NiCo/NiCo–OH and NiFe/NiFe–OH core shell nanostructures for water splitting electrocatalysis at large currents

[Display omitted] Core-shell bimetallic alloy/oxyhydroxide electrocatalyst can stably drive the water splitting electrocatalysis at 1000 mA cm−2 for 300 h without significant performance decay. •Alloy/(oxy)hydroxide electrodes were designed by a rapid electrodeposition method.•The core-shell heteros...

Full description

Saved in:
Bibliographic Details
Published inApplied catalysis. B, Environmental Vol. 278; p. 119326
Main Authors Zhu, Weijie, Chen, Weixin, Yu, Huanhuan, Zeng, Ye, Ming, Fangwang, Liang, Hanfeng, Wang, Zhoucheng
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 05.12.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] Core-shell bimetallic alloy/oxyhydroxide electrocatalyst can stably drive the water splitting electrocatalysis at 1000 mA cm−2 for 300 h without significant performance decay. •Alloy/(oxy)hydroxide electrodes were designed by a rapid electrodeposition method.•The core-shell heterostructure exposes abundant active sites and accelerates the charge transfer.•The device can steadily catalyze water splitting at 1 A cm−2 for at least 300 h. A big challenge in practical water splitting is the sluggish reaction kinetics at high current densities that essentially requires efficient electrocatalysts to lower the overpotentials. While exciting progress has been made in noble metal-based catalysts, earth-abundant materials that can actively catalyze the water splitting at high current densities (e.g. ≥500 mA cm−2) are rare. In this work, we show that a rational design of the catalysts could promote the charge transfer, facilitate the gas release, as well as boost the surface active sites, and therefore significantly enhance the electrocatalytic activity toward both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Using NiCo/NiCo−OH and NiFe/NiFe−OH as examples, we achieved ultralow overpotentials of 184 and 296 mV at 500 mA cm−2 in 1M KOH for HER and OER, respectively. More importantly, the alkaline electrolyzer based on these two materials is able to actively drive the overall water splitting at 1000 mA cm−2 for at least 300 h at a low cell voltage without significant performance decay, which is much superior to the state-of-the-art 20 % Pt/C||RuO2 combination. Our work points out a promising pathway to achieve inexpensive electrocatalysts for practical water splitting at high currents.
AbstractList A big challenge in practical water splitting is the sluggish reaction kinetics at high current densities that essentially requires efficient electrocatalysts to lower the overpotentials. While exciting progress has been made in noble metal-based catalysts, earth-abundant materials that can actively catalyze the water splitting at high current densities (e.g. ≥500 mA cm−2) are rare. In this work, we show that a rational design of the catalysts could promote the charge transfer, facilitate the gas release, as well as boost the surface active sites, and therefore significantly enhance the electrocatalytic activity toward both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Using NiCo/NiCo−OH and NiFe/NiFe−OH as examples, we achieved ultralow overpotentials of 184 and 296 mV at 500 mA cm−2 in 1M KOH for HER and OER, respectively. More importantly, the alkaline electrolyzer based on these two materials is able to actively drive the overall water splitting at 1000 mA cm−2 for at least 300 h at a low cell voltage without significant performance decay, which is much superior to the state-of-the-art 20 % Pt/C||RuO2 combination. Our work points out a promising pathway to achieve inexpensive electrocatalysts for practical water splitting at high currents.
[Display omitted] Core-shell bimetallic alloy/oxyhydroxide electrocatalyst can stably drive the water splitting electrocatalysis at 1000 mA cm−2 for 300 h without significant performance decay. •Alloy/(oxy)hydroxide electrodes were designed by a rapid electrodeposition method.•The core-shell heterostructure exposes abundant active sites and accelerates the charge transfer.•The device can steadily catalyze water splitting at 1 A cm−2 for at least 300 h. A big challenge in practical water splitting is the sluggish reaction kinetics at high current densities that essentially requires efficient electrocatalysts to lower the overpotentials. While exciting progress has been made in noble metal-based catalysts, earth-abundant materials that can actively catalyze the water splitting at high current densities (e.g. ≥500 mA cm−2) are rare. In this work, we show that a rational design of the catalysts could promote the charge transfer, facilitate the gas release, as well as boost the surface active sites, and therefore significantly enhance the electrocatalytic activity toward both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Using NiCo/NiCo−OH and NiFe/NiFe−OH as examples, we achieved ultralow overpotentials of 184 and 296 mV at 500 mA cm−2 in 1M KOH for HER and OER, respectively. More importantly, the alkaline electrolyzer based on these two materials is able to actively drive the overall water splitting at 1000 mA cm−2 for at least 300 h at a low cell voltage without significant performance decay, which is much superior to the state-of-the-art 20 % Pt/C||RuO2 combination. Our work points out a promising pathway to achieve inexpensive electrocatalysts for practical water splitting at high currents.
ArticleNumber 119326
Author Zeng, Ye
Ming, Fangwang
Zhu, Weijie
Wang, Zhoucheng
Yu, Huanhuan
Chen, Weixin
Liang, Hanfeng
Author_xml – sequence: 1
  givenname: Weijie
  surname: Zhu
  fullname: Zhu, Weijie
  organization: College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
– sequence: 2
  givenname: Weixin
  surname: Chen
  fullname: Chen, Weixin
  organization: College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
– sequence: 3
  givenname: Huanhuan
  surname: Yu
  fullname: Yu, Huanhuan
  organization: College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
– sequence: 4
  givenname: Ye
  surname: Zeng
  fullname: Zeng, Ye
  organization: College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
– sequence: 5
  givenname: Fangwang
  orcidid: 0000-0003-4574-9720
  surname: Ming
  fullname: Ming, Fangwang
  organization: Materials Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
– sequence: 6
  givenname: Hanfeng
  orcidid: 0000-0002-1778-3975
  surname: Liang
  fullname: Liang, Hanfeng
  email: hanfeng.liang@kaust.edu.sa, hfliang@xmu.edu.cn
  organization: College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
– sequence: 7
  givenname: Zhoucheng
  surname: Wang
  fullname: Wang, Zhoucheng
  email: zcwang@xmu.edu.cn
  organization: College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
BookMark eNqFkM1qGzEUhUVJIU7SN8hC0PXY-rNGzqIQTNMUQrLJXkjynVRmIrlXmpTs-g59wzxJZaarLtrNvXA45_58Z-Qk5QSEXHK25Izr1X7pDsFVvxRMNIlvpNDvyIKbXnbSGHlCFmwjdCdlL0_JWSl7xpiQwiwI3sdtXh3L289fD7fUpR29jzewOpZZChmBlm8wjjS5lEvFKdQJodAhI_3hKiAthzHWGtMThRFCxdzOceNriYW6SkeHT0DDhAiplgvyfnBjgQ9_-jl5vPn8uL3t7h6-fN1e33VBKV27wXuntNaKMeiV8T70blhLIfoBtJFKG93aWnlveuUHMSguvRJCNWWz8_KcfJzHHjB_n6BUu88TprbRNo_ZrPmam-a6ml0BcykIgw2xuhpzqujiaDmzR8R2b2fE9ojYzohbWP0VPmB8dvj6v9inOQbt-5cIaEuIkALsIjZ4dpfjvwf8Bq9lm-o
CitedBy_id crossref_primary_10_1016_j_apcatb_2020_119647
crossref_primary_10_1016_j_apcatb_2022_121608
crossref_primary_10_1016_j_jmst_2020_11_071
crossref_primary_10_1002_smll_202403612
crossref_primary_10_1016_j_cej_2022_136031
crossref_primary_10_1016_j_electacta_2023_141862
crossref_primary_10_1142_S179329202230002X
crossref_primary_10_1002_adfm_202214792
crossref_primary_10_1016_j_apcatb_2021_119882
crossref_primary_10_1016_j_cej_2021_131133
crossref_primary_10_1002_smll_202403971
crossref_primary_10_1016_j_cej_2021_131253
crossref_primary_10_1016_j_apcatb_2021_119920
crossref_primary_10_1002_cssc_202002873
crossref_primary_10_1016_j_ccr_2024_216112
crossref_primary_10_1021_acsaem_1c02930
crossref_primary_10_1039_D1TA00693B
crossref_primary_10_1016_j_jcis_2023_04_086
crossref_primary_10_1021_acsanm_2c00774
crossref_primary_10_3390_nano13132012
crossref_primary_10_1016_j_cej_2021_133047
crossref_primary_10_1016_j_jallcom_2024_177889
crossref_primary_10_1039_D3NJ03909A
crossref_primary_10_1039_D4QI02487G
crossref_primary_10_1016_j_apsusc_2021_150440
crossref_primary_10_1021_acsaem_1c02531
crossref_primary_10_1016_j_mtnano_2021_100146
crossref_primary_10_1039_D2TA05872C
crossref_primary_10_1016_j_jcis_2024_07_174
crossref_primary_10_1002_smtd_202200484
crossref_primary_10_1016_j_apcatb_2021_120641
crossref_primary_10_1016_j_ijhydene_2022_03_139
crossref_primary_10_1016_j_ces_2022_117769
crossref_primary_10_1039_D2TA09276J
crossref_primary_10_1016_j_jallcom_2024_178041
crossref_primary_10_1007_s43979_024_00101_y
crossref_primary_10_1016_j_jallcom_2021_162533
crossref_primary_10_1002_smll_202101003
crossref_primary_10_1007_s11051_022_05505_4
crossref_primary_10_1021_acsanm_3c05983
crossref_primary_10_1016_j_cej_2021_134247
crossref_primary_10_1039_D2TA06813C
crossref_primary_10_1016_j_jelechem_2022_116573
crossref_primary_10_1016_j_jmst_2024_03_084
crossref_primary_10_1007_s12274_023_5453_0
crossref_primary_10_1016_j_cej_2022_135517
crossref_primary_10_1016_j_jcis_2022_02_007
crossref_primary_10_1002_cssc_202402533
crossref_primary_10_1016_j_ijhydene_2022_08_261
crossref_primary_10_1016_j_apcatb_2021_120937
crossref_primary_10_1016_j_apsusc_2022_155044
crossref_primary_10_1016_j_ijhydene_2023_01_318
crossref_primary_10_1007_s12678_022_00808_5
crossref_primary_10_1002_slct_202200091
crossref_primary_10_1016_j_jechem_2022_02_010
crossref_primary_10_1016_j_jcis_2023_03_018
crossref_primary_10_1039_D0SE01805H
crossref_primary_10_1016_j_ijhydene_2022_07_262
crossref_primary_10_1002_smll_202406465
crossref_primary_10_1016_j_apsusc_2022_154905
crossref_primary_10_1002_anie_202406711
crossref_primary_10_1016_j_jechem_2022_03_025
crossref_primary_10_1021_jacs_4c00948
crossref_primary_10_1039_D1SE01855H
crossref_primary_10_1002_cey2_532
crossref_primary_10_1007_s12598_023_02587_4
crossref_primary_10_1039_D1TA02995A
crossref_primary_10_1016_j_apcatb_2021_120148
crossref_primary_10_1016_j_ijhydene_2024_03_179
crossref_primary_10_1016_j_apcatb_2021_120660
crossref_primary_10_1080_15567036_2021_1897195
crossref_primary_10_1016_j_joei_2024_101693
crossref_primary_10_1016_j_fuel_2024_133135
crossref_primary_10_1016_j_apsusc_2024_160649
crossref_primary_10_1016_j_apcatb_2021_120668
crossref_primary_10_1016_j_jallcom_2022_167942
crossref_primary_10_1016_j_cej_2021_130357
crossref_primary_10_1016_j_renene_2022_05_124
crossref_primary_10_1039_D0QI01179G
crossref_primary_10_1002_smll_202403005
crossref_primary_10_1016_j_ijhydene_2022_07_252
crossref_primary_10_1039_D1DT04346C
crossref_primary_10_12677_NAT_2022_123013
crossref_primary_10_1016_j_cej_2022_139175
crossref_primary_10_1002_aenm_202201713
crossref_primary_10_1016_j_cej_2024_157106
crossref_primary_10_1016_j_apcatb_2021_120395
crossref_primary_10_1149_1945_7111_aceeb9
crossref_primary_10_1002_ange_202406711
crossref_primary_10_2139_ssrn_4174946
crossref_primary_10_1016_j_esci_2023_100156
crossref_primary_10_1002_smll_202203173
crossref_primary_10_1016_j_ces_2024_120919
crossref_primary_10_1016_j_mtener_2024_101737
crossref_primary_10_1039_D1NR00605C
crossref_primary_10_1002_cctc_202100707
crossref_primary_10_1016_j_ijhydene_2023_10_233
crossref_primary_10_1016_j_jcis_2022_05_051
crossref_primary_10_3390_nano14030243
crossref_primary_10_1016_j_ijhydene_2024_11_348
crossref_primary_10_1021_acs_inorgchem_2c02560
crossref_primary_10_1016_j_fuel_2024_133302
crossref_primary_10_1007_s10800_021_01601_w
crossref_primary_10_1016_j_ijhydene_2022_02_144
crossref_primary_10_1021_acsomega_3c00322
crossref_primary_10_1002_aenm_202402633
crossref_primary_10_1016_j_jallcom_2022_168683
crossref_primary_10_1016_S1872_2067_24_60076_8
crossref_primary_10_1002_cey2_392
crossref_primary_10_1039_D4DT01366B
crossref_primary_10_1039_D4TA04428B
crossref_primary_10_1002_smll_202407349
crossref_primary_10_1039_D1NR02592A
crossref_primary_10_1016_j_apcatb_2021_120160
crossref_primary_10_1016_j_jallcom_2024_173888
crossref_primary_10_1021_acsaem_1c01884
crossref_primary_10_1039_D2CC02423C
crossref_primary_10_1016_j_apcatb_2021_120049
crossref_primary_10_1038_s41467_022_31077_x
crossref_primary_10_1016_j_apsusc_2022_155537
crossref_primary_10_1016_j_ijhydene_2021_03_113
crossref_primary_10_1039_D1NA00006C
crossref_primary_10_1002_aesr_202200178
crossref_primary_10_1016_j_apcatb_2024_124074
crossref_primary_10_1016_j_cclet_2021_12_028
crossref_primary_10_1002_adfm_202308198
crossref_primary_10_1007_s10971_022_05793_1
crossref_primary_10_1016_j_electacta_2024_144803
crossref_primary_10_1021_acssuschemeng_1c01867
crossref_primary_10_3390_ma15072342
crossref_primary_10_1007_s10008_024_06106_y
crossref_primary_10_1039_D1SE01608C
crossref_primary_10_1016_j_jechem_2024_10_047
crossref_primary_10_1002_smll_202309906
crossref_primary_10_1016_j_jallcom_2022_165061
crossref_primary_10_1021_acsanm_1c03625
crossref_primary_10_1016_j_apcatb_2021_120455
crossref_primary_10_1016_j_jiec_2025_03_026
crossref_primary_10_1002_advs_202308477
crossref_primary_10_1039_D3QI00714F
crossref_primary_10_1016_j_rinma_2024_100625
crossref_primary_10_1039_D4TA02679A
crossref_primary_10_1016_j_jpcs_2023_111242
crossref_primary_10_3390_app13169343
crossref_primary_10_1016_j_memsci_2024_122903
crossref_primary_10_1016_j_jssc_2021_122108
crossref_primary_10_1016_j_ijhydene_2021_11_167
crossref_primary_10_1016_j_cej_2024_157275
crossref_primary_10_1002_aenm_202202286
crossref_primary_10_1016_j_apcatb_2021_120063
crossref_primary_10_1016_j_apcatb_2021_120580
crossref_primary_10_1016_j_apsusc_2025_162383
crossref_primary_10_1149_1945_7111_ad2597
crossref_primary_10_1016_j_apsusc_2021_150706
crossref_primary_10_1016_j_apcatb_2021_120106
crossref_primary_10_1016_j_apcatb_2024_123972
crossref_primary_10_3390_nano13152244
crossref_primary_10_1016_j_cej_2024_149486
crossref_primary_10_1016_j_apsusc_2022_154669
crossref_primary_10_1016_j_ijhydene_2021_04_092
crossref_primary_10_3390_coatings13061102
crossref_primary_10_1016_j_cej_2021_128879
crossref_primary_10_1016_j_ijhydene_2024_02_196
crossref_primary_10_1016_j_jcis_2024_08_005
crossref_primary_10_1021_acs_energyfuels_3c02823
crossref_primary_10_1088_2399_1984_ac9022
crossref_primary_10_1016_j_jcis_2025_02_165
crossref_primary_10_1016_j_ijhydene_2022_03_075
crossref_primary_10_1002_cctc_202100981
crossref_primary_10_1016_j_fuel_2022_127253
crossref_primary_10_1016_j_jcis_2022_06_051
crossref_primary_10_1039_D3QM00722G
crossref_primary_10_1002_adfm_202009779
crossref_primary_10_1007_s10311_022_01454_5
crossref_primary_10_1039_D1NR08035K
crossref_primary_10_1039_D3TA05699F
crossref_primary_10_1016_j_apcatb_2022_121226
crossref_primary_10_1016_j_cej_2023_142280
crossref_primary_10_1039_D3SE01488F
crossref_primary_10_1016_j_electacta_2021_138932
crossref_primary_10_1016_j_ijhydene_2025_01_455
crossref_primary_10_1016_j_cej_2020_128331
crossref_primary_10_1016_j_apcatb_2022_122311
crossref_primary_10_1039_D2SE01200F
Cites_doi 10.1021/acs.nanolett.6b03803
10.1016/j.apcatb.2016.11.050
10.1021/ja510442p
10.1002/anie.201610211
10.1109/JPROC.2011.2156750
10.1016/j.apcatb.2019.117970
10.1007/s40843-017-9017-6
10.1016/j.apcatb.2019.118199
10.1016/j.apcatb.2018.04.009
10.1002/sia.1984
10.1021/acsenergylett.7b00206
10.1016/j.apcatb.2018.05.080
10.1021/nl504872s
10.1038/nchem.1634
10.1039/C6TA06496E
10.1002/cctc.201901707
10.1021/ja407115p
10.1038/s41560-019-0355-9
10.1016/j.joule.2017.07.011
10.1039/C7TA02968C
10.1021/acs.chemmater.5b02177
10.1021/jacs.5b10699
10.1016/j.nanoen.2019.103880
10.1016/j.apcatb.2016.05.027
10.1016/j.apsusc.2010.10.051
10.1021/acsenergylett.7b00679
10.1039/C5TA07586F
10.1021/ar00051a007
10.1002/sia.3026
10.1016/j.apcatb.2018.09.064
10.1016/j.susc.2006.01.041
10.1038/s41467-018-06728-7
10.1039/C6CS00328A
10.1039/C5TA09125J
10.1021/acscatal.7b02079
10.1002/adfm.201803291
10.1021/acs.chemmater.8b01334
10.1016/j.apcatb.2016.03.032
10.1039/C4SC01065E
10.1016/0360-3199(83)90162-3
10.1039/C8TA11223A
10.1002/adfm.201902180
10.1016/j.apcatb.2018.09.082
10.1021/acscatal.5b01657
10.1007/s40820-019-0299-4
10.1039/C4CS00448E
10.1021/acsami.9b06502
10.1039/c2jm30221g
10.1002/celc.201801104
10.1021/acs.chemmater.6b01963
10.1021/acscatal.8b04502
10.1016/j.nanoen.2017.05.022
10.1016/j.nanoen.2012.12.004
10.1016/j.nanoen.2014.11.021
10.1002/aenm.201703189
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright Elsevier BV Dec 5, 2020
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright Elsevier BV Dec 5, 2020
DBID AAYXX
CITATION
7SR
7ST
7U5
8BQ
8FD
C1K
FR3
JG9
KR7
L7M
SOI
DOI 10.1016/j.apcatb.2020.119326
DatabaseName CrossRef
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Environmental Sciences
EISSN 1873-3883
ExternalDocumentID 10_1016_j_apcatb_2020_119326
S0926337320307414
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPD
SSG
SSZ
T5K
~02
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AHHHB
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
EJD
FEDTE
FGOYB
HLY
HVGLF
HZ~
NDZJH
R2-
SCE
SEW
SSH
VH1
WUQ
XPP
7SR
7ST
7U5
8BQ
8FD
C1K
EFKBS
FR3
JG9
KR7
L7M
SOI
ID FETCH-LOGICAL-c446t-fbba4666400e748bbc7af53227fe683468668354bb874bf2f413b42244bb9db3
IEDL.DBID .~1
ISSN 0926-3373
IngestDate Wed Aug 13 02:39:14 EDT 2025
Tue Jul 01 04:35:07 EDT 2025
Thu Apr 24 22:58:20 EDT 2025
Sat Mar 02 16:00:53 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Hydrogen evolution reaction
Large current densities
Core-shell electrocatalysts
Oxygen evolution reaction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-fbba4666400e748bbc7af53227fe683468668354bb874bf2f413b42244bb9db3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1778-3975
0000-0003-4574-9720
OpenAccessLink http://hdl.handle.net/10754/664332
PQID 2448951518
PQPubID 2045281
ParticipantIDs proquest_journals_2448951518
crossref_citationtrail_10_1016_j_apcatb_2020_119326
crossref_primary_10_1016_j_apcatb_2020_119326
elsevier_sciencedirect_doi_10_1016_j_apcatb_2020_119326
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-05
PublicationDateYYYYMMDD 2020-12-05
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-05
  day: 05
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Applied catalysis. B, Environmental
PublicationYear 2020
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Liang, Meng, Cabán-Acevedo, Li, Forticaux, Xiu, Wang, Jin (bib0075) 2015; 15
Liang, Gandi, Xia, Hedhili, Anjum, Schwingenschlögl, Alshareef (bib0140) 2017; 2
Zhuo, Cabán-Acevedo, Liang, Samad, Ding, Fu, Li, Jin (bib0120) 2015; 5
Li, Yin, Wang, Lu, Zhang, Liu, Yan, Song, Luo (bib0105) 2018; 239
Zhao, Rui, Dou, Sun (bib0045) 2018; 28
Cheng, Pan, Lei, Jin, Yang, Li, Zhang, Lei, Yuan, Hou (bib0145) 2019; 7
Zhang, Shi, Xue, Zhang, Liang, Zhang (bib0220) 2017; 60
McCrory, Jung, Ferrer, Chatman, Peters, Jaramillo (bib0015) 2015; 137
Pu, Wei, Chen, Mu (bib0125) 2016; 196
Ursua, Gandia, Sanchis (bib0010) 2011; 100
Yu, Wang, Liu, Sun, Yang, Qiu (bib0180) 2019; 63
Cheng, Lei, Yang, Yang, Li, Lu, Zhang, Lei, Hou, Ostrikov (bib0100) 2018; 5
Liang, Shi, Zhang, Ming, Wang, Zhuo, Wang (bib0095) 2016; 28
Liu, Wang, Wu, Li, Zhao, Zhao, Li (bib0170) 2020; 260
Gupta, Patel, Fernandes, Kadrekar, Dashora, Yadav, Bhattacharyya, Jha, Miotello, Kothari (bib0155) 2016; 192
Chang, Lv, Li, Ge, Liu, Xing (bib0285) 2017; 204
Jung, McCrory, Ferrer, Peters, Jaramillo (bib0020) 2016; 4
Wang, Zhang, Zhang, Zhang, Tang, Li, Wang (bib0200) 2019; 9
Liu, Hu, Wu, Wang, Zhang, Cui, He, Du (bib0265) 2019; 258
Liang, Gandi, Anjum, Wang, Schwingenschlögl, Alshareef (bib0110) 2016; 16
Jin (bib0115) 2017; 2
Niu, Jiang, Tang, Yuan, Luo, Hu (bib0215) 2019; 29
Grosvenor, Biesinger, Smart, McIntyre (bib0230) 2006; 600
Huang, Song, Du, Xi, Dou, Nsanzimana, Wang, Xu, Wang (bib0240) 2019; 4
Yan, Sun, Wei, Zhang, Fan, Wei (bib0210) 2012; 22
Song, Li, Yang, Han, Liao, Sun (bib0190) 2018; 9
Rafailović, Gammer, Rentenberger, Trišović, Kleber, Peter Karnthaler (bib0195) 2013; 2
Lei, Lyu, Si, Yang, Li, Lei, Wen, Wu, Hou (bib0040) 2019; 11
Hu, Zhang, Jiang, Lin, An, Zhou, Leung, Yang (bib0245) 2017; 1
Xu, Jiang, Zhang, Hu, Li (bib0260) 2019; 242
Yao, Wang, Hu, Komarneni (bib0150) 2018; 233
Dang, Liang, Zhuo, Lamb, Sheng, Yang, Jin (bib0135) 2018; 30
Cao, Wang, Chen, Lei, Yang, Li, Lei, Hou, Ostrikov (bib0165) 2019
Shi, Liang, Ming, Wang (bib0065) 2017; 56
Sayeed, Herd, O’Mullane (bib0205) 2016; 4
Sun, Yan, Liu, Xu, Cheng, Chen (bib0175) 2019
Xu, Jiang, Zhang, Hu, Li (bib0270) 2019; 242
Nong, Gan, Willinger, Teschner, Strasser (bib0280) 2014; 5
Grosvenor, Kobe, Biesinger, McIntyre (bib0250) 2004; 36
Ming, Liang, Shi, Xu, Mei, Wang (bib0080) 2016; 4
Chen, Wang, Miao, Yang, Liu (bib0290) 2015; 11
Zou, Zhang (bib0050) 2015; 44
Mallouk (bib0030) 2013; 5
Yang, Dang, Shearer, Sheng, Li, Chen, Xiao, Zhang, Hamers, Jin (bib0130) 2018; 8
LeRoy (bib0035) 1983; 8
Brenner (bib0185) 2013
Chen, Dang, Liang, Bi, Gerken, Jin, Alp, Stahl (bib0070) 2015; 137
McCrory, Jung, Peters, Jaramillo (bib0025) 2013; 135
Liang, Li, Meng, Dang, Zhuo, Forticaux, Wang, Jin (bib0085) 2015; 27
Biesinger, Payne, Lau, Gerson, Smart (bib0225) 2009; 41
Xu, Liang, Ming, Qi, Xie, Wang (bib0090) 2017; 7
Wang, Cao, Lei, Dai, Yang, Li, Zhang, Yuan, Lei, Hou (bib0160) 2019; 11
Yang, Zhang, Xiao, Shi, Cao, Tang, Gao (bib0255) 2019; 242
Zhang, Li, Nordlund, Chen, Fan, Zhang, Sheng, Daniel, Sun (bib0295) 2018; 9
Bard, Fox (bib0005) 1995; 28
Biesinger, Payne, Grosvenor, Lau, Gerson, Smart (bib0235) 2011; 257
Yu, Cheng, Luo (bib0275) 2017; 5
Suen, Hung, Quan, Zhang, Xu, Chen (bib0055) 2017; 46
Tahir, Pan, Idrees, Zhang, Wang, Zou, Wang (bib0060) 2017; 37
Liu (10.1016/j.apcatb.2020.119326_bib0170) 2020; 260
Yao (10.1016/j.apcatb.2020.119326_bib0150) 2018; 233
LeRoy (10.1016/j.apcatb.2020.119326_bib0035) 1983; 8
Huang (10.1016/j.apcatb.2020.119326_bib0240) 2019; 4
Rafailović (10.1016/j.apcatb.2020.119326_bib0195) 2013; 2
Nong (10.1016/j.apcatb.2020.119326_bib0280) 2014; 5
Liang (10.1016/j.apcatb.2020.119326_bib0095) 2016; 28
Lei (10.1016/j.apcatb.2020.119326_bib0040) 2019; 11
Suen (10.1016/j.apcatb.2020.119326_bib0055) 2017; 46
Shi (10.1016/j.apcatb.2020.119326_bib0065) 2017; 56
Li (10.1016/j.apcatb.2020.119326_bib0105) 2018; 239
Sun (10.1016/j.apcatb.2020.119326_bib0175) 2019
Liang (10.1016/j.apcatb.2020.119326_bib0075) 2015; 15
Chen (10.1016/j.apcatb.2020.119326_bib0290) 2015; 11
McCrory (10.1016/j.apcatb.2020.119326_bib0015) 2015; 137
Hu (10.1016/j.apcatb.2020.119326_bib0245) 2017; 1
Bard (10.1016/j.apcatb.2020.119326_bib0005) 1995; 28
Ming (10.1016/j.apcatb.2020.119326_bib0080) 2016; 4
Grosvenor (10.1016/j.apcatb.2020.119326_bib0250) 2004; 36
Jin (10.1016/j.apcatb.2020.119326_bib0115) 2017; 2
Yang (10.1016/j.apcatb.2020.119326_bib0255) 2019; 242
Jung (10.1016/j.apcatb.2020.119326_bib0020) 2016; 4
Wang (10.1016/j.apcatb.2020.119326_bib0160) 2019; 11
Yu (10.1016/j.apcatb.2020.119326_bib0180) 2019; 63
Tahir (10.1016/j.apcatb.2020.119326_bib0060) 2017; 37
Zhao (10.1016/j.apcatb.2020.119326_bib0045) 2018; 28
Dang (10.1016/j.apcatb.2020.119326_bib0135) 2018; 30
Cao (10.1016/j.apcatb.2020.119326_bib0165) 2019
Yu (10.1016/j.apcatb.2020.119326_bib0275) 2017; 5
Pu (10.1016/j.apcatb.2020.119326_bib0125) 2016; 196
Cheng (10.1016/j.apcatb.2020.119326_bib0100) 2018; 5
Biesinger (10.1016/j.apcatb.2020.119326_bib0225) 2009; 41
Grosvenor (10.1016/j.apcatb.2020.119326_bib0230) 2006; 600
Cheng (10.1016/j.apcatb.2020.119326_bib0145) 2019; 7
Sayeed (10.1016/j.apcatb.2020.119326_bib0205) 2016; 4
Mallouk (10.1016/j.apcatb.2020.119326_bib0030) 2013; 5
Liang (10.1016/j.apcatb.2020.119326_bib0110) 2016; 16
Zhang (10.1016/j.apcatb.2020.119326_bib0220) 2017; 60
Gupta (10.1016/j.apcatb.2020.119326_bib0155) 2016; 192
Xu (10.1016/j.apcatb.2020.119326_bib0090) 2017; 7
Zhuo (10.1016/j.apcatb.2020.119326_bib0120) 2015; 5
Zou (10.1016/j.apcatb.2020.119326_bib0050) 2015; 44
Song (10.1016/j.apcatb.2020.119326_bib0190) 2018; 9
Niu (10.1016/j.apcatb.2020.119326_bib0215) 2019; 29
Yang (10.1016/j.apcatb.2020.119326_bib0130) 2018; 8
Chang (10.1016/j.apcatb.2020.119326_bib0285) 2017; 204
Yan (10.1016/j.apcatb.2020.119326_bib0210) 2012; 22
Liang (10.1016/j.apcatb.2020.119326_bib0085) 2015; 27
Biesinger (10.1016/j.apcatb.2020.119326_bib0235) 2011; 257
Chen (10.1016/j.apcatb.2020.119326_bib0070) 2015; 137
Liang (10.1016/j.apcatb.2020.119326_bib0140) 2017; 2
Liu (10.1016/j.apcatb.2020.119326_bib0265) 2019; 258
Ursua (10.1016/j.apcatb.2020.119326_bib0010) 2011; 100
Wang (10.1016/j.apcatb.2020.119326_bib0200) 2019; 9
Xu (10.1016/j.apcatb.2020.119326_bib0260) 2019; 242
Zhang (10.1016/j.apcatb.2020.119326_bib0295) 2018; 9
McCrory (10.1016/j.apcatb.2020.119326_bib0025) 2013; 135
Xu (10.1016/j.apcatb.2020.119326_bib0270) 2019; 242
Brenner (10.1016/j.apcatb.2020.119326_bib0185) 2013
References_xml – volume: 5
  start-page: 2955
  year: 2014
  end-page: 2963
  ident: bib0280
  article-title: IrO
  publication-title: Chem. Sci.
– volume: 27
  start-page: 5702
  year: 2015
  end-page: 5711
  ident: bib0085
  article-title: Porous two-dimensional nanosheets converted from layered double hydroxides and their applications in electrocatalytic water splitting
  publication-title: Chem. Mater.
– volume: 8
  start-page: 401
  year: 1983
  end-page: 417
  ident: bib0035
  article-title: Industrial water electrolysis: present and future
  publication-title: Int. J. Hydrogen Energy
– volume: 9
  start-page: 1
  year: 2018
  end-page: 10
  ident: bib0295
  article-title: Dendritic core-shell nickel-iron-copper metal/metal oxide electrode for efficient electrocatalytic water oxidation
  publication-title: Nat. Commun.
– volume: 5
  start-page: 3866
  year: 2018
  end-page: 3872
  ident: bib0100
  article-title: Efficient Electrocatalytic Oxygen evolution at extremely high current density over 3D ultrasmall zero‐valent iron‐coupled nickel sulfide nanosheets
  publication-title: ChemElectroChem
– volume: 233
  start-page: 226
  year: 2018
  end-page: 233
  ident: bib0150
  article-title: Novel hydrothermal electrodeposition to fabricate mesoporous film of Ni
  publication-title: Appl. Catal. B
– volume: 56
  start-page: 573
  year: 2017
  end-page: 577
  ident: bib0065
  article-title: Efficient overall water‐splitting electrocatalysis using lepidocrocite VOOH hollow nanospheres
  publication-title: Angew. Chem. Int. Ed.
– volume: 37
  start-page: 136
  year: 2017
  end-page: 157
  ident: bib0060
  article-title: Electrocatalytic oxygen evolution reaction for energy conversion and storage: a comprehensive review
  publication-title: Nano Energy
– volume: 600
  start-page: 1771
  year: 2006
  end-page: 1779
  ident: bib0230
  article-title: New interpretations of XPS spectra of nickel metal and oxides
  publication-title: Surf. Sci.
– volume: 5
  start-page: 6355
  year: 2015
  end-page: 6361
  ident: bib0120
  article-title: High-performance electrocatalysis for hydrogen evolution reaction using Se-doped pyrite-phase nickel diphosphide nanostructures
  publication-title: ACS Catal.
– volume: 60
  start-page: 324
  year: 2017
  end-page: 334
  ident: bib0220
  article-title: In situ electrochemically converting Fe
  publication-title: Sci. China Mater.
– volume: 63
  year: 2019
  ident: bib0180
  article-title: A hierarchically porous and hydrophilic 3D nickel-iron/MXene electrode for accelerating oxygen and hydrogen evolution at high current densities
  publication-title: Nano Energy
– volume: 28
  start-page: 141
  year: 1995
  end-page: 145
  ident: bib0005
  article-title: Artificial photosynthesis: solar splitting of water to hydrogen and oxygen
  publication-title: Acc. Chem. Res.
– volume: 242
  start-page: 60
  year: 2019
  end-page: 66
  ident: bib0260
  article-title: Heterogeneous interface engineered atomic configuration on ultrathin Ni(OH)
  publication-title: Appl. Catal. B
– volume: 239
  start-page: 537
  year: 2018
  end-page: 544
  ident: bib0105
  article-title: Engineering MoS
  publication-title: Appl. Catal. B
– volume: 9
  start-page: 1489
  year: 2019
  end-page: 1502
  ident: bib0200
  article-title: Theoretical expectation and experimental implementation of in situ Al-doped CoS
  publication-title: ACS Cataly.
– volume: 36
  start-page: 1564
  year: 2004
  end-page: 1574
  ident: bib0250
  article-title: Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds
  publication-title: Surf. Interface Anal.
– year: 2019
  ident: bib0175
  article-title: Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution
  publication-title: Adv. Mater.
– volume: 5
  start-page: 11229
  year: 2017
  end-page: 11235
  ident: bib0275
  article-title: Hierarchical NiFeP microflowers directly grown on Ni foam for efficient electrocatalytic oxygen evolution
  publication-title: J. Mater. Chem. A Mater. Energy Sustain.
– volume: 9
  start-page: 4531
  year: 2018
  ident: bib0190
  article-title: Interfacing nickel nitride and nickel boosts both electrocatalytic hydrogen evolution and oxidation reactions
  publication-title: Nat. Commun.
– start-page: 67
  year: 2019
  ident: bib0165
  article-title: Nitrogen-doped carbon-encased bimetallic selenide for high-performance water electrolysis
  publication-title: Nano-Micro Lett.11
– volume: 2
  start-page: 523
  year: 2013
  end-page: 529
  ident: bib0195
  article-title: Enhanced oxygen evolution and reduction reactions of porous ternary NiCoFe foam electrodes prepared by dynamic hydrogen template deposition
  publication-title: Nano Energy
– volume: 4
  start-page: 329
  year: 2019
  end-page: 338
  ident: bib0240
  article-title: Chemical and structural origin of lattice oxygen oxidation in Co–Zn oxyhydroxide oxygen evolution electrocatalysts
  publication-title: Nat. Energy
– volume: 28
  year: 2018
  ident: bib0045
  article-title: Heterostructures for electrochemical hydrogen evolution reaction: a review
  publication-title: Adv. Funct. Mater.
– year: 2013
  ident: bib0185
  article-title: Electrodeposition of Alloys: Principles and Practice
– volume: 257
  start-page: 2717
  year: 2011
  end-page: 2730
  ident: bib0235
  article-title: Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni
  publication-title: Appl. Surf. Sci.
– volume: 15
  start-page: 1421
  year: 2015
  end-page: 1427
  ident: bib0075
  article-title: Hydrothermal continuous flow synthesis and exfoliation of NiCo layered double hydroxide nanosheets for enhanced oxygen evolution catalysis
  publication-title: Nano Lett.
– volume: 4
  start-page: 3068
  year: 2016
  end-page: 3076
  ident: bib0020
  article-title: Benchmarking nanoparticulate metal oxide electrocatalysts for the alkaline water oxidation reaction
  publication-title: J. Mater. Chem. A Mater. Energy Sustain.
– volume: 137
  start-page: 4347
  year: 2015
  end-page: 4357
  ident: bib0015
  article-title: Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices
  publication-title: J. Am. Chem. Soc.
– volume: 44
  start-page: 5148
  year: 2015
  end-page: 5180
  ident: bib0050
  article-title: Noble metal-free hydrogen evolution catalysts for water splitting
  publication-title: Chem. Soc. Rev.
– volume: 7
  start-page: 6394
  year: 2017
  end-page: 6399
  ident: bib0090
  article-title: Prussian blue analogues derived penroseite (Ni,Co)Se
  publication-title: ACS Catal.
– volume: 30
  start-page: 4321
  year: 2018
  end-page: 4330
  ident: bib0135
  article-title: Direct synthesis and anion exchange of noncarbonate-intercalated NiFe-layered double hydroxides and the influence on electrocatalysis
  publication-title: Chem. Mater.
– volume: 1
  start-page: 383
  year: 2017
  end-page: 393
  ident: bib0245
  article-title: Nanohybridization of MoS
  publication-title: Joule
– volume: 192
  start-page: 126
  year: 2016
  end-page: 133
  ident: bib0155
  article-title: Co–Ni–B nanocatalyst for efficient hydrogen evolution reaction in wide pH range
  publication-title: Appl. Catal. B
– volume: 2
  start-page: 1035
  year: 2017
  end-page: 1042
  ident: bib0140
  article-title: Amorphous NiFe-OH/NiFeP electrocatalyst fabricated at low temperature for water oxidation applications
  publication-title: ACS Energy Lett.
– volume: 16
  start-page: 7718
  year: 2016
  end-page: 7725
  ident: bib0110
  article-title: Plasma-assisted synthesis of NiCoP for efficient overall water splitting
  publication-title: Nano Lett.
– volume: 5
  start-page: 362
  year: 2013
  end-page: 363
  ident: bib0030
  article-title: Water electrolysis: divide and conquer
  publication-title: Nat. Chem.
– volume: 137
  start-page: 15090
  year: 2015
  end-page: 15093
  ident: bib0070
  article-title: Operando analysis of NiFe and Fe oxyhydroxide electrocatalysts for water oxidation: detection of Fe
  publication-title: J. Am. Chem. Soc.
– volume: 100
  start-page: 410
  year: 2011
  end-page: 426
  ident: bib0010
  article-title: Hydrogen production from water electrolysis: current status and future trends
  publication-title: Proc. IEEE
– volume: 46
  start-page: 337
  year: 2017
  end-page: 365
  ident: bib0055
  article-title: Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives
  publication-title: Chem. Soc. Rev.
– volume: 4
  start-page: 15148
  year: 2016
  end-page: 15155
  ident: bib0080
  article-title: MOF-derived Co-doped nickel selenide/C electrocatalysts supported on Ni foam for overall water splitting
  publication-title: J. Mater. Chem. A Mater. Energy Sustain.
– volume: 11
  start-page: 5855
  year: 2019
  end-page: 5874
  ident: bib0040
  article-title: Nanostructured carbon based heterogeneous electrocatalysts for oxygen evolution reaction in alkaline media
  publication-title: ChemCatChem
– volume: 260
  year: 2020
  ident: bib0170
  article-title: 3D porous network heterostructure NiCe@NiFe electrocatalyst for efficient oxygen evolution reaction at large current densities
  publication-title: Appl. Catal. B
– volume: 41
  start-page: 324
  year: 2009
  end-page: 332
  ident: bib0225
  article-title: X-ray photoelectron spectroscopic chemical state quantification of mixed nickel metal, oxide and hydroxide systems
  publication-title: Surf. Interface Anal.
– volume: 242
  start-page: 132
  year: 2019
  end-page: 139
  ident: bib0255
  article-title: CoNiSe
  publication-title: Appl. Catal. B
– volume: 204
  start-page: 486
  year: 2017
  end-page: 496
  ident: bib0285
  article-title: Core-shell structured Ni
  publication-title: Appl. Catal. B
– volume: 242
  start-page: 60
  year: 2019
  end-page: 66
  ident: bib0270
  article-title: Heterogeneous interface engineered atomic configuration on ultrathin Ni(OH)
  publication-title: Appl. Catal. B
– volume: 22
  start-page: 11494
  year: 2012
  end-page: 11502
  ident: bib0210
  article-title: Fabrication and electrochemical performances of hierarchical porous Ni(OH)
  publication-title: J. Mater. Chem.
– volume: 258
  year: 2019
  ident: bib0265
  article-title: Hierarchical nanocomposite electrocatalyst of bimetallic zeolitic imidazolate framework and MoS
  publication-title: Appl. Catal. B
– volume: 135
  start-page: 16977
  year: 2013
  end-page: 16987
  ident: bib0025
  article-title: Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 27743
  year: 2019
  end-page: 27750
  ident: bib0160
  article-title: Strongly coupled 3D N-Doped MoO
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  year: 2018
  ident: bib0130
  article-title: Highly active trimetallic NiFeCr layered double hydroxide electrocatalysts for oxygen evolution reaction
  publication-title: Adv. Energy Mater.
– volume: 29
  year: 2019
  ident: bib0215
  article-title: Autogenous growth of hierarchical NiFe(OH)
  publication-title: Adv. Funct. Mater.
– volume: 4
  start-page: 991
  year: 2016
  end-page: 999
  ident: bib0205
  article-title: Direct electrochemical formation of nanostructured amorphous Co(OH)
  publication-title: J. Mater. Chem. A Mater. Energy Sustain.
– volume: 196
  start-page: 193
  year: 2016
  end-page: 198
  ident: bib0125
  article-title: Flexible molybdenum phosphide nanosheet array electrodes for hydrogen evolution reaction in a wide pH range
  publication-title: Appl. Catal. B
– volume: 28
  start-page: 5587
  year: 2016
  end-page: 5591
  ident: bib0095
  article-title: Solution growth of vertical VS
  publication-title: Chem. Mater.
– volume: 2
  start-page: 1937
  year: 2017
  end-page: 1938
  ident: bib0115
  article-title: Are metal chalcogenides, nitrides, and phosphides oxygen evolution catalysts or bifunctional catalysts?
  publication-title: ACS Energy Lett.
– volume: 7
  start-page: 965
  year: 2019
  end-page: 971
  ident: bib0145
  article-title: A strongly coupled 3D ternary Fe
  publication-title: J. Mater. Chem. A Mater. Energy Sustain.
– volume: 11
  start-page: 333
  year: 2015
  end-page: 340
  ident: bib0290
  article-title: A flexible high-performance oxygen evolution electrode with three-dimensional NiCo
  publication-title: Nano Energy
– volume: 16
  start-page: 7718
  year: 2016
  ident: 10.1016/j.apcatb.2020.119326_bib0110
  article-title: Plasma-assisted synthesis of NiCoP for efficient overall water splitting
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b03803
– volume: 204
  start-page: 486
  year: 2017
  ident: 10.1016/j.apcatb.2020.119326_bib0285
  article-title: Core-shell structured Ni12P5/Ni3(PO4)2 hollow spheres as difunctional and efficient electrocatalysts for overall water electrolysis
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2016.11.050
– volume: 137
  start-page: 4347
  year: 2015
  ident: 10.1016/j.apcatb.2020.119326_bib0015
  article-title: Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja510442p
– volume: 56
  start-page: 573
  year: 2017
  ident: 10.1016/j.apcatb.2020.119326_bib0065
  article-title: Efficient overall water‐splitting electrocatalysis using lepidocrocite VOOH hollow nanospheres
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201610211
– volume: 100
  start-page: 410
  year: 2011
  ident: 10.1016/j.apcatb.2020.119326_bib0010
  article-title: Hydrogen production from water electrolysis: current status and future trends
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2011.2156750
– volume: 258
  year: 2019
  ident: 10.1016/j.apcatb.2020.119326_bib0265
  article-title: Hierarchical nanocomposite electrocatalyst of bimetallic zeolitic imidazolate framework and MoS2 sheets for non-Pt methanol oxidation and water splitting
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2019.117970
– volume: 60
  start-page: 324
  year: 2017
  ident: 10.1016/j.apcatb.2020.119326_bib0220
  article-title: In situ electrochemically converting Fe2O3-Ni(OH)2 to NiFe2O4-NiOOH: a highly efficient electrocatalyst towards water oxidation
  publication-title: Sci. China Mater.
  doi: 10.1007/s40843-017-9017-6
– volume: 260
  year: 2020
  ident: 10.1016/j.apcatb.2020.119326_bib0170
  article-title: 3D porous network heterostructure NiCe@NiFe electrocatalyst for efficient oxygen evolution reaction at large current densities
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2019.118199
– volume: 233
  start-page: 226
  year: 2018
  ident: 10.1016/j.apcatb.2020.119326_bib0150
  article-title: Novel hydrothermal electrodeposition to fabricate mesoporous film of Ni0.8Fe0.2 nanosheets for high performance oxygen evolution reaction
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2018.04.009
– volume: 36
  start-page: 1564
  year: 2004
  ident: 10.1016/j.apcatb.2020.119326_bib0250
  article-title: Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds
  publication-title: Surf. Interface Anal.
  doi: 10.1002/sia.1984
– volume: 2
  start-page: 1035
  year: 2017
  ident: 10.1016/j.apcatb.2020.119326_bib0140
  article-title: Amorphous NiFe-OH/NiFeP electrocatalyst fabricated at low temperature for water oxidation applications
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00206
– volume: 239
  start-page: 537
  year: 2018
  ident: 10.1016/j.apcatb.2020.119326_bib0105
  article-title: Engineering MoS2 nanomesh with holes and lattice defects for highly active hydrogen evolution reaction
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2018.05.080
– volume: 15
  start-page: 1421
  year: 2015
  ident: 10.1016/j.apcatb.2020.119326_bib0075
  article-title: Hydrothermal continuous flow synthesis and exfoliation of NiCo layered double hydroxide nanosheets for enhanced oxygen evolution catalysis
  publication-title: Nano Lett.
  doi: 10.1021/nl504872s
– volume: 5
  start-page: 362
  year: 2013
  ident: 10.1016/j.apcatb.2020.119326_bib0030
  article-title: Water electrolysis: divide and conquer
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1634
– volume: 4
  start-page: 15148
  year: 2016
  ident: 10.1016/j.apcatb.2020.119326_bib0080
  article-title: MOF-derived Co-doped nickel selenide/C electrocatalysts supported on Ni foam for overall water splitting
  publication-title: J. Mater. Chem. A Mater. Energy Sustain.
  doi: 10.1039/C6TA06496E
– volume: 11
  start-page: 5855
  year: 2019
  ident: 10.1016/j.apcatb.2020.119326_bib0040
  article-title: Nanostructured carbon based heterogeneous electrocatalysts for oxygen evolution reaction in alkaline media
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201901707
– volume: 135
  start-page: 16977
  year: 2013
  ident: 10.1016/j.apcatb.2020.119326_bib0025
  article-title: Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja407115p
– volume: 4
  start-page: 329
  year: 2019
  ident: 10.1016/j.apcatb.2020.119326_bib0240
  article-title: Chemical and structural origin of lattice oxygen oxidation in Co–Zn oxyhydroxide oxygen evolution electrocatalysts
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0355-9
– volume: 1
  start-page: 383
  year: 2017
  ident: 10.1016/j.apcatb.2020.119326_bib0245
  article-title: Nanohybridization of MoS2 with layered double hydroxides efficiently synergizes the hydrogen evolution in alkaline media
  publication-title: Joule
  doi: 10.1016/j.joule.2017.07.011
– volume: 5
  start-page: 11229
  year: 2017
  ident: 10.1016/j.apcatb.2020.119326_bib0275
  article-title: Hierarchical NiFeP microflowers directly grown on Ni foam for efficient electrocatalytic oxygen evolution
  publication-title: J. Mater. Chem. A Mater. Energy Sustain.
  doi: 10.1039/C7TA02968C
– volume: 27
  start-page: 5702
  year: 2015
  ident: 10.1016/j.apcatb.2020.119326_bib0085
  article-title: Porous two-dimensional nanosheets converted from layered double hydroxides and their applications in electrocatalytic water splitting
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b02177
– volume: 137
  start-page: 15090
  year: 2015
  ident: 10.1016/j.apcatb.2020.119326_bib0070
  article-title: Operando analysis of NiFe and Fe oxyhydroxide electrocatalysts for water oxidation: detection of Fe4+ by Mossbauer spectroscopy
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b10699
– volume: 63
  year: 2019
  ident: 10.1016/j.apcatb.2020.119326_bib0180
  article-title: A hierarchically porous and hydrophilic 3D nickel-iron/MXene electrode for accelerating oxygen and hydrogen evolution at high current densities
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.103880
– volume: 196
  start-page: 193
  year: 2016
  ident: 10.1016/j.apcatb.2020.119326_bib0125
  article-title: Flexible molybdenum phosphide nanosheet array electrodes for hydrogen evolution reaction in a wide pH range
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2016.05.027
– volume: 257
  start-page: 2717
  year: 2011
  ident: 10.1016/j.apcatb.2020.119326_bib0235
  article-title: Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2010.10.051
– volume: 2
  start-page: 1937
  year: 2017
  ident: 10.1016/j.apcatb.2020.119326_bib0115
  article-title: Are metal chalcogenides, nitrides, and phosphides oxygen evolution catalysts or bifunctional catalysts?
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00679
– volume: 4
  start-page: 3068
  year: 2016
  ident: 10.1016/j.apcatb.2020.119326_bib0020
  article-title: Benchmarking nanoparticulate metal oxide electrocatalysts for the alkaline water oxidation reaction
  publication-title: J. Mater. Chem. A Mater. Energy Sustain.
  doi: 10.1039/C5TA07586F
– year: 2019
  ident: 10.1016/j.apcatb.2020.119326_bib0175
  article-title: Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution
  publication-title: Adv. Mater.
– volume: 28
  start-page: 141
  year: 1995
  ident: 10.1016/j.apcatb.2020.119326_bib0005
  article-title: Artificial photosynthesis: solar splitting of water to hydrogen and oxygen
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar00051a007
– volume: 41
  start-page: 324
  year: 2009
  ident: 10.1016/j.apcatb.2020.119326_bib0225
  article-title: X-ray photoelectron spectroscopic chemical state quantification of mixed nickel metal, oxide and hydroxide systems
  publication-title: Surf. Interface Anal.
  doi: 10.1002/sia.3026
– volume: 242
  start-page: 60
  year: 2019
  ident: 10.1016/j.apcatb.2020.119326_bib0260
  article-title: Heterogeneous interface engineered atomic configuration on ultrathin Ni(OH)2/Ni3S2 nanoforests for efficient  water splitting
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2018.09.064
– volume: 600
  start-page: 1771
  year: 2006
  ident: 10.1016/j.apcatb.2020.119326_bib0230
  article-title: New interpretations of XPS spectra of nickel metal and oxides
  publication-title: Surf. Sci.
  doi: 10.1016/j.susc.2006.01.041
– volume: 9
  start-page: 4531
  year: 2018
  ident: 10.1016/j.apcatb.2020.119326_bib0190
  article-title: Interfacing nickel nitride and nickel boosts both electrocatalytic hydrogen evolution and oxidation reactions
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06728-7
– volume: 46
  start-page: 337
  year: 2017
  ident: 10.1016/j.apcatb.2020.119326_bib0055
  article-title: Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00328A
– volume: 4
  start-page: 991
  year: 2016
  ident: 10.1016/j.apcatb.2020.119326_bib0205
  article-title: Direct electrochemical formation of nanostructured amorphous Co(OH)2 on gold electrodes with enhanced activity for the oxygen evolution reaction
  publication-title: J. Mater. Chem. A Mater. Energy Sustain.
  doi: 10.1039/C5TA09125J
– volume: 242
  start-page: 60
  year: 2019
  ident: 10.1016/j.apcatb.2020.119326_bib0270
  article-title: Heterogeneous interface engineered atomic configuration on ultrathin Ni(OH)2/Ni3S2 nanoforests for efficient water splitting
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2018.09.064
– volume: 7
  start-page: 6394
  year: 2017
  ident: 10.1016/j.apcatb.2020.119326_bib0090
  article-title: Prussian blue analogues derived penroseite (Ni,Co)Se2 nanocages anchored on 3D graphene aerogel for efficient water splitting
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b02079
– volume: 28
  year: 2018
  ident: 10.1016/j.apcatb.2020.119326_bib0045
  article-title: Heterostructures for electrochemical hydrogen evolution reaction: a review
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201803291
– volume: 30
  start-page: 4321
  year: 2018
  ident: 10.1016/j.apcatb.2020.119326_bib0135
  article-title: Direct synthesis and anion exchange of noncarbonate-intercalated NiFe-layered double hydroxides and the influence on electrocatalysis
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b01334
– volume: 192
  start-page: 126
  year: 2016
  ident: 10.1016/j.apcatb.2020.119326_bib0155
  article-title: Co–Ni–B nanocatalyst for efficient hydrogen evolution reaction in wide pH range
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2016.03.032
– volume: 5
  start-page: 2955
  year: 2014
  ident: 10.1016/j.apcatb.2020.119326_bib0280
  article-title: IrOx core-shell nanocatalysts for cost-and energy-efficient electrochemical water splitting
  publication-title: Chem. Sci.
  doi: 10.1039/C4SC01065E
– volume: 8
  start-page: 401
  year: 1983
  ident: 10.1016/j.apcatb.2020.119326_bib0035
  article-title: Industrial water electrolysis: present and future
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/0360-3199(83)90162-3
– volume: 7
  start-page: 965
  year: 2019
  ident: 10.1016/j.apcatb.2020.119326_bib0145
  article-title: A strongly coupled 3D ternary Fe2O3@Ni2P/Ni(PO3)2 hybrid for enhanced electrocatalytic oxygen evolution at ultra-high current densities
  publication-title: J. Mater. Chem. A Mater. Energy Sustain.
  doi: 10.1039/C8TA11223A
– volume: 29
  year: 2019
  ident: 10.1016/j.apcatb.2020.119326_bib0215
  article-title: Autogenous growth of hierarchical NiFe(OH)x/FeS nanosheet-on-microsheet arrays for synergistically enhanced high-output water oxidation
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201902180
– volume: 242
  start-page: 132
  year: 2019
  ident: 10.1016/j.apcatb.2020.119326_bib0255
  article-title: CoNiSe2 heteronanorods decorated with layered-double-hydroxides for efficient hydrogen evolution
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2018.09.082
– volume: 5
  start-page: 6355
  year: 2015
  ident: 10.1016/j.apcatb.2020.119326_bib0120
  article-title: High-performance electrocatalysis for hydrogen evolution reaction using Se-doped pyrite-phase nickel diphosphide nanostructures
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b01657
– start-page: 67
  year: 2019
  ident: 10.1016/j.apcatb.2020.119326_bib0165
  article-title: Nitrogen-doped carbon-encased bimetallic selenide for high-performance water electrolysis
  publication-title: Nano-Micro Lett.11
  doi: 10.1007/s40820-019-0299-4
– volume: 44
  start-page: 5148
  year: 2015
  ident: 10.1016/j.apcatb.2020.119326_bib0050
  article-title: Noble metal-free hydrogen evolution catalysts for water splitting
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00448E
– volume: 11
  start-page: 27743
  year: 2019
  ident: 10.1016/j.apcatb.2020.119326_bib0160
  article-title: Strongly coupled 3D N-Doped MoO2/Ni3S2 hybrid for high current density hydrogen evolution electrocatalysis and biomass upgrading
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b06502
– volume: 22
  start-page: 11494
  year: 2012
  ident: 10.1016/j.apcatb.2020.119326_bib0210
  article-title: Fabrication and electrochemical performances of hierarchical porous Ni(OH)2 nanoflakes anchored on graphene sheets
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm30221g
– volume: 5
  start-page: 3866
  year: 2018
  ident: 10.1016/j.apcatb.2020.119326_bib0100
  article-title: Efficient Electrocatalytic Oxygen evolution at extremely high current density over 3D ultrasmall zero‐valent iron‐coupled nickel sulfide nanosheets
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201801104
– volume: 28
  start-page: 5587
  year: 2016
  ident: 10.1016/j.apcatb.2020.119326_bib0095
  article-title: Solution growth of vertical VS2 nanoplate arrays for electrocatalytic hydrogen evolution
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b01963
– year: 2013
  ident: 10.1016/j.apcatb.2020.119326_bib0185
– volume: 9
  start-page: 1489
  year: 2019
  ident: 10.1016/j.apcatb.2020.119326_bib0200
  article-title: Theoretical expectation and experimental implementation of in situ Al-doped CoS2 nanowires on dealloying-derived nanoporous intermetallic substrate as an efficient electrocatalyst for boosting hydrogen production
  publication-title: ACS Cataly.
  doi: 10.1021/acscatal.8b04502
– volume: 37
  start-page: 136
  year: 2017
  ident: 10.1016/j.apcatb.2020.119326_bib0060
  article-title: Electrocatalytic oxygen evolution reaction for energy conversion and storage: a comprehensive review
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.05.022
– volume: 2
  start-page: 523
  year: 2013
  ident: 10.1016/j.apcatb.2020.119326_bib0195
  article-title: Enhanced oxygen evolution and reduction reactions of porous ternary NiCoFe foam electrodes prepared by dynamic hydrogen template deposition
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2012.12.004
– volume: 11
  start-page: 333
  year: 2015
  ident: 10.1016/j.apcatb.2020.119326_bib0290
  article-title: A flexible high-performance oxygen evolution electrode with three-dimensional NiCo2O4 core-shell nanowires
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.11.021
– volume: 8
  year: 2018
  ident: 10.1016/j.apcatb.2020.119326_bib0130
  article-title: Highly active trimetallic NiFeCr layered double hydroxide electrocatalysts for oxygen evolution reaction
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703189
– volume: 9
  start-page: 1
  year: 2018
  ident: 10.1016/j.apcatb.2020.119326_bib0295
  article-title: Dendritic core-shell nickel-iron-copper metal/metal oxide electrode for efficient electrocatalytic water oxidation
  publication-title: Nat. Commun.
SSID ssj0002328
Score 2.6712441
Snippet [Display omitted] Core-shell bimetallic alloy/oxyhydroxide electrocatalyst can stably drive the water splitting electrocatalysis at 1000 mA cm−2 for 300 h...
A big challenge in practical water splitting is the sluggish reaction kinetics at high current densities that essentially requires efficient electrocatalysts...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 119326
SubjectTerms Catalysts
Charge transfer
Core-shell electrocatalysts
Core-shell structure
Current density
Electrocatalysts
High current
Hydrogen evolution reaction
Hydrogen evolution reactions
Intermetallic compounds
Iron compounds
Large current densities
Nickel compounds
Noble metals
Oxygen evolution reaction
Oxygen evolution reactions
Reaction kinetics
Splitting
Water currents
Water splitting
Title NiCo/NiCo–OH and NiFe/NiFe–OH core shell nanostructures for water splitting electrocatalysis at large currents
URI https://dx.doi.org/10.1016/j.apcatb.2020.119326
https://www.proquest.com/docview/2448951518
Volume 278
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5ED-pBdFV8rJKD19q1TZvuUZZdVsX1oIK3kKQtrEh32a54E_-D_9Bf4kyS-gIRvAQaktJmHvkmfJkBONJKZKVSKihROwKeqU6gDDpDbRQ_iRRiCkvGvBylw1t-fpfcLUCvuQtDtErv-51Pt97a94R-NcPpeBxed7pRGscijkhPXTFrzgVp-fHzJ80DEYP1xjg4oNHN9TnL8VJTo-Yao8SIfAdBmd-2px-O2u4-g3VY87CRnbov24CFomrBcq-p1taC1S-JBVuw3f-8v4bTvAHXmzAbjXuTkJq3l9erIVNVzkbjQRFS47ooryWriR_KKlVNXILZR4zKGeJb9oTYdMZqhK6WMM18GR17CkTJTZiaswdilzPjMj_VW3Az6N_0hoEvuxAYjA3nQam14hjVoHUXgmdaG6HKBA1flEWaxTzN0pSOi7TOBNdlVOI-qDlCAezp5jrehsVqUhU7wGKTF2kHJS66BVelpgpnCQIIw0We6zzahbhZbGl8SnKqjPEgG-7ZvXQikiQi6US0C8HHrKlLyfHHeNHIUX5TLYm7xh8z243YpTftWuJ_ZghLk5Ns798v3ocVerK0mKQNiyjJ4gDBzVwfWu09hKXTs4vh6B1VJvuh
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED4hGIABQQFRnh5YQ9rEidMRVVTlVQaKxGbZTiIVobRqitgQ_4F_yC_hznF4SagSiwfHjhLfw99Zn-8AjrUSSa6U8nLUDo8nquUpg85QG8XbgUJMYcmY14O4f8cv7qP7BejWd2GIVul8f-XTrbd2Pb5bTX8yGvm3rU4Qh6EIA9JTW8x6iaP5UhmDk5cvngdCBuuOcbRHw-v7c5bkpSZGzTSGiQE5D8Iyf-1Pvzy13X5667DmcCM7rT5tAxayogHL3bpcWwNWv2UWbMD22dcFNpzmLLjchOlg1B371Ly_vt30mSpSNhj1Mp-aqosSW7KSCKKsUMW4yjD7hGE5Q4DLnhGcTlmJ2NUyppmro2OPgSi7CVMz9kj0cmaq1E_lFgx7Z8Nu33N1FzyDweHMy7VWHMMaNO9M8ERrI1QeoeWLPIuTkMdJHNN5kdaJ4DoPctwINUcsgD2dVIfbsFiMi2wHWGjSLG6hyEUn4yrXVOIsQgRhuEhTnQZNCOvFlsblJKfSGI-yJp89yEpEkkQkKxE1wfucNalycswZL2o5yh-6JXHbmDNzvxa7dLZdSvzPBHFp1E52__3iI1juD6-v5NX54HIPVuiJ5chE-7CIUs0OEOnM9KHV5A8Knv0v
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NiCo%2FNiCo%E2%80%93OH+and+NiFe%2FNiFe%E2%80%93OH+core+shell+nanostructures+for+water+splitting+electrocatalysis+at+large+currents&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Zhu%2C+Weijie&rft.au=Chen%2C+Weixin&rft.au=Yu%2C+Huanhuan&rft.au=Zeng%2C+Ye&rft.date=2020-12-05&rft.pub=Elsevier+BV&rft.issn=0926-3373&rft.eissn=1873-3883&rft.volume=278&rft.spage=1&rft_id=info:doi/10.1016%2Fj.apcatb.2020.119326&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon