD19q1TZvuUZZdVsX1oIK3kKQtrEh32a54E_-D_9Bf4kyS-gIRvAQaktJmHvkmfJkBONJKZKVSKihROwKeqU6gDDpDbRQ_iRRiCkvGvBylw1t-fpfcLUCvuQtDtErv-51Pt97a94R-NcPpeBxed7pRGscijkhPXTFrzgVp-fHzJ80DEYP1xjg4oNHN9TnL8VJTo-Yao8SIfAdBmd-2px-O2u4-g3VY87CRnbov24CFomrBcq-p1taC1S-JBVuw3f-8v4bTvAHXmzAbjXuTkJq3l9erIVNVzkbjQRFS47ooryWriR_KKlVNXILZR4zKGeJb9oTYdMZqhK6WMM18GR17CkTJTZiaswdilzPjMj_VW3Az6N_0hoEvuxAYjA3nQam14hjVoHUXgmdaG6HKBA1flEWaxTzN0pSOi7TOBNdlVOI-qDlCAezp5jrehsVqUhU7wGKTF2kHJS66BVelpgpnCQIIw0We6zzahbhZbGl8SnKqjPEgG-7ZvXQikiQi6US0C8HHrKlLyfHHeNHIUX5TLYm7xh8z243YpTftWuJ_ZghLk5Ns798v3ocVerK0mKQNiyjJ4gDBzVwfWu09hKXTs4vh6B1VJvuh |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED4hGIABQQFRnh5YQ9rEidMRVVTlVQaKxGbZTiIVobRqitgQ_4F_yC_hznF4SagSiwfHjhLfw99Zn-8AjrUSSa6U8nLUDo8nquUpg85QG8XbgUJMYcmY14O4f8cv7qP7BejWd2GIVul8f-XTrbd2Pb5bTX8yGvm3rU4Qh6EIA9JTW8x6iaP5UhmDk5cvngdCBuuOcbRHw-v7c5bkpSZGzTSGiQE5D8Iyf-1Pvzy13X5667DmcCM7rT5tAxayogHL3bpcWwNWv2UWbMD22dcFNpzmLLjchOlg1B371Ly_vt30mSpSNhj1Mp-aqosSW7KSCKKsUMW4yjD7hGE5Q4DLnhGcTlmJ2NUyppmro2OPgSi7CVMz9kj0cmaq1E_lFgx7Z8Nu33N1FzyDweHMy7VWHMMaNO9M8ERrI1QeoeWLPIuTkMdJHNN5kdaJ4DoPctwINUcsgD2dVIfbsFiMi2wHWGjSLG6hyEUn4yrXVOIsQgRhuEhTnQZNCOvFlsblJKfSGI-yJp89yEpEkkQkKxE1wfucNalycswZL2o5yh-6JXHbmDNzvxa7dLZdSvzPBHFp1E52__3iI1juD6-v5NX54HIPVuiJ5chE-7CIUs0OEOnM9KHV5A8Knv0v |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NiCo%2FNiCo%E2%80%93OH+and+NiFe%2FNiFe%E2%80%93OH+core+shell+nanostructures+for+water+splitting+electrocatalysis+at+large+currents&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Zhu%2C+Weijie&rft.au=Chen%2C+Weixin&rft.au=Yu%2C+Huanhuan&rft.au=Zeng%2C+Ye&rft.date=2020-12-05&rft.pub=Elsevier+BV&rft.issn=0926-3373&rft.eissn=1873-3883&rft.volume=278&rft.spage=1&rft_id=info:doi/10.1016%2Fj.apcatb.2020.119326&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon |