The Development of Poly(lactic acid) (PLA)-Based Blends and Modification Strategies: Methods of Improving Key Properties towards Technical Applications—Review

The widespread use of poly(lactic acid) (PLA) from packaging to engineering applications seems to follow the current global trend. The development of high-performance PLA-based blends has led to the commercial introduction of various PLA-based resins with excellent thermomechanical properties. The r...

Full description

Saved in:
Bibliographic Details
Published inMaterials Vol. 17; no. 18; p. 4556
Main Authors Andrzejewski, Jacek, Das, Subhasis, Lipik, Vitali, Mohanty, Amar K., Misra, Manjusri, You, Xiangyu, Tan, Lay Poh, Chang, Boon Peng
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 17.09.2024
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The widespread use of poly(lactic acid) (PLA) from packaging to engineering applications seems to follow the current global trend. The development of high-performance PLA-based blends has led to the commercial introduction of various PLA-based resins with excellent thermomechanical properties. The reason for this is the progress in the field of major PLA limitations such as low thermal resistance and poor impact strength. The main purpose of using biobased polymers in polymer blends is to increase the share of renewable raw materials in the final product rather than its possible biodegradation. However, in the case of engineering applications, the focus is on achieving the required properties rather than maximizing the percentage of biopolymer. The presented review article discusses the current strategies to optimize the balance of the key features such as stiffness, toughness, and heat resistance of PLA-based blends. Improving of these properties requires molecular structural changes, which together with morphology, crystallinity, and the influence of the processing conditions are the main subjects of this article. The latest research in this field clearly indicates the high potential of using PLA-based materials in highly demanding applications. In the case of impact strength modification, it is possible to obtain values close to 800 J/m, which is a value comparable to polycarbonate. Significant improvement can also be confirmed for thermal resistance results, where heat deflection temperatures for selected types of PLA blends can reach even 130 °C after modification. The modification strategies discussed in this article confirm that a properly conducted process of selecting the blend components and the conditions of the processing technique allows for revealing the potential of PLA as an engineering plastic.
AbstractList The widespread use of poly(lactic acid) (PLA) from packaging to engineering applications seems to follow the current global trend. The development of high-performance PLA-based blends has led to the commercial introduction of various PLA-based resins with excellent thermomechanical properties. The reason for this is the progress in the field of major PLA limitations such as low thermal resistance and poor impact strength. The main purpose of using biobased polymers in polymer blends is to increase the share of renewable raw materials in the final product rather than its possible biodegradation. However, in the case of engineering applications, the focus is on achieving the required properties rather than maximizing the percentage of biopolymer. The presented review article discusses the current strategies to optimize the balance of the key features such as stiffness, toughness, and heat resistance of PLA-based blends. Improving of these properties requires molecular structural changes, which together with morphology, crystallinity, and the influence of the processing conditions are the main subjects of this article. The latest research in this field clearly indicates the high potential of using PLA-based materials in highly demanding applications. In the case of impact strength modification, it is possible to obtain values close to 800 J/m, which is a value comparable to polycarbonate. Significant improvement can also be confirmed for thermal resistance results, where heat deflection temperatures for selected types of PLA blends can reach even 130 °C after modification. The modification strategies discussed in this article confirm that a properly conducted process of selecting the blend components and the conditions of the processing technique allows for revealing the potential of PLA as an engineering plastic.The widespread use of poly(lactic acid) (PLA) from packaging to engineering applications seems to follow the current global trend. The development of high-performance PLA-based blends has led to the commercial introduction of various PLA-based resins with excellent thermomechanical properties. The reason for this is the progress in the field of major PLA limitations such as low thermal resistance and poor impact strength. The main purpose of using biobased polymers in polymer blends is to increase the share of renewable raw materials in the final product rather than its possible biodegradation. However, in the case of engineering applications, the focus is on achieving the required properties rather than maximizing the percentage of biopolymer. The presented review article discusses the current strategies to optimize the balance of the key features such as stiffness, toughness, and heat resistance of PLA-based blends. Improving of these properties requires molecular structural changes, which together with morphology, crystallinity, and the influence of the processing conditions are the main subjects of this article. The latest research in this field clearly indicates the high potential of using PLA-based materials in highly demanding applications. In the case of impact strength modification, it is possible to obtain values close to 800 J/m, which is a value comparable to polycarbonate. Significant improvement can also be confirmed for thermal resistance results, where heat deflection temperatures for selected types of PLA blends can reach even 130 °C after modification. The modification strategies discussed in this article confirm that a properly conducted process of selecting the blend components and the conditions of the processing technique allows for revealing the potential of PLA as an engineering plastic.
The widespread use of poly(lactic acid) (PLA) from packaging to engineering applications seems to follow the current global trend. The development of high-performance PLA-based blends has led to the commercial introduction of various PLA-based resins with excellent thermomechanical properties. The reason for this is the progress in the field of major PLA limitations such as low thermal resistance and poor impact strength. The main purpose of using biobased polymers in polymer blends is to increase the share of renewable raw materials in the final product rather than its possible biodegradation. However, in the case of engineering applications, the focus is on achieving the required properties rather than maximizing the percentage of biopolymer. The presented review article discusses the current strategies to optimize the balance of the key features such as stiffness, toughness, and heat resistance of PLA-based blends. Improving of these properties requires molecular structural changes, which together with morphology, crystallinity, and the influence of the processing conditions are the main subjects of this article. The latest research in this field clearly indicates the high potential of using PLA-based materials in highly demanding applications. In the case of impact strength modification, it is possible to obtain values close to 800 J/m, which is a value comparable to polycarbonate. Significant improvement can also be confirmed for thermal resistance results, where heat deflection temperatures for selected types of PLA blends can reach even 130 °C after modification. The modification strategies discussed in this article confirm that a properly conducted process of selecting the blend components and the conditions of the processing technique allows for revealing the potential of PLA as an engineering plastic.
Audience Academic
Author Lipik, Vitali
You, Xiangyu
Misra, Manjusri
Tan, Lay Poh
Andrzejewski, Jacek
Chang, Boon Peng
Das, Subhasis
Mohanty, Amar K.
AuthorAffiliation 3 School of Engineering, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; mohanty@uoguelph.ca (A.K.M.); mmisra@uoguelph.ca (M.M.)
1 Institute of Materials Technology, Poznan University of Technology, Piotrowo 3 Str., 61-138 Poznan, Poland; jacek.andrzejewski@put.poznan.pl
5 College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; xyyou@sust.edu.cn
2 School of Materials Science & Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; subhasis.das@ntu.edu.sg (S.D.); vitali@ntu.edu.sg (V.L.)
4 Bioproducts Discovery and Development Centre, Department of Plant Agriculture, Crop Science Building, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
AuthorAffiliation_xml – name: 4 Bioproducts Discovery and Development Centre, Department of Plant Agriculture, Crop Science Building, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
– name: 1 Institute of Materials Technology, Poznan University of Technology, Piotrowo 3 Str., 61-138 Poznan, Poland; jacek.andrzejewski@put.poznan.pl
– name: 2 School of Materials Science & Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; subhasis.das@ntu.edu.sg (S.D.); vitali@ntu.edu.sg (V.L.)
– name: 5 College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; xyyou@sust.edu.cn
– name: 3 School of Engineering, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; mohanty@uoguelph.ca (A.K.M.); mmisra@uoguelph.ca (M.M.)
Author_xml – sequence: 1
  givenname: Jacek
  orcidid: 0000-0001-7459-0128
  surname: Andrzejewski
  fullname: Andrzejewski, Jacek
– sequence: 2
  givenname: Subhasis
  orcidid: 0000-0001-8380-8416
  surname: Das
  fullname: Das, Subhasis
– sequence: 3
  givenname: Vitali
  surname: Lipik
  fullname: Lipik, Vitali
– sequence: 4
  givenname: Amar K.
  surname: Mohanty
  fullname: Mohanty, Amar K.
– sequence: 5
  givenname: Manjusri
  surname: Misra
  fullname: Misra, Manjusri
– sequence: 6
  givenname: Xiangyu
  orcidid: 0000-0001-9931-922X
  surname: You
  fullname: You, Xiangyu
– sequence: 7
  givenname: Lay Poh
  surname: Tan
  fullname: Tan, Lay Poh
– sequence: 8
  givenname: Boon Peng
  orcidid: 0000-0002-5765-9637
  surname: Chang
  fullname: Chang, Boon Peng
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39336298$$D View this record in MEDLINE/PubMed
BookMark eNptks9uEzEQxleoiJbSCw-ALHFJkVLsrNdd94LS8q8iFRGEs-V4x4krr73Ym1S98RA8AM_GkzA0KZQK-2DL_n2fZ8bzuNgJMUBRPGX0qCwlfdlqdsxqXlXiQbHHpBRDJjnfubPfLQ5yvqQ4ypLVI_mo2C1lWYqRrPeKH7MlkNewBh-7FkJPoiXT6K8HXpveGaKNaw7JYDoZHw5PdYaGnHoITSY6NOQiNs46o3sXA_ncJ93DwkE-IRfQLyNCaHbedimuXViQD3BNpil2kHqESB-vdEJmBmYZ0MSTcdf5rVv--e37J1g7uHpSPLTaZzjYrvvFl7dvZmfvh5OP787PxpOh4Vz0Q6gYreRccN5ILQTXc7AUQBhKjeVzCaKpBQNqpLUG2DEi0jIjysrW0IAu94tXG99uNW-hMViLpL3qkmt1ulZRO_XvTXBLtYhrxRgvsbASHQZbhxS_riD3qnXZgPc6QFxlVTJGJZUYKKLP76GXcZUC5ndDVVJWdY3U0YZaaA_KBRvxYYOzgdYZbAPr8HxcM5RwOeIoeHY3hz_B3343AnQDmBRzTmCVcf1NwdHZecWo-t1U6m9ToeTFPcmt63_gXxJHzzo
CitedBy_id crossref_primary_10_1007_s00396_025_05405_8
crossref_primary_10_3390_fermentation11010041
crossref_primary_10_3390_polym17020246
crossref_primary_10_3390_polym17060800
crossref_primary_10_1002_vnl_22200
Cites_doi 10.1016/j.heliyon.2023.e23952
10.1002/app.32713
10.1021/acssuschemeng.9b01830
10.3390/polym10121303
10.1002/polb.22283
10.1016/j.polymertesting.2024.108383
10.1080/03602559.2014.974274
10.1016/j.tca.2009.04.023
10.1533/9780857095602
10.1021/acsami.5b01145
10.1021/am507938s
10.1016/j.jclepro.2018.08.019
10.1016/j.polymer.2011.02.002
10.1016/j.ijbiomac.2023.128631
10.3390/su10061695
10.1080/00222341003609179
10.3390/bioengineering11070705
10.1021/ie403669a
10.1021/ma4012126
10.1016/j.polymertesting.2011.03.008
10.1016/j.polymertesting.2014.11.011
10.3390/polym15193966
10.3390/polym12071563
10.1007/s10973-013-3583-4
10.1016/S0032-3861(01)00086-6
10.1002/app.55446
10.3390/polym15163395
10.1016/j.polymer.2017.02.093
10.1002/mame.201600242
10.1186/s13036-017-0074-3
10.3390/coatings11040390
10.1016/j.polymertesting.2015.06.014
10.3144/expresspolymlett.2015.42
10.1016/j.jmbbm.2012.01.003
10.1016/j.polymdegradstab.2012.11.009
10.1016/j.carbpol.2022.119744
10.3390/polym15020303
10.1002/app.49646
10.1039/C4RA08646E
10.1016/j.foodres.2022.111792
10.1039/C7GC01496A
10.1016/j.polymer.2014.12.021
10.1007/s00289-022-04160-y
10.1021/ie502104y
10.1080/03602559.2010.496418
10.1002/pol.20190090
10.1002/app.40329
10.1016/j.scitotenv.2024.172081
10.3390/ma14237189
10.1002/app.29784
10.3144/expresspolymlett.2015.27
10.1163/092430409X12605406698471
10.1016/j.polymer.2022.125620
10.1021/ie4021182
10.1016/j.progpolymsci.2013.05.006
10.1021/acssuschemeng.5b00740
10.3390/polym15092202
10.3390/su15064699
10.1016/j.polymer.2013.05.021
10.1007/s13233-020-8090-4
10.1080/15583724.2017.1287726
10.1021/acs.biomac.5b01253
10.3390/polym14194113
10.1080/03602559.2015.1132433
10.2478/ftee-2022-0027
10.1039/D3RA03692H
10.1016/j.eurpolymj.2018.02.028
10.1002/pen.24246
10.1515/polyeng-2013-0309
10.3390/ma13214897
10.1016/j.eurpolymj.2019.02.017
10.1016/j.polymer.2012.05.003
10.3390/polym15092165
10.1039/C5RA01655J
10.1002/pen.20970
10.1016/j.polymer.2008.09.053
10.1016/j.fpsl.2024.101312
10.1016/j.actbio.2010.09.012
10.1016/j.polymertesting.2020.106628
10.1007/s10965-018-1438-1
10.1039/c3ra42096e
10.1039/D2GC02169B
10.1016/j.copbio.2005.10.011
10.1007/s11771-014-2116-z
10.1021/bm060089m
10.1016/j.compositesb.2018.10.014
10.1039/C8RA05161E
10.1515/polyeng-2015-0140
10.3390/molecules20011579
10.1016/j.polymer.2015.11.029
10.1016/j.eurpolymj.2016.07.024
10.3390/polym13081222
10.1080/03602559.2015.1098698
10.1016/j.cej.2018.01.010
10.1016/j.progpolymsci.2008.05.004
10.1038/s41598-020-68331-5
10.3390/polym11020326
10.1016/j.polymer.2015.10.037
10.1002/app.34111
10.3390/polym12071558
10.1021/acs.iecr.9b06514
10.1002/app.39473
10.1016/j.giant.2024.100261
10.56038/ejrnd.v3i1.259
10.1080/03602559.2016.1233280
10.1016/j.polymer.2004.02.070
10.1016/j.ijbiomac.2023.126231
10.1016/j.polymertesting.2017.03.009
10.1039/D0RA01801E
10.1016/j.compositesb.2018.10.078
10.1039/c3ra40899j
10.1016/j.eurpolymj.2008.12.010
10.1016/j.matdes.2017.04.073
10.1080/00222348108219449
10.1016/j.matdes.2014.10.011
10.1016/j.eurpolymj.2011.10.015
10.1081/MB-200056631
10.1016/j.polymertesting.2015.05.009
10.1016/j.ijbiomac.2020.03.120
10.1016/j.biortech.2024.130670
10.3390/polym10090996
10.1016/j.jmapro.2024.08.025
10.1002/adv.20212
10.1002/pat.3560
10.1002/mame.201200226
10.1002/app.46220
10.1080/10408398.2024.2349735
10.3390/polym10091040
10.1016/j.polymdegradstab.2010.12.019
10.1021/ie503092w
10.1038/s41598-017-10159-7
10.1016/j.compscitech.2013.10.007
10.15446/mo.n62.89099
10.1016/j.polymer.2006.03.115
10.1016/j.jhazmat.2023.131405
10.1016/j.addr.2016.06.012
10.1016/S0032-3861(96)00455-7
10.1021/acssuschemeng.5b00816
10.3390/polym8070262
10.1016/j.compositesa.2014.05.001
10.1002/app.40372
10.1007/s10924-012-0565-8
10.1021/acsengineeringau.1c00011
10.1039/c3ta12555f
10.1002/pol.20220740
10.1016/j.envc.2021.100030
10.1002/app.38407
10.3390/polym10080834
10.1016/j.eurpolymj.2017.06.004
10.1016/j.polymdegradstab.2010.02.032
10.1039/C6RA21208E
10.3390/polym15092047
10.1080/15583724.2023.2234464
10.1007/s00170-022-10795-y
10.1016/j.eurpolymj.2011.08.001
10.1016/j.matdes.2012.09.024
10.1002/mren.201000017
10.1016/j.ijbiomac.2023.123581
10.1038/srep23058
10.1021/jp805204m
10.1016/j.ijbiomac.2023.126214
10.1002/app.45991
10.3390/polym8030061
10.1007/s00289-009-0187-z
10.1002/pi.5142
10.1002/app.41415
10.1080/09506608.2019.1585004
10.1016/j.actbio.2023.07.013
10.1016/j.polymdegradstab.2016.10.011
10.1021/acs.macromol.6b02310
10.1016/j.polymer.2010.06.045
10.1016/j.ijbiomac.2019.10.246
10.3390/polym15163434
10.1002/pi.5659
10.1002/app.26982
10.1002/mame.200700006
10.1016/j.fpsl.2021.100743
10.1021/acssuschemeng.6b00321
10.56038/ejrnd.v2i4.201
10.1021/ja804357u
10.1007/s10924-021-02063-z
10.1016/j.polymdegradstab.2014.04.019
10.1063/1.4942284
10.1016/j.eurpolymj.2013.01.016
10.1016/j.biortech.2010.05.092
10.1007/s10118-016-1820-6
10.1016/j.eurpolymj.2013.06.038
10.1016/j.polymer.2015.10.038
10.1038/s44296-024-00012-0
10.1016/j.polymer.2022.124729
10.1016/j.polymer.2017.04.004
10.1021/ma101108g
10.1016/j.compscitech.2017.09.015
10.3390/polym14122389
10.1016/j.compositesb.2019.107147
10.1002/pc.24722
10.1016/j.envc.2021.100067
10.1021/ie901767y
10.1002/polb.10353
10.1021/acs.jpcb.5b06244
10.3390/polym13183066
10.1111/jam.14290
10.1002/adv.20257
10.1016/j.polymertesting.2014.06.007
10.1007/BF03218941
10.1016/j.progpolymsci.2009.12.003
10.3390/polym14204263
10.1007/BF03219020
10.1016/j.progpolymsci.2005.06.009
10.3390/polym10010036
10.1021/acsomega.8b02880
10.1002/pen.23304
10.1038/s41529-019-0080-7
10.1007/s10853-009-4185-1
10.1016/j.mtcomm.2020.101365
10.1021/acssuschemeng.8b02112
10.1016/j.jmapro.2024.01.038
10.1016/j.polymer.2021.123439
10.1080/15583720701834216
10.1002/9783527656950.ch10
10.1016/j.ijbiomac.2022.07.069
10.1021/acs.macromol.0c02861
10.1007/s13399-022-02581-3
10.1002/app.44147
10.1002/app.43771
10.1016/j.polymertesting.2012.11.012
10.1021/acs.iecr.5b01177
10.1080/03602550600553267
10.1021/bm5012739
10.3390/polym11111811
10.3389/fchem.2013.00032
10.1038/srep26560
10.1002/pen.26193
10.1016/j.jmbbm.2010.10.003
10.1002/app.45951
10.1039/D0GC01647K
10.1016/j.progpolymsci.2021.101395
10.3390/polym14081626
10.3390/membranes12010046
10.1007/s10924-021-02220-4
10.1007/s10853-008-2693-z
10.1002/pen.23692
10.1016/j.pmatsci.2023.101071
10.1002/app.44516
10.1016/0032-3861(96)00137-1
10.3390/polym14050977
10.3390/su152115312
10.3390/polym15204106
10.1038/s43586-022-00124-8
10.1002/app.48692
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID AAYXX
CITATION
NPM
7SR
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.3390/ma17184556
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
ProQuest SciTech Premium Collection
Materials Research Database
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
Publicly Available Content Database


PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1944
ExternalDocumentID PMC11433319
A811104924
39336298
10_3390_ma17184556
Genre Journal Article
Review
GrantInformation_xml – fundername: Ministry of Science and Higher Education in Poland
  grantid: 0613/SBAD/4820
GroupedDBID 29M
2WC
2XV
53G
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CZ9
D1I
E3Z
EBS
ESX
FRP
GX1
HCIFZ
HH5
HYE
I-F
IAO
ITC
KB.
KC.
KQ8
MK~
MODMG
M~E
OK1
OVT
P2P
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
TR2
TUS
NPM
PQGLB
PMFND
7SR
8FD
ABUWG
AZQEC
DWQXO
JG9
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c446t-e51059b644d9a664abef0ee6c00cf4b9e6d861e0c9ffce176649f1c635f8edea3
IEDL.DBID BENPR
ISSN 1996-1944
IngestDate Thu Aug 21 18:31:23 EDT 2025
Fri Jul 11 12:29:49 EDT 2025
Fri Jul 25 11:42:51 EDT 2025
Tue Jun 10 21:03:00 EDT 2025
Mon Jul 21 05:56:46 EDT 2025
Tue Jul 01 04:29:13 EDT 2025
Thu Apr 24 22:55:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords multiphase structures
polymer blends
poly(lactic acid)
durability
engineering application
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-e51059b644d9a664abef0ee6c00cf4b9e6d861e0c9ffce176649f1c635f8edea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-9931-922X
0000-0002-5765-9637
0000-0001-8380-8416
0000-0001-7459-0128
OpenAccessLink https://www.proquest.com/docview/3110599588?pq-origsite=%requestingapplication%
PMID 39336298
PQID 3110599588
PQPubID 2032366
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11433319
proquest_miscellaneous_3110909510
proquest_journals_3110599588
gale_infotracacademiconefile_A811104924
pubmed_primary_39336298
crossref_citationtrail_10_3390_ma17184556
crossref_primary_10_3390_ma17184556
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240917
PublicationDateYYYYMMDD 2024-09-17
PublicationDate_xml – month: 9
  year: 2024
  text: 20240917
  day: 17
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Materials
PublicationTitleAlternate Materials (Basel)
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Li (ref_225) 2012; 53
ref_91
ref_138
Kalita (ref_124) 2021; 3
Wang (ref_226) 2010; 49
Rasal (ref_13) 2010; 35
Shibasaki (ref_142) 2024; 2024
Martin (ref_80) 2001; 42
Choe (ref_257) 2014; 131
Xia (ref_207) 2014; 21
Andrzejewski (ref_106) 2021; 138
Shields (ref_231) 2008; 43
Marchildon (ref_221) 2011; 5
Liu (ref_196) 2016; 4
Khankrua (ref_227) 2014; 108
Ning (ref_100) 2020; 65
ref_128
ref_129
Lin (ref_55) 2015; 54
Xu (ref_197) 2014; 53
ref_120
Mohanty (ref_62) 2022; 2
Boudaoud (ref_134) 2018; 67
ref_121
Botta (ref_210) 2012; 97
Luna (ref_189) 2021; 62
Srithep (ref_249) 2014; 34
Muller (ref_152) 2016; 65
Alias (ref_176) 2019; 58
Acar (ref_204) 2006; 45
Benaniba (ref_162) 2010; 118
ref_158
ref_155
ref_154
Rigoussen (ref_58) 2019; 114
Cairns (ref_111) 2011; 7
Evstatiev (ref_230) 1996; 37
Liesenfeld (ref_69) 2024; 128
Lee (ref_97) 2023; 13
Muthukrishnan (ref_258) 2018; 135
Ebrahimi (ref_22) 2023; 63
Yunus (ref_149) 2010; 45
Kulinski (ref_78) 2006; 7
Pai (ref_228) 2013; 130
Hashima (ref_54) 2010; 51
Lin (ref_56) 2015; 26
ref_81
Chen (ref_205) 2009; 492
Tee (ref_71) 2014; 2
Wei (ref_85) 2019; 3
ref_89
Carrot (ref_240) 2007; 292
Xue (ref_243) 2005; 44
Yuryev (ref_251) 2016; 6
ref_143
Liu (ref_168) 2010; 43
ref_264
ref_84
Bangar (ref_17) 2021; 30
Cersoli (ref_104) 2021; 30
Krishnan (ref_88) 2016; 55
Yu (ref_125) 2024; 2
Tachibana (ref_7) 2018; 6
Mele (ref_153) 2019; 4
Wang (ref_200) 2015; 7
Srithep (ref_178) 2013; 53
Singh (ref_156) 2020; 153
Fakirov (ref_234) 2013; 89
Luna (ref_192) 2024; 141
Li (ref_206) 2014; 116
Mekonnen (ref_75) 2013; 1
Meijer (ref_144) 2005; 30
Xu (ref_160) 2019; 160
Vadori (ref_256) 2017; 134
George (ref_10) 2020; 154
Kaduri (ref_25) 2018; 340
Samthong (ref_215) 2015; 132
Chen (ref_137) 2021; 54
Yang (ref_99) 2012; 20
Lim (ref_38) 2008; 33
Yuryev (ref_248) 2016; 301
Haugen (ref_113) 2023; 168
ref_202
Pluta (ref_79) 2015; 41
Martino (ref_145) 2009; 112
Hong (ref_4) 2017; 19
Rigoussen (ref_57) 2017; 93
Leipold (ref_3) 2018; 201
Nazockdast (ref_157) 2022; 245
Meereboer (ref_6) 2020; 22
Hussain (ref_24) 2024; 18
Nasution (ref_139) 2024; 10
Joseph (ref_29) 2023; 125
Paydayesh (ref_267) 2019; 40
ref_236
ref_114
Kuru (ref_33) 2023; 3
ref_117
Aparna (ref_224) 2017; 56
ref_118
Liu (ref_90) 2011; 49
Liu (ref_169) 2014; 15
McLauchlin (ref_211) 2014; 38
ref_110
Tsai (ref_184) 2010; 95
ref_112
Hasan (ref_30) 2024; 3
Boonmahitthisud (ref_165) 2021; 29
(ref_9) 2005; 16
Samthong (ref_214) 2016; 56
Tee (ref_148) 2016; 11
Jin (ref_52) 2019; 164
Zolali (ref_238) 2017; 114
ref_105
Osorio (ref_141) 2022; 293
ref_229
Zahedi (ref_103) 2019; 175
Fang (ref_199) 2013; 46
Wang (ref_167) 2015; 119
Dong (ref_254) 2015; 3
Brosset (ref_182) 2023; 61
Luna (ref_186) 2022; 30
Selden (ref_39) 2000; 4
Ishikawa (ref_101) 2018; 155
Zhang (ref_262) 2003; 41
Zeng (ref_92) 2015; 5
Song (ref_246) 2016; 34
Barthes (ref_16) 2012; 31
Sun (ref_253) 2011; 122
Jacquel (ref_5) 2015; 59
Kakroodi (ref_235) 2015; 16
Yu (ref_181) 2008; 48
Kulkarni (ref_260) 2012; 11
Farah (ref_34) 2016; 107
Feng (ref_222) 2010; 49
Wu (ref_194) 2015; 54
Fakirov (ref_233) 2013; 298
Harris (ref_132) 2013; 128
Park (ref_102) 2020; 28
Nagarajan (ref_67) 2015; 7
Vadori (ref_255) 2016; 133
Jing (ref_61) 2008; 130
Papon (ref_70) 2020; 25
Jian (ref_11) 2020; 3
Wu (ref_193) 2020; 58
Laorenza (ref_18) 2024; 44
ref_20
Trinh (ref_130) 2023; 133
Yuryev (ref_133) 2016; 134
Wis (ref_107) 2020; 137
Maroufkhani (ref_172) 2021; 217
Acar (ref_203) 2007; 106
ref_28
Hamad (ref_179) 2015; 9
Shahbikian (ref_263) 2018; 25
Jang (ref_44) 2021; 47
(ref_98) 2014; 64
Zhou (ref_217) 2013; 3
Guo (ref_195) 2014; 53
Liu (ref_109) 2020; 59
Wang (ref_53) 2015; 66
(ref_208) 2016; 55
Zolali (ref_239) 2017; 50
Guo (ref_241) 2014; 4
Ou (ref_185) 2008; 49
Anderson (ref_87) 2008; 48
Aravind (ref_244) 2009; 113
Bai (ref_237) 2004; 45
Taib (ref_122) 2023; 80
Nampoothiri (ref_12) 2010; 101
Ojijo (ref_250) 2015; 80
Sulak (ref_146) 2022; 30
Chang (ref_219) 2018; 8
(ref_127) 2022; 161
Hajba (ref_63) 2016; 82
Kalita (ref_123) 2021; 3
Veiga (ref_86) 2012; 23
Shi (ref_72) 2015; 20
Kuru (ref_220) 2022; 2
Burgos (ref_150) 2013; 98
Lee (ref_247) 2011; 96
Li (ref_252) 2009; 45
Jamarani (ref_82) 2018; 10
Stoclet (ref_223) 2011; 52
Li (ref_15) 2011; 30
Kimble (ref_232) 2015; 9
ref_50
Wang (ref_177) 2017; 57
Puekpoonpoal (ref_48) 2021; 60
Singhvi (ref_108) 2019; 127
Ma (ref_96) 2012; 48
Tripathi (ref_31) 2021; 1
ref_173
Etxeberria (ref_116) 2012; 9
ref_175
Kim (ref_216) 2010; 19
Aouay (ref_65) 2022; 218
ref_51
Wang (ref_119) 2024; 926
Bair (ref_161) 1981; 20
Aravind (ref_245) 2010; 49
Hao (ref_265) 2016; 82
Gironi (ref_14) 2011; 33
Surendren (ref_19) 2022; 24
DeStefano (ref_23) 2020; 1
ref_60
Chen (ref_136) 2023; 266
He (ref_171) 2017; 59
ref_68
Takayama (ref_183) 2011; 4
ref_164
ref_66
Corriou (ref_163) 2013; 52
ref_64
Feng (ref_73) 2013; 3
Hassouna (ref_151) 2011; 47
Qahtani (ref_46) 2019; 7
Reddy (ref_166) 2013; 38
Chuakhao (ref_140) 2024; 132
Zhang (ref_94) 2013; 45
Rodriguez (ref_135) 2018; 135
Zhao (ref_36) 2020; 10
Xiaomeng (ref_115) 2018; 101
Chen (ref_126) 2023; 454
Samuel (ref_261) 2013; 54
Barczewski (ref_188) 2020; 89
Ahmad (ref_26) 2024; 14
ref_35
Lv (ref_180) 2017; 116
ref_32
Nagarajan (ref_37) 2016; 4
Maiza (ref_147) 2016; 36
ref_198
Jem (ref_21) 2020; 3
Hou (ref_41) 2017; 127
Wang (ref_27) 2024; 112
Xu (ref_201) 2015; 45
Santos (ref_218) 2018; 135
Hao (ref_266) 2015; 80
Chang (ref_131) 2023; 63
Pluta (ref_76) 2015; 46
Piorkowska (ref_77) 2006; 47
Zhao (ref_159) 2010; 64
Patel (ref_59) 2014; 54
Park (ref_259) 2007; 15
Zhao (ref_93) 2013; 32
Lu (ref_170) 2014; 53
Na (ref_242) 2005; 13
ref_47
Ma (ref_95) 2013; 49
ref_45
ref_43
ref_42
ref_187
Rubino (ref_213) 2014; 131
ref_40
ref_1
Wu (ref_174) 2021; 117
ref_2
ref_191
ref_190
McLauchlin (ref_209) 2016; 133
ref_49
ref_8
Vieira (ref_83) 2011; 30
Rubino (ref_212) 2013; 49
Nijenhuis (ref_74) 1996; 37
References_xml – volume: 10
  start-page: e23952
  year: 2024
  ident: ref_139
  article-title: Properties of active packaging of PLA-PCL film integrated with chitosan as an antibacterial agent and syzygium cumini seed extract as an antioxidant agent
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2023.e23952
– volume: 118
  start-page: 3499
  year: 2010
  ident: ref_162
  article-title: Evaluation effects of biobased plasticizer on the thermal, mechanical, dynamical mechanical properties, and permanence of plasticized PVC
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.32713
– volume: 7
  start-page: 14460
  year: 2019
  ident: ref_46
  article-title: Experimental Design of Sustainable 3D-Printed Poly(Lactic Acid)/Biobased Poly(Butylene Succinate) Blends via Fused Deposition Modeling
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b01830
– ident: ref_81
  doi: 10.3390/polym10121303
– volume: 49
  start-page: 1051
  year: 2011
  ident: ref_90
  article-title: Research progress in toughening modification of poly(lactic acid)
  publication-title: J. Polym. Sci. Part B Polym. Phys.
  doi: 10.1002/polb.22283
– volume: 132
  start-page: 108383
  year: 2024
  ident: ref_140
  article-title: Formulating PBS/PLA/PBAT blends for biodegradable, compostable packaging: The crucial roles of PBS content and reactive extrusion
  publication-title: Polym. Test.
  doi: 10.1016/j.polymertesting.2024.108383
– volume: 54
  start-page: 1043
  year: 2015
  ident: ref_194
  article-title: Enhancing the PLA crystallization rate and mechanical properties by melt blending with poly(styrene-butadiene-styrene) copolymer
  publication-title: Polym. Plast. Technol. Eng.
  doi: 10.1080/03602559.2014.974274
– volume: 492
  start-page: 61
  year: 2009
  ident: ref_205
  article-title: Non-isothermal crystallization of PET/PLA blends
  publication-title: Thermochim. Acta
  doi: 10.1016/j.tca.2009.04.023
– volume: 47
  start-page: 102313
  year: 2021
  ident: ref_44
  article-title: Effect of material extrusion process parameters on filament geometry and inter-filament voids in as-fabricated high solids loaded polymer composites
  publication-title: Addit. Manuf.
– ident: ref_110
  doi: 10.1533/9780857095602
– volume: 7
  start-page: 11203
  year: 2015
  ident: ref_67
  article-title: Overcoming the Fundamental Challenges in Improving the Impact Strength and Crystallinity of PLA Biocomposites: Influence of Nucleating Agent and Mold Temperature
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b01145
– volume: 7
  start-page: 1364
  year: 2015
  ident: ref_200
  article-title: More dominant shear flow effect assisted by added carbon nanotubes on crystallization kinetics of isotactic polypropylene in nanocomposites
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am507938s
– volume: 201
  start-page: 1125
  year: 2018
  ident: ref_3
  article-title: The circular economy and the bio-based sector-Perspectives of European and German stakeholders
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.08.019
– volume: 52
  start-page: 1417
  year: 2011
  ident: ref_223
  article-title: Morphology, thermal behavior and mechanical properties of binary blends of compatible biosourced polymers: Polylactide/polyamide11
  publication-title: Polymer
  doi: 10.1016/j.polymer.2011.02.002
– ident: ref_155
  doi: 10.1016/j.ijbiomac.2023.128631
– volume: 2024
  start-page: 1
  year: 2024
  ident: ref_142
  article-title: Improvement in the physical properties of poly(lactic acid)/thermoplastic starch blends using oligo(lactic acid)-grafted starch
  publication-title: Polym. J.
– ident: ref_1
  doi: 10.3390/su10061695
– volume: 49
  start-page: 1117
  year: 2010
  ident: ref_222
  article-title: Structure and property of polylactide/polyamide blends
  publication-title: J. Macromol. Sci. Part B Phys.
  doi: 10.1080/00222341003609179
– ident: ref_117
  doi: 10.3390/bioengineering11070705
– volume: 53
  start-page: 1150
  year: 2014
  ident: ref_197
  article-title: Preparation and Characterization of High-Melt-Strength Polylactide with Long-Chain Branched Structure through γ-Radiation-Induced Chemical Reactions
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie403669a
– volume: 30
  start-page: 26349833211000058
  year: 2021
  ident: ref_104
  article-title: 3D printing of a continuous fiber-reinforced composite based on a coaxial Kevlar/PLA filament
  publication-title: Compos. Adv. Mater.
– volume: 46
  start-page: 6555
  year: 2013
  ident: ref_199
  article-title: Shear-induced nucleation and morphological evolution for bimodal long chain branched polylactide
  publication-title: Macromolecules
  doi: 10.1021/ma4012126
– volume: 30
  start-page: 478
  year: 2011
  ident: ref_83
  article-title: Polyvinylchloride (PVC) and natural rubber films plasticized with a natural polymeric plasticizer obtained through polyesterification of rice fatty acid
  publication-title: Polym. Test.
  doi: 10.1016/j.polymertesting.2011.03.008
– volume: 41
  start-page: 209
  year: 2015
  ident: ref_79
  article-title: Tough and transparent blends of polylactide with block copolymers of ethylene glycol and propylene glycol
  publication-title: Polym. Test.
  doi: 10.1016/j.polymertesting.2014.11.011
– ident: ref_143
  doi: 10.3390/polym15193966
– ident: ref_202
  doi: 10.3390/polym12071563
– volume: 116
  start-page: 1351
  year: 2014
  ident: ref_206
  article-title: Electrospun fibers of poly(ethylene terephthalate) blended with poly(lactic acid)
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-013-3583-4
– volume: 42
  start-page: 6209
  year: 2001
  ident: ref_80
  article-title: Poly(lactic acid): Plasticization and properties of biodegradable multiphase systems
  publication-title: Polymer
  doi: 10.1016/S0032-3861(01)00086-6
– volume: 141
  start-page: e55446
  year: 2024
  ident: ref_192
  article-title: Tuning the mechanical and thermomechanical properties through the combined effect of crosslinking and annealing in poly(lactic acid)/acrylonitrile-EPDM-styrene blends
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.55446
– ident: ref_68
  doi: 10.3390/polym15163395
– volume: 114
  start-page: 277
  year: 2017
  ident: ref_238
  article-title: Compatibilization and toughening of co-continuous ternary blends via partially wet droplets at the interface
  publication-title: Polymer
  doi: 10.1016/j.polymer.2017.02.093
– volume: 301
  start-page: 1443
  year: 2016
  ident: ref_248
  article-title: A new approach to supertough poly(lactic acid): A high temperature reactive blending
  publication-title: Macromol. Mater. Eng.
  doi: 10.1002/mame.201600242
– ident: ref_112
  doi: 10.1186/s13036-017-0074-3
– ident: ref_28
  doi: 10.3390/coatings11040390
– volume: 46
  start-page: 79
  year: 2015
  ident: ref_76
  article-title: Tough crystalline blends of polylactide with block copolymers of ethylene glycol and propylene glycol
  publication-title: Polym. Test.
  doi: 10.1016/j.polymertesting.2015.06.014
– volume: 9
  start-page: 435
  year: 2015
  ident: ref_179
  article-title: Properties and medical applications of polylactic acid: A review
  publication-title: Express Polym. Lett.
  doi: 10.3144/expresspolymlett.2015.42
– volume: 9
  start-page: 100
  year: 2012
  ident: ref_116
  article-title: Synthesis, structure and properties of poly(L-lactide-co-ε-caprolactone) statistical copolymers
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2012.01.003
– volume: 98
  start-page: 651
  year: 2013
  ident: ref_150
  article-title: Characterization and ageing study of poly(lactic acid) films plasticized with oligomeric lactic acid
  publication-title: Polym. Degrad. Stab.
  doi: 10.1016/j.polymdegradstab.2012.11.009
– volume: 293
  start-page: 119744
  year: 2022
  ident: ref_141
  article-title: Miscibility study of thermoplastic starch/polylactic acid blends: Thermal and superficial properties
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2022.119744
– ident: ref_138
  doi: 10.3390/polym15020303
– volume: 138
  start-page: 49646
  year: 2021
  ident: ref_106
  article-title: Preparation of hybrid poly(lactic acid)/flax composites by the insert overmolding process: Evaluation of mechanical performance and thermomechanical properties
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.49646
– volume: 33
  start-page: 1949
  year: 2011
  ident: ref_14
  article-title: Bioplastics and petroleum-based plastics: Strengths and weaknesses
  publication-title: Energy Sources Part A Recovery Util. Environ. Eff.
– volume: 4
  start-page: 58880
  year: 2014
  ident: ref_241
  article-title: Modification of the core–shell ratio to prepare PB-g-(MMA-co-St-co-GMA) particle-toughened poly(butylene terephthalate) and polycarbonate blends with balanced stiffness and toughness
  publication-title: RSC Adv.
  doi: 10.1039/C4RA08646E
– volume: 161
  start-page: 111792
  year: 2022
  ident: ref_127
  article-title: Transparency of polymeric food packaging materials
  publication-title: Food Res. Int.
  doi: 10.1016/j.foodres.2022.111792
– volume: 19
  start-page: 3692
  year: 2017
  ident: ref_4
  article-title: Chemically recyclable polymers: A circular economy approach to sustainability
  publication-title: Green Chem.
  doi: 10.1039/C7GC01496A
– volume: 59
  start-page: 234
  year: 2015
  ident: ref_5
  article-title: Bio-based alternatives in the synthesis of aliphatic–aromatic polyesters dedicated to biodegradable film applications
  publication-title: Polymer
  doi: 10.1016/j.polymer.2014.12.021
– volume: 80
  start-page: 1179
  year: 2023
  ident: ref_122
  article-title: A review on poly lactic acid (PLA) as a biodegradable polymer
  publication-title: Polym. Bull.
  doi: 10.1007/s00289-022-04160-y
– volume: 53
  start-page: 16754
  year: 2014
  ident: ref_195
  article-title: Effects of polyoxymethylene as a polymeric nucleating agent on the isothermal crystallization and visible transmittance of poly(lactic acid)
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie502104y
– volume: 49
  start-page: 1241
  year: 2010
  ident: ref_226
  article-title: Polyamide-6/poly(lactic acid) blends compatibilized by the maleic anhydride grafted polyethylene-octene elastomer
  publication-title: Polym. Plast. Technol. Eng.
  doi: 10.1080/03602559.2010.496418
– volume: 58
  start-page: 500
  year: 2020
  ident: ref_193
  article-title: Super-Toughened Heat-Resistant Poly(lactic acid) Alloys by Tailoring the Phase Morphology and the Crystallization Behaviors
  publication-title: J. Polym. Sci.
  doi: 10.1002/pol.20190090
– volume: 131
  start-page: 40329
  year: 2014
  ident: ref_257
  article-title: Mechanical properties of acrylonitrile–butadiene–styrene copolymer/poly(l-lactic acid) blends and their composites
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.40329
– volume: 926
  start-page: 172081
  year: 2024
  ident: ref_119
  article-title: Mature compost promotes biodegradable plastic degradation and reduces greenhouse gas emission during food waste composting
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2024.172081
– ident: ref_128
  doi: 10.3390/ma14237189
– volume: 112
  start-page: 2010
  year: 2009
  ident: ref_145
  article-title: Processing and characterization of poly(lactic acid) films plasticized with commercial adipates
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.29784
– volume: 9
  start-page: 300
  year: 2015
  ident: ref_232
  article-title: Biodegradable microfibrillar polymer-polymer composites from poly(L-lactic acid)/poly(glycolic acid)
  publication-title: Express Polym. Lett.
  doi: 10.3144/expresspolymlett.2015.27
– volume: 19
  start-page: 331
  year: 2010
  ident: ref_216
  article-title: Chain extension effects of para-phenylene diisocyanate on crystallization behavior and biodegradability of poly(lactic acid)/poly(butylene terephthalate) blends
  publication-title: Adv. Compos. Mater.
  doi: 10.1163/092430409X12605406698471
– volume: 266
  start-page: 125620
  year: 2023
  ident: ref_136
  article-title: Design of biodegradable PLA/PBAT blends with balanced toughness and strength via interfacial compatibilization and dynamic vulcanization
  publication-title: Polymer
  doi: 10.1016/j.polymer.2022.125620
– volume: 52
  start-page: 15094
  year: 2013
  ident: ref_163
  article-title: Methodology to predict pvc plasticization using molecular simulation by pairs
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie4021182
– volume: 38
  start-page: 1653
  year: 2013
  ident: ref_166
  article-title: Biobased plastics and bionanocomposites: Current status and future opportunities
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2013.05.006
– volume: 3
  start-page: 2542
  year: 2015
  ident: ref_254
  article-title: PLLA/ABS blends compatibilized by reactive comb polymers: Double T g depression and significantly improved toughness
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.5b00740
– ident: ref_43
  doi: 10.3390/polym15092202
– ident: ref_35
  doi: 10.3390/su15064699
– volume: 54
  start-page: 3931
  year: 2013
  ident: ref_261
  article-title: PLLA/PMMA blends: A shear-induced miscibility with tunable morphologies and properties?
  publication-title: Polymer
  doi: 10.1016/j.polymer.2013.05.021
– ident: ref_191
– volume: 28
  start-page: 714
  year: 2020
  ident: ref_102
  article-title: Fabrication and Analysis of Long Fiber Reinforced Polypropylene Prepared via Injection Molding
  publication-title: Macromol. Res.
  doi: 10.1007/s13233-020-8090-4
– volume: 57
  start-page: 557
  year: 2017
  ident: ref_177
  article-title: Progress in Toughening Poly(Lactic Acid) with Renewable Polymers
  publication-title: Polym. Rev.
  doi: 10.1080/15583724.2017.1287726
– volume: 16
  start-page: 3925
  year: 2015
  ident: ref_235
  article-title: Poly(lactic acid)-based in situ microfibrillar composites with enhanced crystallization kinetics, mechanical properties, rheological behavior, and foaming ability
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.5b01253
– ident: ref_120
  doi: 10.3390/polym14194113
– volume: 55
  start-page: 672
  year: 2016
  ident: ref_208
  article-title: Morphological and Mechanical Properties Dependence of PLA Amount in PET Matrix Processed by Single-Screw Extrusion
  publication-title: Polym. Plast. Technol. Eng.
  doi: 10.1080/03602559.2015.1132433
– volume: 30
  start-page: 93
  year: 2022
  ident: ref_146
  article-title: Influence of the Structure of Low MolecularWeight Esters on Poly(lactic acid) in the Plasticization Process-part 1
  publication-title: Fibres Text. East. Eur.
  doi: 10.2478/ftee-2022-0027
– volume: 13
  start-page: 22315
  year: 2023
  ident: ref_97
  article-title: Impact fracture mechanism and heat deflection temperature of PLA/PEICT blends reinforced by glass fiber
  publication-title: RSC Adv.
  doi: 10.1039/D3RA03692H
– volume: 101
  start-page: 140
  year: 2018
  ident: ref_115
  article-title: Totally biodegradable poly(trimethylene carbonate/glycolide-block-L-lactide/glycolide) copolymers: Synthesis, characterization and enzyme-catalyzed degradation behavior
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2018.02.028
– volume: 56
  start-page: 258
  year: 2016
  ident: ref_214
  article-title: Effects of size and shape of dispersed poly(butylene terephthalate) on isothermal crystallization kinetics and morphology of poly(lactic acid) blends
  publication-title: Polym. Eng. Sci.
  doi: 10.1002/pen.24246
– volume: 34
  start-page: 665
  year: 2014
  ident: ref_249
  article-title: Processing and characterization of poly(lactic acid) blended with polycarbonate and chain extender
  publication-title: J. Polym. Eng.
  doi: 10.1515/polyeng-2013-0309
– ident: ref_49
  doi: 10.3390/ma13214897
– volume: 114
  start-page: 118
  year: 2019
  ident: ref_58
  article-title: A dual approach to compatibilize PLA/ABS immiscible blends with epoxidized cardanol derivatives
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2019.02.017
– volume: 53
  start-page: 3043
  year: 2012
  ident: ref_225
  article-title: Characterization of PA6/EPDM-g-MA/HDPE ternary blends: The role of core-shell structure
  publication-title: Polymer
  doi: 10.1016/j.polymer.2012.05.003
– volume: 97
  start-page: 21
  year: 2012
  ident: ref_210
  article-title: Effect of small amounts of poly(lactic acid) on the recycling of poly(ethylene terephthalate) bottles
  publication-title: Polym. Degrad. Stab.
– ident: ref_51
  doi: 10.3390/polym15092165
– volume: 5
  start-page: 32546
  year: 2015
  ident: ref_92
  article-title: Compatibilization strategies in poly(lactic acid)-based blends
  publication-title: Rsc Adv.
  doi: 10.1039/C5RA01655J
– volume: 48
  start-page: 634
  year: 2008
  ident: ref_181
  article-title: Effect of annealing and orientation on microstructures and mechanical properties of polylactic acid
  publication-title: Polym. Eng. Sci.
  doi: 10.1002/pen.20970
– volume: 49
  start-page: 5344
  year: 2008
  ident: ref_185
  article-title: Influence of biaxial stretching mode on the crystalline texture in polylactic acid films
  publication-title: Polymer
  doi: 10.1016/j.polymer.2008.09.053
– volume: 44
  start-page: 101312
  year: 2024
  ident: ref_18
  article-title: Surface adhesion and physical properties of modified TPS and PBAT multilayer film
  publication-title: Food Packag. Shelf Life
  doi: 10.1016/j.fpsl.2024.101312
– volume: 7
  start-page: 548
  year: 2011
  ident: ref_111
  article-title: Through-thickness control of polymer bioresorption via electron beam irradiation
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2010.09.012
– volume: 89
  start-page: 106628
  year: 2020
  ident: ref_188
  article-title: Synergistic effect of different basalt fillers and annealing on the structure and properties of polylactide composites
  publication-title: Polym. Test.
  doi: 10.1016/j.polymertesting.2020.106628
– volume: 25
  start-page: 58
  year: 2018
  ident: ref_263
  article-title: Properties and phase structure of melt-processed PLA/PMMA blends
  publication-title: J. Polym. Res.
  doi: 10.1007/s10965-018-1438-1
– volume: 3
  start-page: 18464
  year: 2013
  ident: ref_217
  article-title: Synthesis and characterization of triblock copolymer PLA-b-PBT-b-PLA and its effect on the crystallization of PLA
  publication-title: RSC Adv.
  doi: 10.1039/c3ra42096e
– volume: 24
  start-page: 8606
  year: 2022
  ident: ref_19
  article-title: A review of biodegradable thermoplastic starches, their blends and composites: Recent developments and opportunities for single-use plastic packaging alternatives
  publication-title: Green Chem.
  doi: 10.1039/D2GC02169B
– volume: 16
  start-page: 607
  year: 2005
  ident: ref_9
  article-title: Non-biodegradable biopolymers from renewable resources: Perspectives and impacts
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2005.10.011
– volume: 21
  start-page: 1725
  year: 2014
  ident: ref_207
  article-title: Degradation behaviors, thermostability and mechanical properties of poly(ethylene terephthalate)/polylactic acid blends
  publication-title: J. Cent. South Univ.
  doi: 10.1007/s11771-014-2116-z
– volume: 7
  start-page: 2128
  year: 2006
  ident: ref_78
  article-title: Plasticization of poly(L-lactide) with poly(propylene glycol)
  publication-title: Biomacromolecules
  doi: 10.1021/bm060089m
– volume: 160
  start-page: 147
  year: 2019
  ident: ref_160
  article-title: Dynamically vulcanized PP/EPDM blends with balanced stiffness and toughness via in-situ compatibilization of MAA and excess ZnO nanoparticles: Preparation, structure and properties
  publication-title: Compos. Part B Eng.
  doi: 10.1016/j.compositesb.2018.10.014
– volume: 8
  start-page: 27709
  year: 2018
  ident: ref_219
  article-title: Tuning the compatibility to achieve toughened biobased poly(lactic acid)/poly(butylene terephthalate) blends
  publication-title: RSC Adv.
  doi: 10.1039/C8RA05161E
– volume: 36
  start-page: 371
  year: 2016
  ident: ref_147
  article-title: Plasticizing effects of citrate esters on properties of poly(lactic acid)
  publication-title: J. Polym. Eng.
  doi: 10.1515/polyeng-2015-0140
– volume: 20
  start-page: 1579
  year: 2015
  ident: ref_72
  article-title: Synergistic effects of nucleating agents and plasticizers on the crystallization behavior of poly(lactic acid)
  publication-title: Molecules
  doi: 10.3390/molecules20011579
– volume: 82
  start-page: 57
  year: 2016
  ident: ref_265
  article-title: Intermolecular cooperativity and entanglement network in a miscible PLA/PMMA blend in the presence of nanosilica
  publication-title: Polymer
  doi: 10.1016/j.polymer.2015.11.029
– volume: 3
  start-page: 60
  year: 2020
  ident: ref_21
  article-title: The development and challenges of poly(lactic acid) and poly(glycolic acid)
  publication-title: Adv. Ind. Eng. Polym. Res.
– volume: 11
  start-page: 365
  year: 2012
  ident: ref_260
  article-title: Effect of methyl methacrylate–acrylonitrile-butadiene–styrene (MABS) on the mechanical and thermal properties of poly(Methyl Methacrylate)(PMMA)-fly ash cenospheres (FAC) filled composites
  publication-title: J. Miner. Mater. Charact. Eng.
– volume: 82
  start-page: 232
  year: 2016
  ident: ref_63
  article-title: Effect of crystalline forms (α′ and α) of poly(lactic acid) on its mechanical, thermo-mechanical, heat deflection temperature and creep properties
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2016.07.024
– ident: ref_45
  doi: 10.3390/polym13081222
– volume: 55
  start-page: 1623
  year: 2016
  ident: ref_88
  article-title: Toughening of polylactic acid: An overview of research progress
  publication-title: Polym. Plast. Technol. Eng.
  doi: 10.1080/03602559.2015.1098698
– volume: 340
  start-page: 9
  year: 2018
  ident: ref_25
  article-title: Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.01.010
– volume: 33
  start-page: 820
  year: 2008
  ident: ref_38
  article-title: Processing technologies for poly(lactic acid)
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2008.05.004
– ident: ref_47
  doi: 10.1038/s41598-020-68331-5
– ident: ref_40
  doi: 10.3390/polym11020326
– volume: 80
  start-page: 38
  year: 2015
  ident: ref_266
  article-title: Entanglement network formed in miscible PLA/PMMA blends and its role in rheological and thermo-mechanical properties of the blends
  publication-title: Polymer
  doi: 10.1016/j.polymer.2015.10.037
– volume: 122
  start-page: 2992
  year: 2011
  ident: ref_253
  article-title: Polylactide toughening with epoxy-functionalized grafted acrylonitrile–butadiene–styrene particles
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.34111
– ident: ref_2
  doi: 10.3390/polym12071558
– volume: 59
  start-page: 4524
  year: 2020
  ident: ref_109
  article-title: Long-Chain Branched Poly(lactic acid)-b-poly(lactide-co-caprolactone): Structure, Viscoelastic Behavior, and Triple-Shape Memory Effect as Smart Bone Fixation Material
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.9b06514
– volume: 130
  start-page: 2563
  year: 2013
  ident: ref_228
  article-title: Characterization and properties of reactive poly(lactic acid)/polyamide 610 biomass blends
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.39473
– volume: 18
  start-page: 100261
  year: 2024
  ident: ref_24
  article-title: A review on PLA-based biodegradable materials for biomedical applications
  publication-title: Giant
  doi: 10.1016/j.giant.2024.100261
– volume: 3
  start-page: 175
  year: 2023
  ident: ref_33
  article-title: Poly(Lactic Acid)/Polyester Blends: Review of Current and Future Applications
  publication-title: Eur. J. Res. Dev.
  doi: 10.56038/ejrnd.v3i1.259
– volume: 56
  start-page: 617
  year: 2017
  ident: ref_224
  article-title: Review on various compatibilizers and its effect on mechanical properties of compatibilized nylon blends
  publication-title: Polym. Plast. Technol. Eng.
  doi: 10.1080/03602559.2016.1233280
– volume: 11
  start-page: 1518
  year: 2016
  ident: ref_148
  article-title: Comparative study of chemical, mechanical, thermal, and barrier properties of poly(lactic acid) plasticized with epoxidized soybean oil and epoxidized palm oil
  publication-title: BioResources
– volume: 45
  start-page: 3063
  year: 2004
  ident: ref_237
  article-title: Microstructures and mechanical properties of polypropylene/polyamide 6/polyethelene-octene elastomer blends
  publication-title: Polymer
  doi: 10.1016/j.polymer.2004.02.070
– ident: ref_173
  doi: 10.1016/j.ijbiomac.2023.126231
– volume: 59
  start-page: 470
  year: 2017
  ident: ref_171
  article-title: Toughening polylactide by dynamic vulcanization with castor oil and different types of diisocyanates
  publication-title: Polym. Test.
  doi: 10.1016/j.polymertesting.2017.03.009
– volume: 10
  start-page: 13316
  year: 2020
  ident: ref_36
  article-title: Super tough poly(lactic acid) blends: A comprehensive review
  publication-title: RSC Adv.
  doi: 10.1039/D0RA01801E
– volume: 164
  start-page: 287
  year: 2019
  ident: ref_52
  article-title: Improvement of thermal behaviors of biodegradable poly(lactic acid) polymer: A review
  publication-title: Compos. Part B Eng.
  doi: 10.1016/j.compositesb.2018.10.078
– volume: 3
  start-page: 11738
  year: 2013
  ident: ref_73
  article-title: Study on biocompatible PLLA–PEG blends with high toughness and strength via pressure-induced-flow processing
  publication-title: RSC Adv.
  doi: 10.1039/c3ra40899j
– volume: 45
  start-page: 738
  year: 2009
  ident: ref_252
  article-title: Improvement in toughness of poly(l-lactide)(PLLA) through reactive blending with acrylonitrile–butadiene–styrene copolymer (ABS): Morphology and properties
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2008.12.010
– volume: 127
  start-page: 115
  year: 2017
  ident: ref_41
  article-title: A novel gas-assisted microcellular injection molding method for preparing lightweight foams with superior surface appearance and enhanced mechanical performance
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2017.04.073
– volume: 20
  start-page: 381
  year: 1981
  ident: ref_161
  article-title: Morphology of lightly plasticized PVC
  publication-title: J. Macromol. Sci. Part B Phys.
  doi: 10.1080/00222348108219449
– volume: 66
  start-page: 7
  year: 2015
  ident: ref_53
  article-title: Heat resistance, crystallization behavior, and mechanical properties of polylactide/nucleating agent composites
  publication-title: Mater. Des. (1980–2015)
  doi: 10.1016/j.matdes.2014.10.011
– volume: 48
  start-page: 146
  year: 2012
  ident: ref_96
  article-title: Toughening of poly(lactic acid) by ethylene-co-vinyl acetate copolymer with different vinyl acetate contents
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2011.10.015
– volume: 44
  start-page: 331
  year: 2005
  ident: ref_243
  article-title: Compatibilization of poly(trimethylene terephthalate)/polycarbonate blends by epoxy. Part 2. Melting behavior and spherulite morphology
  publication-title: J. Macromol. Sci. Part B Phys.
  doi: 10.1081/MB-200056631
– volume: 45
  start-page: 101
  year: 2015
  ident: ref_201
  article-title: Crystallization kinetics and morphology of biodegradable poly(lactic acid) with a hydrazide nucleating agent
  publication-title: Polym. Test.
  doi: 10.1016/j.polymertesting.2015.05.009
– volume: 154
  start-page: 329
  year: 2020
  ident: ref_10
  article-title: A comprehensive review on chemical properties and applications of biopolymers and their composites
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2020.03.120
– ident: ref_118
  doi: 10.1016/j.biortech.2024.130670
– ident: ref_264
  doi: 10.3390/polym10090996
– volume: 128
  start-page: 133
  year: 2024
  ident: ref_69
  article-title: Impact of annealing on the characteristics of 3D-printed graphene-reinforced PLA composite
  publication-title: J. Manuf. Process.
  doi: 10.1016/j.jmapro.2024.08.025
– volume: 30
  start-page: 150
  year: 2011
  ident: ref_15
  article-title: Dynamic rheological behavior and morphology of polylactide/poly(butylenes adipate-co-terephthalate) blends with various composition ratios
  publication-title: Adv. Polym. Technol.
  doi: 10.1002/adv.20212
– volume: 3
  start-page: 100020
  year: 2024
  ident: ref_30
  article-title: Potential of recycled PLA in 3D printing: A review
  publication-title: Sustain. Manuf. Serv. Econ.
– volume: 26
  start-page: 1247
  year: 2015
  ident: ref_56
  article-title: Improving the impact property and heat-resistance of PLA/PC blends through coupling molecular chains at the interface
  publication-title: Polym. Adv. Technol.
  doi: 10.1002/pat.3560
– volume: 298
  start-page: 9
  year: 2013
  ident: ref_233
  article-title: Nano- and Microfibrillar Single-Polymer Composites: A Review
  publication-title: Macromol. Mater. Eng.
  doi: 10.1002/mame.201200226
– volume: 135
  start-page: 46220
  year: 2018
  ident: ref_258
  article-title: High heat resistant blends of poly(methyl methacrylate) and styrenic copolymers via post reactor modification
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.46220
– ident: ref_20
  doi: 10.1080/10408398.2024.2349735
– ident: ref_164
  doi: 10.3390/polym10091040
– volume: 96
  start-page: 553
  year: 2011
  ident: ref_247
  article-title: Compatibilizing effects for improving mechanical properties of biodegradable poly(lactic acid) and polycarbonate blends
  publication-title: Polym. Degrad. Stab.
  doi: 10.1016/j.polymdegradstab.2010.12.019
– volume: 53
  start-page: 17386
  year: 2014
  ident: ref_170
  article-title: Supertoughened poly(lactic acid)/polyurethane blend material by in situ reactive interfacial compatibilization via dynamic vulcanization
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie503092w
– ident: ref_84
  doi: 10.1038/s41598-017-10159-7
– volume: 89
  start-page: 211
  year: 2013
  ident: ref_234
  article-title: Nano-/microfibrillar polymer–polymer and single polymer composites: The converting instead of adding concept
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2013.10.007
– volume: 3
  start-page: 19
  year: 2020
  ident: ref_11
  article-title: An overview on synthesis, properties and applications of poly(butylene-adipate-co-terephthalate)–PBAT
  publication-title: Adv. Ind. Eng. Polym. Res.
– volume: 23
  start-page: 72
  year: 2012
  ident: ref_86
  article-title: Migration of phthalate-based plasticizers from PVC and non-PVC containers and medical devices
  publication-title: J. Braz. Chem. Soc.
– volume: 62
  start-page: 1
  year: 2021
  ident: ref_189
  article-title: Annealing efficacy on PLA. Insights on mechanical, thermomechanical and crystallinity characters
  publication-title: Momento
  doi: 10.15446/mo.n62.89099
– volume: 47
  start-page: 7178
  year: 2006
  ident: ref_77
  article-title: Plasticization of semicrystalline poly(L-lactide) with poly(propylene glycol)
  publication-title: Polymer
  doi: 10.1016/j.polymer.2006.03.115
– volume: 454
  start-page: 131405
  year: 2023
  ident: ref_126
  article-title: Comparing the bacterial composition, succession and assembly patterns in plastisphere and kitchen waste composting with PLA/PBAT blends
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2023.131405
– volume: 107
  start-page: 367
  year: 2016
  ident: ref_34
  article-title: Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2016.06.012
– volume: 37
  start-page: 5849
  year: 1996
  ident: ref_74
  article-title: High molecular weight poly(L-lactide) and poly(ethylene oxide) blends: Thermal characterization and physical properties
  publication-title: Polymer
  doi: 10.1016/S0032-3861(96)00455-7
– volume: 4
  start-page: 111
  year: 2016
  ident: ref_196
  article-title: Remarkably enhanced impact toughness and heat resistance of poly(L-lactide)/thermoplastic polyurethane blends by constructing stereocomplex crystallites in the matrix
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.5b00816
– ident: ref_8
  doi: 10.3390/polym8070262
– volume: 64
  start-page: 99
  year: 2014
  ident: ref_98
  article-title: Investigation of injection moulded poly(lactic acid) reinforced with long basalt fibres
  publication-title: Compos. Part A Appl. Sci. Manuf.
  doi: 10.1016/j.compositesa.2014.05.001
– volume: 131
  start-page: 40372
  year: 2014
  ident: ref_213
  article-title: Isothermal and non-isothermal crystallization of poly(L-lactic acid)/poly(butylene terephthalate) blends
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.40372
– volume: 20
  start-page: 1124
  year: 2012
  ident: ref_99
  article-title: Molding Method, Thermal and Mechanical Properties of Jute/PLA Injection Molding
  publication-title: J. Polym. Environ.
  doi: 10.1007/s10924-012-0565-8
– volume: 58
  start-page: 1399
  year: 2019
  ident: ref_176
  article-title: An overview of toughening polylactic acid by an elastomer
  publication-title: Polym. Plast. Technol. Mater.
– volume: 1
  start-page: 7
  year: 2021
  ident: ref_31
  article-title: Durable Polylactic Acid (PLA)-Based Sustainable Engineered Blends and Biocomposites: Recent Developments, Challenges, and Opportunities
  publication-title: ACS Eng. Au
  doi: 10.1021/acsengineeringau.1c00011
– volume: 1
  start-page: 13379
  year: 2013
  ident: ref_75
  article-title: Progress in bio-based plastics and plasticizing modifications
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta12555f
– volume: 4
  start-page: 159
  year: 2000
  ident: ref_39
  article-title: Thin wall modling of engineering plastics—A literature survey
  publication-title: J. Inject. Molding Technol.
– volume: 61
  start-page: 829
  year: 2023
  ident: ref_182
  article-title: Preparation of oriented poly(lactic acid) thin films by a combination of high temperature rubbing and thermal annealing: Impact of annealing parameters on structure, polymorphism and morphology
  publication-title: J. Polym. Sci.
  doi: 10.1002/pol.20220740
– volume: 3
  start-page: 100030
  year: 2021
  ident: ref_124
  article-title: Demonstrating an ideal compostable plastic using biodegradability kinetics of poly(lactic acid) (PLA) based green biocomposite films under aerobic composting conditions
  publication-title: Environ. Chall.
  doi: 10.1016/j.envc.2021.100030
– volume: 128
  start-page: 2136
  year: 2013
  ident: ref_132
  article-title: Durability of polylactide-based polymer blends for injection-molded applications
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.38407
– volume: 10
  start-page: 834
  year: 2018
  ident: ref_82
  article-title: How green is your plasticizer?
  publication-title: Polymers
  doi: 10.3390/polym10080834
– volume: 93
  start-page: 272
  year: 2017
  ident: ref_57
  article-title: In-depth investigation on the effect and role of cardanol in the compatibilization of PLA/ABS immiscible blends by reactive extrusion
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2017.06.004
– volume: 95
  start-page: 1292
  year: 2010
  ident: ref_184
  article-title: Crystallinity and dimensional stability of biaxial oriented poly(lactic acid) films
  publication-title: Polym. Degrad. Stab.
  doi: 10.1016/j.polymdegradstab.2010.02.032
– volume: 6
  start-page: 105094
  year: 2016
  ident: ref_251
  article-title: Novel super-toughened bio-based blend from polycarbonate and poly(lactic acid) for durable applications
  publication-title: RSC Adv.
  doi: 10.1039/C6RA21208E
– ident: ref_50
  doi: 10.3390/polym15092047
– volume: 63
  start-page: 961
  year: 2023
  ident: ref_131
  article-title: Natural Antioxidant and Antimicrobial Agents and Processing Technologies for the Design of Active Food Packaging Polymers
  publication-title: Polym. Rev.
  doi: 10.1080/15583724.2023.2234464
– volume: 125
  start-page: 1015
  year: 2023
  ident: ref_29
  article-title: 3D printing of polylactic acid: Recent advances and opportunities
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-022-10795-y
– volume: 47
  start-page: 2134
  year: 2011
  ident: ref_151
  article-title: New approach on the development of plasticized polylactide (PLA): Grafting of poly(ethylene glycol)(PEG) via reactive extrusion
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2011.08.001
– volume: 45
  start-page: 198
  year: 2013
  ident: ref_94
  article-title: Thermal, mechanical and rheological properties of polylactide toughened by expoxidized natural rubber
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2012.09.024
– volume: 5
  start-page: 22
  year: 2011
  ident: ref_221
  article-title: Polyamides–still strong after seventy years
  publication-title: Macromol. React. Eng.
  doi: 10.1002/mren.201000017
– ident: ref_66
  doi: 10.1016/j.ijbiomac.2023.123581
– ident: ref_105
  doi: 10.1038/srep23058
– volume: 113
  start-page: 1569
  year: 2009
  ident: ref_244
  article-title: A study on reaction-induced miscibility of poly(trimethylene terephthalate)/polycarbonate blends
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp805204m
– ident: ref_175
  doi: 10.1016/j.ijbiomac.2023.126214
– volume: 135
  start-page: 45991
  year: 2018
  ident: ref_135
  article-title: Hydrolytic stability of polylactide and poly(methyl methacrylate) blends
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.45991
– ident: ref_229
  doi: 10.3390/polym8030061
– volume: 64
  start-page: 291
  year: 2010
  ident: ref_159
  article-title: Dynamic rheology–morphology relationship of PP/EPDM blends prepared by melt mixing under Sc-CO2
  publication-title: Polym. Bull.
  doi: 10.1007/s00289-009-0187-z
– volume: 65
  start-page: 970
  year: 2016
  ident: ref_152
  article-title: Influence of plasticizers on thermal properties and crystallization behaviour of poly(lactic acid) films obtained by compression moulding
  publication-title: Polym. Int.
  doi: 10.1002/pi.5142
– volume: 132
  start-page: 41415
  year: 2015
  ident: ref_215
  article-title: Morphology, structure, and properties of poly(lactic acid) microporous films containing poly(butylene terephthalate) fine fibers fabricated by biaxial stretching
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.41415
– volume: 65
  start-page: 164
  year: 2020
  ident: ref_100
  article-title: A review of Long fibre thermoplastic (LFT) composites
  publication-title: Int. Mater. Rev.
  doi: 10.1080/09506608.2019.1585004
– volume: 168
  start-page: 1
  year: 2023
  ident: ref_113
  article-title: Use of 3D-printed polylactic acid/bioceramic composite scaffolds for bone tissue engineering in preclinical in vivo studies: A systematic review
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2023.07.013
– volume: 134
  start-page: 227
  year: 2016
  ident: ref_133
  article-title: Hydrolytic stability of polycarbonate/poly(lactic acid) blends and its evaluation via poly(lactic) acid median melting point depression
  publication-title: Polym. Degrad. Stab.
  doi: 10.1016/j.polymdegradstab.2016.10.011
– volume: 50
  start-page: 264
  year: 2017
  ident: ref_239
  article-title: Ultratough co-continuous PLA/PA11 by interfacially percolated poly(ether-b-amide)
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.6b02310
– volume: 51
  start-page: 3934
  year: 2010
  ident: ref_54
  article-title: Structure-properties of super-tough PLA alloy with excellent heat resistance
  publication-title: Polymer
  doi: 10.1016/j.polymer.2010.06.045
– volume: 153
  start-page: 1165
  year: 2020
  ident: ref_156
  article-title: Modulating the properties of polylactic acid for packaging applications using biobased plasticizers and naturally obtained fillers
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2019.10.246
– ident: ref_187
  doi: 10.3390/polym15163434
– volume: 67
  start-page: 1393
  year: 2018
  ident: ref_134
  article-title: Hydrolytic degradation of poly(l-lactic acid)/poly(methyl methacrylate) blends
  publication-title: Polym. Int.
  doi: 10.1002/pi.5659
– volume: 106
  start-page: 4180
  year: 2007
  ident: ref_203
  article-title: Nonisothermal crystallization kinetics and morphology of poly(ethylene terephthalate) modified with poly(lactic acid)
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.26982
– volume: 292
  start-page: 693
  year: 2007
  ident: ref_240
  article-title: Immiscible blends of PC and PET, current knowledge and new results: Rheological properties
  publication-title: Macromol. Mater. Eng.
  doi: 10.1002/mame.200700006
– volume: 30
  start-page: 100743
  year: 2021
  ident: ref_17
  article-title: Recent advances in thermoplastic starches for food packaging: A review
  publication-title: Food Packag. Shelf Life
  doi: 10.1016/j.fpsl.2021.100743
– volume: 4
  start-page: 2899
  year: 2016
  ident: ref_37
  article-title: Perspective on polylactic acid (PLA) based sustainable materials for durable applications: Focus on toughness and heat resistance
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.6b00321
– volume: 2
  start-page: 299
  year: 2022
  ident: ref_220
  article-title: Improving the Properties of Biodegradable PLA via Blending with Polyesters for Industrial Applications
  publication-title: Eur. J. Res. Dev.
  doi: 10.56038/ejrnd.v2i4.201
– volume: 130
  start-page: 13826
  year: 2008
  ident: ref_61
  article-title: A Bifunctional Monomer Derived from Lactide for Toughening Polylactide
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja804357u
– volume: 29
  start-page: 2530
  year: 2021
  ident: ref_165
  article-title: Toughness Improvement in Bio-based Poly(Lactic Acid)/Epoxidized Natural Rubber Blend Reinforced with Nanosized Silica
  publication-title: J. Polym. Environ.
  doi: 10.1007/s10924-021-02063-z
– volume: 108
  start-page: 232
  year: 2014
  ident: ref_227
  article-title: Effect of chain extenders on thermal and mechanical properties of poly(lactic acid) at high processing temperatures: Potential application in PLA/Polyamide 6 blend
  publication-title: Polym. Degrad. Stab.
  doi: 10.1016/j.polymdegradstab.2014.04.019
– ident: ref_60
  doi: 10.1063/1.4942284
– volume: 49
  start-page: 1523
  year: 2013
  ident: ref_95
  article-title: Toughening of poly(lactic acid) by poly(β-hydroxybutyrate-co-β-hydroxyvalerate) with high β-hydroxyvalerate content
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2013.01.016
– volume: 101
  start-page: 8493
  year: 2010
  ident: ref_12
  article-title: An overview of the recent developments in polylactide (PLA) research
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.05.092
– volume: 34
  start-page: 1172
  year: 2016
  ident: ref_246
  article-title: Analysis of structure transition and compatibility of PTT/PC blend without transesterification
  publication-title: Chin. J. Polym. Sci.
  doi: 10.1007/s10118-016-1820-6
– volume: 49
  start-page: 3309
  year: 2013
  ident: ref_212
  article-title: Miscibility and properties of poly(l-lactic acid)/poly(butylene terephthalate) blends
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2013.06.038
– volume: 60
  start-page: 1672
  year: 2021
  ident: ref_48
  article-title: Morphology development of PLAs with different stereo-regularities in ternary blend PBSA/PBS/PLA films
  publication-title: Polym.-Plast. Technol. Mater.
– volume: 80
  start-page: 1
  year: 2015
  ident: ref_250
  article-title: Super toughened biodegradable polylactide blends with non-linear copolymer interfacial architecture obtained via facile in-situ reactive compatibilization
  publication-title: Polymer
  doi: 10.1016/j.polymer.2015.10.038
– volume: 2
  start-page: 9
  year: 2024
  ident: ref_125
  article-title: Unlocking the Potentials of Biodegradable Plastics with Proper Management and Evaluation at Environmentally Relevant Concentrations
  publication-title: npj Mater. Sustain.
  doi: 10.1038/s44296-024-00012-0
– volume: 245
  start-page: 124729
  year: 2022
  ident: ref_157
  article-title: Morphology development and mechanical properties of PLA/differently plasticized starch (TPS) binary blends in comparison with PLA/dynamically crosslinked “TPS+EVA” ternary blends
  publication-title: Polymer
  doi: 10.1016/j.polymer.2022.124729
– volume: 116
  start-page: 324
  year: 2017
  ident: ref_180
  article-title: Stereocomplex mesophase and its phase transition in enantiomeric polylactides
  publication-title: Polymer
  doi: 10.1016/j.polymer.2017.04.004
– volume: 43
  start-page: 6058
  year: 2010
  ident: ref_168
  article-title: Super toughened poly(lactic acid) ternary blends by simultaneous dynamic vulcanization and interfacial compatibilization
  publication-title: Macromolecules
  doi: 10.1021/ma101108g
– volume: 155
  start-page: 221
  year: 2018
  ident: ref_101
  article-title: Overview of automotive structural composites technology developments in Japan
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2017.09.015
– ident: ref_114
  doi: 10.3390/polym14122389
– volume: 175
  start-page: 107147
  year: 2019
  ident: ref_103
  article-title: Mechanical characterization of FDM 3D printing of continuous carbon fiber reinforced PLA composites
  publication-title: Compos. Part B Eng.
  doi: 10.1016/j.compositesb.2019.107147
– volume: 40
  start-page: 704
  year: 2019
  ident: ref_267
  article-title: Electrical conductivity of graphene filled PLA/PMMA blends: Experimental investigation and modeling
  publication-title: Polym. Compos.
  doi: 10.1002/pc.24722
– volume: 3
  start-page: 100067
  year: 2021
  ident: ref_123
  article-title: Biodegradation and characterization study of compostable PLA bioplastic containing algae biomass as potential degradation accelerator
  publication-title: Environ. Chall.
  doi: 10.1016/j.envc.2021.100067
– volume: 49
  start-page: 3873
  year: 2010
  ident: ref_245
  article-title: Morphology, dynamic mechanical, thermal, and crystallization behaviors of poly(trimethylene terephthalate)/polycarbonate blends
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie901767y
– volume: 41
  start-page: 23
  year: 2003
  ident: ref_262
  article-title: Miscibility and phase structure of binary blends of polylactide and poly(methyl methacrylate)
  publication-title: J. Polym. Sci. Part B Polym. Phys.
  doi: 10.1002/polb.10353
– volume: 119
  start-page: 12138
  year: 2015
  ident: ref_167
  article-title: Supertoughened biobased poly(lactic acid)–epoxidized natural rubber thermoplastic vulcanizates: Fabrication, co-continuous phase structure, interfacial in situ compatibilization, and toughening mechanism
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.5b06244
– ident: ref_158
  doi: 10.3390/polym13183066
– volume: 127
  start-page: 1612
  year: 2019
  ident: ref_108
  article-title: Polylactic acid: Synthesis and biomedical applications
  publication-title: J. Appl. Microbiol.
  doi: 10.1111/jam.14290
– volume: 31
  start-page: 343
  year: 2012
  ident: ref_16
  article-title: Recycling of aged ABS from real WEEE through ABS/PC blends in the ABS-rich compositions
  publication-title: Adv. Polym. Technol.
  doi: 10.1002/adv.20257
– volume: 38
  start-page: 46
  year: 2014
  ident: ref_211
  article-title: Quantification of PLA contamination in PET during injection moulding by in-line NIR spectroscopy
  publication-title: Polym. Test.
  doi: 10.1016/j.polymertesting.2014.06.007
– volume: 15
  start-page: 617
  year: 2007
  ident: ref_259
  article-title: Synthesis of acryl phosphate antistatic agent and its effect on the antistatic, thermal and mechanical properties of PMMA
  publication-title: Macromol. Res.
  doi: 10.1007/BF03218941
– volume: 35
  start-page: 338
  year: 2010
  ident: ref_13
  article-title: Poly(lactic acid) modifications
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2009.12.003
– ident: ref_64
  doi: 10.3390/polym14204263
– volume: 13
  start-page: 88
  year: 2005
  ident: ref_242
  article-title: Transesterification and compatibilization in the blends of bisphenol-A polycarbonate and poly(trimethylene terephthalate)
  publication-title: Macromol. Res.
  doi: 10.1007/BF03219020
– volume: 30
  start-page: 915
  year: 2005
  ident: ref_144
  article-title: Mechanical performance of polymer systems: The relation between structure and properties
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2005.06.009
– ident: ref_42
  doi: 10.3390/polym10010036
– volume: 4
  start-page: 718
  year: 2019
  ident: ref_153
  article-title: Influence of cardanol oil on the properties of poly(lactic acid) films produced by melt extrusion
  publication-title: ACS Omega
  doi: 10.1021/acsomega.8b02880
– volume: 53
  start-page: 580
  year: 2013
  ident: ref_178
  article-title: Effects of annealing time and temperature on the crystallinity and heat resistance behavior of injection-molded poly(lactic acid)
  publication-title: Polym. Eng. Sci.
  doi: 10.1002/pen.23304
– volume: 3
  start-page: 18
  year: 2019
  ident: ref_85
  article-title: Plasticiser loss from plastic or rubber products through diffusion and evaporation
  publication-title: npj Mater. Degrad.
  doi: 10.1038/s41529-019-0080-7
– volume: 45
  start-page: 1942
  year: 2010
  ident: ref_149
  article-title: Properties of epoxidized palm oil plasticized polytlactic acid
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-009-4185-1
– volume: 25
  start-page: 101365
  year: 2020
  ident: ref_70
  article-title: Effects of functionalization and annealing in enhancing the interfacial bonding and mechanical properties of 3D printed fiber-reinforced composites
  publication-title: Mater. Today Commun.
  doi: 10.1016/j.mtcomm.2020.101365
– volume: 6
  start-page: 10806
  year: 2018
  ident: ref_7
  article-title: Synthesis, Physical Properties, and Biodegradability of Biobased Poly (butylene succinate-co-butylene oxabicyclate)
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.8b02112
– volume: 112
  start-page: 161
  year: 2024
  ident: ref_27
  article-title: Research progress in polylactic acid processing for 3D printing
  publication-title: J. Manuf. Process.
  doi: 10.1016/j.jmapro.2024.01.038
– volume: 217
  start-page: 123439
  year: 2021
  ident: ref_172
  article-title: Toward morphology development and impact strength of Co-continuous supertough dynamically vulcanized rubber toughened PLA blends: Effect of sulfur content
  publication-title: Polymer
  doi: 10.1016/j.polymer.2021.123439
– volume: 48
  start-page: 85
  year: 2008
  ident: ref_87
  article-title: Toughening polylactide
  publication-title: Polym. Rev.
  doi: 10.1080/15583720701834216
– ident: ref_91
  doi: 10.1002/9783527656950.ch10
– volume: 218
  start-page: 588
  year: 2022
  ident: ref_65
  article-title: Biobased nucleation agents for poly-L-(lactic acid)—Effect on crystallization, rheological and mechanical properties
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2022.07.069
– volume: 54
  start-page: 2852
  year: 2021
  ident: ref_137
  article-title: Stable Co-Continuous PLA/PBAT Blends Compatibilized by Interfacial Stereocomplex Crystallites: Toward Full Biodegradable Polymer Blends with Simultaneously Enhanced Mechanical Properties and Crystallization Rates
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.0c02861
– volume: 14
  start-page: 3057
  year: 2024
  ident: ref_26
  article-title: An overview of biodegradable poly(lactic acid) production from fermentative lactic acid for biomedical and bioplastic applications
  publication-title: Biomass Convers. Biorefinery
  doi: 10.1007/s13399-022-02581-3
– volume: 133
  start-page: 44147
  year: 2016
  ident: ref_209
  article-title: Studies on the thermal and mechanical behavior of PLA-PET blends
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.44147
– volume: 1
  start-page: 76
  year: 2020
  ident: ref_23
  article-title: Applications of PLA in modern medicine
  publication-title: Eng. Regen.
– volume: 133
  start-page: 43771
  year: 2016
  ident: ref_255
  article-title: Sustainable biobased blends from the reactive extrusion of polylactide and acrylonitrile butadiene styrene
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.43771
– volume: 32
  start-page: 299
  year: 2013
  ident: ref_93
  article-title: Highly efficient toughening effect of ultrafine full-vulcanized powdered rubber on poly(lactic acid)(PLA)
  publication-title: Polym. Test.
  doi: 10.1016/j.polymertesting.2012.11.012
– volume: 54
  start-page: 5643
  year: 2015
  ident: ref_55
  article-title: Super Toughened and High Heat-Resistant Poly(Lactic Acid) (PLA)-Based Blends by Enhancing Interfacial Bonding and PLA Phase Crystallization
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.5b01177
– volume: 2
  start-page: 289
  year: 2014
  ident: ref_71
  article-title: Toughening poly(lactic acid) and aiding the melt-compounding with bio-sourced plasticizers
  publication-title: Agric. Agric. Sci. Procedia
– volume: 45
  start-page: 351
  year: 2006
  ident: ref_204
  article-title: Modification of waste poly(ethylene terephthalate)(PET) by using poly(L-lactic acid)(PLA) and hydrolytic stability
  publication-title: Polym. Plast. Technol. Eng.
  doi: 10.1080/03602550600553267
– volume: 15
  start-page: 4260
  year: 2014
  ident: ref_169
  article-title: Fully biobased and supertough polylactide-based thermoplastic vulcanizates fabricated by peroxide-induced dynamic vulcanization and interfacial compatibilization
  publication-title: Biomacromolecules
  doi: 10.1021/bm5012739
– ident: ref_236
  doi: 10.3390/polym11111811
– ident: ref_89
  doi: 10.3389/fchem.2013.00032
– ident: ref_198
  doi: 10.1038/srep26560
– volume: 63
  start-page: 22
  year: 2023
  ident: ref_22
  article-title: Synthesis, properties, and applications of polylactic acid-based polymers
  publication-title: Polym. Eng. Sci.
  doi: 10.1002/pen.26193
– volume: 4
  start-page: 255
  year: 2011
  ident: ref_183
  article-title: Effect of annealing on the mechanical properties of PLA/PCL and PLA/PCL/LTI polymer blends
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2010.10.003
– volume: 135
  start-page: 45951
  year: 2018
  ident: ref_218
  article-title: Development of biodegradable PLA/PBT nanoblends
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.45951
– volume: 22
  start-page: 5519
  year: 2020
  ident: ref_6
  article-title: Review of recent advances in the biodegradability of polyhydroxyalkanoate (PHA) bioplastics and their composites
  publication-title: Green Chem.
  doi: 10.1039/D0GC01647K
– volume: 117
  start-page: 101395
  year: 2021
  ident: ref_174
  article-title: Challenges and new opportunities on barrier performance of biodegradable polymers for sustainable packaging
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2021.101395
– ident: ref_129
  doi: 10.3390/polym14081626
– ident: ref_154
  doi: 10.3390/membranes12010046
– volume: 30
  start-page: 541
  year: 2022
  ident: ref_186
  article-title: Annealing Effect on Pla/Eva Blends Performance
  publication-title: J. Polym. Environ.
  doi: 10.1007/s10924-021-02220-4
– volume: 43
  start-page: 6758
  year: 2008
  ident: ref_231
  article-title: Fibrillar polymer–polymer composites: Morphology, properties and applications
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-008-2693-z
– volume: 54
  start-page: 1523
  year: 2014
  ident: ref_59
  article-title: Biorenewable blends of polyamide-11 and polylactide
  publication-title: Polym. Eng. Sci.
  doi: 10.1002/pen.23692
– volume: 133
  start-page: 101071
  year: 2023
  ident: ref_130
  article-title: The barrier properties of sustainable multiphase and multicomponent packaging materials: A review
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2023.101071
– volume: 134
  start-page: 44516
  year: 2017
  ident: ref_256
  article-title: Statistical optimization of compatibilized blends of poly(lactic acid) and acrylonitrile butadiene styrene
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.44516
– volume: 37
  start-page: 4455
  year: 1996
  ident: ref_230
  article-title: Morphology of microfibrillar reinforced composites PET/PA 6 blend
  publication-title: Polymer
  doi: 10.1016/0032-3861(96)00137-1
– ident: ref_32
  doi: 10.3390/polym14050977
– ident: ref_121
  doi: 10.3390/su152115312
– ident: ref_190
  doi: 10.3390/polym15204106
– volume: 2
  start-page: 46
  year: 2022
  ident: ref_62
  article-title: Sustainable polymers
  publication-title: Nat. Rev. Methods Primers
  doi: 10.1038/s43586-022-00124-8
– volume: 137
  start-page: 48692
  year: 2020
  ident: ref_107
  article-title: Overmolded polylactide/jute-mat eco-composites: A new method to enhance the properties of natural fiber biodegradable composites
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.48692
SSID ssj0000331829
Score 2.4275246
SecondaryResourceType review_article
Snippet The widespread use of poly(lactic acid) (PLA) from packaging to engineering applications seems to follow the current global trend. The development of...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 4556
SubjectTerms 3-D printers
Biodegradation
Bioplastics
Biopolymers
Engineering
Heat resistance
Heat transfer
Impact resistance
Impact strength
Injection molding
Lactic acid
Manufacturers
Manufacturing
Mechanical properties
Optimization
Polycarbonates
Polyesters
Polylactic acid
Polymer blends
Polymer melts
Polymers
Raw materials
Review
Technology application
Temperature
Thermal resistance
Thermal stability
Thermomechanical properties
Viscosity
Title The Development of Poly(lactic acid) (PLA)-Based Blends and Modification Strategies: Methods of Improving Key Properties towards Technical Applications—Review
URI https://www.ncbi.nlm.nih.gov/pubmed/39336298
https://www.proquest.com/docview/3110599588
https://www.proquest.com/docview/3110909510
https://pubmed.ncbi.nlm.nih.gov/PMC11433319
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtNAEF7R9gIHxD8upVoEEs3Bqu3dOLtcUIKaVkCqCFEpN8venRWVgt3W6aE3HoIH4Nl4EmbWjusgxDHyxlrpm5395sffMPYmksYJKGQo7QgDFOqjKRJlQgyGksLK1OW-ej47TU_O5MfFcNEm3Oq2rXLtE72jtpWhHPmhiIkJ6KFS7y8uQ5oaRdXVdoTGFttBF6ww-NqZHJ3Ov3RZlkigzSa60SUVGN8ffs9jdMdySBOrezfR3_64dyFtNkv2bp_pA3a_pY183OD8kN2B8hG71xMTfMx-IeK81wPEK8fn1fLmYOm_g-K5ObcDfjD_PB6EE7y7LJ8sqR-W56Xls8pSz5CHia8Va6F-x2d-wnRNL-vyD_wT3PA5ZfGvSI6Vr3zrbc19mp5A5-NeWfz3j59NAeIJO5seff1wErbzF0KDQeIqBE--CmRMVudpKvMCXASQmigyThYaUqvSGCKjnTNASpNSu9gghXEKLOTiKdsuqxKeM25j58BadC8gpIJRDhiZGOQyhdCFhSRggzUWmWnFyWlGxjLDIIVwy25xC9jrbu1FI8nxz1VvCdKMzim-yeTt5wa4H1K8ysYKvTxuIpEB21ujnrUHuM5uzS1gr7rHePSonpKXUF03a7SnqAF71hhJtyGhBVIDjf9WG-bTLSBZ780n5fk3L--NEapAs9W7_9_XC3Y3QYJFvSvxaI9tr66u4SUSpFWxz7bU9Hi_PQv463gR_wGSjxf3
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKOQAHxD-BAkaA6B6iJrE3GyMhtAWWLd2t9tBKvYXEHotKS1K6W6HeeAgegCfgoXgSZpyfZhHi1rMnlpX594y_Yex5ILUVkEtfmgEmKNRHk0eJ9jEZinIjY5u56vl0Lx4fyI-H_cM19qt5C0NtlY1NdIbalJruyLdESJGA6ifJm-OvPk2NoupqM0KjEotdOPuGKdvi9c475O-LKBq933879uupAr7G1GfpgwspcowDjMriWGY52AAg1kGgrcwVxCaJQwi0slYD4SdKZUONjtkmYCATuO8ldlkKoUijktGH9k4nEKghkapQUHE92PqShWj8ZZ_mY3f83t_Wv-P-VlszO75udINdr4NUPqyk6iZbg-IWu9aBLrzNfqJ88U7HES8tn5Xzs825e3XFM31kenxzNhn2_G30lIZvz6n7lmeF4dPSUIeSEwre4OPC4hWfunnWC9qsve3g-L_5jGoGJwT-ypeu0XfBXVGARIwPO0X4399_VOWOO-zgQvhyl60XZQH3GTehtWAMGjMQMoFBBpgHaYyccqFyA5HHeg0vUl1DodNEjnmKKRHxLT3nm8eetbTHFQDIP6leEktTsgq4k87qxw14HsLXSocJ-hQ8RCQ9ttFwPa3NxSI9F26PPW2XUdGpepMVUJ5WNMoFxB67VwlJeyChBAYiCr9OVsSnJSAQ8dWV4uizAxPHfFig2KoH_z_XE3ZlvD-dpJOdvd2H7GqEoR11zYSDDba-PDmFRxiaLfPHTh84-3TRCvgHuFpTcg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6VVEJwQPxjKLAIEM3Bqu3dOF4khBLaqKVNFCEq9Wbs3VlRKdilToV64yF4AJ6Dx-FJmPFfHYS49ezNapX55m9n9hvGXnhSWwGpdKUZYoJCfTRpEGkXk6EgNTK0SVk9n87C3UP5_mhwtMZ-NW9hqK2ysYmloTa5pjvyLeFTJKAGmLDZui1ivj15e_LVpQlSVGltxmlUENmH82-YvhVv9rZR1i-DYLLz8d2uW08YcDWmQUsXyvAixZjAqCQMZZKC9QBC7XnaylRBaKLQB08razUQl6JU1tfopG0EBhKB-15h60PMirweWx_vzOYf2hseT6C-BKriRBVCeVtfEh9dgRzQtOyOF_zbF3Sc4WqjZsfzTW6yG3XIykcVxm6xNchus-sdIsM77CeijXf6j3hu-TxfnG8uyjdYPNHHps835wejvjtGv2n4eEG9uDzJDJ_mhvqVSojwhi0Xitd8Wk63Lmiz9u6D4z_O51RBOCUqWL4s234LXpYICHB81CnJ__7-oyp-3GWHlyKZe6yX5Rk8YNz41oIxaNpAyAiGCWBWpDGOSoVKDQQO6zeyiHVNjE7zORYxJkgkt_hCbg573q49qehA_rnqFYk0JhuBO-mkfuqA5yG2rXgUoYfBQwTSYRuN1OPaeBTxBdQd9qz9jGpPtZwkg_ysWqPK8Nhh9yuQtAcSSmBYovDX0Qp82gVEKb76JTv-XFKLY3YsELbq4f_P9ZRdReWLD_Zm-4_YtQDjPGqh8YcbrLc8PYPHGKct0ye1QnD26bJ18A-xpFkE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Development+of+Poly-Based+Blends+and+Modification+Strategies%3A+Methods+of+Improving+Key+Properties+towards+Technical+Applications%E2%80%94Review&rft.jtitle=Materials&rft.au=Andrzejewski%2C+Jacek&rft.au=Das%2C+Subhasis&rft.au=Lipik%2C+Vitali&rft.au=Mohanty%2C+Amar+K&rft.date=2024-09-17&rft.pub=MDPI+AG&rft.issn=1996-1944&rft.eissn=1996-1944&rft.volume=17&rft.issue=18&rft_id=info:doi/10.3390%2Fma17184556&rft.externalDocID=A811104924
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon