An on-line estimation of battery pack parameters and state-of-charge using dual filters based on pack model

Accurate estimation of battery pack state-of-charge plays a very important role for electric vehicles, which directly reflects the behavior of battery pack usage. However, the inconsistency of battery makes the estimation of battery pack state-of-charge different from single cell. In this paper, to...

Full description

Saved in:
Bibliographic Details
Published inEnergy (Oxford) Vol. 115; pp. 219 - 229
Main Authors Zhang, Xu, Wang, Yujie, Yang, Duo, Chen, Zonghai
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.11.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Accurate estimation of battery pack state-of-charge plays a very important role for electric vehicles, which directly reflects the behavior of battery pack usage. However, the inconsistency of battery makes the estimation of battery pack state-of-charge different from single cell. In this paper, to estimate the battery pack state-of-charge on-line, the definition of battery pack is proposed, and the relationship between the total available capacity of battery pack and single cell is put forward to analyze the energy efficiency influenced by battery inconsistency, then a lumped parameter battery model is built up to describe the dynamic behavior of battery pack. Furthermore, the extend Kalman filter-unscented Kalman filter algorithm is developed to identify the parameters of battery pack and forecast state-of-charge concurrently. The extend Kalman filter is applied to update the battery pack parameters by real-time measured data, while the unscented Kalman filter is employed to estimate the battery pack state-of-charge. Finally, the proposed approach is verified by experiments operated on the lithium-ion battery under constant current condition and the dynamic stress test profiles. Experimental results indicate that the proposed method can estimate the battery pack state-of-charge with high accuracy. •A novel space state equation is built to describe the pack dynamic behavior.•The dual filters method is used to estimate the pack state-of-charge.•Battery inconsistency is considered to analyze the pack usage efficiency.•The accuracy of the proposed method is verified under different conditions.
AbstractList Accurate estimation of battery pack state-of-charge plays a very important role for electric vehicles, which directly reflects the behavior of battery pack usage. However, the inconsistency of battery makes the estimation of battery pack state-of-charge different from single cell. In this paper, to estimate the battery pack state-of-charge on-line, the definition of battery pack is proposed, and the relationship between the total available capacity of battery pack and single cell is put forward to analyze the energy efficiency influenced by battery inconsistency, then a lumped parameter battery model is built up to describe the dynamic behavior of battery pack. Furthermore, the extend Kalman filter-unscented Kalman filter algorithm is developed to identify the parameters of battery pack and forecast state-of-charge concurrently. The extend Kalman filter is applied to update the battery pack parameters by real-time measured data, while the unscented Kalman filter is employed to estimate the battery pack state-of-charge. Finally, the proposed approach is verified by experiments operated on the lithium-ion battery under constant current condition and the dynamic stress test profiles. Experimental results indicate that the proposed method can estimate the battery pack state-of-charge with high accuracy. •A novel space state equation is built to describe the pack dynamic behavior.•The dual filters method is used to estimate the pack state-of-charge.•Battery inconsistency is considered to analyze the pack usage efficiency.•The accuracy of the proposed method is verified under different conditions.
Accurate estimation of battery pack state-of-charge plays a very important role for electric vehicles, which directly reflects the behavior of battery pack usage. However, the inconsistency of battery makes the estimation of battery pack state-of-charge different from single cell. In this paper, to estimate the battery pack state-of-charge on-line, the definition of battery pack is proposed, and the relationship between the total available capacity of battery pack and single cell is put forward to analyze the energy efficiency influenced by battery inconsistency, then a lumped parameter battery model is built up to describe the dynamic behavior of battery pack. Furthermore, the extend Kalman filter-unscented Kalman filter algorithm is developed to identify the parameters of battery pack and forecast state-of-charge concurrently. The extend Kalman filter is applied to update the battery pack parameters by real-time measured data, while the unscented Kalman filter is employed to estimate the battery pack state-of-charge. Finally, the proposed approach is verified by experiments operated on the lithium-ion battery under constant current condition and the dynamic stress test profiles. Experimental results indicate that the proposed method can estimate the battery pack state-of-charge with high accuracy.
Author Chen, Zonghai
Yang, Duo
Wang, Yujie
Zhang, Xu
Author_xml – sequence: 1
  givenname: Xu
  orcidid: 0000-0003-3348-4200
  surname: Zhang
  fullname: Zhang, Xu
– sequence: 2
  givenname: Yujie
  surname: Wang
  fullname: Wang, Yujie
– sequence: 3
  givenname: Duo
  surname: Yang
  fullname: Yang, Duo
– sequence: 4
  givenname: Zonghai
  orcidid: 0000-0001-9312-9089
  surname: Chen
  fullname: Chen, Zonghai
  email: chenzh@ustc.edu.cn
BookMark eNqFkD9PwzAQxT0UiRb4BgweWVJsJ2ljBqSq4p9UiQVmy7HPxW1qF9tB6rfHbZgYYLnTPb33pPtN0Mh5BwhdUzKlhM5uN1NwENaHKcvXlDRZ5SM0JuWMFHVVsXM0iXFDCKkbzsdou3DYu6KzDjDEZHcyWZ8lg1uZEoQD3ku1zSPIHeQ7Yuk0jkkmKLwp1IcMa8B9tG6NdS87bGx3srUygs7VQ37nNXSX6MzILsLVz75A748Pb8vnYvX69LJcrApVVbNUAGesYaWRhlBakZrMFTeStabhJTPNvAENRpK2hmreVoaVWslWUz5jNavBkPIC3Qy9--A_-_yV2NmooOukA99HwWhJm7rkjGdrNVhV8DEGMGIfMoNwEJSII0-xEQNPceQpSJPVY-zuV0zZdCKXgrTdf-H7IQyZwZeFIKKy4BRoG0Alob39u-AbGc2ZfQ
CitedBy_id crossref_primary_10_3390_en12214036
crossref_primary_10_1016_j_energy_2017_06_094
crossref_primary_10_1016_j_est_2022_104211
crossref_primary_10_3390_en17225746
crossref_primary_10_3390_en14020324
crossref_primary_10_20964_2020_05_41
crossref_primary_10_1016_j_est_2018_11_012
crossref_primary_10_1109_ACCESS_2019_2953478
crossref_primary_10_1587_elex_15_20180005
crossref_primary_10_3390_en10111810
crossref_primary_10_1016_j_energy_2017_07_099
crossref_primary_10_1016_j_jpowsour_2020_227805
crossref_primary_10_3390_wevj15090431
crossref_primary_10_1002_er_6186
crossref_primary_10_1016_j_energy_2017_11_154
crossref_primary_10_1109_ACCESS_2019_2909274
crossref_primary_10_1002_est2_354
crossref_primary_10_1109_TCST_2021_3091108
crossref_primary_10_3390_en13040830
crossref_primary_10_3390_batteries9070385
crossref_primary_10_1016_j_electacta_2017_04_004
crossref_primary_10_1109_ACCESS_2019_2919275
crossref_primary_10_3390_pr10112185
crossref_primary_10_1016_j_energy_2017_07_069
crossref_primary_10_1016_j_energy_2024_132541
crossref_primary_10_1016_j_apenergy_2020_114569
crossref_primary_10_1016_j_energy_2018_03_174
crossref_primary_10_3390_electronics8080834
crossref_primary_10_1016_j_egyr_2022_12_094
crossref_primary_10_1016_j_est_2024_112600
crossref_primary_10_1016_j_energy_2019_07_063
crossref_primary_10_1016_j_energy_2020_118858
crossref_primary_10_1016_j_jpowsour_2017_08_033
crossref_primary_10_1109_TIE_2020_2965497
crossref_primary_10_1016_j_egyr_2021_08_113
crossref_primary_10_1109_TTE_2021_3115597
crossref_primary_10_1016_j_rser_2019_06_040
crossref_primary_10_1155_2020_9502605
crossref_primary_10_1016_j_est_2022_105878
crossref_primary_10_1002_er_5168
crossref_primary_10_1016_j_est_2022_104427
crossref_primary_10_1016_j_procs_2023_10_216
crossref_primary_10_1016_j_energy_2018_09_047
crossref_primary_10_1016_j_electacta_2018_08_076
crossref_primary_10_1016_j_heliyon_2024_e25949
crossref_primary_10_1109_TVT_2018_2880085
crossref_primary_10_1109_ACCESS_2023_3293726
crossref_primary_10_1016_j_electacta_2018_07_078
crossref_primary_10_1016_j_est_2022_106052
crossref_primary_10_1155_2018_3793492
crossref_primary_10_1016_j_jpowsour_2017_01_130
crossref_primary_10_20964_2019_05_05
crossref_primary_10_1016_j_est_2024_113986
crossref_primary_10_1016_j_jpowsour_2017_01_054
crossref_primary_10_3390_wevj11010023
crossref_primary_10_1016_j_energy_2022_123853
crossref_primary_10_1155_2019_7403732
crossref_primary_10_1016_j_dib_2016_10_012
crossref_primary_10_1016_j_apenergy_2023_122569
crossref_primary_10_1016_j_est_2023_107102
crossref_primary_10_1016_j_jpowsour_2020_229056
crossref_primary_10_3390_math12182880
crossref_primary_10_20964_2021_12_50
crossref_primary_10_1016_j_apenergy_2022_119541
crossref_primary_10_1016_j_jpowsour_2017_11_094
crossref_primary_10_1109_TTE_2022_3206452
crossref_primary_10_1109_ACCESS_2025_3536166
crossref_primary_10_1016_j_energy_2017_10_043
crossref_primary_10_1109_JESTIE_2022_3148031
crossref_primary_10_1155_2017_5390149
crossref_primary_10_3390_electronics8121391
crossref_primary_10_3390_app14209569
crossref_primary_10_1016_j_est_2024_114446
crossref_primary_10_1109_TPEL_2020_3001020
crossref_primary_10_1016_j_jpowsour_2019_226972
crossref_primary_10_1016_j_jpowsour_2018_03_015
crossref_primary_10_1109_ACCESS_2021_3089032
crossref_primary_10_1186_s10033_018_0268_8
crossref_primary_10_3390_pr9050762
crossref_primary_10_1016_j_energy_2019_03_059
crossref_primary_10_1016_j_est_2023_108420
crossref_primary_10_1016_j_jpowsour_2024_235114
crossref_primary_10_1016_j_energy_2021_121023
crossref_primary_10_1016_j_energy_2020_119057
crossref_primary_10_1016_j_jpowsour_2017_11_068
crossref_primary_10_1016_j_energy_2021_122877
crossref_primary_10_1016_j_est_2022_104209
crossref_primary_10_1109_TCST_2022_3215102
crossref_primary_10_1016_j_electacta_2020_136576
Cites_doi 10.1016/j.jpowsour.2004.02.032
10.1016/j.apenergy.2014.08.081
10.1016/j.energy.2016.06.130
10.1016/j.jpowsour.2015.01.002
10.1016/j.jpowsour.2015.07.028
10.1016/j.energy.2014.06.102
10.1016/j.rser.2015.12.195
10.1016/j.energy.2013.04.050
10.1016/j.energy.2015.07.120
10.1016/j.apenergy.2013.05.048
10.1016/j.jpowsour.2015.01.005
10.4236/sgre.2012.31007
10.3390/en8042950
10.1016/j.apenergy.2014.10.034
10.1016/j.apenergy.2013.12.046
10.1016/j.jpowsour.2014.10.119
10.1016/j.jpowsour.2013.05.071
10.1016/j.energy.2016.03.028
10.1016/j.solener.2016.02.022
10.1016/j.jpowsour.2012.12.003
10.1016/j.jpowsour.2015.01.112
10.1016/j.apenergy.2014.12.021
10.1016/j.apenergy.2015.10.092
10.1016/j.energy.2016.05.047
10.1016/j.apenergy.2015.01.127
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright_xml – notice: 2016 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.energy.2016.08.109
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EndPage 229
ExternalDocumentID 10_1016_j_energy_2016_08_109
S0360544216312312
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
SSH
WUQ
7S9
L.6
ID FETCH-LOGICAL-c446t-e922823faf01140507c9fa2bf8932f878edefa0b5e47b4f23dcabd1962525ef03
IEDL.DBID .~1
ISSN 0360-5442
IngestDate Fri Jul 11 04:43:13 EDT 2025
Tue Jul 01 00:53:03 EDT 2025
Thu Apr 24 23:03:08 EDT 2025
Fri Feb 23 02:32:44 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords State-of-charge
Battery inconsistency
Extend Kalman filter-unscented Kalman filter
Battery pack model
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-e922823faf01140507c9fa2bf8932f878edefa0b5e47b4f23dcabd1962525ef03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3348-4200
0000-0001-9312-9089
PQID 2131853929
PQPubID 24069
PageCount 11
ParticipantIDs proquest_miscellaneous_2131853929
crossref_primary_10_1016_j_energy_2016_08_109
crossref_citationtrail_10_1016_j_energy_2016_08_109
elsevier_sciencedirect_doi_10_1016_j_energy_2016_08_109
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-11-15
PublicationDateYYYYMMDD 2016-11-15
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-11-15
  day: 15
PublicationDecade 2010
PublicationTitle Energy (Oxford)
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wu, Wang, Xiao (bib13) 2012; 3
Firouz, Timmermans, Omar (bib25) 2016; 106
Dong, Wei, Zhang (bib6) 2016; 162
Wang, Zhang, Chen (bib3) 2015; 137
Graditi, Ferlito, Adinolfi (bib14) 2016; 130
Wang, Zhang, Chen (bib9) 2015; 279
Kim, Shin, Jeon (bib16) 2010
Li, Ouyang, Li (bib11) 2015; 279
Xiong, He, Sun (bib12) 2013; 229
Deng, Yang, Cai (bib23) 2016; 112
Wang, Zhang, Chen (bib10) 2014; 135
Kim, Cho (bib15) 2013; 57
Sun, Xiong, He (bib4) 2016; 162
Hua, Cordoba-Arenas, Warner (bib21) 2015; 280
Wang, Zhang, Chen (bib20) 2015; 145
Wei, Xu, Kusiak (bib27) 2014; 73
Feng, Lu, Wei (bib7) 2015; 8
Plett (bib17) 2004; 134
Zhao, Jiang, Zhang (bib26) 2015; 2015
Sun, Xiong (bib2) 2015; 274
Zheng, Ouyang, Lu (bib22) 2013; 111
Graditi, Ippolito, Telaretti (bib1) 2016; 57
Xiong, Sun, Gong (bib18) 2013; 242
Li, Wang, Gong (bib24) 2016; 109
Tang, Wang, Chen (bib8) 2015; 296
Truchot, Dubarry, Liaw (bib19) 2014; 119
Dong, Zhang, Zhang (bib5) 2015; 90
Wei, Kusiak, Sadat (bib28) 2012; 139
Li (10.1016/j.energy.2016.08.109_bib11) 2015; 279
Tang (10.1016/j.energy.2016.08.109_bib8) 2015; 296
Wang (10.1016/j.energy.2016.08.109_bib3) 2015; 137
Kim (10.1016/j.energy.2016.08.109_bib16) 2010
Wei (10.1016/j.energy.2016.08.109_bib28) 2012; 139
Firouz (10.1016/j.energy.2016.08.109_bib25) 2016; 106
Deng (10.1016/j.energy.2016.08.109_bib23) 2016; 112
Wang (10.1016/j.energy.2016.08.109_bib9) 2015; 279
Dong (10.1016/j.energy.2016.08.109_bib5) 2015; 90
Feng (10.1016/j.energy.2016.08.109_bib7) 2015; 8
Li (10.1016/j.energy.2016.08.109_bib24) 2016; 109
Hua (10.1016/j.energy.2016.08.109_bib21) 2015; 280
Zheng (10.1016/j.energy.2016.08.109_bib22) 2013; 111
Wu (10.1016/j.energy.2016.08.109_bib13) 2012; 3
Wang (10.1016/j.energy.2016.08.109_bib10) 2014; 135
Xiong (10.1016/j.energy.2016.08.109_bib12) 2013; 229
Wei (10.1016/j.energy.2016.08.109_bib27) 2014; 73
Dong (10.1016/j.energy.2016.08.109_bib6) 2016; 162
Kim (10.1016/j.energy.2016.08.109_bib15) 2013; 57
Graditi (10.1016/j.energy.2016.08.109_bib1) 2016; 57
Plett (10.1016/j.energy.2016.08.109_bib17) 2004; 134
Zhao (10.1016/j.energy.2016.08.109_bib26) 2015; 2015
Xiong (10.1016/j.energy.2016.08.109_bib18) 2013; 242
Sun (10.1016/j.energy.2016.08.109_bib2) 2015; 274
Truchot (10.1016/j.energy.2016.08.109_bib19) 2014; 119
Graditi (10.1016/j.energy.2016.08.109_bib14) 2016; 130
Wang (10.1016/j.energy.2016.08.109_bib20) 2015; 145
Sun (10.1016/j.energy.2016.08.109_bib4) 2016; 162
References_xml – volume: 296
  start-page: 23
  year: 2015
  end-page: 29
  ident: bib8
  article-title: A method for state-of-charge estimation of LiFePO
  publication-title: J Power Sources
– volume: 73
  start-page: 898
  year: 2014
  end-page: 907
  ident: bib27
  article-title: Modeling and optimization of a chiller plant
  publication-title: Energy
– volume: 57
  start-page: 581
  year: 2013
  end-page: 599
  ident: bib15
  article-title: Screening process-based modeling of the multi-cell battery string in series and parallel connections for high accuracy state-of-charge estimation
  publication-title: Energy
– start-page: 1174
  year: 2010
  end-page: 1179
  ident: bib16
  publication-title: Screening process of Li-Ion series battery pack for improved voltage/SOC balancing[C]//Power Electronics Conference (IPEC)
– volume: 106
  start-page: 602
  year: 2016
  end-page: 617
  ident: bib25
  article-title: Advanced lithium ion battery modeling and nonlinear analysis based on robust method in frequency domain: nonlinear characterization and non-parametric modeling
  publication-title: Energy
– volume: 229
  start-page: 159
  year: 2013
  end-page: 169
  ident: bib12
  article-title: Model-based state of charge and peak power capability joint estimation of lithium-ion battery in plug-in hybrid electric vehicles
  publication-title: J power sources
– volume: 162
  start-page: 1399
  year: 2016
  end-page: 1409
  ident: bib4
  article-title: A systematic state-of-charge estimation framework for multi-cell battery pack in electric vehicles using bias correction technique
  publication-title: Appl Energy
– volume: 111
  start-page: 571
  year: 2013
  end-page: 580
  ident: bib22
  article-title: Cell state-of-charge inconsistency estimation for LiFePO
  publication-title: Appl energy
– volume: 135
  start-page: 81
  year: 2014
  end-page: 87
  ident: bib10
  article-title: A method for joint estimation of state-of-charge and available energy of LiFePO
  publication-title: Appl energy
– volume: 137
  start-page: 427
  year: 2015
  end-page: 434
  ident: bib3
  article-title: A method for state-of-charge estimation of Li-ion batteries based on multi-model switching strategy
  publication-title: Appl Energy
– volume: 279
  start-page: 439
  year: 2015
  end-page: 449
  ident: bib11
  article-title: State of charge estimation for LiMn
  publication-title: J Power Sources
– volume: 139
  start-page: 118
  year: 2012
  end-page: 123
  ident: bib28
  article-title: Prediction of influent flow rate: data-mining approach
  publication-title: J Energy Eng
– volume: 57
  start-page: 515
  year: 2016
  end-page: 523
  ident: bib1
  article-title: Technical and economical assessment of distributed electrochemical storages for load shifting applications: an Italian case study
  publication-title: Renew Sustain Energy Rev
– volume: 280
  start-page: 293
  year: 2015
  end-page: 312
  ident: bib21
  article-title: A multi time-scale state-of-charge and state-of-health estimation framework using nonlinear predictive filter for lithium-ion battery pack with passive balance control
  publication-title: J Power Sources
– volume: 90
  start-page: 879
  year: 2015
  end-page: 888
  ident: bib5
  article-title: A method for state of energy estimation of lithium-ion batteries based on neural network model
  publication-title: Energy
– volume: 130
  start-page: 232
  year: 2016
  end-page: 243
  ident: bib14
  article-title: Energy yield estimation of thin-film photovoltaic plants by using physical approach and artificial neural networks
  publication-title: Sol Energy
– volume: 274
  start-page: 582
  year: 2015
  end-page: 594
  ident: bib2
  article-title: A novel dual-scale cell state-of-charge estimation approach for series-connected battery pack used in electric vehicles
  publication-title: J Power Sources
– volume: 112
  start-page: 469
  year: 2016
  end-page: 480
  ident: bib23
  article-title: Online available capacity prediction and state of charge estimation based on advanced data-driven algorithms for lithium iron phosphate battery
  publication-title: Energy
– volume: 279
  start-page: 306
  year: 2015
  end-page: 311
  ident: bib9
  article-title: A method for state-of-charge estimation of LiFePO
  publication-title: J power sources
– volume: 2015
  start-page: 1
  year: 2015
  end-page: 11
  ident: bib26
  article-title: Robust online state of charge estimation of lithium-ion battery pack based on error sensitivity analysis
  publication-title: Math Problems Eng
– volume: 3
  start-page: 51
  year: 2012
  ident: bib13
  article-title: The SOC estimation of power Li-ion battery based on ANFIS model
  publication-title: Smart Grid Renew Energy
– volume: 134
  start-page: 262
  year: 2004
  end-page: 276
  ident: bib17
  article-title: Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 2. Modeling and identification
  publication-title: J power sources
– volume: 119
  start-page: 218
  year: 2014
  end-page: 227
  ident: bib19
  article-title: State-of-charge estimation and uncertainty for lithium-ion battery strings
  publication-title: Appl Energy
– volume: 162
  start-page: 163
  year: 2016
  end-page: 171
  ident: bib6
  article-title: Online state of charge estimation and open circuit voltage hysteresis modeling of LiFePO
  publication-title: Appl Energy
– volume: 145
  start-page: 36
  year: 2015
  end-page: 42
  ident: bib20
  article-title: A novel active equalization method for lithium-ion batteries in electric vehicles
  publication-title: Appl Energy
– volume: 242
  start-page: 699
  year: 2013
  end-page: 713
  ident: bib18
  article-title: Adaptive state of charge estimator for lithium-ion cells series battery pack in electric vehicles
  publication-title: J Power Sources
– volume: 109
  start-page: 933
  year: 2016
  end-page: 946
  ident: bib24
  article-title: A combination Kalman filter approach for State of Charge estimation of lithium-ion battery considering model uncertainty
  publication-title: Energy
– volume: 8
  start-page: 2950
  year: 2015
  end-page: 2976
  ident: bib7
  article-title: Online estimation of model parameters and state of charge of LiFePO
  publication-title: Energies
– volume: 134
  start-page: 262
  issue: 2
  year: 2004
  ident: 10.1016/j.energy.2016.08.109_bib17
  article-title: Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 2. Modeling and identification
  publication-title: J power sources
  doi: 10.1016/j.jpowsour.2004.02.032
– volume: 2015
  start-page: 1
  year: 2015
  ident: 10.1016/j.energy.2016.08.109_bib26
  article-title: Robust online state of charge estimation of lithium-ion battery pack based on error sensitivity analysis
  publication-title: Math Problems Eng
– volume: 135
  start-page: 81
  year: 2014
  ident: 10.1016/j.energy.2016.08.109_bib10
  article-title: A method for joint estimation of state-of-charge and available energy of LiFePO4 batteries
  publication-title: Appl energy
  doi: 10.1016/j.apenergy.2014.08.081
– volume: 112
  start-page: 469
  year: 2016
  ident: 10.1016/j.energy.2016.08.109_bib23
  article-title: Online available capacity prediction and state of charge estimation based on advanced data-driven algorithms for lithium iron phosphate battery
  publication-title: Energy
  doi: 10.1016/j.energy.2016.06.130
– volume: 279
  start-page: 439
  year: 2015
  ident: 10.1016/j.energy.2016.08.109_bib11
  article-title: State of charge estimation for LiMn2O4 power battery based on strong tracking sigma point Kalman filter
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2015.01.002
– volume: 296
  start-page: 23
  year: 2015
  ident: 10.1016/j.energy.2016.08.109_bib8
  article-title: A method for state-of-charge estimation of LiFePO4 batteries based on a dual-circuit state observer
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2015.07.028
– volume: 73
  start-page: 898
  year: 2014
  ident: 10.1016/j.energy.2016.08.109_bib27
  article-title: Modeling and optimization of a chiller plant
  publication-title: Energy
  doi: 10.1016/j.energy.2014.06.102
– volume: 57
  start-page: 515
  year: 2016
  ident: 10.1016/j.energy.2016.08.109_bib1
  article-title: Technical and economical assessment of distributed electrochemical storages for load shifting applications: an Italian case study
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2015.12.195
– volume: 139
  start-page: 118
  issue: 2
  year: 2012
  ident: 10.1016/j.energy.2016.08.109_bib28
  article-title: Prediction of influent flow rate: data-mining approach
  publication-title: J Energy Eng
– volume: 57
  start-page: 581
  year: 2013
  ident: 10.1016/j.energy.2016.08.109_bib15
  article-title: Screening process-based modeling of the multi-cell battery string in series and parallel connections for high accuracy state-of-charge estimation
  publication-title: Energy
  doi: 10.1016/j.energy.2013.04.050
– volume: 90
  start-page: 879
  year: 2015
  ident: 10.1016/j.energy.2016.08.109_bib5
  article-title: A method for state of energy estimation of lithium-ion batteries based on neural network model
  publication-title: Energy
  doi: 10.1016/j.energy.2015.07.120
– volume: 111
  start-page: 571
  year: 2013
  ident: 10.1016/j.energy.2016.08.109_bib22
  article-title: Cell state-of-charge inconsistency estimation for LiFePO4 battery pack in hybrid electric vehicles using mean-difference model
  publication-title: Appl energy
  doi: 10.1016/j.apenergy.2013.05.048
– volume: 279
  start-page: 306
  year: 2015
  ident: 10.1016/j.energy.2016.08.109_bib9
  article-title: A method for state-of-charge estimation of LiFePO4 batteries at dynamic currents and temperatures using particle filter
  publication-title: J power sources
  doi: 10.1016/j.jpowsour.2015.01.005
– volume: 3
  start-page: 51
  issue: 01
  year: 2012
  ident: 10.1016/j.energy.2016.08.109_bib13
  article-title: The SOC estimation of power Li-ion battery based on ANFIS model
  publication-title: Smart Grid Renew Energy
  doi: 10.4236/sgre.2012.31007
– volume: 8
  start-page: 2950
  issue: 4
  year: 2015
  ident: 10.1016/j.energy.2016.08.109_bib7
  article-title: Online estimation of model parameters and state of charge of LiFePO4 batteries using a novel open-circuit voltage at various ambient temperatures
  publication-title: Energies
  doi: 10.3390/en8042950
– volume: 137
  start-page: 427
  year: 2015
  ident: 10.1016/j.energy.2016.08.109_bib3
  article-title: A method for state-of-charge estimation of Li-ion batteries based on multi-model switching strategy
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.10.034
– volume: 119
  start-page: 218
  year: 2014
  ident: 10.1016/j.energy.2016.08.109_bib19
  article-title: State-of-charge estimation and uncertainty for lithium-ion battery strings
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2013.12.046
– start-page: 1174
  year: 2010
  ident: 10.1016/j.energy.2016.08.109_bib16
– volume: 274
  start-page: 582
  year: 2015
  ident: 10.1016/j.energy.2016.08.109_bib2
  article-title: A novel dual-scale cell state-of-charge estimation approach for series-connected battery pack used in electric vehicles
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2014.10.119
– volume: 242
  start-page: 699
  year: 2013
  ident: 10.1016/j.energy.2016.08.109_bib18
  article-title: Adaptive state of charge estimator for lithium-ion cells series battery pack in electric vehicles
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2013.05.071
– volume: 106
  start-page: 602
  year: 2016
  ident: 10.1016/j.energy.2016.08.109_bib25
  article-title: Advanced lithium ion battery modeling and nonlinear analysis based on robust method in frequency domain: nonlinear characterization and non-parametric modeling
  publication-title: Energy
  doi: 10.1016/j.energy.2016.03.028
– volume: 130
  start-page: 232
  year: 2016
  ident: 10.1016/j.energy.2016.08.109_bib14
  article-title: Energy yield estimation of thin-film photovoltaic plants by using physical approach and artificial neural networks
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2016.02.022
– volume: 229
  start-page: 159
  year: 2013
  ident: 10.1016/j.energy.2016.08.109_bib12
  article-title: Model-based state of charge and peak power capability joint estimation of lithium-ion battery in plug-in hybrid electric vehicles
  publication-title: J power sources
  doi: 10.1016/j.jpowsour.2012.12.003
– volume: 280
  start-page: 293
  year: 2015
  ident: 10.1016/j.energy.2016.08.109_bib21
  article-title: A multi time-scale state-of-charge and state-of-health estimation framework using nonlinear predictive filter for lithium-ion battery pack with passive balance control
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2015.01.112
– volume: 162
  start-page: 1399
  year: 2016
  ident: 10.1016/j.energy.2016.08.109_bib4
  article-title: A systematic state-of-charge estimation framework for multi-cell battery pack in electric vehicles using bias correction technique
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.12.021
– volume: 162
  start-page: 163
  year: 2016
  ident: 10.1016/j.energy.2016.08.109_bib6
  article-title: Online state of charge estimation and open circuit voltage hysteresis modeling of LiFePO4 battery using invariant imbedding method
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.10.092
– volume: 109
  start-page: 933
  year: 2016
  ident: 10.1016/j.energy.2016.08.109_bib24
  article-title: A combination Kalman filter approach for State of Charge estimation of lithium-ion battery considering model uncertainty
  publication-title: Energy
  doi: 10.1016/j.energy.2016.05.047
– volume: 145
  start-page: 36
  year: 2015
  ident: 10.1016/j.energy.2016.08.109_bib20
  article-title: A novel active equalization method for lithium-ion batteries in electric vehicles
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.01.127
SSID ssj0005899
Score 2.5422442
Snippet Accurate estimation of battery pack state-of-charge plays a very important role for electric vehicles, which directly reflects the behavior of battery pack...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 219
SubjectTerms algorithms
Battery inconsistency
Battery pack model
electric vehicles
energy efficiency
Extend Kalman filter-unscented Kalman filter
filters
lithium batteries
State-of-charge
Title An on-line estimation of battery pack parameters and state-of-charge using dual filters based on pack model
URI https://dx.doi.org/10.1016/j.energy.2016.08.109
https://www.proquest.com/docview/2131853929
Volume 115
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jHvQiOh3OHyOC17g2Tbv2OMbGVNhFB7uFJk1kbrbi5sGLf7vvpa2_EASPLS-h9CXvfSHf9x4hF74Kta8jw7wkTpmIYp-p2BgW8UQBmPNjgErItphGk5m4nofzBhnWWhikVVaxv4zpLlpXb3rV3-w9LRa9W4i9gDcEB0QB4dd1Ghaij6v88u0LzSN2PSTRmKF1LZ9zHC_j9HVI8IqwkKejJf6enn4Eapd9xntkt4KNdFB-2T5pmLxFtmtV8bpF2qNPxRoYVlt2fUCWg5wWOUM0SbGiRilVpIWlypXWfKVwal5SLAH-iNSYNU3zjDqdESssc5WUDEV6_D1F3Ra1i5Uzw_yXwdTleNdR55DMxqO74YRVHRaYhmPghpmEw5ErsKnFc5EH2FAnNuXKAorhNu7HJjM29VRoRF8Jy4NMpyqDTctDHhrrBW3SzIvcHBGqUR6tQx5pHogA5tBJEHqR1kkm_EwEHRLUP1bqqvw4dsFYyZpn9iBLd0h0h_RivBzvEPYx6qksv_GHfb_2mfy2jCRkiD9GntculrDD8NokzU3xspbcR4U54sjjf89-QnbwCUWMfnhKmpvnF3MGaGajum65dsnW4OpmMn0HK8f1fQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JT90wEB5RONALYlWhLEYqR_cljpOXHHpALHos5QJI3NzYsdFjSVDzEOLCn-ofZMZJ2ISEVIlrYluRx575Rvm-GYAfoY5NaBLLgyzNuUzSkOvUWp6ITCOYC1OESsS2OEoGp3L_LD4bg3-dFoZola3vb3y699btk167m72b4bB3jL4X8YYUiCjQ_YaiZVYe2Ps7zNvqX3vbaOQNIXZ3TrYGvG0twA3mPyNuM4G5RuRyRwlBgKDIZC4X2mH4Fi7tp7awLg90bGVfSyeiwuS6wNMqYhFbF0S47heYkOguqG3Cz4cXvJLUN62kr-P0eZ1ez5PKrBf0EaMsocqhngf5fjx8Exl8uNudhqkWp7LNZitmYMyWszDZyZjrWVjYeZbI4cDWR9RzcLlZsqrkBF8ZlfBotJGsckz7Wp73DNP0S0Y1x6-Ji1OzvCyYFzbxynFfusky4uOfMxKKMTe88sMo4Ba4dDPft_CZh9NP2fcFGC-r0n4DZkiPbWKRGBHJCNcwWRQHiTFZIcNCRosQdRurTFvvnNpuXKmO2HahGnMoMocKUvobvwj8adZNU-_jg_H9zmbq1blVGJI-mLnemVjhlab_NHlpq9taiZAk7QRcl_579TWYHJz8PlSHe0cH3-ErvSEFZRgvw_jo761dQSg10qv-6DL489l35RH0bzGw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+on-line+estimation+of+battery+pack+parameters+and+state-of-charge+using+dual+filters+based+on+pack+model&rft.jtitle=Energy+%28Oxford%29&rft.au=Zhang%2C+Xu&rft.au=Wang%2C+Yujie&rft.au=Yang%2C+Duo&rft.au=Chen%2C+Zonghai&rft.date=2016-11-15&rft.issn=0360-5442&rft.volume=115&rft.spage=219&rft.epage=229&rft_id=info:doi/10.1016%2Fj.energy.2016.08.109&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_energy_2016_08_109
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon