Graph Sampling-Based Multi-Stream Enhancement Network for Visible-Infrared Person Re-Identification

With the increasing demand for person re-identification (Re-ID) tasks, the need for all-day retrieval has become an inevitable trend. Nevertheless, single-modal Re-ID is no longer sufficient to meet this requirement, making Multi-Modal Data crucial in Re-ID. Consequently, a Visible-Infrared Person R...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 23; no. 18; p. 7948
Main Authors Jiang, Jinhua, Xiao, Junjie, Wang, Renlin, Li, Tiansong, Zhang, Wenfeng, Ran, Ruisheng, Xiang, Sen
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.09.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the increasing demand for person re-identification (Re-ID) tasks, the need for all-day retrieval has become an inevitable trend. Nevertheless, single-modal Re-ID is no longer sufficient to meet this requirement, making Multi-Modal Data crucial in Re-ID. Consequently, a Visible-Infrared Person Re-Identification (VI Re-ID) task is proposed, which aims to match pairs of person images from the visible and infrared modalities. The significant modality discrepancy between the modalities poses a major challenge. Existing VI Re-ID methods focus on cross-modal feature learning and modal transformation to alleviate the discrepancy but overlook the impact of person contour information. Contours exhibit modality invariance, which is vital for learning effective identity representations and cross-modal matching. In addition, due to the low intra-modal diversity in the visible modality, it is difficult to distinguish the boundaries between some hard samples. To address these issues, we propose the Graph Sampling-based Multi-stream Enhancement Network (GSMEN). Firstly, the Contour Expansion Module (CEM) incorporates the contour information of a person into the original samples, further reducing the modality discrepancy and leading to improved matching stability between image pairs of different modalities. Additionally, to better distinguish cross-modal hard sample pairs during the training process, an innovative Cross-modality Graph Sampler (CGS) is designed for sample selection before training. The CGS calculates the feature distance between samples from different modalities and groups similar samples into the same batch during the training process, effectively exploring the boundary relationships between hard classes in the cross-modal setting. Some experiments conducted on the SYSU-MM01 and RegDB datasets demonstrate the superiority of our proposed method. Specifically, in the VIS→IR task, the experimental results on the RegDB dataset achieve 93.69% for Rank-1 and 92.56% for mAP.
AbstractList With the increasing demand for person re-identification (Re-ID) tasks, the need for all-day retrieval has become an inevitable trend. Nevertheless, single-modal Re-ID is no longer sufficient to meet this requirement, making Multi-Modal Data crucial in Re-ID. Consequently, a Visible-Infrared Person Re-Identification (VI Re-ID) task is proposed, which aims to match pairs of person images from the visible and infrared modalities. The significant modality discrepancy between the modalities poses a major challenge. Existing VI Re-ID methods focus on cross-modal feature learning and modal transformation to alleviate the discrepancy but overlook the impact of person contour information. Contours exhibit modality invariance, which is vital for learning effective identity representations and cross-modal matching. In addition, due to the low intra-modal diversity in the visible modality, it is difficult to distinguish the boundaries between some hard samples. To address these issues, we propose the Graph Sampling-based Multi-stream Enhancement Network (GSMEN). Firstly, the Contour Expansion Module (CEM) incorporates the contour information of a person into the original samples, further reducing the modality discrepancy and leading to improved matching stability between image pairs of different modalities. Additionally, to better distinguish cross-modal hard sample pairs during the training process, an innovative Cross-modality Graph Sampler (CGS) is designed for sample selection before training. The CGS calculates the feature distance between samples from different modalities and groups similar samples into the same batch during the training process, effectively exploring the boundary relationships between hard classes in the cross-modal setting. Some experiments conducted on the SYSU-MM01 and RegDB datasets demonstrate the superiority of our proposed method. Specifically, in the VIS→IR task, the experimental results on the RegDB dataset achieve 93.69% for Rank-1 and 92.56% for mAP.
With the increasing demand for person re-identification (Re-ID) tasks, the need for all-day retrieval has become an inevitable trend. Nevertheless, single-modal Re-ID is no longer sufficient to meet this requirement, making Multi-Modal Data crucial in Re-ID. Consequently, a Visible-Infrared Person Re-Identification (VI Re-ID) task is proposed, which aims to match pairs of person images from the visible and infrared modalities. The significant modality discrepancy between the modalities poses a major challenge. Existing VI Re-ID methods focus on cross-modal feature learning and modal transformation to alleviate the discrepancy but overlook the impact of person contour information. Contours exhibit modality invariance, which is vital for learning effective identity representations and cross-modal matching. In addition, due to the low intra-modal diversity in the visible modality, it is difficult to distinguish the boundaries between some hard samples. To address these issues, we propose the Graph Sampling-based Multi-stream Enhancement Network (GSMEN). Firstly, the Contour Expansion Module (CEM) incorporates the contour information of a person into the original samples, further reducing the modality discrepancy and leading to improved matching stability between image pairs of different modalities. Additionally, to better distinguish cross-modal hard sample pairs during the training process, an innovative Cross-modality Graph Sampler (CGS) is designed for sample selection before training. The CGS calculates the feature distance between samples from different modalities and groups similar samples into the same batch during the training process, effectively exploring the boundary relationships between hard classes in the cross-modal setting. Some experiments conducted on the SYSU-MM01 and RegDB datasets demonstrate the superiority of our proposed method. Specifically, in the VIS→IR task, the experimental results on the RegDB dataset achieve 93.69% for Rank-1 and 92.56% for mAP.With the increasing demand for person re-identification (Re-ID) tasks, the need for all-day retrieval has become an inevitable trend. Nevertheless, single-modal Re-ID is no longer sufficient to meet this requirement, making Multi-Modal Data crucial in Re-ID. Consequently, a Visible-Infrared Person Re-Identification (VI Re-ID) task is proposed, which aims to match pairs of person images from the visible and infrared modalities. The significant modality discrepancy between the modalities poses a major challenge. Existing VI Re-ID methods focus on cross-modal feature learning and modal transformation to alleviate the discrepancy but overlook the impact of person contour information. Contours exhibit modality invariance, which is vital for learning effective identity representations and cross-modal matching. In addition, due to the low intra-modal diversity in the visible modality, it is difficult to distinguish the boundaries between some hard samples. To address these issues, we propose the Graph Sampling-based Multi-stream Enhancement Network (GSMEN). Firstly, the Contour Expansion Module (CEM) incorporates the contour information of a person into the original samples, further reducing the modality discrepancy and leading to improved matching stability between image pairs of different modalities. Additionally, to better distinguish cross-modal hard sample pairs during the training process, an innovative Cross-modality Graph Sampler (CGS) is designed for sample selection before training. The CGS calculates the feature distance between samples from different modalities and groups similar samples into the same batch during the training process, effectively exploring the boundary relationships between hard classes in the cross-modal setting. Some experiments conducted on the SYSU-MM01 and RegDB datasets demonstrate the superiority of our proposed method. Specifically, in the VIS→IR task, the experimental results on the RegDB dataset achieve 93.69% for Rank-1 and 92.56% for mAP.
Audience Academic
Author Xiang, Sen
Xiao, Junjie
Ran, Ruisheng
Wang, Renlin
Li, Tiansong
Zhang, Wenfeng
Jiang, Jinhua
AuthorAffiliation 1 College of Computer and Information Science, Chongqing Normal University, Chongqing 401331, China; 2021210516040@stu.cqnu.edu.cn (J.J.); 2022210516103@stu.cqnu.edu.cn (J.X.); tiansongli@cqnu.edu.cn (T.L.)
3 School of Information Science and Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; xiangsen@wust.edu.cn
2 School of Computer Engineering, Weifang University, Weifang 261061, China; wfuwrl@126.com
AuthorAffiliation_xml – name: 2 School of Computer Engineering, Weifang University, Weifang 261061, China; wfuwrl@126.com
– name: 3 School of Information Science and Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; xiangsen@wust.edu.cn
– name: 1 College of Computer and Information Science, Chongqing Normal University, Chongqing 401331, China; 2021210516040@stu.cqnu.edu.cn (J.J.); 2022210516103@stu.cqnu.edu.cn (J.X.); tiansongli@cqnu.edu.cn (T.L.)
Author_xml – sequence: 1
  givenname: Jinhua
  orcidid: 0009-0006-4215-5176
  surname: Jiang
  fullname: Jiang, Jinhua
– sequence: 2
  givenname: Junjie
  orcidid: 0009-0003-2229-103X
  surname: Xiao
  fullname: Xiao, Junjie
– sequence: 3
  givenname: Renlin
  surname: Wang
  fullname: Wang, Renlin
– sequence: 4
  givenname: Tiansong
  surname: Li
  fullname: Li, Tiansong
– sequence: 5
  givenname: Wenfeng
  surname: Zhang
  fullname: Zhang, Wenfeng
– sequence: 6
  givenname: Ruisheng
  orcidid: 0000-0002-0785-2703
  surname: Ran
  fullname: Ran, Ruisheng
– sequence: 7
  givenname: Sen
  surname: Xiang
  fullname: Xiang, Sen
BookMark eNpdUktv1DAYjFARfcCBfxCJCxxS_H6cUKnaslJ5iAJXy3E-73pJ7MVOqPj3GLaqKPLB1nhm7LHnuDmIKULTPMfolFKNXhdCsZKaqUfNEWaEdYoQdPDP-rA5LmWLEKGUqifNIZVSCIT4UeOust1t2hs77cYQ191bW2Bo3y_jHLqbOYOd2ou4sdHBBHFuP8B8m_L31qfcfgsl9CN0q-izzVX1CXJJsf1coaGSgw_OziHFp81jb8cCz-7mk-br5cWX83fd9cer1fnZdecYE3MHQ48F9wz1TDjlMEFOccK8kkRq7LgWTlPltKVEACiOec8lYpzVWF5YTU-a1d53SHZrdjlMNv8yyQbzF0h5bWyegxvBaKlFjykwIS0j2qu-Zw5766XCWipXvd7svXZLP8Hgap5sxwemD3di2Jh1-mkw4pQpJqrDyzuHnH4sUGYzheJgHG2EtBRDlESYMa5Jpb74j7pNS471rSpLaEHrV8nKOt2z1rYmCNGnerCrY4ApuNoIHyp-JiVWmHDGq-DVXuByKiWDv78-RuZPccx9cehv_0yz3Q
Cites_doi 10.1109/CVPR42600.2020.00321
10.1609/aaai.v34i04.5891
10.1109/CVPR42600.2020.01339
10.1109/LSP.2020.2994815
10.1109/CVPR.2015.7298794
10.1109/ICCV48922.2021.01161
10.1109/ICCV48922.2021.01438
10.3390/s22166293
10.24963/ijcai.2018/94
10.1145/3503161.3548336
10.1109/LSP.2021.3115040
10.3390/s17030605
10.1609/aaai.v36i1.19987
10.1007/s11263-019-01290-1
10.1609/aaai.v34i07.6894
10.1109/TNNLS.2021.3105702
10.1109/JSTSP.2022.3233716
10.1007/978-3-031-19781-9_28
10.1109/CVPR.2017.389
10.1109/TPAMI.1986.4767851
10.1109/CVPR46437.2021.00431
10.1109/CVPR46437.2021.00343
10.1609/aaai.v35i4.16466
10.1109/TMM.2020.3042080
10.1109/ICCV48922.2021.00029
10.1109/CVPR.2019.00029
10.1016/j.inffus.2022.09.019
10.1109/TPAMI.2021.3054775
10.1109/ICCV.2017.575
10.3390/s23031426
10.1109/TIFS.2020.3001665
10.1109/ICCV48922.2021.01331
10.1109/CVPR46437.2021.00621
10.1109/ICCV.2019.00372
10.1109/TNNLS.2021.3085978
10.1016/j.inffus.2016.03.003
10.3390/s21175839
10.1109/CVPR52729.2023.00214
10.1109/ICCV.2015.133
10.1109/ICCV48922.2021.01183
10.1109/TPAMI.2020.3048039
10.1007/978-3-030-58520-4_14
10.1109/CVPR.2016.90
10.1109/LSP.2021.3091924
10.1609/aaai.v37i2.25273
10.1145/3474085.3475250
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s23187948
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (subscription)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef



MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: AUTh Library subscriptions: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_9796b13e467a429f8bb4c1faf781978c
PMC10534846
A771812545
10_3390_s23187948
GrantInformation_xml – fundername: Natural Science Foundation of Chongqing
  grantid: 2023NSCQ-MSX1645
– fundername: Key Project for Science and Technology Research Program of Chongqing Municipal Education Commission
  grantid: KJZD-K202100505
– fundername: Chongqing Normal University Foundation
  grantid: 21XLB026
– fundername: Science and Technology Research Program of Chongqing Municipal Education Commission
  grantid: KJQN202200551
– fundername: Chongqing Technology Innovation and Application Development Project
  grantid: cstc2020jscx-msxmX0190
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c446t-edb165f40b46c8c120c8524f872791c596c938c9a326ee8515b570454023f6a93
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:32:33 EDT 2025
Thu Aug 21 18:36:18 EDT 2025
Tue Aug 05 09:12:24 EDT 2025
Fri Jul 25 07:06:05 EDT 2025
Tue Jun 10 21:17:46 EDT 2025
Tue Jul 01 03:50:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-edb165f40b46c8c120c8524f872791c596c938c9a326ee8515b570454023f6a93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
ORCID 0009-0006-4215-5176
0009-0003-2229-103X
0000-0002-0785-2703
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s23187948
PMID 37766005
PQID 2869630057
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_9796b13e467a429f8bb4c1faf781978c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10534846
proquest_miscellaneous_2870144592
proquest_journals_2869630057
gale_infotracacademiconefile_A771812545
crossref_primary_10_3390_s23187948
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_13
ref_12
ref_11
ref_10
ref_52
ref_19
ref_17
ref_16
ref_15
Goodfellow (ref_14) 2014; 27
Liu (ref_39) 2020; 23
ref_25
Shu (ref_5) 2021; 28
ref_24
Canny (ref_53) 1986; 8
ref_23
ref_22
ref_21
Karim (ref_32) 2023; 90
Ghassemian (ref_31) 2016; 32
ref_28
ref_27
ref_26
Liu (ref_51) 2023; 17
Zhang (ref_7) 2020; 27
Wu (ref_20) 2020; 128
ref_36
ref_35
ref_34
ref_33
Liu (ref_50) 2023; 34
ref_30
Kong (ref_6) 2021; 28
ref_38
ref_37
Ye (ref_4) 2021; 44
Ye (ref_18) 2021; 16
ref_47
ref_46
ref_45
ref_44
ref_43
ref_42
ref_41
Li (ref_29) 2020; 44
ref_40
ref_1
ref_3
ref_2
ref_49
ref_48
ref_9
ref_8
References_xml – ident: ref_35
  doi: 10.1109/CVPR42600.2020.00321
– ident: ref_17
  doi: 10.1609/aaai.v34i04.5891
– ident: ref_45
  doi: 10.1109/CVPR42600.2020.01339
– volume: 27
  start-page: 850
  year: 2020
  ident: ref_7
  article-title: AsNet: Asymmetrical network for learning rich features in person re-identification
  publication-title: IEEE Signal Process Lett.
  doi: 10.1109/LSP.2020.2994815
– ident: ref_42
  doi: 10.1109/CVPR.2015.7298794
– ident: ref_19
  doi: 10.1109/ICCV48922.2021.01161
– ident: ref_33
  doi: 10.1109/ICCV48922.2021.01438
– ident: ref_2
  doi: 10.3390/s22166293
– ident: ref_13
  doi: 10.24963/ijcai.2018/94
– ident: ref_24
  doi: 10.1145/3503161.3548336
– volume: 28
  start-page: 2003
  year: 2021
  ident: ref_6
  article-title: Dynamic center aggregation loss with mixed modality for visible-infrared person re-identification
  publication-title: IEEE Signal Process Lett.
  doi: 10.1109/LSP.2021.3115040
– ident: ref_41
  doi: 10.3390/s17030605
– ident: ref_48
  doi: 10.1609/aaai.v36i1.19987
– volume: 128
  start-page: 1765
  year: 2020
  ident: ref_20
  article-title: RGB-IR person re-identification by cross-modality similarity preservation
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-019-01290-1
– ident: ref_23
  doi: 10.1609/aaai.v34i07.6894
– volume: 34
  start-page: 1958
  year: 2023
  ident: ref_50
  article-title: SFANet: A Spectrum-Aware Feature Augmentation Network for Visible-Infrared Person ReIdentification
  publication-title: IEEE Trans. Neural Netw. Learn. Sys.
  doi: 10.1109/TNNLS.2021.3105702
– volume: 17
  start-page: 545
  year: 2023
  ident: ref_51
  article-title: Towards homogeneous modality learning and multi-granularity information exploration for visible-infrared person re-identification
  publication-title: IEEE J. Sel. Top. Signal Process
  doi: 10.1109/JSTSP.2022.3233716
– ident: ref_16
  doi: 10.1007/978-3-031-19781-9_28
– ident: ref_52
  doi: 10.1109/CVPR.2017.389
– volume: 8
  start-page: 679
  year: 1986
  ident: ref_53
  article-title: A computational approach to edge detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.1986.4767851
– ident: ref_12
  doi: 10.1109/CVPR46437.2021.00431
– ident: ref_38
  doi: 10.1109/CVPR46437.2021.00343
– ident: ref_10
  doi: 10.1609/aaai.v35i4.16466
– volume: 23
  start-page: 4414
  year: 2020
  ident: ref_39
  article-title: Parameter sharing exploration and hetero-center triplet loss for visible-thermal person re-identification
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2020.3042080
– ident: ref_26
  doi: 10.1109/ICCV48922.2021.00029
– ident: ref_30
  doi: 10.1109/CVPR.2019.00029
– volume: 90
  start-page: 185
  year: 2023
  ident: ref_32
  article-title: Current advances and future perspectives of image fusion: A comprehensive review
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2022.09.019
– volume: 44
  start-page: 2872
  year: 2021
  ident: ref_4
  article-title: Deep learning for person re-identification: A survey and outlook
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2021.3054775
– ident: ref_28
– ident: ref_8
  doi: 10.1109/ICCV.2017.575
– ident: ref_3
  doi: 10.3390/s23031426
– volume: 27
  start-page: 53
  year: 2014
  ident: ref_14
  article-title: Generative adversarial nets
  publication-title: Adv. Neural Inf. Process Syst.
– volume: 16
  start-page: 728
  year: 2021
  ident: ref_18
  article-title: Visible-infrared person re-identification via homogeneous augmented tri-modal learning
  publication-title: IEEE Trans. Inf. Foren. Sec.
  doi: 10.1109/TIFS.2020.3001665
– ident: ref_34
– ident: ref_9
  doi: 10.1109/ICCV48922.2021.01331
– ident: ref_37
  doi: 10.1109/CVPR46437.2021.00621
– ident: ref_49
  doi: 10.1109/ICCV.2019.00372
– ident: ref_40
– ident: ref_22
  doi: 10.1109/TNNLS.2021.3085978
– volume: 32
  start-page: 75
  year: 2016
  ident: ref_31
  article-title: A review of remote sensing image fusion methods
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2016.03.003
– ident: ref_1
  doi: 10.3390/s21175839
– ident: ref_44
– ident: ref_11
  doi: 10.1109/CVPR52729.2023.00214
– ident: ref_43
  doi: 10.1109/ICCV.2015.133
– ident: ref_46
  doi: 10.1109/ICCV48922.2021.01183
– volume: 44
  start-page: 3260
  year: 2020
  ident: ref_29
  article-title: Self-correction for human parsing
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2020.3048039
– ident: ref_21
  doi: 10.1007/978-3-030-58520-4_14
– ident: ref_15
– ident: ref_27
  doi: 10.1109/CVPR.2016.90
– ident: ref_36
– volume: 28
  start-page: 1365
  year: 2021
  ident: ref_5
  article-title: Semantic-guided pixel sampling for cloth-changing person re-identification
  publication-title: IEEE Signal Process Lett.
  doi: 10.1109/LSP.2021.3091924
– ident: ref_25
  doi: 10.1609/aaai.v37i2.25273
– ident: ref_47
  doi: 10.1145/3474085.3475250
SSID ssj0023338
Score 2.4028208
Snippet With the increasing demand for person re-identification (Re-ID) tasks, the need for all-day retrieval has become an inevitable trend. Nevertheless,...
SourceID doaj
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 7948
SubjectTerms Adaptability
Contour Expansion Module
Cross-modality Graph Sampler
Methods
modality discrepancy
Multi-Modal Data
Neural networks
Semantics
Surveillance
VI Re-ID
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2hnuCAgFIRWJBBSJyixnH8dWxRty2HFYIW9WbZXrutVFLU3f5_ZpzsarcceuFqO4ozz-N5k0yeAT77pslWS47-HZu6U_MiecvrFBSS2egbmUu1xUydnHffLuTFxlFfVBM2yAMPhtu32qrARUKH9rh3ZhNCF3n2WWMs0ybS7osxb5VMjamWwMxr0BESmNTvL5DFGFx5Ziv6FJH-f7fih-WRG_Fm-gKej0SRHQwTfAlPUv8Knm3IB-5CPCa1afbTU1V4f1kfYkSas_JLbU1fm_1vdtRfEaz0CpDNhopvhjSV_bpGV7hJ9Wmf76gEnX0vzJv9wKb5WEBUMHsN59Ojs68n9XhoQh0xs1vWaR64krlrQqeiibxtopFtlw0SFcujtCpaYaL1yNtSQr4lg9RFh68VWXkr9mCnv-3TG2DBB44Xc99G30XRhNYGjPeN8ALv0poKPq2M6f4M2hgOcwqyuFtbvIJDMvN6AMlZlwYE2Y0gu8dAruALgeTI6RCS6Md_B3CeJF_lDrQmpoJssILJCkc3euPCtUZZkhaTuoKP6270I_o44vt0e09jNCWX0rYVmC38t6a-3dNfXxVFbiSpokMm9_Z_POw7eEpn2g-FbBPYWd7dp_fIfJbhQ1nkfwHsCwH3
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PbxQhFCZaL3ow_oyj1aAx8UQ6DMOvk2lNt9VDY9Sa3ggw0DbR2bq7_f99j2HXriZeYSYQHo_3Pfj4IOStb9tsteTg37FlvRqK5C1nKSgAs9G3Mhe2xYk6Pu0_ncmzuuG2rLTK9ZpYFuphHnGPfK8zyqI8lNTvr34xfDUKT1frExq3yR0OkQYpXWZ2tEm4BORfk5qQgNR-bwlYxsD8M1sxqEj1_7sg_02SvBF1Zg_I_QoX6f5k34fkVhofkXs3RAQfk3iEmtP0q0du-HjODiAuDbRcrGV45ux_0sPxAo2LG4H0ZOJ9UwCr9PslOMSPxD6OeYFEdPq54G_6BYqGSiMqlntCTmeH3z4cs_p0AouQ361YGgJXMvdt6FU0kXdtNLLrswG4YnmUVkUrTLQe0FtKgLpkkLqo8XUiK2_FU7Izzsf0jNDgA4efue-i76NoQ2cDRP1WeAGtdKYhb9aD6a4mhQwHmQWOuNuMeEMOcJg3H6CodSmYL85d9RFntVWBiwRrt4cwmU0IfeTZZw2wRZvYkHdoJIeuByaJvt4ggH6iiJXb1xrxCmDChuyu7eiqTy7dnxnUkNebavAmPCLxY5pf4zcaU0xpu4aYLftvdX27Zry8KLrcAFVFD3ju-f9bf0Hu4pv1E1Ftl-ysFtfpJSCbVXhVpu9vkqP5gg
  priority: 102
  providerName: ProQuest
Title Graph Sampling-Based Multi-Stream Enhancement Network for Visible-Infrared Person Re-Identification
URI https://www.proquest.com/docview/2869630057
https://www.proquest.com/docview/2870144592
https://pubmed.ncbi.nlm.nih.gov/PMC10534846
https://doaj.org/article/9796b13e467a429f8bb4c1faf781978c
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB71cYEDojxEoF0ZhMQpkNhxbB8Q6qLdFiRWVWHR3iLb67SVSha2Wwn-PTNOdtVAD73kkDiKNY_MN_b4G4DXNstqo2SO_u2ztCjnkfI2T4MrEcx6m8k6VltMyuNp8XkmZ1uw7rHZCfDq1tSO-klNl5dvf__68wEd_j1lnJiyv7tCjKLRrvQ27GJAUtTI4Eux2UzgQsSG1nSmK8V4mLUEQ_1Xe2Epsvf__4_-t27yRiAaP4QHHYJkh63K92ArNI_g_g1ewcfgj4iGmn21VC7enKVDDFVzFs_aprQNbX-wUXNO-qa1QTZpS8EZ4lf2_QJ95DKkn5p6SbXp7CRCcnaKt-ZdZVFU5hOYjkffPh6nXTeF1GPKt0rD3OWlrIvMFaXXPueZ15IXtUYEY3IvTemN0N5YBHQhIBCTTqpI0MdFXVojnsJOs2jCM2DOuhxfzi33tvAic9w4BAKZsAK_wnUCr9bCrH62pBkVJhsk8Woj8QSGJObNAOK5jjcWy7Oqc5vKKFO6XAT8nVuMnLV2rvB5bWuFSEZpn8AbUlJF9oEq8bY7VIDzJF6r6lApgjAIExPYX-uxWltZxXVpiHNMqgRebh6jg9GuiW3C4prGKMo6peEJ6J7-e1PvP2kuziNVN6JXUSDEe37neb6Ae9TRvi1j24ed1fI6HCDuWbkBbKuZwqseHw1gdzianJwO4hrCINr7X1PoBVA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V7QE4VOUlAgUMAnGKmjhxYh8QaqHbXVpWCFrUm7Edp61UsmV3K8Sf4jcy4yRLFyRuvdqJbM3D8409_gzwwiRJrUqRon-7JM6LKlDeprG3BYJZZxJRh2qLcTE8yt8fi-MV-NXfhaGyyn5NDAt1NXG0R77FZaGIHkqUby6-x_RqFJ2u9k9otGax73_-wJRt9nr0DvX7kvPB7uHbYdy9KhA7TH3msa9sWog6T2xeOOlSnjgpeF5LjOQqdUIVTmXSKYPAxnsEJMKKMhDV8awuDJEv4ZK_lmcYyelm-mBvkeBlmO-17EXYmWzNEDtJtHe5FPPC0wD_BoC_izKvRLnBBqx38JRtt_Z0G1Z8cwduXSEtvAtujziu2WdDtejNSbyDcbBi4SJvTGfc5hvbbU7JmGjjkY3bOnOG4Jh9OUMHPPfxqKmnVPjOPga8zz5hU9WVLQVLuQdH1yLU-7DaTBr_AJg1NsWfU8OdyV2WWK4soowkMxmOwmUEz3th6ouWkUNjJkMS1wuJR7BDYl58QCTaoWEyPdGdT2pVqsKmmcdYYTAs19La3KW1qUuESaV0EbwiJWlydVSJM92NBZwnkWbp7bIkfIQYNILNXo-6WwNm-o_FRvBs0Y3eS0cypvGTS_qmpJRWKB6BXNL_0tSXe5qz08ADjtA4yxE_Pvz_6E_hxvDww4E-GI33H8FNjiJvi-Q2YXU-vfSPEVXN7ZNgygy-Xrfv_AZdtjQh
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD6aOgnBA-IqwgYYBOIpWuLc7AeEVtayMlRVg6G9Gduxt0ksHW0nxF_j13GOk5YVJN72GidKdC4-34k_fwZ4qZPEy6pIMb9tEudlHSRv09iZEsGs1UnhA9tiXO4f5R-Oi-MN-LXcC0O0yuWcGCbqemrpH_kOF6UkeShs4H1Hi5jsDd9efI_pBClaaV0ep9GGyIH7-QPbt_mb0R76-hXnw8Hnd_txd8JAbLENWsSuNmlZ-DwxeWmFTXliRcFzL7Cqy9QWsrQyE1ZqBDnOITgpTFEF0Tqe-VKTEBNO_5sVdUU92OwPxpPDVbuXYffXahllmUx25oikBEa_WKuA4aCAf8vB3xTNKzVveAdud2CV7bbRdRc2XHMPbl2RMLwP9j0pXrNPmpjpzUncx6pYs7CtN6YVb33OBs0phRb9hmTjlnXOECqzL2eYjt9cPGr8jGjwbBLQPzvES3VHYgpx8wCOrsWsD6HXTBv3CJjRJsWHU82tzm2WGC4NYo4k0xm-hYsIXiyNqS5afQ6FfQ1ZXK0sHkGfzLy6gSS1w4Xp7ER1GapkJUuTZg4rh8Yi7YUxuU299hWCpkrYCF6TkxQlPrrE6m7_An4nSWip3aoitISINILtpR9VNyPM1Z_4jeD5ahhzmRZodOOml3RPRQ1uIXkEYs3_a5--PtKcnQZVcATKWY5o8vH_3_4MbmDeqI-j8cEW3ORo8ZYxtw29xezSPUGItTBPu1hm8PW60-c3xfE5sw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph+Sampling-Based+Multi-Stream+Enhancement+Network+for+Visible-Infrared+Person+Re-Identification&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Jiang%2C+Jinhua&rft.au=Xiao%2C+Junjie&rft.au=Wang%2C+Renlin&rft.au=Li%2C+Tiansong&rft.date=2023-09-01&rft.pub=MDPI+AG&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=23&rft.issue=18&rft_id=info:doi/10.3390%2Fs23187948&rft.externalDocID=A771812545
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon