The Development of Poly(lactic acid) (PLA)-Based Blends and Modification Strategies: Methods of Improving Key Properties towards Technical Applications—Review
The widespread use of poly(lactic acid) (PLA) from packaging to engineering applications seems to follow the current global trend. The development of high-performance PLA-based blends has led to the commercial introduction of various PLA-based resins with excellent thermomechanical properties. The r...
Saved in:
Published in | Materials Vol. 17; no. 18; p. 4556 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
17.09.2024
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The widespread use of poly(lactic acid) (PLA) from packaging to engineering applications seems to follow the current global trend. The development of high-performance PLA-based blends has led to the commercial introduction of various PLA-based resins with excellent thermomechanical properties. The reason for this is the progress in the field of major PLA limitations such as low thermal resistance and poor impact strength. The main purpose of using biobased polymers in polymer blends is to increase the share of renewable raw materials in the final product rather than its possible biodegradation. However, in the case of engineering applications, the focus is on achieving the required properties rather than maximizing the percentage of biopolymer. The presented review article discusses the current strategies to optimize the balance of the key features such as stiffness, toughness, and heat resistance of PLA-based blends. Improving of these properties requires molecular structural changes, which together with morphology, crystallinity, and the influence of the processing conditions are the main subjects of this article. The latest research in this field clearly indicates the high potential of using PLA-based materials in highly demanding applications. In the case of impact strength modification, it is possible to obtain values close to 800 J/m, which is a value comparable to polycarbonate. Significant improvement can also be confirmed for thermal resistance results, where heat deflection temperatures for selected types of PLA blends can reach even 130 °C after modification. The modification strategies discussed in this article confirm that a properly conducted process of selecting the blend components and the conditions of the processing technique allows for revealing the potential of PLA as an engineering plastic. |
---|---|
AbstractList | The widespread use of poly(lactic acid) (PLA) from packaging to engineering applications seems to follow the current global trend. The development of high-performance PLA-based blends has led to the commercial introduction of various PLA-based resins with excellent thermomechanical properties. The reason for this is the progress in the field of major PLA limitations such as low thermal resistance and poor impact strength. The main purpose of using biobased polymers in polymer blends is to increase the share of renewable raw materials in the final product rather than its possible biodegradation. However, in the case of engineering applications, the focus is on achieving the required properties rather than maximizing the percentage of biopolymer. The presented review article discusses the current strategies to optimize the balance of the key features such as stiffness, toughness, and heat resistance of PLA-based blends. Improving of these properties requires molecular structural changes, which together with morphology, crystallinity, and the influence of the processing conditions are the main subjects of this article. The latest research in this field clearly indicates the high potential of using PLA-based materials in highly demanding applications. In the case of impact strength modification, it is possible to obtain values close to 800 J/m, which is a value comparable to polycarbonate. Significant improvement can also be confirmed for thermal resistance results, where heat deflection temperatures for selected types of PLA blends can reach even 130 °C after modification. The modification strategies discussed in this article confirm that a properly conducted process of selecting the blend components and the conditions of the processing technique allows for revealing the potential of PLA as an engineering plastic.The widespread use of poly(lactic acid) (PLA) from packaging to engineering applications seems to follow the current global trend. The development of high-performance PLA-based blends has led to the commercial introduction of various PLA-based resins with excellent thermomechanical properties. The reason for this is the progress in the field of major PLA limitations such as low thermal resistance and poor impact strength. The main purpose of using biobased polymers in polymer blends is to increase the share of renewable raw materials in the final product rather than its possible biodegradation. However, in the case of engineering applications, the focus is on achieving the required properties rather than maximizing the percentage of biopolymer. The presented review article discusses the current strategies to optimize the balance of the key features such as stiffness, toughness, and heat resistance of PLA-based blends. Improving of these properties requires molecular structural changes, which together with morphology, crystallinity, and the influence of the processing conditions are the main subjects of this article. The latest research in this field clearly indicates the high potential of using PLA-based materials in highly demanding applications. In the case of impact strength modification, it is possible to obtain values close to 800 J/m, which is a value comparable to polycarbonate. Significant improvement can also be confirmed for thermal resistance results, where heat deflection temperatures for selected types of PLA blends can reach even 130 °C after modification. The modification strategies discussed in this article confirm that a properly conducted process of selecting the blend components and the conditions of the processing technique allows for revealing the potential of PLA as an engineering plastic. The widespread use of poly(lactic acid) (PLA) from packaging to engineering applications seems to follow the current global trend. The development of high-performance PLA-based blends has led to the commercial introduction of various PLA-based resins with excellent thermomechanical properties. The reason for this is the progress in the field of major PLA limitations such as low thermal resistance and poor impact strength. The main purpose of using biobased polymers in polymer blends is to increase the share of renewable raw materials in the final product rather than its possible biodegradation. However, in the case of engineering applications, the focus is on achieving the required properties rather than maximizing the percentage of biopolymer. The presented review article discusses the current strategies to optimize the balance of the key features such as stiffness, toughness, and heat resistance of PLA-based blends. Improving of these properties requires molecular structural changes, which together with morphology, crystallinity, and the influence of the processing conditions are the main subjects of this article. The latest research in this field clearly indicates the high potential of using PLA-based materials in highly demanding applications. In the case of impact strength modification, it is possible to obtain values close to 800 J/m, which is a value comparable to polycarbonate. Significant improvement can also be confirmed for thermal resistance results, where heat deflection temperatures for selected types of PLA blends can reach even 130 °C after modification. The modification strategies discussed in this article confirm that a properly conducted process of selecting the blend components and the conditions of the processing technique allows for revealing the potential of PLA as an engineering plastic. |
Audience | Academic |
Author | Lipik, Vitali You, Xiangyu Misra, Manjusri Tan, Lay Poh Andrzejewski, Jacek Chang, Boon Peng Das, Subhasis Mohanty, Amar K. |
AuthorAffiliation | 3 School of Engineering, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; mohanty@uoguelph.ca (A.K.M.); mmisra@uoguelph.ca (M.M.) 1 Institute of Materials Technology, Poznan University of Technology, Piotrowo 3 Str., 61-138 Poznan, Poland; jacek.andrzejewski@put.poznan.pl 5 College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; xyyou@sust.edu.cn 2 School of Materials Science & Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; subhasis.das@ntu.edu.sg (S.D.); vitali@ntu.edu.sg (V.L.) 4 Bioproducts Discovery and Development Centre, Department of Plant Agriculture, Crop Science Building, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada |
AuthorAffiliation_xml | – name: 4 Bioproducts Discovery and Development Centre, Department of Plant Agriculture, Crop Science Building, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada – name: 1 Institute of Materials Technology, Poznan University of Technology, Piotrowo 3 Str., 61-138 Poznan, Poland; jacek.andrzejewski@put.poznan.pl – name: 2 School of Materials Science & Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; subhasis.das@ntu.edu.sg (S.D.); vitali@ntu.edu.sg (V.L.) – name: 5 College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; xyyou@sust.edu.cn – name: 3 School of Engineering, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; mohanty@uoguelph.ca (A.K.M.); mmisra@uoguelph.ca (M.M.) |
Author_xml | – sequence: 1 givenname: Jacek orcidid: 0000-0001-7459-0128 surname: Andrzejewski fullname: Andrzejewski, Jacek – sequence: 2 givenname: Subhasis orcidid: 0000-0001-8380-8416 surname: Das fullname: Das, Subhasis – sequence: 3 givenname: Vitali surname: Lipik fullname: Lipik, Vitali – sequence: 4 givenname: Amar K. surname: Mohanty fullname: Mohanty, Amar K. – sequence: 5 givenname: Manjusri surname: Misra fullname: Misra, Manjusri – sequence: 6 givenname: Xiangyu orcidid: 0000-0001-9931-922X surname: You fullname: You, Xiangyu – sequence: 7 givenname: Lay Poh surname: Tan fullname: Tan, Lay Poh – sequence: 8 givenname: Boon Peng orcidid: 0000-0002-5765-9637 surname: Chang fullname: Chang, Boon Peng |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39336298$$D View this record in MEDLINE/PubMed |
BookMark | eNptks9uEzEQxleoiJbSCw-ALHFJkVLsrNdd94LS8q8iFRGEs-V4x4krr73Ym1S98RA8AM_GkzA0KZQK-2DL_n2fZ8bzuNgJMUBRPGX0qCwlfdlqdsxqXlXiQbHHpBRDJjnfubPfLQ5yvqQ4ypLVI_mo2C1lWYqRrPeKH7MlkNewBh-7FkJPoiXT6K8HXpveGaKNaw7JYDoZHw5PdYaGnHoITSY6NOQiNs46o3sXA_ncJ93DwkE-IRfQLyNCaHbedimuXViQD3BNpil2kHqESB-vdEJmBmYZ0MSTcdf5rVv--e37J1g7uHpSPLTaZzjYrvvFl7dvZmfvh5OP787PxpOh4Vz0Q6gYreRccN5ILQTXc7AUQBhKjeVzCaKpBQNqpLUG2DEi0jIjysrW0IAu94tXG99uNW-hMViLpL3qkmt1ulZRO_XvTXBLtYhrxRgvsbASHQZbhxS_riD3qnXZgPc6QFxlVTJGJZUYKKLP76GXcZUC5ndDVVJWdY3U0YZaaA_KBRvxYYOzgdYZbAPr8HxcM5RwOeIoeHY3hz_B3343AnQDmBRzTmCVcf1NwdHZecWo-t1U6m9ToeTFPcmt63_gXxJHzzo |
CitedBy_id | crossref_primary_10_1007_s00396_025_05405_8 crossref_primary_10_3390_fermentation11010041 crossref_primary_10_3390_polym17020246 crossref_primary_10_3390_polym17060800 crossref_primary_10_1002_vnl_22200 |
Cites_doi | 10.1016/j.heliyon.2023.e23952 10.1002/app.32713 10.1021/acssuschemeng.9b01830 10.3390/polym10121303 10.1002/polb.22283 10.1016/j.polymertesting.2024.108383 10.1080/03602559.2014.974274 10.1016/j.tca.2009.04.023 10.1533/9780857095602 10.1021/acsami.5b01145 10.1021/am507938s 10.1016/j.jclepro.2018.08.019 10.1016/j.polymer.2011.02.002 10.1016/j.ijbiomac.2023.128631 10.3390/su10061695 10.1080/00222341003609179 10.3390/bioengineering11070705 10.1021/ie403669a 10.1021/ma4012126 10.1016/j.polymertesting.2011.03.008 10.1016/j.polymertesting.2014.11.011 10.3390/polym15193966 10.3390/polym12071563 10.1007/s10973-013-3583-4 10.1016/S0032-3861(01)00086-6 10.1002/app.55446 10.3390/polym15163395 10.1016/j.polymer.2017.02.093 10.1002/mame.201600242 10.1186/s13036-017-0074-3 10.3390/coatings11040390 10.1016/j.polymertesting.2015.06.014 10.3144/expresspolymlett.2015.42 10.1016/j.jmbbm.2012.01.003 10.1016/j.polymdegradstab.2012.11.009 10.1016/j.carbpol.2022.119744 10.3390/polym15020303 10.1002/app.49646 10.1039/C4RA08646E 10.1016/j.foodres.2022.111792 10.1039/C7GC01496A 10.1016/j.polymer.2014.12.021 10.1007/s00289-022-04160-y 10.1021/ie502104y 10.1080/03602559.2010.496418 10.1002/pol.20190090 10.1002/app.40329 10.1016/j.scitotenv.2024.172081 10.3390/ma14237189 10.1002/app.29784 10.3144/expresspolymlett.2015.27 10.1163/092430409X12605406698471 10.1016/j.polymer.2022.125620 10.1021/ie4021182 10.1016/j.progpolymsci.2013.05.006 10.1021/acssuschemeng.5b00740 10.3390/polym15092202 10.3390/su15064699 10.1016/j.polymer.2013.05.021 10.1007/s13233-020-8090-4 10.1080/15583724.2017.1287726 10.1021/acs.biomac.5b01253 10.3390/polym14194113 10.1080/03602559.2015.1132433 10.2478/ftee-2022-0027 10.1039/D3RA03692H 10.1016/j.eurpolymj.2018.02.028 10.1002/pen.24246 10.1515/polyeng-2013-0309 10.3390/ma13214897 10.1016/j.eurpolymj.2019.02.017 10.1016/j.polymer.2012.05.003 10.3390/polym15092165 10.1039/C5RA01655J 10.1002/pen.20970 10.1016/j.polymer.2008.09.053 10.1016/j.fpsl.2024.101312 10.1016/j.actbio.2010.09.012 10.1016/j.polymertesting.2020.106628 10.1007/s10965-018-1438-1 10.1039/c3ra42096e 10.1039/D2GC02169B 10.1016/j.copbio.2005.10.011 10.1007/s11771-014-2116-z 10.1021/bm060089m 10.1016/j.compositesb.2018.10.014 10.1039/C8RA05161E 10.1515/polyeng-2015-0140 10.3390/molecules20011579 10.1016/j.polymer.2015.11.029 10.1016/j.eurpolymj.2016.07.024 10.3390/polym13081222 10.1080/03602559.2015.1098698 10.1016/j.cej.2018.01.010 10.1016/j.progpolymsci.2008.05.004 10.1038/s41598-020-68331-5 10.3390/polym11020326 10.1016/j.polymer.2015.10.037 10.1002/app.34111 10.3390/polym12071558 10.1021/acs.iecr.9b06514 10.1002/app.39473 10.1016/j.giant.2024.100261 10.56038/ejrnd.v3i1.259 10.1080/03602559.2016.1233280 10.1016/j.polymer.2004.02.070 10.1016/j.ijbiomac.2023.126231 10.1016/j.polymertesting.2017.03.009 10.1039/D0RA01801E 10.1016/j.compositesb.2018.10.078 10.1039/c3ra40899j 10.1016/j.eurpolymj.2008.12.010 10.1016/j.matdes.2017.04.073 10.1080/00222348108219449 10.1016/j.matdes.2014.10.011 10.1016/j.eurpolymj.2011.10.015 10.1081/MB-200056631 10.1016/j.polymertesting.2015.05.009 10.1016/j.ijbiomac.2020.03.120 10.1016/j.biortech.2024.130670 10.3390/polym10090996 10.1016/j.jmapro.2024.08.025 10.1002/adv.20212 10.1002/pat.3560 10.1002/mame.201200226 10.1002/app.46220 10.1080/10408398.2024.2349735 10.3390/polym10091040 10.1016/j.polymdegradstab.2010.12.019 10.1021/ie503092w 10.1038/s41598-017-10159-7 10.1016/j.compscitech.2013.10.007 10.15446/mo.n62.89099 10.1016/j.polymer.2006.03.115 10.1016/j.jhazmat.2023.131405 10.1016/j.addr.2016.06.012 10.1016/S0032-3861(96)00455-7 10.1021/acssuschemeng.5b00816 10.3390/polym8070262 10.1016/j.compositesa.2014.05.001 10.1002/app.40372 10.1007/s10924-012-0565-8 10.1021/acsengineeringau.1c00011 10.1039/c3ta12555f 10.1002/pol.20220740 10.1016/j.envc.2021.100030 10.1002/app.38407 10.3390/polym10080834 10.1016/j.eurpolymj.2017.06.004 10.1016/j.polymdegradstab.2010.02.032 10.1039/C6RA21208E 10.3390/polym15092047 10.1080/15583724.2023.2234464 10.1007/s00170-022-10795-y 10.1016/j.eurpolymj.2011.08.001 10.1016/j.matdes.2012.09.024 10.1002/mren.201000017 10.1016/j.ijbiomac.2023.123581 10.1038/srep23058 10.1021/jp805204m 10.1016/j.ijbiomac.2023.126214 10.1002/app.45991 10.3390/polym8030061 10.1007/s00289-009-0187-z 10.1002/pi.5142 10.1002/app.41415 10.1080/09506608.2019.1585004 10.1016/j.actbio.2023.07.013 10.1016/j.polymdegradstab.2016.10.011 10.1021/acs.macromol.6b02310 10.1016/j.polymer.2010.06.045 10.1016/j.ijbiomac.2019.10.246 10.3390/polym15163434 10.1002/pi.5659 10.1002/app.26982 10.1002/mame.200700006 10.1016/j.fpsl.2021.100743 10.1021/acssuschemeng.6b00321 10.56038/ejrnd.v2i4.201 10.1021/ja804357u 10.1007/s10924-021-02063-z 10.1016/j.polymdegradstab.2014.04.019 10.1063/1.4942284 10.1016/j.eurpolymj.2013.01.016 10.1016/j.biortech.2010.05.092 10.1007/s10118-016-1820-6 10.1016/j.eurpolymj.2013.06.038 10.1016/j.polymer.2015.10.038 10.1038/s44296-024-00012-0 10.1016/j.polymer.2022.124729 10.1016/j.polymer.2017.04.004 10.1021/ma101108g 10.1016/j.compscitech.2017.09.015 10.3390/polym14122389 10.1016/j.compositesb.2019.107147 10.1002/pc.24722 10.1016/j.envc.2021.100067 10.1021/ie901767y 10.1002/polb.10353 10.1021/acs.jpcb.5b06244 10.3390/polym13183066 10.1111/jam.14290 10.1002/adv.20257 10.1016/j.polymertesting.2014.06.007 10.1007/BF03218941 10.1016/j.progpolymsci.2009.12.003 10.3390/polym14204263 10.1007/BF03219020 10.1016/j.progpolymsci.2005.06.009 10.3390/polym10010036 10.1021/acsomega.8b02880 10.1002/pen.23304 10.1038/s41529-019-0080-7 10.1007/s10853-009-4185-1 10.1016/j.mtcomm.2020.101365 10.1021/acssuschemeng.8b02112 10.1016/j.jmapro.2024.01.038 10.1016/j.polymer.2021.123439 10.1080/15583720701834216 10.1002/9783527656950.ch10 10.1016/j.ijbiomac.2022.07.069 10.1021/acs.macromol.0c02861 10.1007/s13399-022-02581-3 10.1002/app.44147 10.1002/app.43771 10.1016/j.polymertesting.2012.11.012 10.1021/acs.iecr.5b01177 10.1080/03602550600553267 10.1021/bm5012739 10.3390/polym11111811 10.3389/fchem.2013.00032 10.1038/srep26560 10.1002/pen.26193 10.1016/j.jmbbm.2010.10.003 10.1002/app.45951 10.1039/D0GC01647K 10.1016/j.progpolymsci.2021.101395 10.3390/polym14081626 10.3390/membranes12010046 10.1007/s10924-021-02220-4 10.1007/s10853-008-2693-z 10.1002/pen.23692 10.1016/j.pmatsci.2023.101071 10.1002/app.44516 10.1016/0032-3861(96)00137-1 10.3390/polym14050977 10.3390/su152115312 10.3390/polym15204106 10.1038/s43586-022-00124-8 10.1002/app.48692 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 by the authors. 2024 |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 by the authors. 2024 |
DBID | AAYXX CITATION NPM 7SR 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.3390/ma17184556 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central ProQuest SciTech Premium Collection Materials Research Database Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1996-1944 |
ExternalDocumentID | PMC11433319 A811104924 39336298 10_3390_ma17184556 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: Ministry of Science and Higher Education in Poland grantid: 0613/SBAD/4820 |
GroupedDBID | 29M 2WC 2XV 53G 5GY 5VS 8FE 8FG AADQD AAFWJ AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CITATION CZ9 D1I E3Z EBS ESX FRP GX1 HCIFZ HH5 HYE I-F IAO ITC KB. KC. KQ8 MK~ MODMG M~E OK1 OVT P2P PDBOC PGMZT PHGZM PHGZT PIMPY PROAC RPM TR2 TUS NPM PQGLB PMFND 7SR 8FD ABUWG AZQEC DWQXO JG9 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c446t-e51059b644d9a664abef0ee6c00cf4b9e6d861e0c9ffce176649f1c635f8edea3 |
IEDL.DBID | BENPR |
ISSN | 1996-1944 |
IngestDate | Thu Aug 21 18:31:23 EDT 2025 Fri Jul 11 12:29:49 EDT 2025 Fri Jul 25 11:42:51 EDT 2025 Tue Jun 10 21:03:00 EDT 2025 Mon Jul 21 05:56:46 EDT 2025 Tue Jul 01 04:29:13 EDT 2025 Thu Apr 24 22:55:18 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Keywords | multiphase structures polymer blends poly(lactic acid) durability engineering application |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c446t-e51059b644d9a664abef0ee6c00cf4b9e6d861e0c9ffce176649f1c635f8edea3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-9931-922X 0000-0002-5765-9637 0000-0001-8380-8416 0000-0001-7459-0128 |
OpenAccessLink | https://www.proquest.com/docview/3110599588?pq-origsite=%requestingapplication% |
PMID | 39336298 |
PQID | 3110599588 |
PQPubID | 2032366 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11433319 proquest_miscellaneous_3110909510 proquest_journals_3110599588 gale_infotracacademiconefile_A811104924 pubmed_primary_39336298 crossref_citationtrail_10_3390_ma17184556 crossref_primary_10_3390_ma17184556 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240917 |
PublicationDateYYYYMMDD | 2024-09-17 |
PublicationDate_xml | – month: 9 year: 2024 text: 20240917 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Materials |
PublicationTitleAlternate | Materials (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Li (ref_225) 2012; 53 ref_91 ref_138 Kalita (ref_124) 2021; 3 Wang (ref_226) 2010; 49 Rasal (ref_13) 2010; 35 Shibasaki (ref_142) 2024; 2024 Martin (ref_80) 2001; 42 Choe (ref_257) 2014; 131 Xia (ref_207) 2014; 21 Andrzejewski (ref_106) 2021; 138 Shields (ref_231) 2008; 43 Marchildon (ref_221) 2011; 5 Liu (ref_196) 2016; 4 Khankrua (ref_227) 2014; 108 Ning (ref_100) 2020; 65 ref_128 ref_129 Lin (ref_55) 2015; 54 Xu (ref_197) 2014; 53 ref_120 Mohanty (ref_62) 2022; 2 Boudaoud (ref_134) 2018; 67 ref_121 Botta (ref_210) 2012; 97 Luna (ref_189) 2021; 62 Srithep (ref_249) 2014; 34 Muller (ref_152) 2016; 65 Alias (ref_176) 2019; 58 Acar (ref_204) 2006; 45 Benaniba (ref_162) 2010; 118 ref_158 ref_155 ref_154 Rigoussen (ref_58) 2019; 114 Cairns (ref_111) 2011; 7 Evstatiev (ref_230) 1996; 37 Liesenfeld (ref_69) 2024; 128 Lee (ref_97) 2023; 13 Muthukrishnan (ref_258) 2018; 135 Ebrahimi (ref_22) 2023; 63 Yunus (ref_149) 2010; 45 Kulinski (ref_78) 2006; 7 Pai (ref_228) 2013; 130 Hashima (ref_54) 2010; 51 Lin (ref_56) 2015; 26 ref_81 Chen (ref_205) 2009; 492 Tee (ref_71) 2014; 2 Wei (ref_85) 2019; 3 ref_89 Carrot (ref_240) 2007; 292 Xue (ref_243) 2005; 44 Yuryev (ref_251) 2016; 6 ref_143 Liu (ref_168) 2010; 43 ref_264 ref_84 Bangar (ref_17) 2021; 30 Cersoli (ref_104) 2021; 30 Krishnan (ref_88) 2016; 55 Yu (ref_125) 2024; 2 Tachibana (ref_7) 2018; 6 Mele (ref_153) 2019; 4 Wang (ref_200) 2015; 7 Srithep (ref_178) 2013; 53 Singh (ref_156) 2020; 153 Fakirov (ref_234) 2013; 89 Luna (ref_192) 2024; 141 Li (ref_206) 2014; 116 Mekonnen (ref_75) 2013; 1 Meijer (ref_144) 2005; 30 Xu (ref_160) 2019; 160 Vadori (ref_256) 2017; 134 George (ref_10) 2020; 154 Kaduri (ref_25) 2018; 340 Samthong (ref_215) 2015; 132 Chen (ref_137) 2021; 54 Yang (ref_99) 2012; 20 Lim (ref_38) 2008; 33 Yuryev (ref_248) 2016; 301 Haugen (ref_113) 2023; 168 ref_202 Pluta (ref_79) 2015; 41 Martino (ref_145) 2009; 112 Hong (ref_4) 2017; 19 Rigoussen (ref_57) 2017; 93 Leipold (ref_3) 2018; 201 Nazockdast (ref_157) 2022; 245 Meereboer (ref_6) 2020; 22 Hussain (ref_24) 2024; 18 Nasution (ref_139) 2024; 10 Joseph (ref_29) 2023; 125 Paydayesh (ref_267) 2019; 40 ref_236 ref_114 Kuru (ref_33) 2023; 3 ref_117 Aparna (ref_224) 2017; 56 ref_118 Liu (ref_90) 2011; 49 Liu (ref_169) 2014; 15 McLauchlin (ref_211) 2014; 38 ref_110 Tsai (ref_184) 2010; 95 ref_112 Hasan (ref_30) 2024; 3 Boonmahitthisud (ref_165) 2021; 29 (ref_9) 2005; 16 Samthong (ref_214) 2016; 56 Tee (ref_148) 2016; 11 Jin (ref_52) 2019; 164 Zolali (ref_238) 2017; 114 ref_105 Osorio (ref_141) 2022; 293 ref_229 Zahedi (ref_103) 2019; 175 Fang (ref_199) 2013; 46 Wang (ref_167) 2015; 119 Dong (ref_254) 2015; 3 Brosset (ref_182) 2023; 61 Luna (ref_186) 2022; 30 Selden (ref_39) 2000; 4 Ishikawa (ref_101) 2018; 155 Zhang (ref_262) 2003; 41 Zeng (ref_92) 2015; 5 Song (ref_246) 2016; 34 Barthes (ref_16) 2012; 31 Sun (ref_253) 2011; 122 Jacquel (ref_5) 2015; 59 Kakroodi (ref_235) 2015; 16 Yu (ref_181) 2008; 48 Kulkarni (ref_260) 2012; 11 Farah (ref_34) 2016; 107 Feng (ref_222) 2010; 49 Wu (ref_194) 2015; 54 Fakirov (ref_233) 2013; 298 Harris (ref_132) 2013; 128 Park (ref_102) 2020; 28 Nagarajan (ref_67) 2015; 7 Vadori (ref_255) 2016; 133 Jing (ref_61) 2008; 130 Papon (ref_70) 2020; 25 Jian (ref_11) 2020; 3 Wu (ref_193) 2020; 58 Laorenza (ref_18) 2024; 44 ref_20 Trinh (ref_130) 2023; 133 Yuryev (ref_133) 2016; 134 Wis (ref_107) 2020; 137 Maroufkhani (ref_172) 2021; 217 Acar (ref_203) 2007; 106 ref_28 Hamad (ref_179) 2015; 9 Shahbikian (ref_263) 2018; 25 Jang (ref_44) 2021; 47 (ref_98) 2014; 64 Zhou (ref_217) 2013; 3 Guo (ref_195) 2014; 53 Liu (ref_109) 2020; 59 Wang (ref_53) 2015; 66 (ref_208) 2016; 55 Zolali (ref_239) 2017; 50 Guo (ref_241) 2014; 4 Ou (ref_185) 2008; 49 Anderson (ref_87) 2008; 48 Aravind (ref_244) 2009; 113 Bai (ref_237) 2004; 45 Taib (ref_122) 2023; 80 Nampoothiri (ref_12) 2010; 101 Ojijo (ref_250) 2015; 80 Sulak (ref_146) 2022; 30 Chang (ref_219) 2018; 8 (ref_127) 2022; 161 Hajba (ref_63) 2016; 82 Kalita (ref_123) 2021; 3 Veiga (ref_86) 2012; 23 Shi (ref_72) 2015; 20 Kuru (ref_220) 2022; 2 Burgos (ref_150) 2013; 98 Lee (ref_247) 2011; 96 Li (ref_252) 2009; 45 Jamarani (ref_82) 2018; 10 Stoclet (ref_223) 2011; 52 Li (ref_15) 2011; 30 Kimble (ref_232) 2015; 9 ref_50 Wang (ref_177) 2017; 57 Puekpoonpoal (ref_48) 2021; 60 Singhvi (ref_108) 2019; 127 Ma (ref_96) 2012; 48 Tripathi (ref_31) 2021; 1 ref_173 Etxeberria (ref_116) 2012; 9 ref_175 Kim (ref_216) 2010; 19 Aouay (ref_65) 2022; 218 ref_51 Wang (ref_119) 2024; 926 Bair (ref_161) 1981; 20 Aravind (ref_245) 2010; 49 Hao (ref_265) 2016; 82 Gironi (ref_14) 2011; 33 Surendren (ref_19) 2022; 24 DeStefano (ref_23) 2020; 1 ref_60 Chen (ref_136) 2023; 266 He (ref_171) 2017; 59 ref_68 Takayama (ref_183) 2011; 4 ref_164 ref_66 Corriou (ref_163) 2013; 52 ref_64 Feng (ref_73) 2013; 3 Hassouna (ref_151) 2011; 47 Qahtani (ref_46) 2019; 7 Reddy (ref_166) 2013; 38 Chuakhao (ref_140) 2024; 132 Zhang (ref_94) 2013; 45 Rodriguez (ref_135) 2018; 135 Zhao (ref_36) 2020; 10 Xiaomeng (ref_115) 2018; 101 Chen (ref_126) 2023; 454 Samuel (ref_261) 2013; 54 Barczewski (ref_188) 2020; 89 Ahmad (ref_26) 2024; 14 ref_35 Lv (ref_180) 2017; 116 ref_32 Nagarajan (ref_37) 2016; 4 Maiza (ref_147) 2016; 36 ref_198 Jem (ref_21) 2020; 3 Hou (ref_41) 2017; 127 Wang (ref_27) 2024; 112 Xu (ref_201) 2015; 45 Santos (ref_218) 2018; 135 Hao (ref_266) 2015; 80 Chang (ref_131) 2023; 63 Pluta (ref_76) 2015; 46 Piorkowska (ref_77) 2006; 47 Zhao (ref_159) 2010; 64 Patel (ref_59) 2014; 54 Park (ref_259) 2007; 15 Zhao (ref_93) 2013; 32 Lu (ref_170) 2014; 53 Na (ref_242) 2005; 13 ref_47 Ma (ref_95) 2013; 49 ref_45 ref_43 ref_42 ref_187 Rubino (ref_213) 2014; 131 ref_40 ref_1 Wu (ref_174) 2021; 117 ref_2 ref_191 ref_190 McLauchlin (ref_209) 2016; 133 ref_49 ref_8 Vieira (ref_83) 2011; 30 Rubino (ref_212) 2013; 49 Nijenhuis (ref_74) 1996; 37 |
References_xml | – volume: 10 start-page: e23952 year: 2024 ident: ref_139 article-title: Properties of active packaging of PLA-PCL film integrated with chitosan as an antibacterial agent and syzygium cumini seed extract as an antioxidant agent publication-title: Heliyon doi: 10.1016/j.heliyon.2023.e23952 – volume: 118 start-page: 3499 year: 2010 ident: ref_162 article-title: Evaluation effects of biobased plasticizer on the thermal, mechanical, dynamical mechanical properties, and permanence of plasticized PVC publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.32713 – volume: 7 start-page: 14460 year: 2019 ident: ref_46 article-title: Experimental Design of Sustainable 3D-Printed Poly(Lactic Acid)/Biobased Poly(Butylene Succinate) Blends via Fused Deposition Modeling publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b01830 – ident: ref_81 doi: 10.3390/polym10121303 – volume: 49 start-page: 1051 year: 2011 ident: ref_90 article-title: Research progress in toughening modification of poly(lactic acid) publication-title: J. Polym. Sci. Part B Polym. Phys. doi: 10.1002/polb.22283 – volume: 132 start-page: 108383 year: 2024 ident: ref_140 article-title: Formulating PBS/PLA/PBAT blends for biodegradable, compostable packaging: The crucial roles of PBS content and reactive extrusion publication-title: Polym. Test. doi: 10.1016/j.polymertesting.2024.108383 – volume: 54 start-page: 1043 year: 2015 ident: ref_194 article-title: Enhancing the PLA crystallization rate and mechanical properties by melt blending with poly(styrene-butadiene-styrene) copolymer publication-title: Polym. Plast. Technol. Eng. doi: 10.1080/03602559.2014.974274 – volume: 492 start-page: 61 year: 2009 ident: ref_205 article-title: Non-isothermal crystallization of PET/PLA blends publication-title: Thermochim. Acta doi: 10.1016/j.tca.2009.04.023 – volume: 47 start-page: 102313 year: 2021 ident: ref_44 article-title: Effect of material extrusion process parameters on filament geometry and inter-filament voids in as-fabricated high solids loaded polymer composites publication-title: Addit. Manuf. – ident: ref_110 doi: 10.1533/9780857095602 – volume: 7 start-page: 11203 year: 2015 ident: ref_67 article-title: Overcoming the Fundamental Challenges in Improving the Impact Strength and Crystallinity of PLA Biocomposites: Influence of Nucleating Agent and Mold Temperature publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b01145 – volume: 7 start-page: 1364 year: 2015 ident: ref_200 article-title: More dominant shear flow effect assisted by added carbon nanotubes on crystallization kinetics of isotactic polypropylene in nanocomposites publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am507938s – volume: 201 start-page: 1125 year: 2018 ident: ref_3 article-title: The circular economy and the bio-based sector-Perspectives of European and German stakeholders publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.08.019 – volume: 52 start-page: 1417 year: 2011 ident: ref_223 article-title: Morphology, thermal behavior and mechanical properties of binary blends of compatible biosourced polymers: Polylactide/polyamide11 publication-title: Polymer doi: 10.1016/j.polymer.2011.02.002 – ident: ref_155 doi: 10.1016/j.ijbiomac.2023.128631 – volume: 2024 start-page: 1 year: 2024 ident: ref_142 article-title: Improvement in the physical properties of poly(lactic acid)/thermoplastic starch blends using oligo(lactic acid)-grafted starch publication-title: Polym. J. – ident: ref_1 doi: 10.3390/su10061695 – volume: 49 start-page: 1117 year: 2010 ident: ref_222 article-title: Structure and property of polylactide/polyamide blends publication-title: J. Macromol. Sci. Part B Phys. doi: 10.1080/00222341003609179 – ident: ref_117 doi: 10.3390/bioengineering11070705 – volume: 53 start-page: 1150 year: 2014 ident: ref_197 article-title: Preparation and Characterization of High-Melt-Strength Polylactide with Long-Chain Branched Structure through γ-Radiation-Induced Chemical Reactions publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie403669a – volume: 30 start-page: 26349833211000058 year: 2021 ident: ref_104 article-title: 3D printing of a continuous fiber-reinforced composite based on a coaxial Kevlar/PLA filament publication-title: Compos. Adv. Mater. – volume: 46 start-page: 6555 year: 2013 ident: ref_199 article-title: Shear-induced nucleation and morphological evolution for bimodal long chain branched polylactide publication-title: Macromolecules doi: 10.1021/ma4012126 – volume: 30 start-page: 478 year: 2011 ident: ref_83 article-title: Polyvinylchloride (PVC) and natural rubber films plasticized with a natural polymeric plasticizer obtained through polyesterification of rice fatty acid publication-title: Polym. Test. doi: 10.1016/j.polymertesting.2011.03.008 – volume: 41 start-page: 209 year: 2015 ident: ref_79 article-title: Tough and transparent blends of polylactide with block copolymers of ethylene glycol and propylene glycol publication-title: Polym. Test. doi: 10.1016/j.polymertesting.2014.11.011 – ident: ref_143 doi: 10.3390/polym15193966 – ident: ref_202 doi: 10.3390/polym12071563 – volume: 116 start-page: 1351 year: 2014 ident: ref_206 article-title: Electrospun fibers of poly(ethylene terephthalate) blended with poly(lactic acid) publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-013-3583-4 – volume: 42 start-page: 6209 year: 2001 ident: ref_80 article-title: Poly(lactic acid): Plasticization and properties of biodegradable multiphase systems publication-title: Polymer doi: 10.1016/S0032-3861(01)00086-6 – volume: 141 start-page: e55446 year: 2024 ident: ref_192 article-title: Tuning the mechanical and thermomechanical properties through the combined effect of crosslinking and annealing in poly(lactic acid)/acrylonitrile-EPDM-styrene blends publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.55446 – ident: ref_68 doi: 10.3390/polym15163395 – volume: 114 start-page: 277 year: 2017 ident: ref_238 article-title: Compatibilization and toughening of co-continuous ternary blends via partially wet droplets at the interface publication-title: Polymer doi: 10.1016/j.polymer.2017.02.093 – volume: 301 start-page: 1443 year: 2016 ident: ref_248 article-title: A new approach to supertough poly(lactic acid): A high temperature reactive blending publication-title: Macromol. Mater. Eng. doi: 10.1002/mame.201600242 – ident: ref_112 doi: 10.1186/s13036-017-0074-3 – ident: ref_28 doi: 10.3390/coatings11040390 – volume: 46 start-page: 79 year: 2015 ident: ref_76 article-title: Tough crystalline blends of polylactide with block copolymers of ethylene glycol and propylene glycol publication-title: Polym. Test. doi: 10.1016/j.polymertesting.2015.06.014 – volume: 9 start-page: 435 year: 2015 ident: ref_179 article-title: Properties and medical applications of polylactic acid: A review publication-title: Express Polym. Lett. doi: 10.3144/expresspolymlett.2015.42 – volume: 9 start-page: 100 year: 2012 ident: ref_116 article-title: Synthesis, structure and properties of poly(L-lactide-co-ε-caprolactone) statistical copolymers publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2012.01.003 – volume: 98 start-page: 651 year: 2013 ident: ref_150 article-title: Characterization and ageing study of poly(lactic acid) films plasticized with oligomeric lactic acid publication-title: Polym. Degrad. Stab. doi: 10.1016/j.polymdegradstab.2012.11.009 – volume: 293 start-page: 119744 year: 2022 ident: ref_141 article-title: Miscibility study of thermoplastic starch/polylactic acid blends: Thermal and superficial properties publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2022.119744 – ident: ref_138 doi: 10.3390/polym15020303 – volume: 138 start-page: 49646 year: 2021 ident: ref_106 article-title: Preparation of hybrid poly(lactic acid)/flax composites by the insert overmolding process: Evaluation of mechanical performance and thermomechanical properties publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.49646 – volume: 33 start-page: 1949 year: 2011 ident: ref_14 article-title: Bioplastics and petroleum-based plastics: Strengths and weaknesses publication-title: Energy Sources Part A Recovery Util. Environ. Eff. – volume: 4 start-page: 58880 year: 2014 ident: ref_241 article-title: Modification of the core–shell ratio to prepare PB-g-(MMA-co-St-co-GMA) particle-toughened poly(butylene terephthalate) and polycarbonate blends with balanced stiffness and toughness publication-title: RSC Adv. doi: 10.1039/C4RA08646E – volume: 161 start-page: 111792 year: 2022 ident: ref_127 article-title: Transparency of polymeric food packaging materials publication-title: Food Res. Int. doi: 10.1016/j.foodres.2022.111792 – volume: 19 start-page: 3692 year: 2017 ident: ref_4 article-title: Chemically recyclable polymers: A circular economy approach to sustainability publication-title: Green Chem. doi: 10.1039/C7GC01496A – volume: 59 start-page: 234 year: 2015 ident: ref_5 article-title: Bio-based alternatives in the synthesis of aliphatic–aromatic polyesters dedicated to biodegradable film applications publication-title: Polymer doi: 10.1016/j.polymer.2014.12.021 – volume: 80 start-page: 1179 year: 2023 ident: ref_122 article-title: A review on poly lactic acid (PLA) as a biodegradable polymer publication-title: Polym. Bull. doi: 10.1007/s00289-022-04160-y – volume: 53 start-page: 16754 year: 2014 ident: ref_195 article-title: Effects of polyoxymethylene as a polymeric nucleating agent on the isothermal crystallization and visible transmittance of poly(lactic acid) publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie502104y – volume: 49 start-page: 1241 year: 2010 ident: ref_226 article-title: Polyamide-6/poly(lactic acid) blends compatibilized by the maleic anhydride grafted polyethylene-octene elastomer publication-title: Polym. Plast. Technol. Eng. doi: 10.1080/03602559.2010.496418 – volume: 58 start-page: 500 year: 2020 ident: ref_193 article-title: Super-Toughened Heat-Resistant Poly(lactic acid) Alloys by Tailoring the Phase Morphology and the Crystallization Behaviors publication-title: J. Polym. Sci. doi: 10.1002/pol.20190090 – volume: 131 start-page: 40329 year: 2014 ident: ref_257 article-title: Mechanical properties of acrylonitrile–butadiene–styrene copolymer/poly(l-lactic acid) blends and their composites publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.40329 – volume: 926 start-page: 172081 year: 2024 ident: ref_119 article-title: Mature compost promotes biodegradable plastic degradation and reduces greenhouse gas emission during food waste composting publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2024.172081 – ident: ref_128 doi: 10.3390/ma14237189 – volume: 112 start-page: 2010 year: 2009 ident: ref_145 article-title: Processing and characterization of poly(lactic acid) films plasticized with commercial adipates publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.29784 – volume: 9 start-page: 300 year: 2015 ident: ref_232 article-title: Biodegradable microfibrillar polymer-polymer composites from poly(L-lactic acid)/poly(glycolic acid) publication-title: Express Polym. Lett. doi: 10.3144/expresspolymlett.2015.27 – volume: 19 start-page: 331 year: 2010 ident: ref_216 article-title: Chain extension effects of para-phenylene diisocyanate on crystallization behavior and biodegradability of poly(lactic acid)/poly(butylene terephthalate) blends publication-title: Adv. Compos. Mater. doi: 10.1163/092430409X12605406698471 – volume: 266 start-page: 125620 year: 2023 ident: ref_136 article-title: Design of biodegradable PLA/PBAT blends with balanced toughness and strength via interfacial compatibilization and dynamic vulcanization publication-title: Polymer doi: 10.1016/j.polymer.2022.125620 – volume: 52 start-page: 15094 year: 2013 ident: ref_163 article-title: Methodology to predict pvc plasticization using molecular simulation by pairs publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie4021182 – volume: 38 start-page: 1653 year: 2013 ident: ref_166 article-title: Biobased plastics and bionanocomposites: Current status and future opportunities publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2013.05.006 – volume: 3 start-page: 2542 year: 2015 ident: ref_254 article-title: PLLA/ABS blends compatibilized by reactive comb polymers: Double T g depression and significantly improved toughness publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.5b00740 – ident: ref_43 doi: 10.3390/polym15092202 – ident: ref_35 doi: 10.3390/su15064699 – volume: 54 start-page: 3931 year: 2013 ident: ref_261 article-title: PLLA/PMMA blends: A shear-induced miscibility with tunable morphologies and properties? publication-title: Polymer doi: 10.1016/j.polymer.2013.05.021 – ident: ref_191 – volume: 28 start-page: 714 year: 2020 ident: ref_102 article-title: Fabrication and Analysis of Long Fiber Reinforced Polypropylene Prepared via Injection Molding publication-title: Macromol. Res. doi: 10.1007/s13233-020-8090-4 – volume: 57 start-page: 557 year: 2017 ident: ref_177 article-title: Progress in Toughening Poly(Lactic Acid) with Renewable Polymers publication-title: Polym. Rev. doi: 10.1080/15583724.2017.1287726 – volume: 16 start-page: 3925 year: 2015 ident: ref_235 article-title: Poly(lactic acid)-based in situ microfibrillar composites with enhanced crystallization kinetics, mechanical properties, rheological behavior, and foaming ability publication-title: Biomacromolecules doi: 10.1021/acs.biomac.5b01253 – ident: ref_120 doi: 10.3390/polym14194113 – volume: 55 start-page: 672 year: 2016 ident: ref_208 article-title: Morphological and Mechanical Properties Dependence of PLA Amount in PET Matrix Processed by Single-Screw Extrusion publication-title: Polym. Plast. Technol. Eng. doi: 10.1080/03602559.2015.1132433 – volume: 30 start-page: 93 year: 2022 ident: ref_146 article-title: Influence of the Structure of Low MolecularWeight Esters on Poly(lactic acid) in the Plasticization Process-part 1 publication-title: Fibres Text. East. Eur. doi: 10.2478/ftee-2022-0027 – volume: 13 start-page: 22315 year: 2023 ident: ref_97 article-title: Impact fracture mechanism and heat deflection temperature of PLA/PEICT blends reinforced by glass fiber publication-title: RSC Adv. doi: 10.1039/D3RA03692H – volume: 101 start-page: 140 year: 2018 ident: ref_115 article-title: Totally biodegradable poly(trimethylene carbonate/glycolide-block-L-lactide/glycolide) copolymers: Synthesis, characterization and enzyme-catalyzed degradation behavior publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2018.02.028 – volume: 56 start-page: 258 year: 2016 ident: ref_214 article-title: Effects of size and shape of dispersed poly(butylene terephthalate) on isothermal crystallization kinetics and morphology of poly(lactic acid) blends publication-title: Polym. Eng. Sci. doi: 10.1002/pen.24246 – volume: 34 start-page: 665 year: 2014 ident: ref_249 article-title: Processing and characterization of poly(lactic acid) blended with polycarbonate and chain extender publication-title: J. Polym. Eng. doi: 10.1515/polyeng-2013-0309 – ident: ref_49 doi: 10.3390/ma13214897 – volume: 114 start-page: 118 year: 2019 ident: ref_58 article-title: A dual approach to compatibilize PLA/ABS immiscible blends with epoxidized cardanol derivatives publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2019.02.017 – volume: 53 start-page: 3043 year: 2012 ident: ref_225 article-title: Characterization of PA6/EPDM-g-MA/HDPE ternary blends: The role of core-shell structure publication-title: Polymer doi: 10.1016/j.polymer.2012.05.003 – volume: 97 start-page: 21 year: 2012 ident: ref_210 article-title: Effect of small amounts of poly(lactic acid) on the recycling of poly(ethylene terephthalate) bottles publication-title: Polym. Degrad. Stab. – ident: ref_51 doi: 10.3390/polym15092165 – volume: 5 start-page: 32546 year: 2015 ident: ref_92 article-title: Compatibilization strategies in poly(lactic acid)-based blends publication-title: Rsc Adv. doi: 10.1039/C5RA01655J – volume: 48 start-page: 634 year: 2008 ident: ref_181 article-title: Effect of annealing and orientation on microstructures and mechanical properties of polylactic acid publication-title: Polym. Eng. Sci. doi: 10.1002/pen.20970 – volume: 49 start-page: 5344 year: 2008 ident: ref_185 article-title: Influence of biaxial stretching mode on the crystalline texture in polylactic acid films publication-title: Polymer doi: 10.1016/j.polymer.2008.09.053 – volume: 44 start-page: 101312 year: 2024 ident: ref_18 article-title: Surface adhesion and physical properties of modified TPS and PBAT multilayer film publication-title: Food Packag. Shelf Life doi: 10.1016/j.fpsl.2024.101312 – volume: 7 start-page: 548 year: 2011 ident: ref_111 article-title: Through-thickness control of polymer bioresorption via electron beam irradiation publication-title: Acta Biomater. doi: 10.1016/j.actbio.2010.09.012 – volume: 89 start-page: 106628 year: 2020 ident: ref_188 article-title: Synergistic effect of different basalt fillers and annealing on the structure and properties of polylactide composites publication-title: Polym. Test. doi: 10.1016/j.polymertesting.2020.106628 – volume: 25 start-page: 58 year: 2018 ident: ref_263 article-title: Properties and phase structure of melt-processed PLA/PMMA blends publication-title: J. Polym. Res. doi: 10.1007/s10965-018-1438-1 – volume: 3 start-page: 18464 year: 2013 ident: ref_217 article-title: Synthesis and characterization of triblock copolymer PLA-b-PBT-b-PLA and its effect on the crystallization of PLA publication-title: RSC Adv. doi: 10.1039/c3ra42096e – volume: 24 start-page: 8606 year: 2022 ident: ref_19 article-title: A review of biodegradable thermoplastic starches, their blends and composites: Recent developments and opportunities for single-use plastic packaging alternatives publication-title: Green Chem. doi: 10.1039/D2GC02169B – volume: 16 start-page: 607 year: 2005 ident: ref_9 article-title: Non-biodegradable biopolymers from renewable resources: Perspectives and impacts publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2005.10.011 – volume: 21 start-page: 1725 year: 2014 ident: ref_207 article-title: Degradation behaviors, thermostability and mechanical properties of poly(ethylene terephthalate)/polylactic acid blends publication-title: J. Cent. South Univ. doi: 10.1007/s11771-014-2116-z – volume: 7 start-page: 2128 year: 2006 ident: ref_78 article-title: Plasticization of poly(L-lactide) with poly(propylene glycol) publication-title: Biomacromolecules doi: 10.1021/bm060089m – volume: 160 start-page: 147 year: 2019 ident: ref_160 article-title: Dynamically vulcanized PP/EPDM blends with balanced stiffness and toughness via in-situ compatibilization of MAA and excess ZnO nanoparticles: Preparation, structure and properties publication-title: Compos. Part B Eng. doi: 10.1016/j.compositesb.2018.10.014 – volume: 8 start-page: 27709 year: 2018 ident: ref_219 article-title: Tuning the compatibility to achieve toughened biobased poly(lactic acid)/poly(butylene terephthalate) blends publication-title: RSC Adv. doi: 10.1039/C8RA05161E – volume: 36 start-page: 371 year: 2016 ident: ref_147 article-title: Plasticizing effects of citrate esters on properties of poly(lactic acid) publication-title: J. Polym. Eng. doi: 10.1515/polyeng-2015-0140 – volume: 20 start-page: 1579 year: 2015 ident: ref_72 article-title: Synergistic effects of nucleating agents and plasticizers on the crystallization behavior of poly(lactic acid) publication-title: Molecules doi: 10.3390/molecules20011579 – volume: 82 start-page: 57 year: 2016 ident: ref_265 article-title: Intermolecular cooperativity and entanglement network in a miscible PLA/PMMA blend in the presence of nanosilica publication-title: Polymer doi: 10.1016/j.polymer.2015.11.029 – volume: 3 start-page: 60 year: 2020 ident: ref_21 article-title: The development and challenges of poly(lactic acid) and poly(glycolic acid) publication-title: Adv. Ind. Eng. Polym. Res. – volume: 11 start-page: 365 year: 2012 ident: ref_260 article-title: Effect of methyl methacrylate–acrylonitrile-butadiene–styrene (MABS) on the mechanical and thermal properties of poly(Methyl Methacrylate)(PMMA)-fly ash cenospheres (FAC) filled composites publication-title: J. Miner. Mater. Charact. Eng. – volume: 82 start-page: 232 year: 2016 ident: ref_63 article-title: Effect of crystalline forms (α′ and α) of poly(lactic acid) on its mechanical, thermo-mechanical, heat deflection temperature and creep properties publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2016.07.024 – ident: ref_45 doi: 10.3390/polym13081222 – volume: 55 start-page: 1623 year: 2016 ident: ref_88 article-title: Toughening of polylactic acid: An overview of research progress publication-title: Polym. Plast. Technol. Eng. doi: 10.1080/03602559.2015.1098698 – volume: 340 start-page: 9 year: 2018 ident: ref_25 article-title: Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.01.010 – volume: 33 start-page: 820 year: 2008 ident: ref_38 article-title: Processing technologies for poly(lactic acid) publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2008.05.004 – ident: ref_47 doi: 10.1038/s41598-020-68331-5 – ident: ref_40 doi: 10.3390/polym11020326 – volume: 80 start-page: 38 year: 2015 ident: ref_266 article-title: Entanglement network formed in miscible PLA/PMMA blends and its role in rheological and thermo-mechanical properties of the blends publication-title: Polymer doi: 10.1016/j.polymer.2015.10.037 – volume: 122 start-page: 2992 year: 2011 ident: ref_253 article-title: Polylactide toughening with epoxy-functionalized grafted acrylonitrile–butadiene–styrene particles publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.34111 – ident: ref_2 doi: 10.3390/polym12071558 – volume: 59 start-page: 4524 year: 2020 ident: ref_109 article-title: Long-Chain Branched Poly(lactic acid)-b-poly(lactide-co-caprolactone): Structure, Viscoelastic Behavior, and Triple-Shape Memory Effect as Smart Bone Fixation Material publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.9b06514 – volume: 130 start-page: 2563 year: 2013 ident: ref_228 article-title: Characterization and properties of reactive poly(lactic acid)/polyamide 610 biomass blends publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.39473 – volume: 18 start-page: 100261 year: 2024 ident: ref_24 article-title: A review on PLA-based biodegradable materials for biomedical applications publication-title: Giant doi: 10.1016/j.giant.2024.100261 – volume: 3 start-page: 175 year: 2023 ident: ref_33 article-title: Poly(Lactic Acid)/Polyester Blends: Review of Current and Future Applications publication-title: Eur. J. Res. Dev. doi: 10.56038/ejrnd.v3i1.259 – volume: 56 start-page: 617 year: 2017 ident: ref_224 article-title: Review on various compatibilizers and its effect on mechanical properties of compatibilized nylon blends publication-title: Polym. Plast. Technol. Eng. doi: 10.1080/03602559.2016.1233280 – volume: 11 start-page: 1518 year: 2016 ident: ref_148 article-title: Comparative study of chemical, mechanical, thermal, and barrier properties of poly(lactic acid) plasticized with epoxidized soybean oil and epoxidized palm oil publication-title: BioResources – volume: 45 start-page: 3063 year: 2004 ident: ref_237 article-title: Microstructures and mechanical properties of polypropylene/polyamide 6/polyethelene-octene elastomer blends publication-title: Polymer doi: 10.1016/j.polymer.2004.02.070 – ident: ref_173 doi: 10.1016/j.ijbiomac.2023.126231 – volume: 59 start-page: 470 year: 2017 ident: ref_171 article-title: Toughening polylactide by dynamic vulcanization with castor oil and different types of diisocyanates publication-title: Polym. Test. doi: 10.1016/j.polymertesting.2017.03.009 – volume: 10 start-page: 13316 year: 2020 ident: ref_36 article-title: Super tough poly(lactic acid) blends: A comprehensive review publication-title: RSC Adv. doi: 10.1039/D0RA01801E – volume: 164 start-page: 287 year: 2019 ident: ref_52 article-title: Improvement of thermal behaviors of biodegradable poly(lactic acid) polymer: A review publication-title: Compos. Part B Eng. doi: 10.1016/j.compositesb.2018.10.078 – volume: 3 start-page: 11738 year: 2013 ident: ref_73 article-title: Study on biocompatible PLLA–PEG blends with high toughness and strength via pressure-induced-flow processing publication-title: RSC Adv. doi: 10.1039/c3ra40899j – volume: 45 start-page: 738 year: 2009 ident: ref_252 article-title: Improvement in toughness of poly(l-lactide)(PLLA) through reactive blending with acrylonitrile–butadiene–styrene copolymer (ABS): Morphology and properties publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2008.12.010 – volume: 127 start-page: 115 year: 2017 ident: ref_41 article-title: A novel gas-assisted microcellular injection molding method for preparing lightweight foams with superior surface appearance and enhanced mechanical performance publication-title: Mater. Des. doi: 10.1016/j.matdes.2017.04.073 – volume: 20 start-page: 381 year: 1981 ident: ref_161 article-title: Morphology of lightly plasticized PVC publication-title: J. Macromol. Sci. Part B Phys. doi: 10.1080/00222348108219449 – volume: 66 start-page: 7 year: 2015 ident: ref_53 article-title: Heat resistance, crystallization behavior, and mechanical properties of polylactide/nucleating agent composites publication-title: Mater. Des. (1980–2015) doi: 10.1016/j.matdes.2014.10.011 – volume: 48 start-page: 146 year: 2012 ident: ref_96 article-title: Toughening of poly(lactic acid) by ethylene-co-vinyl acetate copolymer with different vinyl acetate contents publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2011.10.015 – volume: 44 start-page: 331 year: 2005 ident: ref_243 article-title: Compatibilization of poly(trimethylene terephthalate)/polycarbonate blends by epoxy. Part 2. Melting behavior and spherulite morphology publication-title: J. Macromol. Sci. Part B Phys. doi: 10.1081/MB-200056631 – volume: 45 start-page: 101 year: 2015 ident: ref_201 article-title: Crystallization kinetics and morphology of biodegradable poly(lactic acid) with a hydrazide nucleating agent publication-title: Polym. Test. doi: 10.1016/j.polymertesting.2015.05.009 – volume: 154 start-page: 329 year: 2020 ident: ref_10 article-title: A comprehensive review on chemical properties and applications of biopolymers and their composites publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2020.03.120 – ident: ref_118 doi: 10.1016/j.biortech.2024.130670 – ident: ref_264 doi: 10.3390/polym10090996 – volume: 128 start-page: 133 year: 2024 ident: ref_69 article-title: Impact of annealing on the characteristics of 3D-printed graphene-reinforced PLA composite publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2024.08.025 – volume: 30 start-page: 150 year: 2011 ident: ref_15 article-title: Dynamic rheological behavior and morphology of polylactide/poly(butylenes adipate-co-terephthalate) blends with various composition ratios publication-title: Adv. Polym. Technol. doi: 10.1002/adv.20212 – volume: 3 start-page: 100020 year: 2024 ident: ref_30 article-title: Potential of recycled PLA in 3D printing: A review publication-title: Sustain. Manuf. Serv. Econ. – volume: 26 start-page: 1247 year: 2015 ident: ref_56 article-title: Improving the impact property and heat-resistance of PLA/PC blends through coupling molecular chains at the interface publication-title: Polym. Adv. Technol. doi: 10.1002/pat.3560 – volume: 298 start-page: 9 year: 2013 ident: ref_233 article-title: Nano- and Microfibrillar Single-Polymer Composites: A Review publication-title: Macromol. Mater. Eng. doi: 10.1002/mame.201200226 – volume: 135 start-page: 46220 year: 2018 ident: ref_258 article-title: High heat resistant blends of poly(methyl methacrylate) and styrenic copolymers via post reactor modification publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.46220 – ident: ref_20 doi: 10.1080/10408398.2024.2349735 – ident: ref_164 doi: 10.3390/polym10091040 – volume: 96 start-page: 553 year: 2011 ident: ref_247 article-title: Compatibilizing effects for improving mechanical properties of biodegradable poly(lactic acid) and polycarbonate blends publication-title: Polym. Degrad. Stab. doi: 10.1016/j.polymdegradstab.2010.12.019 – volume: 53 start-page: 17386 year: 2014 ident: ref_170 article-title: Supertoughened poly(lactic acid)/polyurethane blend material by in situ reactive interfacial compatibilization via dynamic vulcanization publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie503092w – ident: ref_84 doi: 10.1038/s41598-017-10159-7 – volume: 89 start-page: 211 year: 2013 ident: ref_234 article-title: Nano-/microfibrillar polymer–polymer and single polymer composites: The converting instead of adding concept publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2013.10.007 – volume: 3 start-page: 19 year: 2020 ident: ref_11 article-title: An overview on synthesis, properties and applications of poly(butylene-adipate-co-terephthalate)–PBAT publication-title: Adv. Ind. Eng. Polym. Res. – volume: 23 start-page: 72 year: 2012 ident: ref_86 article-title: Migration of phthalate-based plasticizers from PVC and non-PVC containers and medical devices publication-title: J. Braz. Chem. Soc. – volume: 62 start-page: 1 year: 2021 ident: ref_189 article-title: Annealing efficacy on PLA. Insights on mechanical, thermomechanical and crystallinity characters publication-title: Momento doi: 10.15446/mo.n62.89099 – volume: 47 start-page: 7178 year: 2006 ident: ref_77 article-title: Plasticization of semicrystalline poly(L-lactide) with poly(propylene glycol) publication-title: Polymer doi: 10.1016/j.polymer.2006.03.115 – volume: 454 start-page: 131405 year: 2023 ident: ref_126 article-title: Comparing the bacterial composition, succession and assembly patterns in plastisphere and kitchen waste composting with PLA/PBAT blends publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2023.131405 – volume: 107 start-page: 367 year: 2016 ident: ref_34 article-title: Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2016.06.012 – volume: 37 start-page: 5849 year: 1996 ident: ref_74 article-title: High molecular weight poly(L-lactide) and poly(ethylene oxide) blends: Thermal characterization and physical properties publication-title: Polymer doi: 10.1016/S0032-3861(96)00455-7 – volume: 4 start-page: 111 year: 2016 ident: ref_196 article-title: Remarkably enhanced impact toughness and heat resistance of poly(L-lactide)/thermoplastic polyurethane blends by constructing stereocomplex crystallites in the matrix publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.5b00816 – ident: ref_8 doi: 10.3390/polym8070262 – volume: 64 start-page: 99 year: 2014 ident: ref_98 article-title: Investigation of injection moulded poly(lactic acid) reinforced with long basalt fibres publication-title: Compos. Part A Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2014.05.001 – volume: 131 start-page: 40372 year: 2014 ident: ref_213 article-title: Isothermal and non-isothermal crystallization of poly(L-lactic acid)/poly(butylene terephthalate) blends publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.40372 – volume: 20 start-page: 1124 year: 2012 ident: ref_99 article-title: Molding Method, Thermal and Mechanical Properties of Jute/PLA Injection Molding publication-title: J. Polym. Environ. doi: 10.1007/s10924-012-0565-8 – volume: 58 start-page: 1399 year: 2019 ident: ref_176 article-title: An overview of toughening polylactic acid by an elastomer publication-title: Polym. Plast. Technol. Mater. – volume: 1 start-page: 7 year: 2021 ident: ref_31 article-title: Durable Polylactic Acid (PLA)-Based Sustainable Engineered Blends and Biocomposites: Recent Developments, Challenges, and Opportunities publication-title: ACS Eng. Au doi: 10.1021/acsengineeringau.1c00011 – volume: 1 start-page: 13379 year: 2013 ident: ref_75 article-title: Progress in bio-based plastics and plasticizing modifications publication-title: J. Mater. Chem. A doi: 10.1039/c3ta12555f – volume: 4 start-page: 159 year: 2000 ident: ref_39 article-title: Thin wall modling of engineering plastics—A literature survey publication-title: J. Inject. Molding Technol. – volume: 61 start-page: 829 year: 2023 ident: ref_182 article-title: Preparation of oriented poly(lactic acid) thin films by a combination of high temperature rubbing and thermal annealing: Impact of annealing parameters on structure, polymorphism and morphology publication-title: J. Polym. Sci. doi: 10.1002/pol.20220740 – volume: 3 start-page: 100030 year: 2021 ident: ref_124 article-title: Demonstrating an ideal compostable plastic using biodegradability kinetics of poly(lactic acid) (PLA) based green biocomposite films under aerobic composting conditions publication-title: Environ. Chall. doi: 10.1016/j.envc.2021.100030 – volume: 128 start-page: 2136 year: 2013 ident: ref_132 article-title: Durability of polylactide-based polymer blends for injection-molded applications publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.38407 – volume: 10 start-page: 834 year: 2018 ident: ref_82 article-title: How green is your plasticizer? publication-title: Polymers doi: 10.3390/polym10080834 – volume: 93 start-page: 272 year: 2017 ident: ref_57 article-title: In-depth investigation on the effect and role of cardanol in the compatibilization of PLA/ABS immiscible blends by reactive extrusion publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2017.06.004 – volume: 95 start-page: 1292 year: 2010 ident: ref_184 article-title: Crystallinity and dimensional stability of biaxial oriented poly(lactic acid) films publication-title: Polym. Degrad. Stab. doi: 10.1016/j.polymdegradstab.2010.02.032 – volume: 6 start-page: 105094 year: 2016 ident: ref_251 article-title: Novel super-toughened bio-based blend from polycarbonate and poly(lactic acid) for durable applications publication-title: RSC Adv. doi: 10.1039/C6RA21208E – ident: ref_50 doi: 10.3390/polym15092047 – volume: 63 start-page: 961 year: 2023 ident: ref_131 article-title: Natural Antioxidant and Antimicrobial Agents and Processing Technologies for the Design of Active Food Packaging Polymers publication-title: Polym. Rev. doi: 10.1080/15583724.2023.2234464 – volume: 125 start-page: 1015 year: 2023 ident: ref_29 article-title: 3D printing of polylactic acid: Recent advances and opportunities publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-022-10795-y – volume: 47 start-page: 2134 year: 2011 ident: ref_151 article-title: New approach on the development of plasticized polylactide (PLA): Grafting of poly(ethylene glycol)(PEG) via reactive extrusion publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2011.08.001 – volume: 45 start-page: 198 year: 2013 ident: ref_94 article-title: Thermal, mechanical and rheological properties of polylactide toughened by expoxidized natural rubber publication-title: Mater. Des. doi: 10.1016/j.matdes.2012.09.024 – volume: 5 start-page: 22 year: 2011 ident: ref_221 article-title: Polyamides–still strong after seventy years publication-title: Macromol. React. Eng. doi: 10.1002/mren.201000017 – ident: ref_66 doi: 10.1016/j.ijbiomac.2023.123581 – ident: ref_105 doi: 10.1038/srep23058 – volume: 113 start-page: 1569 year: 2009 ident: ref_244 article-title: A study on reaction-induced miscibility of poly(trimethylene terephthalate)/polycarbonate blends publication-title: J. Phys. Chem. B doi: 10.1021/jp805204m – ident: ref_175 doi: 10.1016/j.ijbiomac.2023.126214 – volume: 135 start-page: 45991 year: 2018 ident: ref_135 article-title: Hydrolytic stability of polylactide and poly(methyl methacrylate) blends publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.45991 – ident: ref_229 doi: 10.3390/polym8030061 – volume: 64 start-page: 291 year: 2010 ident: ref_159 article-title: Dynamic rheology–morphology relationship of PP/EPDM blends prepared by melt mixing under Sc-CO2 publication-title: Polym. Bull. doi: 10.1007/s00289-009-0187-z – volume: 65 start-page: 970 year: 2016 ident: ref_152 article-title: Influence of plasticizers on thermal properties and crystallization behaviour of poly(lactic acid) films obtained by compression moulding publication-title: Polym. Int. doi: 10.1002/pi.5142 – volume: 132 start-page: 41415 year: 2015 ident: ref_215 article-title: Morphology, structure, and properties of poly(lactic acid) microporous films containing poly(butylene terephthalate) fine fibers fabricated by biaxial stretching publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.41415 – volume: 65 start-page: 164 year: 2020 ident: ref_100 article-title: A review of Long fibre thermoplastic (LFT) composites publication-title: Int. Mater. Rev. doi: 10.1080/09506608.2019.1585004 – volume: 168 start-page: 1 year: 2023 ident: ref_113 article-title: Use of 3D-printed polylactic acid/bioceramic composite scaffolds for bone tissue engineering in preclinical in vivo studies: A systematic review publication-title: Acta Biomater. doi: 10.1016/j.actbio.2023.07.013 – volume: 134 start-page: 227 year: 2016 ident: ref_133 article-title: Hydrolytic stability of polycarbonate/poly(lactic acid) blends and its evaluation via poly(lactic) acid median melting point depression publication-title: Polym. Degrad. Stab. doi: 10.1016/j.polymdegradstab.2016.10.011 – volume: 50 start-page: 264 year: 2017 ident: ref_239 article-title: Ultratough co-continuous PLA/PA11 by interfacially percolated poly(ether-b-amide) publication-title: Macromolecules doi: 10.1021/acs.macromol.6b02310 – volume: 51 start-page: 3934 year: 2010 ident: ref_54 article-title: Structure-properties of super-tough PLA alloy with excellent heat resistance publication-title: Polymer doi: 10.1016/j.polymer.2010.06.045 – volume: 153 start-page: 1165 year: 2020 ident: ref_156 article-title: Modulating the properties of polylactic acid for packaging applications using biobased plasticizers and naturally obtained fillers publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2019.10.246 – ident: ref_187 doi: 10.3390/polym15163434 – volume: 67 start-page: 1393 year: 2018 ident: ref_134 article-title: Hydrolytic degradation of poly(l-lactic acid)/poly(methyl methacrylate) blends publication-title: Polym. Int. doi: 10.1002/pi.5659 – volume: 106 start-page: 4180 year: 2007 ident: ref_203 article-title: Nonisothermal crystallization kinetics and morphology of poly(ethylene terephthalate) modified with poly(lactic acid) publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.26982 – volume: 292 start-page: 693 year: 2007 ident: ref_240 article-title: Immiscible blends of PC and PET, current knowledge and new results: Rheological properties publication-title: Macromol. Mater. Eng. doi: 10.1002/mame.200700006 – volume: 30 start-page: 100743 year: 2021 ident: ref_17 article-title: Recent advances in thermoplastic starches for food packaging: A review publication-title: Food Packag. Shelf Life doi: 10.1016/j.fpsl.2021.100743 – volume: 4 start-page: 2899 year: 2016 ident: ref_37 article-title: Perspective on polylactic acid (PLA) based sustainable materials for durable applications: Focus on toughness and heat resistance publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.6b00321 – volume: 2 start-page: 299 year: 2022 ident: ref_220 article-title: Improving the Properties of Biodegradable PLA via Blending with Polyesters for Industrial Applications publication-title: Eur. J. Res. Dev. doi: 10.56038/ejrnd.v2i4.201 – volume: 130 start-page: 13826 year: 2008 ident: ref_61 article-title: A Bifunctional Monomer Derived from Lactide for Toughening Polylactide publication-title: J. Am. Chem. Soc. doi: 10.1021/ja804357u – volume: 29 start-page: 2530 year: 2021 ident: ref_165 article-title: Toughness Improvement in Bio-based Poly(Lactic Acid)/Epoxidized Natural Rubber Blend Reinforced with Nanosized Silica publication-title: J. Polym. Environ. doi: 10.1007/s10924-021-02063-z – volume: 108 start-page: 232 year: 2014 ident: ref_227 article-title: Effect of chain extenders on thermal and mechanical properties of poly(lactic acid) at high processing temperatures: Potential application in PLA/Polyamide 6 blend publication-title: Polym. Degrad. Stab. doi: 10.1016/j.polymdegradstab.2014.04.019 – ident: ref_60 doi: 10.1063/1.4942284 – volume: 49 start-page: 1523 year: 2013 ident: ref_95 article-title: Toughening of poly(lactic acid) by poly(β-hydroxybutyrate-co-β-hydroxyvalerate) with high β-hydroxyvalerate content publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2013.01.016 – volume: 101 start-page: 8493 year: 2010 ident: ref_12 article-title: An overview of the recent developments in polylactide (PLA) research publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.05.092 – volume: 34 start-page: 1172 year: 2016 ident: ref_246 article-title: Analysis of structure transition and compatibility of PTT/PC blend without transesterification publication-title: Chin. J. Polym. Sci. doi: 10.1007/s10118-016-1820-6 – volume: 49 start-page: 3309 year: 2013 ident: ref_212 article-title: Miscibility and properties of poly(l-lactic acid)/poly(butylene terephthalate) blends publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2013.06.038 – volume: 60 start-page: 1672 year: 2021 ident: ref_48 article-title: Morphology development of PLAs with different stereo-regularities in ternary blend PBSA/PBS/PLA films publication-title: Polym.-Plast. Technol. Mater. – volume: 80 start-page: 1 year: 2015 ident: ref_250 article-title: Super toughened biodegradable polylactide blends with non-linear copolymer interfacial architecture obtained via facile in-situ reactive compatibilization publication-title: Polymer doi: 10.1016/j.polymer.2015.10.038 – volume: 2 start-page: 9 year: 2024 ident: ref_125 article-title: Unlocking the Potentials of Biodegradable Plastics with Proper Management and Evaluation at Environmentally Relevant Concentrations publication-title: npj Mater. Sustain. doi: 10.1038/s44296-024-00012-0 – volume: 245 start-page: 124729 year: 2022 ident: ref_157 article-title: Morphology development and mechanical properties of PLA/differently plasticized starch (TPS) binary blends in comparison with PLA/dynamically crosslinked “TPS+EVA” ternary blends publication-title: Polymer doi: 10.1016/j.polymer.2022.124729 – volume: 116 start-page: 324 year: 2017 ident: ref_180 article-title: Stereocomplex mesophase and its phase transition in enantiomeric polylactides publication-title: Polymer doi: 10.1016/j.polymer.2017.04.004 – volume: 43 start-page: 6058 year: 2010 ident: ref_168 article-title: Super toughened poly(lactic acid) ternary blends by simultaneous dynamic vulcanization and interfacial compatibilization publication-title: Macromolecules doi: 10.1021/ma101108g – volume: 155 start-page: 221 year: 2018 ident: ref_101 article-title: Overview of automotive structural composites technology developments in Japan publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2017.09.015 – ident: ref_114 doi: 10.3390/polym14122389 – volume: 175 start-page: 107147 year: 2019 ident: ref_103 article-title: Mechanical characterization of FDM 3D printing of continuous carbon fiber reinforced PLA composites publication-title: Compos. Part B Eng. doi: 10.1016/j.compositesb.2019.107147 – volume: 40 start-page: 704 year: 2019 ident: ref_267 article-title: Electrical conductivity of graphene filled PLA/PMMA blends: Experimental investigation and modeling publication-title: Polym. Compos. doi: 10.1002/pc.24722 – volume: 3 start-page: 100067 year: 2021 ident: ref_123 article-title: Biodegradation and characterization study of compostable PLA bioplastic containing algae biomass as potential degradation accelerator publication-title: Environ. Chall. doi: 10.1016/j.envc.2021.100067 – volume: 49 start-page: 3873 year: 2010 ident: ref_245 article-title: Morphology, dynamic mechanical, thermal, and crystallization behaviors of poly(trimethylene terephthalate)/polycarbonate blends publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie901767y – volume: 41 start-page: 23 year: 2003 ident: ref_262 article-title: Miscibility and phase structure of binary blends of polylactide and poly(methyl methacrylate) publication-title: J. Polym. Sci. Part B Polym. Phys. doi: 10.1002/polb.10353 – volume: 119 start-page: 12138 year: 2015 ident: ref_167 article-title: Supertoughened biobased poly(lactic acid)–epoxidized natural rubber thermoplastic vulcanizates: Fabrication, co-continuous phase structure, interfacial in situ compatibilization, and toughening mechanism publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.5b06244 – ident: ref_158 doi: 10.3390/polym13183066 – volume: 127 start-page: 1612 year: 2019 ident: ref_108 article-title: Polylactic acid: Synthesis and biomedical applications publication-title: J. Appl. Microbiol. doi: 10.1111/jam.14290 – volume: 31 start-page: 343 year: 2012 ident: ref_16 article-title: Recycling of aged ABS from real WEEE through ABS/PC blends in the ABS-rich compositions publication-title: Adv. Polym. Technol. doi: 10.1002/adv.20257 – volume: 38 start-page: 46 year: 2014 ident: ref_211 article-title: Quantification of PLA contamination in PET during injection moulding by in-line NIR spectroscopy publication-title: Polym. Test. doi: 10.1016/j.polymertesting.2014.06.007 – volume: 15 start-page: 617 year: 2007 ident: ref_259 article-title: Synthesis of acryl phosphate antistatic agent and its effect on the antistatic, thermal and mechanical properties of PMMA publication-title: Macromol. Res. doi: 10.1007/BF03218941 – volume: 35 start-page: 338 year: 2010 ident: ref_13 article-title: Poly(lactic acid) modifications publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2009.12.003 – ident: ref_64 doi: 10.3390/polym14204263 – volume: 13 start-page: 88 year: 2005 ident: ref_242 article-title: Transesterification and compatibilization in the blends of bisphenol-A polycarbonate and poly(trimethylene terephthalate) publication-title: Macromol. Res. doi: 10.1007/BF03219020 – volume: 30 start-page: 915 year: 2005 ident: ref_144 article-title: Mechanical performance of polymer systems: The relation between structure and properties publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2005.06.009 – ident: ref_42 doi: 10.3390/polym10010036 – volume: 4 start-page: 718 year: 2019 ident: ref_153 article-title: Influence of cardanol oil on the properties of poly(lactic acid) films produced by melt extrusion publication-title: ACS Omega doi: 10.1021/acsomega.8b02880 – volume: 53 start-page: 580 year: 2013 ident: ref_178 article-title: Effects of annealing time and temperature on the crystallinity and heat resistance behavior of injection-molded poly(lactic acid) publication-title: Polym. Eng. Sci. doi: 10.1002/pen.23304 – volume: 3 start-page: 18 year: 2019 ident: ref_85 article-title: Plasticiser loss from plastic or rubber products through diffusion and evaporation publication-title: npj Mater. Degrad. doi: 10.1038/s41529-019-0080-7 – volume: 45 start-page: 1942 year: 2010 ident: ref_149 article-title: Properties of epoxidized palm oil plasticized polytlactic acid publication-title: J. Mater. Sci. doi: 10.1007/s10853-009-4185-1 – volume: 25 start-page: 101365 year: 2020 ident: ref_70 article-title: Effects of functionalization and annealing in enhancing the interfacial bonding and mechanical properties of 3D printed fiber-reinforced composites publication-title: Mater. Today Commun. doi: 10.1016/j.mtcomm.2020.101365 – volume: 6 start-page: 10806 year: 2018 ident: ref_7 article-title: Synthesis, Physical Properties, and Biodegradability of Biobased Poly (butylene succinate-co-butylene oxabicyclate) publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b02112 – volume: 112 start-page: 161 year: 2024 ident: ref_27 article-title: Research progress in polylactic acid processing for 3D printing publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2024.01.038 – volume: 217 start-page: 123439 year: 2021 ident: ref_172 article-title: Toward morphology development and impact strength of Co-continuous supertough dynamically vulcanized rubber toughened PLA blends: Effect of sulfur content publication-title: Polymer doi: 10.1016/j.polymer.2021.123439 – volume: 48 start-page: 85 year: 2008 ident: ref_87 article-title: Toughening polylactide publication-title: Polym. Rev. doi: 10.1080/15583720701834216 – ident: ref_91 doi: 10.1002/9783527656950.ch10 – volume: 218 start-page: 588 year: 2022 ident: ref_65 article-title: Biobased nucleation agents for poly-L-(lactic acid)—Effect on crystallization, rheological and mechanical properties publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2022.07.069 – volume: 54 start-page: 2852 year: 2021 ident: ref_137 article-title: Stable Co-Continuous PLA/PBAT Blends Compatibilized by Interfacial Stereocomplex Crystallites: Toward Full Biodegradable Polymer Blends with Simultaneously Enhanced Mechanical Properties and Crystallization Rates publication-title: Macromolecules doi: 10.1021/acs.macromol.0c02861 – volume: 14 start-page: 3057 year: 2024 ident: ref_26 article-title: An overview of biodegradable poly(lactic acid) production from fermentative lactic acid for biomedical and bioplastic applications publication-title: Biomass Convers. Biorefinery doi: 10.1007/s13399-022-02581-3 – volume: 133 start-page: 44147 year: 2016 ident: ref_209 article-title: Studies on the thermal and mechanical behavior of PLA-PET blends publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.44147 – volume: 1 start-page: 76 year: 2020 ident: ref_23 article-title: Applications of PLA in modern medicine publication-title: Eng. Regen. – volume: 133 start-page: 43771 year: 2016 ident: ref_255 article-title: Sustainable biobased blends from the reactive extrusion of polylactide and acrylonitrile butadiene styrene publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.43771 – volume: 32 start-page: 299 year: 2013 ident: ref_93 article-title: Highly efficient toughening effect of ultrafine full-vulcanized powdered rubber on poly(lactic acid)(PLA) publication-title: Polym. Test. doi: 10.1016/j.polymertesting.2012.11.012 – volume: 54 start-page: 5643 year: 2015 ident: ref_55 article-title: Super Toughened and High Heat-Resistant Poly(Lactic Acid) (PLA)-Based Blends by Enhancing Interfacial Bonding and PLA Phase Crystallization publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.5b01177 – volume: 2 start-page: 289 year: 2014 ident: ref_71 article-title: Toughening poly(lactic acid) and aiding the melt-compounding with bio-sourced plasticizers publication-title: Agric. Agric. Sci. Procedia – volume: 45 start-page: 351 year: 2006 ident: ref_204 article-title: Modification of waste poly(ethylene terephthalate)(PET) by using poly(L-lactic acid)(PLA) and hydrolytic stability publication-title: Polym. Plast. Technol. Eng. doi: 10.1080/03602550600553267 – volume: 15 start-page: 4260 year: 2014 ident: ref_169 article-title: Fully biobased and supertough polylactide-based thermoplastic vulcanizates fabricated by peroxide-induced dynamic vulcanization and interfacial compatibilization publication-title: Biomacromolecules doi: 10.1021/bm5012739 – ident: ref_236 doi: 10.3390/polym11111811 – ident: ref_89 doi: 10.3389/fchem.2013.00032 – ident: ref_198 doi: 10.1038/srep26560 – volume: 63 start-page: 22 year: 2023 ident: ref_22 article-title: Synthesis, properties, and applications of polylactic acid-based polymers publication-title: Polym. Eng. Sci. doi: 10.1002/pen.26193 – volume: 4 start-page: 255 year: 2011 ident: ref_183 article-title: Effect of annealing on the mechanical properties of PLA/PCL and PLA/PCL/LTI polymer blends publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2010.10.003 – volume: 135 start-page: 45951 year: 2018 ident: ref_218 article-title: Development of biodegradable PLA/PBT nanoblends publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.45951 – volume: 22 start-page: 5519 year: 2020 ident: ref_6 article-title: Review of recent advances in the biodegradability of polyhydroxyalkanoate (PHA) bioplastics and their composites publication-title: Green Chem. doi: 10.1039/D0GC01647K – volume: 117 start-page: 101395 year: 2021 ident: ref_174 article-title: Challenges and new opportunities on barrier performance of biodegradable polymers for sustainable packaging publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2021.101395 – ident: ref_129 doi: 10.3390/polym14081626 – ident: ref_154 doi: 10.3390/membranes12010046 – volume: 30 start-page: 541 year: 2022 ident: ref_186 article-title: Annealing Effect on Pla/Eva Blends Performance publication-title: J. Polym. Environ. doi: 10.1007/s10924-021-02220-4 – volume: 43 start-page: 6758 year: 2008 ident: ref_231 article-title: Fibrillar polymer–polymer composites: Morphology, properties and applications publication-title: J. Mater. Sci. doi: 10.1007/s10853-008-2693-z – volume: 54 start-page: 1523 year: 2014 ident: ref_59 article-title: Biorenewable blends of polyamide-11 and polylactide publication-title: Polym. Eng. Sci. doi: 10.1002/pen.23692 – volume: 133 start-page: 101071 year: 2023 ident: ref_130 article-title: The barrier properties of sustainable multiphase and multicomponent packaging materials: A review publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2023.101071 – volume: 134 start-page: 44516 year: 2017 ident: ref_256 article-title: Statistical optimization of compatibilized blends of poly(lactic acid) and acrylonitrile butadiene styrene publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.44516 – volume: 37 start-page: 4455 year: 1996 ident: ref_230 article-title: Morphology of microfibrillar reinforced composites PET/PA 6 blend publication-title: Polymer doi: 10.1016/0032-3861(96)00137-1 – ident: ref_32 doi: 10.3390/polym14050977 – ident: ref_121 doi: 10.3390/su152115312 – ident: ref_190 doi: 10.3390/polym15204106 – volume: 2 start-page: 46 year: 2022 ident: ref_62 article-title: Sustainable polymers publication-title: Nat. Rev. Methods Primers doi: 10.1038/s43586-022-00124-8 – volume: 137 start-page: 48692 year: 2020 ident: ref_107 article-title: Overmolded polylactide/jute-mat eco-composites: A new method to enhance the properties of natural fiber biodegradable composites publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.48692 |
SSID | ssj0000331829 |
Score | 2.4275246 |
SecondaryResourceType | review_article |
Snippet | The widespread use of poly(lactic acid) (PLA) from packaging to engineering applications seems to follow the current global trend. The development of... |
SourceID | pubmedcentral proquest gale pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 4556 |
SubjectTerms | 3-D printers Biodegradation Bioplastics Biopolymers Engineering Heat resistance Heat transfer Impact resistance Impact strength Injection molding Lactic acid Manufacturers Manufacturing Mechanical properties Optimization Polycarbonates Polyesters Polylactic acid Polymer blends Polymer melts Polymers Raw materials Review Technology application Temperature Thermal resistance Thermal stability Thermomechanical properties Viscosity |
Title | The Development of Poly(lactic acid) (PLA)-Based Blends and Modification Strategies: Methods of Improving Key Properties towards Technical Applications—Review |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39336298 https://www.proquest.com/docview/3110599588 https://www.proquest.com/docview/3110909510 https://pubmed.ncbi.nlm.nih.gov/PMC11433319 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtNAEF7R9gIHxD8upVoEEs3Bqu3dOLtcUIKaVkCqCFEpN8venRWVgt3W6aE3HoIH4Nl4EmbWjusgxDHyxlrpm5395sffMPYmksYJKGQo7QgDFOqjKRJlQgyGksLK1OW-ej47TU_O5MfFcNEm3Oq2rXLtE72jtpWhHPmhiIkJ6KFS7y8uQ5oaRdXVdoTGFttBF6ww-NqZHJ3Ov3RZlkigzSa60SUVGN8ffs9jdMdySBOrezfR3_64dyFtNkv2bp_pA3a_pY183OD8kN2B8hG71xMTfMx-IeK81wPEK8fn1fLmYOm_g-K5ObcDfjD_PB6EE7y7LJ8sqR-W56Xls8pSz5CHia8Va6F-x2d-wnRNL-vyD_wT3PA5ZfGvSI6Vr3zrbc19mp5A5-NeWfz3j59NAeIJO5seff1wErbzF0KDQeIqBE--CmRMVudpKvMCXASQmigyThYaUqvSGCKjnTNASpNSu9gghXEKLOTiKdsuqxKeM25j58BadC8gpIJRDhiZGOQyhdCFhSRggzUWmWnFyWlGxjLDIIVwy25xC9jrbu1FI8nxz1VvCdKMzim-yeTt5wa4H1K8ysYKvTxuIpEB21ujnrUHuM5uzS1gr7rHePSonpKXUF03a7SnqAF71hhJtyGhBVIDjf9WG-bTLSBZ780n5fk3L--NEapAs9W7_9_XC3Y3QYJFvSvxaI9tr66u4SUSpFWxz7bU9Hi_PQv463gR_wGSjxf3 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKOQAHxD-BAkaA6B6iJrE3GyMhtAWWLd2t9tBKvYXEHotKS1K6W6HeeAgegCfgoXgSZpyfZhHi1rMnlpX594y_Yex5ILUVkEtfmgEmKNRHk0eJ9jEZinIjY5u56vl0Lx4fyI-H_cM19qt5C0NtlY1NdIbalJruyLdESJGA6ifJm-OvPk2NoupqM0KjEotdOPuGKdvi9c475O-LKBq933879uupAr7G1GfpgwspcowDjMriWGY52AAg1kGgrcwVxCaJQwi0slYD4SdKZUONjtkmYCATuO8ldlkKoUijktGH9k4nEKghkapQUHE92PqShWj8ZZ_mY3f83t_Wv-P-VlszO75udINdr4NUPqyk6iZbg-IWu9aBLrzNfqJ88U7HES8tn5Xzs825e3XFM31kenxzNhn2_G30lIZvz6n7lmeF4dPSUIeSEwre4OPC4hWfunnWC9qsve3g-L_5jGoGJwT-ypeu0XfBXVGARIwPO0X4399_VOWOO-zgQvhyl60XZQH3GTehtWAMGjMQMoFBBpgHaYyccqFyA5HHeg0vUl1DodNEjnmKKRHxLT3nm8eetbTHFQDIP6leEktTsgq4k87qxw14HsLXSocJ-hQ8RCQ9ttFwPa3NxSI9F26PPW2XUdGpepMVUJ5WNMoFxB67VwlJeyChBAYiCr9OVsSnJSAQ8dWV4uizAxPHfFig2KoH_z_XE3ZlvD-dpJOdvd2H7GqEoR11zYSDDba-PDmFRxiaLfPHTh84-3TRCvgHuFpTcg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6VVEJwQPxjKLAIEM3Bqu3dOF4khBLaqKVNFCEq9Wbs3VlRKdilToV64yF4AJ6Dx-FJmPFfHYS49ezNapX55m9n9hvGXnhSWwGpdKUZYoJCfTRpEGkXk6EgNTK0SVk9n87C3UP5_mhwtMZ-NW9hqK2ysYmloTa5pjvyLeFTJKAGmLDZui1ivj15e_LVpQlSVGltxmlUENmH82-YvhVv9rZR1i-DYLLz8d2uW08YcDWmQUsXyvAixZjAqCQMZZKC9QBC7XnaylRBaKLQB08razUQl6JU1tfopG0EBhKB-15h60PMirweWx_vzOYf2hseT6C-BKriRBVCeVtfEh9dgRzQtOyOF_zbF3Sc4WqjZsfzTW6yG3XIykcVxm6xNchus-sdIsM77CeijXf6j3hu-TxfnG8uyjdYPNHHps835wejvjtGv2n4eEG9uDzJDJ_mhvqVSojwhi0Xitd8Wk63Lmiz9u6D4z_O51RBOCUqWL4s234LXpYICHB81CnJ__7-oyp-3GWHlyKZe6yX5Rk8YNz41oIxaNpAyAiGCWBWpDGOSoVKDQQO6zeyiHVNjE7zORYxJkgkt_hCbg573q49qehA_rnqFYk0JhuBO-mkfuqA5yG2rXgUoYfBQwTSYRuN1OPaeBTxBdQd9qz9jGpPtZwkg_ysWqPK8Nhh9yuQtAcSSmBYovDX0Qp82gVEKb76JTv-XFKLY3YsELbq4f_P9ZRdReWLD_Zm-4_YtQDjPGqh8YcbrLc8PYPHGKct0ye1QnD26bJ18A-xpFkE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Development+of+Poly-Based+Blends+and+Modification+Strategies%3A+Methods+of+Improving+Key+Properties+towards+Technical+Applications%E2%80%94Review&rft.jtitle=Materials&rft.au=Andrzejewski%2C+Jacek&rft.au=Das%2C+Subhasis&rft.au=Lipik%2C+Vitali&rft.au=Mohanty%2C+Amar+K&rft.date=2024-09-17&rft.pub=MDPI+AG&rft.issn=1996-1944&rft.eissn=1996-1944&rft.volume=17&rft.issue=18&rft_id=info:doi/10.3390%2Fma17184556&rft.externalDocID=A811104924 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon |