Substitution of dietary monounsaturated fatty acids from olive oil for saturated fatty acids from lard increases low-density lipoprotein apolipoprotein B-100 fractional catabolic rate in subjects with dyslipidemia associated with insulin resistance: a randomized controlled trial
The substitution of monounsaturated acids (MUFAs) for saturated fatty acids (SFAs) is recommended for cardiovascular disease prevention but its impact on lipoprotein metabolism in subjects with dyslipidemia associated with insulin resistance (IR) remains largely unknown. This study aimed to evaluate...
Saved in:
Published in | The American journal of clinical nutrition Vol. 119; no. 5; pp. 1270 - 1279 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.05.2024
American Society for Clinical Nutrition, Inc American Society for Nutrition |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The substitution of monounsaturated acids (MUFAs) for saturated fatty acids (SFAs) is recommended for cardiovascular disease prevention but its impact on lipoprotein metabolism in subjects with dyslipidemia associated with insulin resistance (IR) remains largely unknown.
This study aimed to evaluate the impact of substituting MUFAs for SFAs on the in vivo kinetics of apolipoprotein (apo)B-containing lipoproteins and on the plasma lipidomic profile in adults with IR-induced dyslipidemia.
Males and females with dyslipidemia associated with IR (n = 18) were recruited for this crossover double-blind randomized controlled trial. Subjects consumed, in random order, a diet rich in SFAs (SFAs: 13.4%E; MUFAs: 14.4%E) and a diet rich in MUFAs (SFAs: 7.1%E; MUFAs: 20.7%E) in fully controlled feeding conditions for periods of 4 wk each, separated by a 4-wk washout. At the end of each diet, fasting plasma samples were taken together with measurements of the in vivo kinetics of apoB-containing lipoproteins.
Substituting MUFAs for SFAs had no impact on triglyceride-rich lipoprotein apoB-48 fractional catabolic rate (FCR) (Δ = –8.9%, P = 0.4) and production rate (Δ = 0.0%, P = 0.9), although it decreased very low-density lipoprotein apoB-100 pool size (PS) (Δ = −22.5%; P = 0.01). This substitution also reduced low-density lipoprotein cholesterol (LDL-C) (Δ = −7.0%; P = 0.01), non–high-density lipoprotein cholesterol (Δ = −2.5%; P = 0.04), and LDL apoB-100 PS (Δ = −6.0%; P = 0.05). These differences were partially attributed to an increase in LDL apoB-100 FCR (Δ = +1.6%; P = 0.05). The MUFA diet showed reduced sphingolipid concentrations and elevated glycerophospholipid levels compared with the SFA diet.
This study demonstrated that substituting dietary MUFAs for SFAs decreases LDL-C levels and LDL PS by increasing LDL apoB-100 FCR and results in an overall improved plasma lipidomic profile in individuals with IR-induced lipidemia.
This trial was registered as clinicaltrials.gov as NCT03872349. |
---|---|
AbstractList | The substitution of monounsaturated acids (MUFAs) for saturated fatty acids (SFAs) is recommended for cardiovascular disease prevention but its impact on lipoprotein metabolism in subjects with dyslipidemia associated with insulin resistance (IR) remains largely unknown.
This study aimed to evaluate the impact of substituting MUFAs for SFAs on the in vivo kinetics of apolipoprotein (apo)B-containing lipoproteins and on the plasma lipidomic profile in adults with IR-induced dyslipidemia.
Males and females with dyslipidemia associated with IR (n = 18) were recruited for this crossover double-blind randomized controlled trial. Subjects consumed, in random order, a diet rich in SFAs (SFAs: 13.4%E; MUFAs: 14.4%E) and a diet rich in MUFAs (SFAs: 7.1%E; MUFAs: 20.7%E) in fully controlled feeding conditions for periods of 4 wk each, separated by a 4-wk washout. At the end of each diet, fasting plasma samples were taken together with measurements of the in vivo kinetics of apoB-containing lipoproteins.
Substituting MUFAs for SFAs had no impact on triglyceride-rich lipoprotein apoB-48 fractional catabolic rate (FCR) (Δ = –8.9%, P = 0.4) and production rate (Δ = 0.0%, P = 0.9), although it decreased very low-density lipoprotein apoB-100 pool size (PS) (Δ = −22.5%; P = 0.01). This substitution also reduced low-density lipoprotein cholesterol (LDL-C) (Δ = −7.0%; P = 0.01), non–high-density lipoprotein cholesterol (Δ = −2.5%; P = 0.04), and LDL apoB-100 PS (Δ = −6.0%; P = 0.05). These differences were partially attributed to an increase in LDL apoB-100 FCR (Δ = +1.6%; P = 0.05). The MUFA diet showed reduced sphingolipid concentrations and elevated glycerophospholipid levels compared with the SFA diet.
This study demonstrated that substituting dietary MUFAs for SFAs decreases LDL-C levels and LDL PS by increasing LDL apoB-100 FCR and results in an overall improved plasma lipidomic profile in individuals with IR-induced lipidemia.
This trial was registered as clinicaltrials.gov as NCT03872349. Background The substitution of monounsaturated acids (MUFAs) for saturated fatty acids (SFAs) is recommended for cardiovascular disease prevention but its impact on lipoprotein metabolism in subjects with dyslipidemia associated with insulin resistance (IR) remains largely unknown. Objectives This study aimed to evaluate the impact of substituting MUFAs for SFAs on the in vivo kinetics of apolipoprotein (apo)B-containing lipoproteins and on the plasma lipidomic profile in adults with IR-induced dyslipidemia. Methods Males and females with dyslipidemia associated with IR (n = 18) were recruited for this crossover double-blind randomized controlled trial. Subjects consumed, in random order, a diet rich in SFAs (SFAs: 13.4%E; MUFAs: 14.4%E) and a diet rich in MUFAs (SFAs: 7.1%E; MUFAs: 20.7%E) in fully controlled feeding conditions for periods of 4 wk each, separated by a 4-wk washout. At the end of each diet, fasting plasma samples were taken together with measurements of the in vivo kinetics of apoB-containing lipoproteins. Results Substituting MUFAs for SFAs had no impact on triglyceride-rich lipoprotein apoB-48 fractional catabolic rate (FCR) (Δ = –8.9%, P = 0.4) and production rate (Δ = 0.0%, P = 0.9), although it decreased very low-density lipoprotein apoB-100 pool size (PS) (Δ = −22.5%; P = 0.01). This substitution also reduced low-density lipoprotein cholesterol (LDL-C) (Δ = −7.0%; P = 0.01), non–high-density lipoprotein cholesterol (Δ = −2.5%; P = 0.04), and LDL apoB-100 PS (Δ = −6.0%; P = 0.05). These differences were partially attributed to an increase in LDL apoB-100 FCR (Δ = +1.6%; P = 0.05). The MUFA diet showed reduced sphingolipid concentrations and elevated glycerophospholipid levels compared with the SFA diet. Conclusions This study demonstrated that substituting dietary MUFAs for SFAs decreases LDL-C levels and LDL PS by increasing LDL apoB-100 FCR and results in an overall improved plasma lipidomic profile in individuals with IR-induced lipidemia. The substitution of monounsaturated acids (MUFAs) for saturated fatty acids (SFAs) is recommended for cardiovascular disease prevention but its impact on lipoprotein metabolism in subjects with dyslipidemia associated with insulin resistance (IR) remains largely unknown. This study aimed to evaluate the impact of substituting MUFAs for SFAs on the in vivo kinetics of apolipoprotein (apo)B-containing lipoproteins and on the plasma lipidomic profile in adults with IR-induced dyslipidemia. Males and females with dyslipidemia associated with IR (n = 18) were recruited for this crossover double-blind randomized controlled trial. Subjects consumed, in random order, a diet rich in SFAs (SFAs: 13.4%E; MUFAs: 14.4%E) and a diet rich in MUFAs (SFAs: 7.1%E; MUFAs: 20.7%E) in fully controlled feeding conditions for periods of 4 wk each, separated by a 4-wk washout. At the end of each diet, fasting plasma samples were taken together with measurements of the in vivo kinetics of apoB-containing lipoproteins. Substituting MUFAs for SFAs had no impact on triglyceride-rich lipoprotein apoB-48 fractional catabolic rate (FCR) (Δ = -8.9%, P = 0.4) and production rate (Δ = 0.0%, P = 0.9), although it decreased very low-density lipoprotein apoB-100 pool size (PS) (Δ = -22.5%; P = 0.01). This substitution also reduced low-density lipoprotein cholesterol (LDL-C) (Δ = -7.0%; P = 0.01), non-high-density lipoprotein cholesterol (Δ = -2.5%; P = 0.04), and LDL apoB-100 PS (Δ = -6.0%; P = 0.05). These differences were partially attributed to an increase in LDL apoB-100 FCR (Δ = +1.6%; P = 0.05). The MUFA diet showed reduced sphingolipid concentrations and elevated glycerophospholipid levels compared with the SFA diet. This study demonstrated that substituting dietary MUFAs for SFAs decreases LDL-C levels and LDL PS by increasing LDL apoB-100 FCR and results in an overall improved plasma lipidomic profile in individuals with IR-induced lipidemia. This trial was registered as clinicaltrials.gov as NCT03872349. The substitution of monounsaturated acids (MUFAs) for saturated fatty acids (SFAs) is recommended for cardiovascular disease prevention but its impact on lipoprotein metabolism in subjects with dyslipidemia associated with insulin resistance (IR) remains largely unknown.BACKGROUNDThe substitution of monounsaturated acids (MUFAs) for saturated fatty acids (SFAs) is recommended for cardiovascular disease prevention but its impact on lipoprotein metabolism in subjects with dyslipidemia associated with insulin resistance (IR) remains largely unknown.This study aimed to evaluate the impact of substituting MUFAs for SFAs on the in vivo kinetics of apolipoprotein (apo)B-containing lipoproteins and on the plasma lipidomic profile in adults with IR-induced dyslipidemia.OBJECTIVESThis study aimed to evaluate the impact of substituting MUFAs for SFAs on the in vivo kinetics of apolipoprotein (apo)B-containing lipoproteins and on the plasma lipidomic profile in adults with IR-induced dyslipidemia.Males and females with dyslipidemia associated with IR (n = 18) were recruited for this crossover double-blind randomized controlled trial. Subjects consumed, in random order, a diet rich in SFAs (SFAs: 13.4%E; MUFAs: 14.4%E) and a diet rich in MUFAs (SFAs: 7.1%E; MUFAs: 20.7%E) in fully controlled feeding conditions for periods of 4 wk each, separated by a 4-wk washout. At the end of each diet, fasting plasma samples were taken together with measurements of the in vivo kinetics of apoB-containing lipoproteins.METHODSMales and females with dyslipidemia associated with IR (n = 18) were recruited for this crossover double-blind randomized controlled trial. Subjects consumed, in random order, a diet rich in SFAs (SFAs: 13.4%E; MUFAs: 14.4%E) and a diet rich in MUFAs (SFAs: 7.1%E; MUFAs: 20.7%E) in fully controlled feeding conditions for periods of 4 wk each, separated by a 4-wk washout. At the end of each diet, fasting plasma samples were taken together with measurements of the in vivo kinetics of apoB-containing lipoproteins.Substituting MUFAs for SFAs had no impact on triglyceride-rich lipoprotein apoB-48 fractional catabolic rate (FCR) (Δ = -8.9%, P = 0.4) and production rate (Δ = 0.0%, P = 0.9), although it decreased very low-density lipoprotein apoB-100 pool size (PS) (Δ = -22.5%; P = 0.01). This substitution also reduced low-density lipoprotein cholesterol (LDL-C) (Δ = -7.0%; P = 0.01), non-high-density lipoprotein cholesterol (Δ = -2.5%; P = 0.04), and LDL apoB-100 PS (Δ = -6.0%; P = 0.05). These differences were partially attributed to an increase in LDL apoB-100 FCR (Δ = +1.6%; P = 0.05). The MUFA diet showed reduced sphingolipid concentrations and elevated glycerophospholipid levels compared with the SFA diet.RESULTSSubstituting MUFAs for SFAs had no impact on triglyceride-rich lipoprotein apoB-48 fractional catabolic rate (FCR) (Δ = -8.9%, P = 0.4) and production rate (Δ = 0.0%, P = 0.9), although it decreased very low-density lipoprotein apoB-100 pool size (PS) (Δ = -22.5%; P = 0.01). This substitution also reduced low-density lipoprotein cholesterol (LDL-C) (Δ = -7.0%; P = 0.01), non-high-density lipoprotein cholesterol (Δ = -2.5%; P = 0.04), and LDL apoB-100 PS (Δ = -6.0%; P = 0.05). These differences were partially attributed to an increase in LDL apoB-100 FCR (Δ = +1.6%; P = 0.05). The MUFA diet showed reduced sphingolipid concentrations and elevated glycerophospholipid levels compared with the SFA diet.This study demonstrated that substituting dietary MUFAs for SFAs decreases LDL-C levels and LDL PS by increasing LDL apoB-100 FCR and results in an overall improved plasma lipidomic profile in individuals with IR-induced lipidemia.CONCLUSIONSThis study demonstrated that substituting dietary MUFAs for SFAs decreases LDL-C levels and LDL PS by increasing LDL apoB-100 FCR and results in an overall improved plasma lipidomic profile in individuals with IR-induced lipidemia.This trial was registered as clinicaltrials.gov as NCT03872349.TRIAL REGISTRATIONThis trial was registered as clinicaltrials.gov as NCT03872349. |
Author | Rancourt-Bouchard, Maryka Lamarche, Benoît Drouin-Chartier, Jean-Philippe Corbeil, Jacques Schaefer, Ernst J Couture, Patrick Tremblay, André J Charest, Amélie Desjardins, Louis-Charles Lemelin, Valéry Brière, Francis |
Author_xml | – sequence: 1 givenname: Louis-Charles surname: Desjardins fullname: Desjardins, Louis-Charles organization: Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Canada – sequence: 2 givenname: Francis surname: Brière fullname: Brière, Francis organization: Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Canada – sequence: 3 givenname: André J surname: Tremblay fullname: Tremblay, André J organization: Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Canada – sequence: 4 givenname: Maryka surname: Rancourt-Bouchard fullname: Rancourt-Bouchard, Maryka organization: Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Canada – sequence: 5 givenname: Jean-Philippe surname: Drouin-Chartier fullname: Drouin-Chartier, Jean-Philippe organization: Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Canada – sequence: 6 givenname: Jacques surname: Corbeil fullname: Corbeil, Jacques organization: Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Canada – sequence: 7 givenname: Valéry surname: Lemelin fullname: Lemelin, Valéry organization: CHU de Québec-Université Laval Research Center, Quebec, Canada – sequence: 8 givenname: Amélie surname: Charest fullname: Charest, Amélie organization: Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Canada – sequence: 9 givenname: Ernst J surname: Schaefer fullname: Schaefer, Ernst J organization: Boston Heart Diagnostics, Framingham, MA, United States – sequence: 10 givenname: Benoît surname: Lamarche fullname: Lamarche, Benoît organization: Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Canada – sequence: 11 givenname: Patrick orcidid: 0000-0002-8414-3847 surname: Couture fullname: Couture, Patrick email: patrick.couture@fmed.ulaval.ca organization: Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38518848$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUk1vEzEQXVARTQNnLghZ4sJlw3i9X-kBBBVfUiUO9G459iydyGsH25sq_HqcplSlh3KyrXnvzRvPOymOnHdYFC85LDjw9u16odbaTWlRQVUvQCyAN4-LGV-KvhQVdEfFDACqcsnb5rg4iXENwKu6b58Wx6JveN_X_ezRix_TKiZKUyLvmB-YIUwq7NjonZ9cVGkKKqFhg0ppx5QmE9kQ_Mi8pS0yT5YNPrAHgFYFw8jpgCpiZNZflQZdpIyytPGb4BOSY2rj7z4_lhwgCyi9d6Ys0yqpVYZotu-TBVmcVmvUKbIrSpfM7GLmk8GRFFMxek3Xfq6L5OJkMyVgpJiU03jKVBZyxo_0O6O0dyl4a_M1BVL2WfFkUDbi85tzXlx8_nRx9rU8__7l29mH81LXdZtK1HWrVFXzAZZYQw8C2qprBPZD3cEAYHCJw7LRnVqZTMmnqNq-glUnBiPEvHh_kN1MqxGNxuxCWbkJNOYlSK9I_ltxdCl_-q3knOdWudO8eHOjEPyvCWOSI0WN1iqHfoqyWnY1QAOiy9DX96BrP4X8t1EKaHjTC54HmBev7lq69fI3MxlQHwA6-BgDDrcQDnIfTbmWh2jKfTQlCJmjmWmn92iaktovNw9G9n_kdwcy5l1sCYOMmjCv0VDIEZDG08MCfwB2Tgs1 |
CitedBy_id | crossref_primary_10_3390_nu17020333 crossref_primary_10_1186_s12944_024_02260_4 |
Cites_doi | 10.1161/01.CIR.102.2.179 10.1093/nar/gkl838 10.1017/S0007114599000148 10.1016/S0021-9258(18)54306-4 10.1093/ajcn/nqx013 10.1194/jlr.M600548-JLR200 10.3945/ajcn.115.116046 10.1016/j.clnu.2007.07.005 10.1021/acs.analchem.8b02412 10.1186/1743-7075-3-5 10.1097/01.mol.0000199815.46720.ca 10.1093/ajcn/nqz035 10.1016/j.clnu.2022.10.001 10.1016/j.jacl.2021.09.049 10.1016/j.ajcnut.2023.07.018 10.1186/s12944-021-01600-y 10.3390/nu4121989 10.1210/clinem/dgab645 10.1002/jcp.22283 10.1172/JCI131838 10.1093/ajcn/67.5.828 10.1152/physrev.00063.2017 10.1371/journal.pmed.1002087 10.1016/j.ajcnut.2023.03.024 10.1007/BF00280883 10.1016/S0022-2275(20)32551-7 10.1007/s11745-998-0269-8 10.1161/CIRCULATIONAHA.121.056805 10.1186/s40795-017-0153-3 10.1161/01.CIR.0000148370.60535.22 10.1016/S0140-6736(22)00122-2 10.1210/jcem.86.3.7304 10.1016/j.plefa.2010.02.016 10.1093/jn/132.4.715 10.1016/S1388-1981(02)00365-7 10.1073/pnas.4.12.370 10.1016/S0021-9258(19)85709-5 10.1503/cmaj.130253 10.5551/jat.12.237 10.1186/s12860-014-0043-3 10.1002/oby.21448 10.1161/ATVBAHA.113.302185 10.1210/jc.2018-00480 10.1194/jlr.C400011-JLR200 10.1016/j.ejvs.2018.07.004 10.2174/1570161114666161007164510 10.1007/s11745-010-3393-4 10.1194/jlr.M400287-JLR200 10.1016/S0021-9258(20)80707-8 10.1146/annurev.nutr.25.051804.101917 10.1161/CIR.0000000000000510 10.1016/j.ecl.2013.09.009 10.1161/01.ATV.20.12.2614 10.1111/dom.12359 10.1016/j.ebiom.2019.10.046 10.1007/s00125-020-05201-9 10.1016/S0021-9150(02)00306-4 10.1093/ajcn/78.1.47 10.1038/sj.ejcn.1602976 10.1016/S0022-2275(20)41332-X 10.1038/nutd.2014.38 |
ContentType | Journal Article |
Copyright | 2024 American Society for Nutrition Copyright © 2024 American Society for Nutrition. Published by Elsevier Inc. All rights reserved. Copyright American Society for Clinical Nutrition, Inc. May 2024 2024 American Society for Nutrition. Published by Elsevier Inc. All rights reserved. 2024 American Society for Nutrition |
Copyright_xml | – notice: 2024 American Society for Nutrition – notice: Copyright © 2024 American Society for Nutrition. Published by Elsevier Inc. All rights reserved. – notice: Copyright American Society for Clinical Nutrition, Inc. May 2024 – notice: 2024 American Society for Nutrition. Published by Elsevier Inc. All rights reserved. 2024 American Society for Nutrition |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7T7 7TS 8FD C1K FR3 K9. NAPCQ P64 7X8 5PM |
DOI | 10.1016/j.ajcnut.2024.03.015 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Physical Education Index Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Nursing & Allied Health Premium Technology Research Database ProQuest Health & Medical Complete (Alumni) Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Calcium & Calcified Tissue Abstracts Physical Education Index Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Nursing & Allied Health Premium MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Diet & Clinical Nutrition |
EISSN | 1938-3207 |
EndPage | 1279 |
ExternalDocumentID | PMC11130675 38518848 10_1016_j_ajcnut_2024_03_015 S0002916524003824 |
Genre | Randomized Controlled Trial Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -ET -~X ..I .55 .GJ 0R~ 0SF 1HT 23M 2FS 2WC 3O- 4.4 476 48X 53G 5GY 5RE 5VS 6J9 85S 8R4 8R5 A8Z AABZA AACZT AAHBH AAIKC AAJQQ AAMNW AAPGJ AAPQZ AAUQX AAUTI AAVAP AAWDT AAWTL AAXUO AAYOK ABBTP ABDNZ ABJNI ABLJU ABOCM ABPTD ABSAR ABWST ACFRR ACGFO ACGFS ACGOD ACIMA ACNCT ACPRK ACPVT ACUFI ACUTJ ADBBV ADGZP ADHUB ADRTK ADUKH ADVEK AEGXH AENEX AETBJ AFFDN AFFNX AFFZL AFMIJ AFOFC AFRAH AFRQD AFXAL AGINJ AGKRT AGNAY AGQXC AGUTN AHMBA AI. AIAGR AIMBJ AITUG AJEEA AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANFBD AQDSO AQKUS ASMCH BAWUL BAYMD BCRHZ BKOMP BTRTY BYORX C1A CDBKE DAKXR DIK E3Z EBS EIHJH EJD ENERS EX3 F5P F9R FDB FECEO FLUFQ FOEOM FOTVD FQBLK FRP G8K GAUVT GJXCC GX1 HF~ HZ~ I4R IH2 J5H KBUDW KOP KQ8 KSI KSN L7B LPU MBLQV MHKGH MV1 MVM N4W NEJ NHB NHCRO NOMLY NOYVH NVLIB O9- ODMLO OHT OK1 OVD P2P P6G PCD PQQKQ PRG Q2X R0Z RHF RHI RNS ROL ROX SJN SV3 TCN TEORI TMA TNT TR2 TWZ UBH UHB UKR VH1 W2D W8F WH7 WHG WOQ WOW X7M XOL XSW YBU YHG YOJ YQJ YRY YSK YV5 YYQ YZZ ZA5 ZCA ZCG ZGI ZUP ZXP ~KM AAGQS AALRI AAYWO AAYXX ABDPE ABIME ACVFH ADCNI ADMTO ADVLN AEUPX AFJKZ AFPUW AGCQF AIGII AKBMS AKYEP APXCP CITATION EFKBS H13 NU- YR5 CGR CUY CVF ECM EIF NPM 7QP 7T7 7TS 8FD C1K FR3 K9. NAPCQ P64 7X8 5PM |
ID | FETCH-LOGICAL-c446t-ec46aa241f09e40803062753e8f470f00de9ef95c7abdc44c7a326820b73fd33 |
ISSN | 0002-9165 1938-3207 |
IngestDate | Thu Aug 21 18:40:21 EDT 2025 Fri Jul 11 09:12:10 EDT 2025 Fri Jul 25 21:48:04 EDT 2025 Sat Mar 22 01:33:40 EDT 2025 Tue Aug 05 12:05:26 EDT 2025 Thu Apr 24 23:01:25 EDT 2025 Thu Jul 04 08:40:24 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | LPE PR DG PS LCAT LPL TRL LC-MS/MS SPT lipoprotein metabolism RLP saturated fatty acids SM insulin resistance LDLR sdLDL apo T2D INAF IR monounsaturated fatty acids CIU CVD Cer NMR PC TG FCR PE lipidomics LPC |
Language | English |
License | Copyright © 2024 American Society for Nutrition. Published by Elsevier Inc. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c446t-ec46aa241f09e40803062753e8f470f00de9ef95c7abdc44c7a326820b73fd33 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-3 ObjectType-Evidence Based Healthcare-1 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 |
ORCID | 0000-0002-8414-3847 |
PMID | 38518848 |
PQID | 3051583180 |
PQPubID | 41076 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11130675 proquest_miscellaneous_2974005037 proquest_journals_3051583180 pubmed_primary_38518848 crossref_primary_10_1016_j_ajcnut_2024_03_015 crossref_citationtrail_10_1016_j_ajcnut_2024_03_015 elsevier_sciencedirect_doi_10_1016_j_ajcnut_2024_03_015 |
PublicationCentury | 2000 |
PublicationDate | 2024-05-01 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Bethesda |
PublicationTitle | The American journal of clinical nutrition |
PublicationTitleAlternate | Am J Clin Nutr |
PublicationYear | 2024 |
Publisher | Elsevier Inc American Society for Clinical Nutrition, Inc American Society for Nutrition |
Publisher_xml | – name: Elsevier Inc – name: American Society for Clinical Nutrition, Inc – name: American Society for Nutrition |
References | Maki, Dicklin, Kirkpatrick (bib36) 2021; 15 Semba, Gonzalez-Freire, Moaddel, Sun, Fabbri, Zhang (bib42) 2018; 103 Drouin-Chartier, Tremblay, Lépine, Lemelin, Lamarche, Couture (bib17) 2018; 107 Sampath, Ntambi (bib38) 2005; 25 Hogue, Lamarche, Tremblay, Bergeron, Gagné, Couture (bib6) 2007; 48 Bergeron, Chiu, Williams, King, Krauss (bib12) 2019; 110 Lafrenière, Lamarche, Laramée, Robitaille, Lemieux (bib19) 2017; 3 Kratz, Gülbahçe, von Eckardstein, Cullen, Cignarella, Assmann (bib35) 2002; 132 Vallim, Salter (bib37) 2010; 82 Eichelmann, Sellem, Wittenbecher, Jäger, Kuxhaus, Prada (bib49) 2022; 146 Guasch-Ferré, Babio, Martínez-González, Corella, Ros, Martín-Peláez (bib16) 2015; 102 Jiménez, Holmes, Heude, Tolson, Harvey, Lodge (bib23) 2018; 90 Dreon, Fernstrom, Campos, Blanche, Williams, Krauss (bib34) 1998; 67 Hanamatsu, Ohnishi, Sakai, Yuyama, Mitsutake, Takeda (bib41) 2014; 4 Desroches, Paradis, Pérusse, Archer, Bergeron, Couture (bib29) 2004; 45 Jiang, Paultre, Pearson, Reed, Francis, Lin (bib44) 2000; 20 (bib20) 2023 Lemieux, Pascot, Couillard, Lamarche, Tchernof, Alméras (bib4) 2000; 102 Lytrivi, Gomes Da Silveira Cauduro, Kibanda, Kristanto, Paesmans, Cnop (bib52) 2023; 118 Galeano, Al-Haideri, Keyserman, Rumsey, Deckelbaum (bib62) 1998; 39 Sacks, Lichtenstein, Wu, Appel, Creager, Kris-Etherton (bib9) 2017; 136 Subbaiah, Liu (bib56) 1993; 268 Zhou, Wang, Zhang, Liu, Zhang, Wang (bib47) 2019; 57 Arimoto, Matsumoto, Tanaka, Okuhira, Saito, Handa (bib58) 1998; 33 Blachnio-Zabielska, Baranowski, Zabielski, Gorski (bib60) 2010; 225 Morita, Okuhira, Tsuchimoto, Vertut-Doï, Saito, Nakano (bib55) 2003; 1631 Xu, Tabas (bib57) 1991; 266 Sud, Fahy, Cotter, Brown, Dennis, Glass (bib25) 2007; 35 Gill, Brown, Caslake, Wright, Cooney, Bedford (bib30) 2003; 78 Sellem, Eichelmann, Jackson, Wittenbecher, Schulze, Lovegrove (bib50) 2023; 117 Matthews, Hosker, Rudenski, Naylor, Treacher, Turner (bib22) 1985; 28 Moessinger, Klizaite, Steinhagen, Philippou-Massier, Shevchenko, Hoch (bib63) 2014; 15 Micha, Mozaffarian (bib10) 2010; 45 Delgado-Lista, Alcala-Diaz, Torres-Peña, Quintana-Navarro, Fuentes, Garcia-Rios (bib14) 2022; 399 Pongrac Barlovic, Harjutsalo, Sandholm, Forsblom, Groop (bib46) 2020; 63 Chan, Barrett, Watts (bib7) 2006; 17 Tonks, Coster, Christopher, Chaudhuri, Xu, Gagnon-Bartsch (bib40) 2016; 24 Martínez-González, Sayón-Orea, Bullón-Vela, Bes-Rastrollo, Rodríguez-Artalejo, Yusta-Boyo (bib15) 2022; 41 Imamura, Micha, Wu, de Oliveira Otto, Otite, Abioye (bib51) 2016; 13 Jackson, Zampelas, Knapper, Culverwell, Wright, Gould (bib26) 1999; 81 Yin, Willinger, Keefe, Liu, Fernández-Ortiz, Ibáñez (bib43) 2020; 51 Parcha, Heindl, Kalra, Li, Gower, Arora (bib8) 2022; 107 Harris, Benedict (bib18) 1918; 4 Schwingshackl, Hoffmann (bib21) 2012; 4 Schlitt, Hojjati, von Gizycki, Lackner, Blankenberg, Schwaab (bib32) 2005; 46 Schlitt, Blankenberg, Yan, von Gizycki, Buerke, Werdan (bib45) 2006; 3 Rivellese, Giacco, Annuzzi, De Natale, Patti, Di Marino (bib28) 2008; 27 Bazinet, Chu (bib13) 2014; 186 Petersen, Shulman (bib39) 2018; 98 Poss, Maschek, Cox, Hauner, Hopkins, Hunt (bib48) 2020; 130 Tremblay, Lamarche, Kelly, Charest, Lépine, Droit (bib24) 2014; 16 Park, Panek, Mueller, Hanselman, Rosebury, Robertson (bib59) 2004; 110 Goldberg (bib5) 2001; 86 Ruiz, Henricsson, Borén, Pilon (bib61) 2021; 20 Richard, Couture, Ooi, Tremblay, Desroches, Charest (bib31) 2014; 34 Mozaffarian, Clarke (bib33) 2009; 63 Rizzo, Berneis (bib3) 2005; 12 Gatt, Bierman (bib53) 1980; 255 Gluvic, Zaric, Resanovic, Obradovic, Mitrovic, Radak (bib2) 2017; 15 Silva, Kelly, Jones, Smith, Wootton, Miller (bib27) 2003; 166 Samson, Garber (bib1) 2014; 43 Grundy, Stone, Bailey, Beam, Birtcher, Blumenthal (bib11) 2018; 139 Gupta, Rudney (bib54) 1992; 33 Park (10.1016/j.ajcnut.2024.03.015_bib59) 2004; 110 Drouin-Chartier (10.1016/j.ajcnut.2024.03.015_bib17) 2018; 107 Gupta (10.1016/j.ajcnut.2024.03.015_bib54) 1992; 33 Xu (10.1016/j.ajcnut.2024.03.015_bib57) 1991; 266 Goldberg (10.1016/j.ajcnut.2024.03.015_bib5) 2001; 86 Schlitt (10.1016/j.ajcnut.2024.03.015_bib45) 2006; 3 Vallim (10.1016/j.ajcnut.2024.03.015_bib37) 2010; 82 Jiménez (10.1016/j.ajcnut.2024.03.015_bib23) 2018; 90 Grundy (10.1016/j.ajcnut.2024.03.015_bib11) 2018; 139 Hogue (10.1016/j.ajcnut.2024.03.015_bib6) 2007; 48 Sud (10.1016/j.ajcnut.2024.03.015_bib25) 2007; 35 Schlitt (10.1016/j.ajcnut.2024.03.015_bib32) 2005; 46 Lafrenière (10.1016/j.ajcnut.2024.03.015_bib19) 2017; 3 Samson (10.1016/j.ajcnut.2024.03.015_bib1) 2014; 43 Delgado-Lista (10.1016/j.ajcnut.2024.03.015_bib14) 2022; 399 Yin (10.1016/j.ajcnut.2024.03.015_bib43) 2020; 51 Tonks (10.1016/j.ajcnut.2024.03.015_bib40) 2016; 24 Zhou (10.1016/j.ajcnut.2024.03.015_bib47) 2019; 57 Tremblay (10.1016/j.ajcnut.2024.03.015_bib24) 2014; 16 Semba (10.1016/j.ajcnut.2024.03.015_bib42) 2018; 103 Moessinger (10.1016/j.ajcnut.2024.03.015_bib63) 2014; 15 Gluvic (10.1016/j.ajcnut.2024.03.015_bib2) 2017; 15 Blachnio-Zabielska (10.1016/j.ajcnut.2024.03.015_bib60) 2010; 225 Chan (10.1016/j.ajcnut.2024.03.015_bib7) 2006; 17 Subbaiah (10.1016/j.ajcnut.2024.03.015_bib56) 1993; 268 Pongrac Barlovic (10.1016/j.ajcnut.2024.03.015_bib46) 2020; 63 Bergeron (10.1016/j.ajcnut.2024.03.015_bib12) 2019; 110 Parcha (10.1016/j.ajcnut.2024.03.015_bib8) 2022; 107 Jiang (10.1016/j.ajcnut.2024.03.015_bib44) 2000; 20 Lemieux (10.1016/j.ajcnut.2024.03.015_bib4) 2000; 102 Galeano (10.1016/j.ajcnut.2024.03.015_bib62) 1998; 39 Silva (10.1016/j.ajcnut.2024.03.015_bib27) 2003; 166 Arimoto (10.1016/j.ajcnut.2024.03.015_bib58) 1998; 33 Kratz (10.1016/j.ajcnut.2024.03.015_bib35) 2002; 132 Sampath (10.1016/j.ajcnut.2024.03.015_bib38) 2005; 25 Lytrivi (10.1016/j.ajcnut.2024.03.015_bib52) 2023; 118 Rivellese (10.1016/j.ajcnut.2024.03.015_bib28) 2008; 27 Desroches (10.1016/j.ajcnut.2024.03.015_bib29) 2004; 45 Dreon (10.1016/j.ajcnut.2024.03.015_bib34) 1998; 67 Eichelmann (10.1016/j.ajcnut.2024.03.015_bib49) 2022; 146 Imamura (10.1016/j.ajcnut.2024.03.015_bib51) 2016; 13 Micha (10.1016/j.ajcnut.2024.03.015_bib10) 2010; 45 Gatt (10.1016/j.ajcnut.2024.03.015_bib53) 1980; 255 Maki (10.1016/j.ajcnut.2024.03.015_bib36) 2021; 15 Hanamatsu (10.1016/j.ajcnut.2024.03.015_bib41) 2014; 4 Gill (10.1016/j.ajcnut.2024.03.015_bib30) 2003; 78 Rizzo (10.1016/j.ajcnut.2024.03.015_bib3) 2005; 12 Sacks (10.1016/j.ajcnut.2024.03.015_bib9) 2017; 136 Bazinet (10.1016/j.ajcnut.2024.03.015_bib13) 2014; 186 Matthews (10.1016/j.ajcnut.2024.03.015_bib22) 1985; 28 Mozaffarian (10.1016/j.ajcnut.2024.03.015_bib33) 2009; 63 Harris (10.1016/j.ajcnut.2024.03.015_bib18) 1918; 4 Martínez-González (10.1016/j.ajcnut.2024.03.015_bib15) 2022; 41 Petersen (10.1016/j.ajcnut.2024.03.015_bib39) 2018; 98 Jackson (10.1016/j.ajcnut.2024.03.015_bib26) 1999; 81 Guasch-Ferré (10.1016/j.ajcnut.2024.03.015_bib16) 2015; 102 (10.1016/j.ajcnut.2024.03.015_bib20) 2023 Richard (10.1016/j.ajcnut.2024.03.015_bib31) 2014; 34 Sellem (10.1016/j.ajcnut.2024.03.015_bib50) 2023; 117 Morita (10.1016/j.ajcnut.2024.03.015_bib55) 2003; 1631 Poss (10.1016/j.ajcnut.2024.03.015_bib48) 2020; 130 Ruiz (10.1016/j.ajcnut.2024.03.015_bib61) 2021; 20 Schwingshackl (10.1016/j.ajcnut.2024.03.015_bib21) 2012; 4 |
References_xml | – volume: 33 start-page: 1741 year: 1992 end-page: 1752 ident: bib54 article-title: Sphingomyelinase treatment of low density lipoprotein and cultured cells results in enhanced processing of LDL which can be modulated by sphingomyelin publication-title: J. Lipid Res. – volume: 43 start-page: 1 year: 2014 end-page: 23 ident: bib1 article-title: Metabolic syndrome publication-title: Endocrinol. Metab. Clin. North. Am. – volume: 81 start-page: 51 year: 1999 end-page: 58 ident: bib26 article-title: Lack of influence of test meal fatty acid composition on the contribution of intestinally-derived lipoproteins to postprandial lipaemia publication-title: Br. J. Nutr. – volume: 15 start-page: 30 year: 2017 end-page: 39 ident: bib2 article-title: Link between metabolic syndrome and insulin resistance publication-title: Curr. Vasc. Pharmacol. – volume: 255 start-page: 3371 year: 1980 end-page: 3376 ident: bib53 article-title: Sphingomyelin suppresses the binding and utilization of low density lipoproteins by skin fibroblasts publication-title: J. Biol. Chem. – volume: 266 start-page: 24849 year: 1991 end-page: 24858 ident: bib57 article-title: Sphingomyelinase enhances low density lipoprotein uptake and ability to induce cholesteryl ester accumulation in macrophages publication-title: J. Biol. Chem. – volume: 86 start-page: 965 year: 2001 end-page: 971 ident: bib5 article-title: Clinical review 124: diabetic dyslipidemia: causes and consequences publication-title: J. Clin. Endocrinol. Metab. – volume: 39 start-page: 1263 year: 1998 end-page: 1273 ident: bib62 article-title: Small dense low density lipoprotein has increased affinity for LDL receptor-independent cell surface binding sites: a potential mechanism for increased atherogenicity publication-title: J. Lipid Res. – volume: 27 start-page: 133 year: 2008 end-page: 141 ident: bib28 article-title: Effects of monounsaturated vs. saturated fat on postprandial lipemia and adipose tissue lipases in type 2 diabetes publication-title: Clin. Nutr. – volume: 25 start-page: 317 year: 2005 end-page: 340 ident: bib38 article-title: Polyunsaturated fatty acid regulation of genes of lipid metabolism publication-title: Annu. Rev. Nutr. – volume: 82 start-page: 211 year: 2010 end-page: 218 ident: bib37 article-title: Regulation of hepatic gene expression by saturated fatty acids, Prostaglandins Leukot publication-title: Essent. Fatty Acids – volume: 20 start-page: 173 year: 2021 ident: bib61 article-title: Palmitic acid causes increased dihydroceramide levels when desaturase expression is directly silenced or indirectly lowered by silencing AdipoR2 publication-title: Lipids Health Dis – volume: 16 start-page: 1223 year: 2014 end-page: 1229 ident: bib24 article-title: Effect of sitagliptin therapy on triglyceride-rich lipoprotein kinetics in patients with type 2 diabetes publication-title: Diabetes Obes. Metab. – volume: 28 start-page: 412 year: 1985 end-page: 419 ident: bib22 article-title: Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man publication-title: Diabetologia – volume: 13 year: 2016 ident: bib51 article-title: Effects of saturated fat, polyunsaturated fat, monounsaturated fat, and carbohydrate on glucose-insulin homeostasis: a systematic review and meta-analysis of randomised controlled feeding trials publication-title: PLOS Med – volume: 110 start-page: 24 year: 2019 end-page: 33 ident: bib12 article-title: Effects of red meat, white meat, and nonmeat protein sources on atherogenic lipoprotein measures in the context of low compared with high saturated fat intake: a randomized controlled trial publication-title: Am. J. Clin. Nutr. – volume: 1631 start-page: 169 year: 2003 end-page: 176 ident: bib55 article-title: Effects of sphingomyelin on apolipoprotein E- and lipoprotein lipase-mediated cell uptake of lipid particles publication-title: Biochim. Biophys. Acta. – volume: 45 start-page: 893 year: 2010 end-page: 905 ident: bib10 article-title: Saturated fat and cardiometabolic risk factors, coronary heart disease, stroke, and diabetes: a fresh look at the evidence publication-title: Lipids – volume: 102 start-page: 179 year: 2000 end-page: 184 ident: bib4 article-title: Hypertriglyceridemic waist: a marker of the atherogenic metabolic triad (hyperinsulinemia; hyperapolipoprotein B; small, dense LDL) in men? publication-title: Circulation – volume: 4 start-page: 370 year: 1918 end-page: 373 ident: bib18 article-title: A biometric study of human basal metabolism publication-title: Proc. Natl Acad. Sci. USA – volume: 130 start-page: 1363 year: 2020 end-page: 1376 ident: bib48 article-title: Machine learning reveals serum sphingolipids as cholesterol-independent biomarkers of coronary artery disease publication-title: J. Clin. Invest. – volume: 15 start-page: 43 year: 2014 ident: bib63 article-title: Two different pathways of phosphatidylcholine synthesis, the Kennedy Pathway and the Lands Cycle, differentially regulate cellular triacylglycerol storage publication-title: BMC Cell Biol – volume: 24 start-page: 908 year: 2016 end-page: 916 ident: bib40 article-title: Skeletal muscle and plasma lipidomic signatures of insulin resistance and overweight/obesity in humans publication-title: Obesity – volume: 98 start-page: 2133 year: 2018 end-page: 2223 ident: bib39 article-title: Mechanisms of insulin action and insulin resistance publication-title: Physiol. Rev. – volume: 51 year: 2020 ident: bib43 article-title: Lipidomic profiling identifies signatures of metabolic risk publication-title: EBioMedicine – volume: 102 start-page: 1563 year: 2015 end-page: 1573 ident: bib16 article-title: Dietary fat intake and risk of cardiovascular disease and all-cause mortality in a population at high risk of cardiovascular disease publication-title: Am. J. Clin. Nutr. – volume: 107 start-page: 26 year: 2018 end-page: 34 ident: bib17 article-title: Substitution of dietary ω-6 polyunsaturated fatty acids for saturated fatty acids decreases LDL apolipoprotein B-100 production rate in men with dyslipidemia associated with insulin resistance: a randomized controlled trial publication-title: Am. J. Clin. Nutr. – volume: 90 start-page: 11962 year: 2018 end-page: 11971 ident: bib23 article-title: Quantitative lipoprotein subclass and low molecular weight metabolite analysis in human serum and plasma by 1H NMR spectroscopy in a multilaboratory trial publication-title: Anal. Chem. – volume: 12 start-page: 237 year: 2005 end-page: 239 ident: bib3 article-title: Lipid triad or atherogenic lipoprotein phenotype: a role in cardiovascular prevention? publication-title: J. Atheroscler. Thromb. – volume: 17 start-page: 28 year: 2006 end-page: 36 ident: bib7 article-title: Recent studies of lipoprotein kinetics in the metabolic syndrome and related disorders publication-title: Curr. Opin. Lipidol. – volume: 3 start-page: 34 year: 2017 ident: bib19 article-title: Validation of a newly automated web-based 24-hour dietary recall using fully controlled feeding studies publication-title: BMC Nutr – volume: 35 start-page: D527 year: 2007 end-page: D532 ident: bib25 article-title: LMSD: LIPID MAPS structure database publication-title: Nucleic Acids Res – volume: 139 start-page: e1082 year: 2018 end-page: e1143 ident: bib11 article-title: AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines publication-title: J. Am. Coll. Cardiol. – volume: 34 start-page: 433 year: 2014 end-page: 438 ident: bib31 article-title: Effect of Mediterranean diet with and without weight loss on apolipoprotein B100 metabolism in men with metabolic syndrome publication-title: Arterioscler. Thromb. Vasc. Biol. – volume: 118 start-page: 739 year: 2023 end-page: 753 ident: bib52 article-title: Impact of saturated compared with unsaturated dietary fat on insulin sensitivity, pancreatic β-cell function and glucose tolerance: a systematic review and meta-analysis of randomized, controlled trials publication-title: Am. J. Clin. Nutr. – volume: 57 start-page: 434 year: 2019 end-page: 441 ident: bib47 article-title: Identification of lysophosphatidylcholines and sphingolipids as potential biomarkers for acute aortic dissection via serum metabolomics publication-title: Eur. J. Vasc. Endovasc. Surg. – volume: 48 start-page: 1336 year: 2007 end-page: 1342 ident: bib6 article-title: Evidence of increased secretion of apolipoprotein B-48-containing lipoproteins in subjects with type 2 diabetes publication-title: J. Lipid Res. – volume: 63 start-page: S22 year: 2009 end-page: S33 ident: bib33 article-title: Quantitative effects on cardiovascular risk factors and coronary heart disease risk of replacing partially hydrogenated vegetable oils with other fats and oils publication-title: Eur. J. Clin. Nutr. – volume: 268 start-page: 20156 year: 1993 end-page: 20163 ident: bib56 article-title: Role of sphingomyelin in the regulation of cholesterol esterification in the plasma lipoproteins. Inhibition of lecithin-cholesterol acyltransferase reaction publication-title: J. Biol. Chem. – volume: 107 start-page: e25 year: 2022 end-page: e37 ident: bib8 article-title: Insulin resistance and cardiometabolic risk profile among nondiabetic American young adults: insights from NHANES publication-title: J. Clin. Endocrinol. Metab. – volume: 103 start-page: 3331 year: 2018 end-page: 3339 ident: bib42 article-title: Altered plasma amino acids and lipids associated with abnormal glucose metabolism and insulin resistance in older adults publication-title: J. Clin. Endocrinol. Metab. – volume: 117 start-page: 1248 year: 2023 end-page: 1261 ident: bib50 article-title: Replacement of dietary saturated with unsaturated fatty acids is associated with beneficial effects on lipidome metabolites: a secondary analysis of a randomized trial publication-title: Am. J. Clin. Nutr. – volume: 33 start-page: 773 year: 1998 end-page: 779 ident: bib58 article-title: Surface composition regulates clearance from plasma and triolein lipolysis of lipid emulsions publication-title: Lipids – volume: 136 start-page: e1 year: 2017 end-page: e23 ident: bib9 article-title: Dietary fats and cardiovascular disease: a presidential advisory from the American Heart Association publication-title: Circulation – volume: 45 start-page: 2331 year: 2004 end-page: 2338 ident: bib29 article-title: Apolipoprotein A-I, A-II, and VLDL-B-100 metabolism in men: comparison of a low-fat diet and a high-monounsaturated fatty acid diet publication-title: J. Lipid Res. – volume: 186 start-page: 434 year: 2014 end-page: 439 ident: bib13 article-title: Omega-6 polyunsaturated fatty acids: is a broad cholesterol-lowering health claim appropriate? publication-title: CMAJ – volume: 4 start-page: e141 year: 2014 ident: bib41 article-title: Altered levels of serum sphingomyelin and ceramide containing distinct acyl chains in young obese adults publication-title: Nutr. Diabetes – volume: 78 start-page: 47 year: 2003 end-page: 56 ident: bib30 article-title: Effects of dietary monounsaturated fatty acids on lipoprotein concentrations, compositions, and subfraction distributions and on VLDL apolipoprotein B kinetics: dose-dependent effects on LDL publication-title: Am. J. Clin. Nutr. – year: 2023 ident: bib20 publication-title: Canada’s Dietary Guidelines – volume: 46 start-page: 196 year: 2005 end-page: 200 ident: bib32 article-title: Serum sphingomyelin levels are related to the clearance of postprandial remnant-like particles publication-title: J. Lipid Res. – volume: 399 start-page: 1876 year: 2022 end-page: 1885 ident: bib14 article-title: Long-term secondary prevention of cardiovascular disease with a Mediterranean diet and a low-fat diet (CORDIOPREV): a randomised controlled trial publication-title: Lancet – volume: 146 start-page: 21 year: 2022 end-page: 35 ident: bib49 article-title: Deep lipidomics in human plasma: cardiometabolic disease risk and effect of dietary fat modulation publication-title: Circulation – volume: 225 start-page: 786 year: 2010 end-page: 791 ident: bib60 article-title: Effect of high fat diet enriched with unsaturated and diet rich in saturated fatty acids on sphingolipid metabolism in rat skeletal muscle publication-title: J. Cell. Physiol. – volume: 67 start-page: 828 year: 1998 end-page: 836 ident: bib34 article-title: Change in dietary saturated fat intake is correlated with change in mass of large low-density-lipoprotein particles in men publication-title: Am. J. Clin. Nutr. – volume: 41 start-page: 2659 year: 2022 end-page: 2682 ident: bib15 article-title: Effect of olive oil consumption on cardiovascular disease, cancer, type 2 diabetes, and all-cause mortality: a systematic review and meta-analysis publication-title: Clin. Nutr. – volume: 3 start-page: 5 year: 2006 ident: bib45 article-title: Further evaluation of plasma sphingomyelin levels as a risk factor for coronary artery disease publication-title: Nutr. Metab. – volume: 132 start-page: 715 year: 2002 end-page: 718 ident: bib35 article-title: Dietary mono- and polyunsaturated fatty acids similarly affect LDL size in healthy men and women publication-title: J. Nutr. – volume: 4 start-page: 1989 year: 2012 end-page: 2007 ident: bib21 article-title: Monounsaturated fatty acids and risk of cardiovascular disease: synopsis of the evidence available from systematic reviews and meta-analyses publication-title: Nutrients – volume: 166 start-page: 73 year: 2003 end-page: 84 ident: bib27 article-title: Chylomicron particle size and number, factor VII activation and dietary monounsaturated fatty acids publication-title: Atherosclerosis – volume: 15 start-page: 765 year: 2021 end-page: 772 ident: bib36 article-title: Saturated fats and cardiovascular health: current evidence and controversies publication-title: J. Clin. Lipidol. – volume: 20 start-page: 2614 year: 2000 end-page: 2618 ident: bib44 article-title: Plasma sphingomyelin level as a risk factor for coronary artery disease publication-title: Arterioscler. Thromb. Vasc. Biol. – volume: 63 start-page: 1847 year: 2020 end-page: 1856 ident: bib46 article-title: FinnDiane Study Group, Sphingomyelin and progression of renal and coronary heart disease in individuals with type 1 diabetes publication-title: Diabetologia – volume: 110 start-page: 3465 year: 2004 end-page: 3471 ident: bib59 article-title: Inhibition of sphingomyelin synthesis reduces atherogenesis in apolipoprotein E-knockout mice publication-title: Circulation – volume: 102 start-page: 179 issue: 2 year: 2000 ident: 10.1016/j.ajcnut.2024.03.015_bib4 article-title: Hypertriglyceridemic waist: a marker of the atherogenic metabolic triad (hyperinsulinemia; hyperapolipoprotein B; small, dense LDL) in men? publication-title: Circulation doi: 10.1161/01.CIR.102.2.179 – volume: 35 start-page: D527 issue: Database issue year: 2007 ident: 10.1016/j.ajcnut.2024.03.015_bib25 article-title: LMSD: LIPID MAPS structure database publication-title: Nucleic Acids Res doi: 10.1093/nar/gkl838 – volume: 81 start-page: 51 issue: 1 year: 1999 ident: 10.1016/j.ajcnut.2024.03.015_bib26 article-title: Lack of influence of test meal fatty acid composition on the contribution of intestinally-derived lipoproteins to postprandial lipaemia publication-title: Br. J. Nutr. doi: 10.1017/S0007114599000148 – volume: 266 start-page: 24849 issue: 36 year: 1991 ident: 10.1016/j.ajcnut.2024.03.015_bib57 article-title: Sphingomyelinase enhances low density lipoprotein uptake and ability to induce cholesteryl ester accumulation in macrophages publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)54306-4 – volume: 107 start-page: 26 issue: 1 year: 2018 ident: 10.1016/j.ajcnut.2024.03.015_bib17 article-title: Substitution of dietary ω-6 polyunsaturated fatty acids for saturated fatty acids decreases LDL apolipoprotein B-100 production rate in men with dyslipidemia associated with insulin resistance: a randomized controlled trial publication-title: Am. J. Clin. Nutr. doi: 10.1093/ajcn/nqx013 – volume: 48 start-page: 1336 issue: 6 year: 2007 ident: 10.1016/j.ajcnut.2024.03.015_bib6 article-title: Evidence of increased secretion of apolipoprotein B-48-containing lipoproteins in subjects with type 2 diabetes publication-title: J. Lipid Res. doi: 10.1194/jlr.M600548-JLR200 – volume: 102 start-page: 1563 issue: 6 year: 2015 ident: 10.1016/j.ajcnut.2024.03.015_bib16 article-title: Dietary fat intake and risk of cardiovascular disease and all-cause mortality in a population at high risk of cardiovascular disease publication-title: Am. J. Clin. Nutr. doi: 10.3945/ajcn.115.116046 – volume: 27 start-page: 133 issue: 1 year: 2008 ident: 10.1016/j.ajcnut.2024.03.015_bib28 article-title: Effects of monounsaturated vs. saturated fat on postprandial lipemia and adipose tissue lipases in type 2 diabetes publication-title: Clin. Nutr. doi: 10.1016/j.clnu.2007.07.005 – volume: 90 start-page: 11962 issue: 20 year: 2018 ident: 10.1016/j.ajcnut.2024.03.015_bib23 article-title: Quantitative lipoprotein subclass and low molecular weight metabolite analysis in human serum and plasma by 1H NMR spectroscopy in a multilaboratory trial publication-title: Anal. Chem. doi: 10.1021/acs.analchem.8b02412 – volume: 3 start-page: 5 year: 2006 ident: 10.1016/j.ajcnut.2024.03.015_bib45 article-title: Further evaluation of plasma sphingomyelin levels as a risk factor for coronary artery disease publication-title: Nutr. Metab. doi: 10.1186/1743-7075-3-5 – volume: 17 start-page: 28 issue: 1 year: 2006 ident: 10.1016/j.ajcnut.2024.03.015_bib7 article-title: Recent studies of lipoprotein kinetics in the metabolic syndrome and related disorders publication-title: Curr. Opin. Lipidol. doi: 10.1097/01.mol.0000199815.46720.ca – volume: 110 start-page: 24 issue: 1 year: 2019 ident: 10.1016/j.ajcnut.2024.03.015_bib12 article-title: Effects of red meat, white meat, and nonmeat protein sources on atherogenic lipoprotein measures in the context of low compared with high saturated fat intake: a randomized controlled trial publication-title: Am. J. Clin. Nutr. doi: 10.1093/ajcn/nqz035 – volume: 41 start-page: 2659 issue: 12 year: 2022 ident: 10.1016/j.ajcnut.2024.03.015_bib15 article-title: Effect of olive oil consumption on cardiovascular disease, cancer, type 2 diabetes, and all-cause mortality: a systematic review and meta-analysis publication-title: Clin. Nutr. doi: 10.1016/j.clnu.2022.10.001 – volume: 15 start-page: 765 issue: 6 year: 2021 ident: 10.1016/j.ajcnut.2024.03.015_bib36 article-title: Saturated fats and cardiovascular health: current evidence and controversies publication-title: J. Clin. Lipidol. doi: 10.1016/j.jacl.2021.09.049 – volume: 118 start-page: 739 issue: 4 year: 2023 ident: 10.1016/j.ajcnut.2024.03.015_bib52 article-title: Impact of saturated compared with unsaturated dietary fat on insulin sensitivity, pancreatic β-cell function and glucose tolerance: a systematic review and meta-analysis of randomized, controlled trials publication-title: Am. J. Clin. Nutr. doi: 10.1016/j.ajcnut.2023.07.018 – volume: 20 start-page: 173 issue: 1 year: 2021 ident: 10.1016/j.ajcnut.2024.03.015_bib61 article-title: Palmitic acid causes increased dihydroceramide levels when desaturase expression is directly silenced or indirectly lowered by silencing AdipoR2 publication-title: Lipids Health Dis doi: 10.1186/s12944-021-01600-y – year: 2023 ident: 10.1016/j.ajcnut.2024.03.015_bib20 – volume: 4 start-page: 1989 issue: 12 year: 2012 ident: 10.1016/j.ajcnut.2024.03.015_bib21 article-title: Monounsaturated fatty acids and risk of cardiovascular disease: synopsis of the evidence available from systematic reviews and meta-analyses publication-title: Nutrients doi: 10.3390/nu4121989 – volume: 107 start-page: e25 issue: 1 year: 2022 ident: 10.1016/j.ajcnut.2024.03.015_bib8 article-title: Insulin resistance and cardiometabolic risk profile among nondiabetic American young adults: insights from NHANES publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/clinem/dgab645 – volume: 225 start-page: 786 issue: 3 year: 2010 ident: 10.1016/j.ajcnut.2024.03.015_bib60 article-title: Effect of high fat diet enriched with unsaturated and diet rich in saturated fatty acids on sphingolipid metabolism in rat skeletal muscle publication-title: J. Cell. Physiol. doi: 10.1002/jcp.22283 – volume: 130 start-page: 1363 issue: 3 year: 2020 ident: 10.1016/j.ajcnut.2024.03.015_bib48 article-title: Machine learning reveals serum sphingolipids as cholesterol-independent biomarkers of coronary artery disease publication-title: J. Clin. Invest. doi: 10.1172/JCI131838 – volume: 139 start-page: e1082 issue: 25 year: 2018 ident: 10.1016/j.ajcnut.2024.03.015_bib11 article-title: AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines publication-title: J. Am. Coll. Cardiol. – volume: 67 start-page: 828 issue: 5 year: 1998 ident: 10.1016/j.ajcnut.2024.03.015_bib34 article-title: Change in dietary saturated fat intake is correlated with change in mass of large low-density-lipoprotein particles in men publication-title: Am. J. Clin. Nutr. doi: 10.1093/ajcn/67.5.828 – volume: 98 start-page: 2133 issue: 4 year: 2018 ident: 10.1016/j.ajcnut.2024.03.015_bib39 article-title: Mechanisms of insulin action and insulin resistance publication-title: Physiol. Rev. doi: 10.1152/physrev.00063.2017 – volume: 13 issue: 7 year: 2016 ident: 10.1016/j.ajcnut.2024.03.015_bib51 article-title: Effects of saturated fat, polyunsaturated fat, monounsaturated fat, and carbohydrate on glucose-insulin homeostasis: a systematic review and meta-analysis of randomised controlled feeding trials publication-title: PLOS Med doi: 10.1371/journal.pmed.1002087 – volume: 117 start-page: 1248 issue: 6 year: 2023 ident: 10.1016/j.ajcnut.2024.03.015_bib50 article-title: Replacement of dietary saturated with unsaturated fatty acids is associated with beneficial effects on lipidome metabolites: a secondary analysis of a randomized trial publication-title: Am. J. Clin. Nutr. doi: 10.1016/j.ajcnut.2023.03.024 – volume: 28 start-page: 412 issue: 7 year: 1985 ident: 10.1016/j.ajcnut.2024.03.015_bib22 article-title: Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man publication-title: Diabetologia doi: 10.1007/BF00280883 – volume: 39 start-page: 1263 issue: 6 year: 1998 ident: 10.1016/j.ajcnut.2024.03.015_bib62 article-title: Small dense low density lipoprotein has increased affinity for LDL receptor-independent cell surface binding sites: a potential mechanism for increased atherogenicity publication-title: J. Lipid Res. doi: 10.1016/S0022-2275(20)32551-7 – volume: 33 start-page: 773 issue: 8 year: 1998 ident: 10.1016/j.ajcnut.2024.03.015_bib58 article-title: Surface composition regulates clearance from plasma and triolein lipolysis of lipid emulsions publication-title: Lipids doi: 10.1007/s11745-998-0269-8 – volume: 146 start-page: 21 issue: 1 year: 2022 ident: 10.1016/j.ajcnut.2024.03.015_bib49 article-title: Deep lipidomics in human plasma: cardiometabolic disease risk and effect of dietary fat modulation publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.121.056805 – volume: 3 start-page: 34 year: 2017 ident: 10.1016/j.ajcnut.2024.03.015_bib19 article-title: Validation of a newly automated web-based 24-hour dietary recall using fully controlled feeding studies publication-title: BMC Nutr doi: 10.1186/s40795-017-0153-3 – volume: 110 start-page: 3465 issue: 22 year: 2004 ident: 10.1016/j.ajcnut.2024.03.015_bib59 article-title: Inhibition of sphingomyelin synthesis reduces atherogenesis in apolipoprotein E-knockout mice publication-title: Circulation doi: 10.1161/01.CIR.0000148370.60535.22 – volume: 399 start-page: 1876 issue: 10338 year: 2022 ident: 10.1016/j.ajcnut.2024.03.015_bib14 article-title: Long-term secondary prevention of cardiovascular disease with a Mediterranean diet and a low-fat diet (CORDIOPREV): a randomised controlled trial publication-title: Lancet doi: 10.1016/S0140-6736(22)00122-2 – volume: 86 start-page: 965 issue: 3 year: 2001 ident: 10.1016/j.ajcnut.2024.03.015_bib5 article-title: Clinical review 124: diabetic dyslipidemia: causes and consequences publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/jcem.86.3.7304 – volume: 82 start-page: 211 issue: 4–6 year: 2010 ident: 10.1016/j.ajcnut.2024.03.015_bib37 article-title: Regulation of hepatic gene expression by saturated fatty acids, Prostaglandins Leukot publication-title: Essent. Fatty Acids doi: 10.1016/j.plefa.2010.02.016 – volume: 132 start-page: 715 issue: 4 year: 2002 ident: 10.1016/j.ajcnut.2024.03.015_bib35 article-title: Dietary mono- and polyunsaturated fatty acids similarly affect LDL size in healthy men and women publication-title: J. Nutr. doi: 10.1093/jn/132.4.715 – volume: 1631 start-page: 169 issue: 2 year: 2003 ident: 10.1016/j.ajcnut.2024.03.015_bib55 article-title: Effects of sphingomyelin on apolipoprotein E- and lipoprotein lipase-mediated cell uptake of lipid particles publication-title: Biochim. Biophys. Acta. doi: 10.1016/S1388-1981(02)00365-7 – volume: 4 start-page: 370 issue: 12 year: 1918 ident: 10.1016/j.ajcnut.2024.03.015_bib18 article-title: A biometric study of human basal metabolism publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.4.12.370 – volume: 255 start-page: 3371 issue: 8 year: 1980 ident: 10.1016/j.ajcnut.2024.03.015_bib53 article-title: Sphingomyelin suppresses the binding and utilization of low density lipoproteins by skin fibroblasts publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)85709-5 – volume: 186 start-page: 434 issue: 6 year: 2014 ident: 10.1016/j.ajcnut.2024.03.015_bib13 article-title: Omega-6 polyunsaturated fatty acids: is a broad cholesterol-lowering health claim appropriate? publication-title: CMAJ doi: 10.1503/cmaj.130253 – volume: 12 start-page: 237 issue: 5 year: 2005 ident: 10.1016/j.ajcnut.2024.03.015_bib3 article-title: Lipid triad or atherogenic lipoprotein phenotype: a role in cardiovascular prevention? publication-title: J. Atheroscler. Thromb. doi: 10.5551/jat.12.237 – volume: 15 start-page: 43 issue: 1 year: 2014 ident: 10.1016/j.ajcnut.2024.03.015_bib63 article-title: Two different pathways of phosphatidylcholine synthesis, the Kennedy Pathway and the Lands Cycle, differentially regulate cellular triacylglycerol storage publication-title: BMC Cell Biol doi: 10.1186/s12860-014-0043-3 – volume: 24 start-page: 908 issue: 4 year: 2016 ident: 10.1016/j.ajcnut.2024.03.015_bib40 article-title: Skeletal muscle and plasma lipidomic signatures of insulin resistance and overweight/obesity in humans publication-title: Obesity doi: 10.1002/oby.21448 – volume: 34 start-page: 433 issue: 2 year: 2014 ident: 10.1016/j.ajcnut.2024.03.015_bib31 article-title: Effect of Mediterranean diet with and without weight loss on apolipoprotein B100 metabolism in men with metabolic syndrome publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.113.302185 – volume: 103 start-page: 3331 issue: 9 year: 2018 ident: 10.1016/j.ajcnut.2024.03.015_bib42 article-title: Altered plasma amino acids and lipids associated with abnormal glucose metabolism and insulin resistance in older adults publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/jc.2018-00480 – volume: 46 start-page: 196 issue: 2 year: 2005 ident: 10.1016/j.ajcnut.2024.03.015_bib32 article-title: Serum sphingomyelin levels are related to the clearance of postprandial remnant-like particles publication-title: J. Lipid Res. doi: 10.1194/jlr.C400011-JLR200 – volume: 57 start-page: 434 issue: 3 year: 2019 ident: 10.1016/j.ajcnut.2024.03.015_bib47 article-title: Identification of lysophosphatidylcholines and sphingolipids as potential biomarkers for acute aortic dissection via serum metabolomics publication-title: Eur. J. Vasc. Endovasc. Surg. doi: 10.1016/j.ejvs.2018.07.004 – volume: 15 start-page: 30 issue: 1 year: 2017 ident: 10.1016/j.ajcnut.2024.03.015_bib2 article-title: Link between metabolic syndrome and insulin resistance publication-title: Curr. Vasc. Pharmacol. doi: 10.2174/1570161114666161007164510 – volume: 45 start-page: 893 issue: 10 year: 2010 ident: 10.1016/j.ajcnut.2024.03.015_bib10 article-title: Saturated fat and cardiometabolic risk factors, coronary heart disease, stroke, and diabetes: a fresh look at the evidence publication-title: Lipids doi: 10.1007/s11745-010-3393-4 – volume: 45 start-page: 2331 issue: 12 year: 2004 ident: 10.1016/j.ajcnut.2024.03.015_bib29 article-title: Apolipoprotein A-I, A-II, and VLDL-B-100 metabolism in men: comparison of a low-fat diet and a high-monounsaturated fatty acid diet publication-title: J. Lipid Res. doi: 10.1194/jlr.M400287-JLR200 – volume: 268 start-page: 20156 issue: 27 year: 1993 ident: 10.1016/j.ajcnut.2024.03.015_bib56 article-title: Role of sphingomyelin in the regulation of cholesterol esterification in the plasma lipoproteins. Inhibition of lecithin-cholesterol acyltransferase reaction publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(20)80707-8 – volume: 25 start-page: 317 year: 2005 ident: 10.1016/j.ajcnut.2024.03.015_bib38 article-title: Polyunsaturated fatty acid regulation of genes of lipid metabolism publication-title: Annu. Rev. Nutr. doi: 10.1146/annurev.nutr.25.051804.101917 – volume: 136 start-page: e1 issue: 3 year: 2017 ident: 10.1016/j.ajcnut.2024.03.015_bib9 article-title: Dietary fats and cardiovascular disease: a presidential advisory from the American Heart Association publication-title: Circulation doi: 10.1161/CIR.0000000000000510 – volume: 43 start-page: 1 issue: 1 year: 2014 ident: 10.1016/j.ajcnut.2024.03.015_bib1 article-title: Metabolic syndrome publication-title: Endocrinol. Metab. Clin. North. Am. doi: 10.1016/j.ecl.2013.09.009 – volume: 20 start-page: 2614 issue: 12 year: 2000 ident: 10.1016/j.ajcnut.2024.03.015_bib44 article-title: Plasma sphingomyelin level as a risk factor for coronary artery disease publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/01.ATV.20.12.2614 – volume: 16 start-page: 1223 issue: 12 year: 2014 ident: 10.1016/j.ajcnut.2024.03.015_bib24 article-title: Effect of sitagliptin therapy on triglyceride-rich lipoprotein kinetics in patients with type 2 diabetes publication-title: Diabetes Obes. Metab. doi: 10.1111/dom.12359 – volume: 51 year: 2020 ident: 10.1016/j.ajcnut.2024.03.015_bib43 article-title: Lipidomic profiling identifies signatures of metabolic risk publication-title: EBioMedicine doi: 10.1016/j.ebiom.2019.10.046 – volume: 63 start-page: 1847 issue: 9 year: 2020 ident: 10.1016/j.ajcnut.2024.03.015_bib46 article-title: FinnDiane Study Group, Sphingomyelin and progression of renal and coronary heart disease in individuals with type 1 diabetes publication-title: Diabetologia doi: 10.1007/s00125-020-05201-9 – volume: 166 start-page: 73 issue: 1 year: 2003 ident: 10.1016/j.ajcnut.2024.03.015_bib27 article-title: Chylomicron particle size and number, factor VII activation and dietary monounsaturated fatty acids publication-title: Atherosclerosis doi: 10.1016/S0021-9150(02)00306-4 – volume: 78 start-page: 47 issue: 1 year: 2003 ident: 10.1016/j.ajcnut.2024.03.015_bib30 article-title: Effects of dietary monounsaturated fatty acids on lipoprotein concentrations, compositions, and subfraction distributions and on VLDL apolipoprotein B kinetics: dose-dependent effects on LDL publication-title: Am. J. Clin. Nutr. doi: 10.1093/ajcn/78.1.47 – volume: 63 start-page: S22 issue: Suppl 2 year: 2009 ident: 10.1016/j.ajcnut.2024.03.015_bib33 article-title: Quantitative effects on cardiovascular risk factors and coronary heart disease risk of replacing partially hydrogenated vegetable oils with other fats and oils publication-title: Eur. J. Clin. Nutr. doi: 10.1038/sj.ejcn.1602976 – volume: 33 start-page: 1741 issue: 12 year: 1992 ident: 10.1016/j.ajcnut.2024.03.015_bib54 article-title: Sphingomyelinase treatment of low density lipoprotein and cultured cells results in enhanced processing of LDL which can be modulated by sphingomyelin publication-title: J. Lipid Res. doi: 10.1016/S0022-2275(20)41332-X – volume: 4 start-page: e141 issue: 10 year: 2014 ident: 10.1016/j.ajcnut.2024.03.015_bib41 article-title: Altered levels of serum sphingomyelin and ceramide containing distinct acyl chains in young obese adults publication-title: Nutr. Diabetes doi: 10.1038/nutd.2014.38 |
SSID | ssj0012486 |
Score | 2.4598315 |
Snippet | The substitution of monounsaturated acids (MUFAs) for saturated fatty acids (SFAs) is recommended for cardiovascular disease prevention but its impact on... Background The substitution of monounsaturated acids (MUFAs) for saturated fatty acids (SFAs) is recommended for cardiovascular disease prevention but its... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1270 |
SubjectTerms | Adult Apolipoprotein B Apolipoprotein B-100 - blood Apolipoproteins Cardiovascular diseases Cholesterol Clinical trials Cross-Over Studies Density Diet Dietary Fats Double-Blind Method Dyslipidemia Dyslipidemias - diet therapy Fatty acids Fatty Acids - blood Fatty Acids, Monounsaturated Female High density lipoprotein Humans Insulin Insulin Resistance Kinetics Lipid metabolism lipidomics lipoprotein metabolism Lipoproteins Low density lipoprotein Male Metabolic disorders Middle Aged monounsaturated fatty acids Olive Oil Original saturated fatty acids Substitutes Triglycerides |
Title | Substitution of dietary monounsaturated fatty acids from olive oil for saturated fatty acids from lard increases low-density lipoprotein apolipoprotein B-100 fractional catabolic rate in subjects with dyslipidemia associated with insulin resistance: a randomized controlled trial |
URI | https://dx.doi.org/10.1016/j.ajcnut.2024.03.015 https://www.ncbi.nlm.nih.gov/pubmed/38518848 https://www.proquest.com/docview/3051583180 https://www.proquest.com/docview/2974005037 https://pubmed.ncbi.nlm.nih.gov/PMC11130675 |
Volume | 119 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9RAEF8REuOLUVQ8RTMmxpdLSe32rq1v4EeICA_kjLw12-429iwtob0Q-Oud2d1-HCCIL3fXdrvtdefXnZmd-Q1j76RmhfJ8x00-SIco35xIJlOH-1nKlRdMpDYU9w-muz_8b0eTo5X7Z8PskibZSi-uzSv5n1HFfTiulCV7h5HtOsUd-BvHFz9xhPHzn8aYUK-X-q3WJ3PVUBQc3gClmhNnpyCNMhMN6toizWVt8kmqggKGqlwnL45vaFiQlyEvSbWsVT0uqjNHUsg71ZvITyrN8pCXY0G1HvrNHXztutiBSZogBhLRoLARnzZdh3ws9SKZ60AS7QiW56jumlq1YiysxLSB8W24_KmqSdlFKTUZ2jjLyuo4v1CyDbgv8KcuQzJUuWd97kw5JMrockLLtiBBp9Srek7AMSbG92qR144NS-i9F7kOMQiNC9-WJ-ncIKfqOCnEeRsxaqIR-hW4Q2yNN9I4O9VCp73ZrKnz32LohSHZbmMeBzMLqtqTpZnFzgb5cPFezxO03j_QOXAzunY-M66V-ZaYp_gwtujKmpPXpMAu04dfmta7YMs2jm8em15i6iV2eewSOcOah_aVt8rWtvcOf-51C3Cer4ukdn-rzTrVoZFX7-ZvWt1Vq-1y8PFAm5s9Zo-sGQbbBlNP2Ioq19noM-IH3oPlyi3goJWMdfZg3wahPL23MYQdVBlY2MEl2IFGE2g0AaEJNOwAYQcIO7ihIcEOOtjBAHYwwBksww407KCHHXSwA7oOdggt7ICQBUPYQQ87c9DCDnrYfQQBPeigBx1o0D1js69fZp92HVtfxUl9f9o4KvWnQqAKn7mR8tF05JqznKsw8wM3c12pIpVFkzQQicRT8BuNPTQZkoBnkvPnbLWsSvWCQYSKfiqzwOO-9FUUiUChncmnchIKkQo-YrwVjzi1tQeoBE4R3yScI-Z0Z50Y7p1b2get5MXWfjB2QYxwuuXMzVZQY_siqmNO5a9C1HncEXvbHcbZl5ZURamqRR17UeBrSq1gxDaMXHe3ykMiu_TDEQuXJL5rQMz-y0fK_Jdm-EcFVLtyXt7xCbxiD_uX0yZbbU4X6jUaTU3yxgL8D3gjgug |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Substitution+of+dietary+monounsaturated+fatty+acids+from+olive+oil+for+saturated+fatty+acids+from+lard+increases+low-density+lipoprotein+apolipoprotein+B-100+fractional+catabolic+rate+in+subjects+with+dyslipidemia+associated+with+insulin+resistance%3A+a+randomized+controlled+trial&rft.jtitle=The+American+journal+of+clinical+nutrition&rft.au=Desjardins%2C+Louis-Charles&rft.au=Bri%C3%A8re%2C+Francis&rft.au=Tremblay%2C+Andr%C3%A9+J&rft.au=Rancourt-Bouchard%2C+Maryka&rft.date=2024-05-01&rft.issn=0002-9165&rft.volume=119&rft.issue=5&rft.spage=1270&rft.epage=1279&rft_id=info:doi/10.1016%2Fj.ajcnut.2024.03.015&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ajcnut_2024_03_015 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-9165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-9165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-9165&client=summon |