An on-line estimation of battery pack parameters and state-of-charge using dual filters based on pack model
Accurate estimation of battery pack state-of-charge plays a very important role for electric vehicles, which directly reflects the behavior of battery pack usage. However, the inconsistency of battery makes the estimation of battery pack state-of-charge different from single cell. In this paper, to...
Saved in:
Published in | Energy (Oxford) Vol. 115; pp. 219 - 229 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.11.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Accurate estimation of battery pack state-of-charge plays a very important role for electric vehicles, which directly reflects the behavior of battery pack usage. However, the inconsistency of battery makes the estimation of battery pack state-of-charge different from single cell. In this paper, to estimate the battery pack state-of-charge on-line, the definition of battery pack is proposed, and the relationship between the total available capacity of battery pack and single cell is put forward to analyze the energy efficiency influenced by battery inconsistency, then a lumped parameter battery model is built up to describe the dynamic behavior of battery pack. Furthermore, the extend Kalman filter-unscented Kalman filter algorithm is developed to identify the parameters of battery pack and forecast state-of-charge concurrently. The extend Kalman filter is applied to update the battery pack parameters by real-time measured data, while the unscented Kalman filter is employed to estimate the battery pack state-of-charge. Finally, the proposed approach is verified by experiments operated on the lithium-ion battery under constant current condition and the dynamic stress test profiles. Experimental results indicate that the proposed method can estimate the battery pack state-of-charge with high accuracy.
•A novel space state equation is built to describe the pack dynamic behavior.•The dual filters method is used to estimate the pack state-of-charge.•Battery inconsistency is considered to analyze the pack usage efficiency.•The accuracy of the proposed method is verified under different conditions. |
---|---|
AbstractList | Accurate estimation of battery pack state-of-charge plays a very important role for electric vehicles, which directly reflects the behavior of battery pack usage. However, the inconsistency of battery makes the estimation of battery pack state-of-charge different from single cell. In this paper, to estimate the battery pack state-of-charge on-line, the definition of battery pack is proposed, and the relationship between the total available capacity of battery pack and single cell is put forward to analyze the energy efficiency influenced by battery inconsistency, then a lumped parameter battery model is built up to describe the dynamic behavior of battery pack. Furthermore, the extend Kalman filter-unscented Kalman filter algorithm is developed to identify the parameters of battery pack and forecast state-of-charge concurrently. The extend Kalman filter is applied to update the battery pack parameters by real-time measured data, while the unscented Kalman filter is employed to estimate the battery pack state-of-charge. Finally, the proposed approach is verified by experiments operated on the lithium-ion battery under constant current condition and the dynamic stress test profiles. Experimental results indicate that the proposed method can estimate the battery pack state-of-charge with high accuracy.
•A novel space state equation is built to describe the pack dynamic behavior.•The dual filters method is used to estimate the pack state-of-charge.•Battery inconsistency is considered to analyze the pack usage efficiency.•The accuracy of the proposed method is verified under different conditions. Accurate estimation of battery pack state-of-charge plays a very important role for electric vehicles, which directly reflects the behavior of battery pack usage. However, the inconsistency of battery makes the estimation of battery pack state-of-charge different from single cell. In this paper, to estimate the battery pack state-of-charge on-line, the definition of battery pack is proposed, and the relationship between the total available capacity of battery pack and single cell is put forward to analyze the energy efficiency influenced by battery inconsistency, then a lumped parameter battery model is built up to describe the dynamic behavior of battery pack. Furthermore, the extend Kalman filter-unscented Kalman filter algorithm is developed to identify the parameters of battery pack and forecast state-of-charge concurrently. The extend Kalman filter is applied to update the battery pack parameters by real-time measured data, while the unscented Kalman filter is employed to estimate the battery pack state-of-charge. Finally, the proposed approach is verified by experiments operated on the lithium-ion battery under constant current condition and the dynamic stress test profiles. Experimental results indicate that the proposed method can estimate the battery pack state-of-charge with high accuracy. |
Author | Chen, Zonghai Yang, Duo Wang, Yujie Zhang, Xu |
Author_xml | – sequence: 1 givenname: Xu orcidid: 0000-0003-3348-4200 surname: Zhang fullname: Zhang, Xu – sequence: 2 givenname: Yujie surname: Wang fullname: Wang, Yujie – sequence: 3 givenname: Duo surname: Yang fullname: Yang, Duo – sequence: 4 givenname: Zonghai orcidid: 0000-0001-9312-9089 surname: Chen fullname: Chen, Zonghai email: chenzh@ustc.edu.cn |
BookMark | eNqFkD9PwzAQxT0UiRb4BgweWVJsJ2ljBqSq4p9UiQVmy7HPxW1qF9tB6rfHbZgYYLnTPb33pPtN0Mh5BwhdUzKlhM5uN1NwENaHKcvXlDRZ5SM0JuWMFHVVsXM0iXFDCKkbzsdou3DYu6KzDjDEZHcyWZ8lg1uZEoQD3ku1zSPIHeQ7Yuk0jkkmKLwp1IcMa8B9tG6NdS87bGx3srUygs7VQ37nNXSX6MzILsLVz75A748Pb8vnYvX69LJcrApVVbNUAGesYaWRhlBakZrMFTeStabhJTPNvAENRpK2hmreVoaVWslWUz5jNavBkPIC3Qy9--A_-_yV2NmooOukA99HwWhJm7rkjGdrNVhV8DEGMGIfMoNwEJSII0-xEQNPceQpSJPVY-zuV0zZdCKXgrTdf-H7IQyZwZeFIKKy4BRoG0Alob39u-AbGc2ZfQ |
CitedBy_id | crossref_primary_10_3390_en12214036 crossref_primary_10_1016_j_energy_2017_06_094 crossref_primary_10_1016_j_est_2022_104211 crossref_primary_10_3390_en17225746 crossref_primary_10_3390_en14020324 crossref_primary_10_20964_2020_05_41 crossref_primary_10_1016_j_est_2018_11_012 crossref_primary_10_1109_ACCESS_2019_2953478 crossref_primary_10_1587_elex_15_20180005 crossref_primary_10_3390_en10111810 crossref_primary_10_1016_j_energy_2017_07_099 crossref_primary_10_1016_j_jpowsour_2020_227805 crossref_primary_10_3390_wevj15090431 crossref_primary_10_1002_er_6186 crossref_primary_10_1016_j_energy_2017_11_154 crossref_primary_10_1109_ACCESS_2019_2909274 crossref_primary_10_1002_est2_354 crossref_primary_10_1109_TCST_2021_3091108 crossref_primary_10_3390_en13040830 crossref_primary_10_3390_batteries9070385 crossref_primary_10_1016_j_electacta_2017_04_004 crossref_primary_10_1109_ACCESS_2019_2919275 crossref_primary_10_3390_pr10112185 crossref_primary_10_1016_j_energy_2017_07_069 crossref_primary_10_1016_j_energy_2024_132541 crossref_primary_10_1016_j_apenergy_2020_114569 crossref_primary_10_1016_j_energy_2018_03_174 crossref_primary_10_3390_electronics8080834 crossref_primary_10_1016_j_egyr_2022_12_094 crossref_primary_10_1016_j_est_2024_112600 crossref_primary_10_1016_j_energy_2019_07_063 crossref_primary_10_1016_j_energy_2020_118858 crossref_primary_10_1016_j_jpowsour_2017_08_033 crossref_primary_10_1109_TIE_2020_2965497 crossref_primary_10_1016_j_egyr_2021_08_113 crossref_primary_10_1109_TTE_2021_3115597 crossref_primary_10_1016_j_rser_2019_06_040 crossref_primary_10_1155_2020_9502605 crossref_primary_10_1016_j_est_2022_105878 crossref_primary_10_1002_er_5168 crossref_primary_10_1016_j_est_2022_104427 crossref_primary_10_1016_j_procs_2023_10_216 crossref_primary_10_1016_j_energy_2018_09_047 crossref_primary_10_1016_j_electacta_2018_08_076 crossref_primary_10_1016_j_heliyon_2024_e25949 crossref_primary_10_1109_TVT_2018_2880085 crossref_primary_10_1109_ACCESS_2023_3293726 crossref_primary_10_1016_j_electacta_2018_07_078 crossref_primary_10_1016_j_est_2022_106052 crossref_primary_10_1155_2018_3793492 crossref_primary_10_1016_j_jpowsour_2017_01_130 crossref_primary_10_20964_2019_05_05 crossref_primary_10_1016_j_est_2024_113986 crossref_primary_10_1016_j_jpowsour_2017_01_054 crossref_primary_10_3390_wevj11010023 crossref_primary_10_1016_j_energy_2022_123853 crossref_primary_10_1155_2019_7403732 crossref_primary_10_1016_j_dib_2016_10_012 crossref_primary_10_1016_j_apenergy_2023_122569 crossref_primary_10_1016_j_est_2023_107102 crossref_primary_10_1016_j_jpowsour_2020_229056 crossref_primary_10_3390_math12182880 crossref_primary_10_20964_2021_12_50 crossref_primary_10_1016_j_apenergy_2022_119541 crossref_primary_10_1016_j_jpowsour_2017_11_094 crossref_primary_10_1109_TTE_2022_3206452 crossref_primary_10_1109_ACCESS_2025_3536166 crossref_primary_10_1016_j_energy_2017_10_043 crossref_primary_10_1109_JESTIE_2022_3148031 crossref_primary_10_1155_2017_5390149 crossref_primary_10_3390_electronics8121391 crossref_primary_10_3390_app14209569 crossref_primary_10_1016_j_est_2024_114446 crossref_primary_10_1109_TPEL_2020_3001020 crossref_primary_10_1016_j_jpowsour_2019_226972 crossref_primary_10_1016_j_jpowsour_2018_03_015 crossref_primary_10_1109_ACCESS_2021_3089032 crossref_primary_10_1186_s10033_018_0268_8 crossref_primary_10_3390_pr9050762 crossref_primary_10_1016_j_energy_2019_03_059 crossref_primary_10_1016_j_est_2023_108420 crossref_primary_10_1016_j_jpowsour_2024_235114 crossref_primary_10_1016_j_energy_2021_121023 crossref_primary_10_1016_j_energy_2020_119057 crossref_primary_10_1016_j_jpowsour_2017_11_068 crossref_primary_10_1016_j_energy_2021_122877 crossref_primary_10_1016_j_est_2022_104209 crossref_primary_10_1109_TCST_2022_3215102 crossref_primary_10_1016_j_electacta_2020_136576 |
Cites_doi | 10.1016/j.jpowsour.2004.02.032 10.1016/j.apenergy.2014.08.081 10.1016/j.energy.2016.06.130 10.1016/j.jpowsour.2015.01.002 10.1016/j.jpowsour.2015.07.028 10.1016/j.energy.2014.06.102 10.1016/j.rser.2015.12.195 10.1016/j.energy.2013.04.050 10.1016/j.energy.2015.07.120 10.1016/j.apenergy.2013.05.048 10.1016/j.jpowsour.2015.01.005 10.4236/sgre.2012.31007 10.3390/en8042950 10.1016/j.apenergy.2014.10.034 10.1016/j.apenergy.2013.12.046 10.1016/j.jpowsour.2014.10.119 10.1016/j.jpowsour.2013.05.071 10.1016/j.energy.2016.03.028 10.1016/j.solener.2016.02.022 10.1016/j.jpowsour.2012.12.003 10.1016/j.jpowsour.2015.01.112 10.1016/j.apenergy.2014.12.021 10.1016/j.apenergy.2015.10.092 10.1016/j.energy.2016.05.047 10.1016/j.apenergy.2015.01.127 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Ltd |
Copyright_xml | – notice: 2016 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.energy.2016.08.109 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Environmental Sciences |
EndPage | 229 |
ExternalDocumentID | 10_1016_j_energy_2016_08_109 S0360544216312312 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW SSH WUQ 7S9 L.6 |
ID | FETCH-LOGICAL-c446t-e922823faf01140507c9fa2bf8932f878edefa0b5e47b4f23dcabd1962525ef03 |
IEDL.DBID | .~1 |
ISSN | 0360-5442 |
IngestDate | Fri Jul 11 04:43:13 EDT 2025 Tue Jul 01 00:53:03 EDT 2025 Thu Apr 24 23:03:08 EDT 2025 Fri Feb 23 02:32:44 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | State-of-charge Battery inconsistency Extend Kalman filter-unscented Kalman filter Battery pack model |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c446t-e922823faf01140507c9fa2bf8932f878edefa0b5e47b4f23dcabd1962525ef03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3348-4200 0000-0001-9312-9089 |
PQID | 2131853929 |
PQPubID | 24069 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2131853929 crossref_primary_10_1016_j_energy_2016_08_109 crossref_citationtrail_10_1016_j_energy_2016_08_109 elsevier_sciencedirect_doi_10_1016_j_energy_2016_08_109 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-11-15 |
PublicationDateYYYYMMDD | 2016-11-15 |
PublicationDate_xml | – month: 11 year: 2016 text: 2016-11-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Energy (Oxford) |
PublicationYear | 2016 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Wu, Wang, Xiao (bib13) 2012; 3 Firouz, Timmermans, Omar (bib25) 2016; 106 Dong, Wei, Zhang (bib6) 2016; 162 Wang, Zhang, Chen (bib3) 2015; 137 Graditi, Ferlito, Adinolfi (bib14) 2016; 130 Wang, Zhang, Chen (bib9) 2015; 279 Kim, Shin, Jeon (bib16) 2010 Li, Ouyang, Li (bib11) 2015; 279 Xiong, He, Sun (bib12) 2013; 229 Deng, Yang, Cai (bib23) 2016; 112 Wang, Zhang, Chen (bib10) 2014; 135 Kim, Cho (bib15) 2013; 57 Sun, Xiong, He (bib4) 2016; 162 Hua, Cordoba-Arenas, Warner (bib21) 2015; 280 Wang, Zhang, Chen (bib20) 2015; 145 Wei, Xu, Kusiak (bib27) 2014; 73 Feng, Lu, Wei (bib7) 2015; 8 Plett (bib17) 2004; 134 Zhao, Jiang, Zhang (bib26) 2015; 2015 Sun, Xiong (bib2) 2015; 274 Zheng, Ouyang, Lu (bib22) 2013; 111 Graditi, Ippolito, Telaretti (bib1) 2016; 57 Xiong, Sun, Gong (bib18) 2013; 242 Li, Wang, Gong (bib24) 2016; 109 Tang, Wang, Chen (bib8) 2015; 296 Truchot, Dubarry, Liaw (bib19) 2014; 119 Dong, Zhang, Zhang (bib5) 2015; 90 Wei, Kusiak, Sadat (bib28) 2012; 139 Li (10.1016/j.energy.2016.08.109_bib11) 2015; 279 Tang (10.1016/j.energy.2016.08.109_bib8) 2015; 296 Wang (10.1016/j.energy.2016.08.109_bib3) 2015; 137 Kim (10.1016/j.energy.2016.08.109_bib16) 2010 Wei (10.1016/j.energy.2016.08.109_bib28) 2012; 139 Firouz (10.1016/j.energy.2016.08.109_bib25) 2016; 106 Deng (10.1016/j.energy.2016.08.109_bib23) 2016; 112 Wang (10.1016/j.energy.2016.08.109_bib9) 2015; 279 Dong (10.1016/j.energy.2016.08.109_bib5) 2015; 90 Feng (10.1016/j.energy.2016.08.109_bib7) 2015; 8 Li (10.1016/j.energy.2016.08.109_bib24) 2016; 109 Hua (10.1016/j.energy.2016.08.109_bib21) 2015; 280 Zheng (10.1016/j.energy.2016.08.109_bib22) 2013; 111 Wu (10.1016/j.energy.2016.08.109_bib13) 2012; 3 Wang (10.1016/j.energy.2016.08.109_bib10) 2014; 135 Xiong (10.1016/j.energy.2016.08.109_bib12) 2013; 229 Wei (10.1016/j.energy.2016.08.109_bib27) 2014; 73 Dong (10.1016/j.energy.2016.08.109_bib6) 2016; 162 Kim (10.1016/j.energy.2016.08.109_bib15) 2013; 57 Graditi (10.1016/j.energy.2016.08.109_bib1) 2016; 57 Plett (10.1016/j.energy.2016.08.109_bib17) 2004; 134 Zhao (10.1016/j.energy.2016.08.109_bib26) 2015; 2015 Xiong (10.1016/j.energy.2016.08.109_bib18) 2013; 242 Sun (10.1016/j.energy.2016.08.109_bib2) 2015; 274 Truchot (10.1016/j.energy.2016.08.109_bib19) 2014; 119 Graditi (10.1016/j.energy.2016.08.109_bib14) 2016; 130 Wang (10.1016/j.energy.2016.08.109_bib20) 2015; 145 Sun (10.1016/j.energy.2016.08.109_bib4) 2016; 162 |
References_xml | – volume: 296 start-page: 23 year: 2015 end-page: 29 ident: bib8 article-title: A method for state-of-charge estimation of LiFePO publication-title: J Power Sources – volume: 73 start-page: 898 year: 2014 end-page: 907 ident: bib27 article-title: Modeling and optimization of a chiller plant publication-title: Energy – volume: 57 start-page: 581 year: 2013 end-page: 599 ident: bib15 article-title: Screening process-based modeling of the multi-cell battery string in series and parallel connections for high accuracy state-of-charge estimation publication-title: Energy – start-page: 1174 year: 2010 end-page: 1179 ident: bib16 publication-title: Screening process of Li-Ion series battery pack for improved voltage/SOC balancing[C]//Power Electronics Conference (IPEC) – volume: 106 start-page: 602 year: 2016 end-page: 617 ident: bib25 article-title: Advanced lithium ion battery modeling and nonlinear analysis based on robust method in frequency domain: nonlinear characterization and non-parametric modeling publication-title: Energy – volume: 229 start-page: 159 year: 2013 end-page: 169 ident: bib12 article-title: Model-based state of charge and peak power capability joint estimation of lithium-ion battery in plug-in hybrid electric vehicles publication-title: J power sources – volume: 162 start-page: 1399 year: 2016 end-page: 1409 ident: bib4 article-title: A systematic state-of-charge estimation framework for multi-cell battery pack in electric vehicles using bias correction technique publication-title: Appl Energy – volume: 111 start-page: 571 year: 2013 end-page: 580 ident: bib22 article-title: Cell state-of-charge inconsistency estimation for LiFePO publication-title: Appl energy – volume: 135 start-page: 81 year: 2014 end-page: 87 ident: bib10 article-title: A method for joint estimation of state-of-charge and available energy of LiFePO publication-title: Appl energy – volume: 137 start-page: 427 year: 2015 end-page: 434 ident: bib3 article-title: A method for state-of-charge estimation of Li-ion batteries based on multi-model switching strategy publication-title: Appl Energy – volume: 279 start-page: 439 year: 2015 end-page: 449 ident: bib11 article-title: State of charge estimation for LiMn publication-title: J Power Sources – volume: 139 start-page: 118 year: 2012 end-page: 123 ident: bib28 article-title: Prediction of influent flow rate: data-mining approach publication-title: J Energy Eng – volume: 57 start-page: 515 year: 2016 end-page: 523 ident: bib1 article-title: Technical and economical assessment of distributed electrochemical storages for load shifting applications: an Italian case study publication-title: Renew Sustain Energy Rev – volume: 280 start-page: 293 year: 2015 end-page: 312 ident: bib21 article-title: A multi time-scale state-of-charge and state-of-health estimation framework using nonlinear predictive filter for lithium-ion battery pack with passive balance control publication-title: J Power Sources – volume: 90 start-page: 879 year: 2015 end-page: 888 ident: bib5 article-title: A method for state of energy estimation of lithium-ion batteries based on neural network model publication-title: Energy – volume: 130 start-page: 232 year: 2016 end-page: 243 ident: bib14 article-title: Energy yield estimation of thin-film photovoltaic plants by using physical approach and artificial neural networks publication-title: Sol Energy – volume: 274 start-page: 582 year: 2015 end-page: 594 ident: bib2 article-title: A novel dual-scale cell state-of-charge estimation approach for series-connected battery pack used in electric vehicles publication-title: J Power Sources – volume: 112 start-page: 469 year: 2016 end-page: 480 ident: bib23 article-title: Online available capacity prediction and state of charge estimation based on advanced data-driven algorithms for lithium iron phosphate battery publication-title: Energy – volume: 279 start-page: 306 year: 2015 end-page: 311 ident: bib9 article-title: A method for state-of-charge estimation of LiFePO publication-title: J power sources – volume: 2015 start-page: 1 year: 2015 end-page: 11 ident: bib26 article-title: Robust online state of charge estimation of lithium-ion battery pack based on error sensitivity analysis publication-title: Math Problems Eng – volume: 3 start-page: 51 year: 2012 ident: bib13 article-title: The SOC estimation of power Li-ion battery based on ANFIS model publication-title: Smart Grid Renew Energy – volume: 134 start-page: 262 year: 2004 end-page: 276 ident: bib17 article-title: Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 2. Modeling and identification publication-title: J power sources – volume: 119 start-page: 218 year: 2014 end-page: 227 ident: bib19 article-title: State-of-charge estimation and uncertainty for lithium-ion battery strings publication-title: Appl Energy – volume: 162 start-page: 163 year: 2016 end-page: 171 ident: bib6 article-title: Online state of charge estimation and open circuit voltage hysteresis modeling of LiFePO publication-title: Appl Energy – volume: 145 start-page: 36 year: 2015 end-page: 42 ident: bib20 article-title: A novel active equalization method for lithium-ion batteries in electric vehicles publication-title: Appl Energy – volume: 242 start-page: 699 year: 2013 end-page: 713 ident: bib18 article-title: Adaptive state of charge estimator for lithium-ion cells series battery pack in electric vehicles publication-title: J Power Sources – volume: 109 start-page: 933 year: 2016 end-page: 946 ident: bib24 article-title: A combination Kalman filter approach for State of Charge estimation of lithium-ion battery considering model uncertainty publication-title: Energy – volume: 8 start-page: 2950 year: 2015 end-page: 2976 ident: bib7 article-title: Online estimation of model parameters and state of charge of LiFePO publication-title: Energies – volume: 134 start-page: 262 issue: 2 year: 2004 ident: 10.1016/j.energy.2016.08.109_bib17 article-title: Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 2. Modeling and identification publication-title: J power sources doi: 10.1016/j.jpowsour.2004.02.032 – volume: 2015 start-page: 1 year: 2015 ident: 10.1016/j.energy.2016.08.109_bib26 article-title: Robust online state of charge estimation of lithium-ion battery pack based on error sensitivity analysis publication-title: Math Problems Eng – volume: 135 start-page: 81 year: 2014 ident: 10.1016/j.energy.2016.08.109_bib10 article-title: A method for joint estimation of state-of-charge and available energy of LiFePO4 batteries publication-title: Appl energy doi: 10.1016/j.apenergy.2014.08.081 – volume: 112 start-page: 469 year: 2016 ident: 10.1016/j.energy.2016.08.109_bib23 article-title: Online available capacity prediction and state of charge estimation based on advanced data-driven algorithms for lithium iron phosphate battery publication-title: Energy doi: 10.1016/j.energy.2016.06.130 – volume: 279 start-page: 439 year: 2015 ident: 10.1016/j.energy.2016.08.109_bib11 article-title: State of charge estimation for LiMn2O4 power battery based on strong tracking sigma point Kalman filter publication-title: J Power Sources doi: 10.1016/j.jpowsour.2015.01.002 – volume: 296 start-page: 23 year: 2015 ident: 10.1016/j.energy.2016.08.109_bib8 article-title: A method for state-of-charge estimation of LiFePO4 batteries based on a dual-circuit state observer publication-title: J Power Sources doi: 10.1016/j.jpowsour.2015.07.028 – volume: 73 start-page: 898 year: 2014 ident: 10.1016/j.energy.2016.08.109_bib27 article-title: Modeling and optimization of a chiller plant publication-title: Energy doi: 10.1016/j.energy.2014.06.102 – volume: 57 start-page: 515 year: 2016 ident: 10.1016/j.energy.2016.08.109_bib1 article-title: Technical and economical assessment of distributed electrochemical storages for load shifting applications: an Italian case study publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2015.12.195 – volume: 139 start-page: 118 issue: 2 year: 2012 ident: 10.1016/j.energy.2016.08.109_bib28 article-title: Prediction of influent flow rate: data-mining approach publication-title: J Energy Eng – volume: 57 start-page: 581 year: 2013 ident: 10.1016/j.energy.2016.08.109_bib15 article-title: Screening process-based modeling of the multi-cell battery string in series and parallel connections for high accuracy state-of-charge estimation publication-title: Energy doi: 10.1016/j.energy.2013.04.050 – volume: 90 start-page: 879 year: 2015 ident: 10.1016/j.energy.2016.08.109_bib5 article-title: A method for state of energy estimation of lithium-ion batteries based on neural network model publication-title: Energy doi: 10.1016/j.energy.2015.07.120 – volume: 111 start-page: 571 year: 2013 ident: 10.1016/j.energy.2016.08.109_bib22 article-title: Cell state-of-charge inconsistency estimation for LiFePO4 battery pack in hybrid electric vehicles using mean-difference model publication-title: Appl energy doi: 10.1016/j.apenergy.2013.05.048 – volume: 279 start-page: 306 year: 2015 ident: 10.1016/j.energy.2016.08.109_bib9 article-title: A method for state-of-charge estimation of LiFePO4 batteries at dynamic currents and temperatures using particle filter publication-title: J power sources doi: 10.1016/j.jpowsour.2015.01.005 – volume: 3 start-page: 51 issue: 01 year: 2012 ident: 10.1016/j.energy.2016.08.109_bib13 article-title: The SOC estimation of power Li-ion battery based on ANFIS model publication-title: Smart Grid Renew Energy doi: 10.4236/sgre.2012.31007 – volume: 8 start-page: 2950 issue: 4 year: 2015 ident: 10.1016/j.energy.2016.08.109_bib7 article-title: Online estimation of model parameters and state of charge of LiFePO4 batteries using a novel open-circuit voltage at various ambient temperatures publication-title: Energies doi: 10.3390/en8042950 – volume: 137 start-page: 427 year: 2015 ident: 10.1016/j.energy.2016.08.109_bib3 article-title: A method for state-of-charge estimation of Li-ion batteries based on multi-model switching strategy publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.10.034 – volume: 119 start-page: 218 year: 2014 ident: 10.1016/j.energy.2016.08.109_bib19 article-title: State-of-charge estimation and uncertainty for lithium-ion battery strings publication-title: Appl Energy doi: 10.1016/j.apenergy.2013.12.046 – start-page: 1174 year: 2010 ident: 10.1016/j.energy.2016.08.109_bib16 – volume: 274 start-page: 582 year: 2015 ident: 10.1016/j.energy.2016.08.109_bib2 article-title: A novel dual-scale cell state-of-charge estimation approach for series-connected battery pack used in electric vehicles publication-title: J Power Sources doi: 10.1016/j.jpowsour.2014.10.119 – volume: 242 start-page: 699 year: 2013 ident: 10.1016/j.energy.2016.08.109_bib18 article-title: Adaptive state of charge estimator for lithium-ion cells series battery pack in electric vehicles publication-title: J Power Sources doi: 10.1016/j.jpowsour.2013.05.071 – volume: 106 start-page: 602 year: 2016 ident: 10.1016/j.energy.2016.08.109_bib25 article-title: Advanced lithium ion battery modeling and nonlinear analysis based on robust method in frequency domain: nonlinear characterization and non-parametric modeling publication-title: Energy doi: 10.1016/j.energy.2016.03.028 – volume: 130 start-page: 232 year: 2016 ident: 10.1016/j.energy.2016.08.109_bib14 article-title: Energy yield estimation of thin-film photovoltaic plants by using physical approach and artificial neural networks publication-title: Sol Energy doi: 10.1016/j.solener.2016.02.022 – volume: 229 start-page: 159 year: 2013 ident: 10.1016/j.energy.2016.08.109_bib12 article-title: Model-based state of charge and peak power capability joint estimation of lithium-ion battery in plug-in hybrid electric vehicles publication-title: J power sources doi: 10.1016/j.jpowsour.2012.12.003 – volume: 280 start-page: 293 year: 2015 ident: 10.1016/j.energy.2016.08.109_bib21 article-title: A multi time-scale state-of-charge and state-of-health estimation framework using nonlinear predictive filter for lithium-ion battery pack with passive balance control publication-title: J Power Sources doi: 10.1016/j.jpowsour.2015.01.112 – volume: 162 start-page: 1399 year: 2016 ident: 10.1016/j.energy.2016.08.109_bib4 article-title: A systematic state-of-charge estimation framework for multi-cell battery pack in electric vehicles using bias correction technique publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.12.021 – volume: 162 start-page: 163 year: 2016 ident: 10.1016/j.energy.2016.08.109_bib6 article-title: Online state of charge estimation and open circuit voltage hysteresis modeling of LiFePO4 battery using invariant imbedding method publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.10.092 – volume: 109 start-page: 933 year: 2016 ident: 10.1016/j.energy.2016.08.109_bib24 article-title: A combination Kalman filter approach for State of Charge estimation of lithium-ion battery considering model uncertainty publication-title: Energy doi: 10.1016/j.energy.2016.05.047 – volume: 145 start-page: 36 year: 2015 ident: 10.1016/j.energy.2016.08.109_bib20 article-title: A novel active equalization method for lithium-ion batteries in electric vehicles publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.01.127 |
SSID | ssj0005899 |
Score | 2.5422442 |
Snippet | Accurate estimation of battery pack state-of-charge plays a very important role for electric vehicles, which directly reflects the behavior of battery pack... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 219 |
SubjectTerms | algorithms Battery inconsistency Battery pack model electric vehicles energy efficiency Extend Kalman filter-unscented Kalman filter filters lithium batteries State-of-charge |
Title | An on-line estimation of battery pack parameters and state-of-charge using dual filters based on pack model |
URI | https://dx.doi.org/10.1016/j.energy.2016.08.109 https://www.proquest.com/docview/2131853929 |
Volume | 115 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jHvQiOh3OHyOC17g2Tbv2OMbGVNhFB7uFJk1kbrbi5sGLf7vvpa2_EASPLS-h9CXvfSHf9x4hF74Kta8jw7wkTpmIYp-p2BgW8UQBmPNjgErItphGk5m4nofzBhnWWhikVVaxv4zpLlpXb3rV3-w9LRa9W4i9gDcEB0QB4dd1Ghaij6v88u0LzSN2PSTRmKF1LZ9zHC_j9HVI8IqwkKejJf6enn4Eapd9xntkt4KNdFB-2T5pmLxFtmtV8bpF2qNPxRoYVlt2fUCWg5wWOUM0SbGiRilVpIWlypXWfKVwal5SLAH-iNSYNU3zjDqdESssc5WUDEV6_D1F3Ra1i5Uzw_yXwdTleNdR55DMxqO74YRVHRaYhmPghpmEw5ErsKnFc5EH2FAnNuXKAorhNu7HJjM29VRoRF8Jy4NMpyqDTctDHhrrBW3SzIvcHBGqUR6tQx5pHogA5tBJEHqR1kkm_EwEHRLUP1bqqvw4dsFYyZpn9iBLd0h0h_RivBzvEPYx6qksv_GHfb_2mfy2jCRkiD9GntculrDD8NokzU3xspbcR4U54sjjf89-QnbwCUWMfnhKmpvnF3MGaGajum65dsnW4OpmMn0HK8f1fQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JT90wEB5RONALYlWhLEYqR_cljpOXHHpALHos5QJI3NzYsdFjSVDzEOLCn-ofZMZJ2ISEVIlrYluRx575Rvm-GYAfoY5NaBLLgyzNuUzSkOvUWp6ITCOYC1OESsS2OEoGp3L_LD4bg3-dFoZola3vb3y699btk167m72b4bB3jL4X8YYUiCjQ_YaiZVYe2Ps7zNvqX3vbaOQNIXZ3TrYGvG0twA3mPyNuM4G5RuRyRwlBgKDIZC4X2mH4Fi7tp7awLg90bGVfSyeiwuS6wNMqYhFbF0S47heYkOguqG3Cz4cXvJLUN62kr-P0eZ1ez5PKrBf0EaMsocqhngf5fjx8Exl8uNudhqkWp7LNZitmYMyWszDZyZjrWVjYeZbI4cDWR9RzcLlZsqrkBF8ZlfBotJGsckz7Wp73DNP0S0Y1x6-Ji1OzvCyYFzbxynFfusky4uOfMxKKMTe88sMo4Ba4dDPft_CZh9NP2fcFGC-r0n4DZkiPbWKRGBHJCNcwWRQHiTFZIcNCRosQdRurTFvvnNpuXKmO2HahGnMoMocKUvobvwj8adZNU-_jg_H9zmbq1blVGJI-mLnemVjhlab_NHlpq9taiZAk7QRcl_579TWYHJz8PlSHe0cH3-ErvSEFZRgvw_jo761dQSg10qv-6DL489l35RH0bzGw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+on-line+estimation+of+battery+pack+parameters+and+state-of-charge+using+dual+filters+based+on+pack+model&rft.jtitle=Energy+%28Oxford%29&rft.au=Zhang%2C+Xu&rft.au=Wang%2C+Yujie&rft.au=Yang%2C+Duo&rft.au=Chen%2C+Zonghai&rft.date=2016-11-15&rft.issn=0360-5442&rft.volume=115&rft.spage=219&rft.epage=229&rft_id=info:doi/10.1016%2Fj.energy.2016.08.109&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_energy_2016_08_109 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |