Influence of inflow turbulence intensity on the performance of bare and diffuser-augmented micro wind turbine model
The performance of a wind turbine is directly affected by the site wind condition. In urban-built locality, the wind is typified by fluctuating velocity and direction, and high turbulence intensity (TI). This paper investigates the impact of turbulence intensity on micro wind turbine efficiency in c...
Saved in:
Published in | Renewable energy Vol. 87; pp. 154 - 167 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.03.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The performance of a wind turbine is directly affected by the site wind condition. In urban-built locality, the wind is typified by fluctuating velocity and direction, and high turbulence intensity (TI). This paper investigates the impact of turbulence intensity on micro wind turbine efficiency in converting the wind energy to power. The performance of bare micro wind turbine (MWT) and diffuser-augmented micro wind turbine (DAMWT) models subject to different level of turbulence intensities is reported. Turbulence intensities ranging from ≈2% to 29% were generated by means of turbulence grids. The turbine performance is assessed in terms of the relationship between the coefficient of performance, CP and tip speed ratio, λ. Computational fluid dynamics (CFD) simulations and wind tunnel tests show that shrouding the turbine with diffuser increases the peak CP by approximately two times. Beyond a certain tip speed ratio, the performance of both MWT and DAMWT is shown to decrease with turbulence intensity, however the Cp of the DAMWT is still greater than bare MWT wind indicating the diffuser augmentation is still achievable even at high level of freestream turbulence.
•The effect of inflow turbulence intensity on bare and diffuser-augmented micro wind turbine performance is reported.•The diffuser power augmentation is still achievable at high level of inflow turbulent intensity.•Turbulence decreases the performance of both bare and diffuser-augmented micro turbine at high tip speed ratio. |
---|---|
AbstractList | The performance of a wind turbine is directly affected by the site wind condition. In urban-built locality, the wind is typified by fluctuating velocity and direction, and high turbulence intensity (TI). This paper investigates the impact of turbulence intensity on micro wind turbine efficiency in converting the wind energy to power. The performance of bare micro wind turbine (MWT) and diffuser-augmented micro wind turbine (DAMWT) models subject to different level of turbulence intensities is reported. Turbulence intensities ranging from ≈2% to 29% were generated by means of turbulence grids. The turbine performance is assessed in terms of the relationship between the coefficient of performance, CP and tip speed ratio, λ. Computational fluid dynamics (CFD) simulations and wind tunnel tests show that shrouding the turbine with diffuser increases the peak CP by approximately two times. Beyond a certain tip speed ratio, the performance of both MWT and DAMWT is shown to decrease with turbulence intensity, however the Cp of the DAMWT is still greater than bare MWT wind indicating the diffuser augmentation is still achievable even at high level of freestream turbulence. The performance of a wind turbine is directly affected by the site wind condition. In urban-built locality, the wind is typified by fluctuating velocity and direction, and high turbulence intensity (TI). This paper investigates the impact of turbulence intensity on micro wind turbine efficiency in converting the wind energy to power. The performance of bare micro wind turbine (MWT) and diffuser-augmented micro wind turbine (DAMWT) models subject to different level of turbulence intensities is reported. Turbulence intensities ranging from ≈2% to 29% were generated by means of turbulence grids. The turbine performance is assessed in terms of the relationship between the coefficient of performance, CP and tip speed ratio, λ. Computational fluid dynamics (CFD) simulations and wind tunnel tests show that shrouding the turbine with diffuser increases the peak CP by approximately two times. Beyond a certain tip speed ratio, the performance of both MWT and DAMWT is shown to decrease with turbulence intensity, however the Cp of the DAMWT is still greater than bare MWT wind indicating the diffuser augmentation is still achievable even at high level of freestream turbulence. •The effect of inflow turbulence intensity on bare and diffuser-augmented micro wind turbine performance is reported.•The diffuser power augmentation is still achievable at high level of inflow turbulent intensity.•Turbulence decreases the performance of both bare and diffuser-augmented micro turbine at high tip speed ratio. |
Author | Saleh Hudin, H. Kosasih, B. |
Author_xml | – sequence: 1 givenname: B. surname: Kosasih fullname: Kosasih, B. email: buyung@uow.edu.au – sequence: 2 givenname: H. surname: Saleh Hudin fullname: Saleh Hudin, H. |
BookMark | eNqFkMFu3CAURVGVSp2k-YMuWHbj6QNjbHdRqYqaNlKkbpo1wvBIGdkwBdwofx_cyaqLRCwQl3eu4JyTsxADEvKBwZ4Bk58O-4Shrj0H1tVoD6x9Q3Zs6McG5MDPyA5GCQ0TA3tHznM-QB0cerEj-Sa4ecVgkEZHfT3EB1rWNK3zv9CHgiH78khjoOU30iMmF9Oin4lJJ6Q6WGq9c2vG1Oj1fsFKWbp4kyJ98PV2a_QB6RItzu_JW6fnjJfP-wW5u_726-pHc_vz-83V19vGCCFLg8KgnHDqxdC2chpxssDHzprWjg6wfmzETrQMOz7IlqPlPW87EI5J2_F-aC_Ix1PvMcU_K-aiFp8NzrMOGNesOAB0HHqQdVScRuuLc07o1DH5RadHxUBtjtVBnRyrzfGWVscV-_wfZnzRxcdQkvbza_CXE4zVwV-PSWXjN-nWJzRF2ehfLngCIrmeDQ |
CitedBy_id | crossref_primary_10_1080_23744731_2022_2048595 crossref_primary_10_1016_j_jweia_2018_01_003 crossref_primary_10_1016_j_enconman_2016_06_015 crossref_primary_10_1016_j_enconman_2017_09_073 crossref_primary_10_1016_j_envres_2020_110434 crossref_primary_10_1063_1_5142843 crossref_primary_10_1016_j_renene_2021_01_123 crossref_primary_10_1016_j_rser_2020_110075 crossref_primary_10_1007_s13369_017_2920_5 crossref_primary_10_1016_j_oceaneng_2019_106293 crossref_primary_10_1016_j_jweia_2023_105335 crossref_primary_10_1016_j_enconman_2018_05_042 crossref_primary_10_1016_j_egypro_2019_01_086 crossref_primary_10_3390_aerospace10070617 crossref_primary_10_1016_j_renene_2020_11_059 crossref_primary_10_1016_j_csite_2024_105590 crossref_primary_10_1080_14786451_2019_1685520 crossref_primary_10_1016_j_enconman_2018_03_093 crossref_primary_10_1088_1755_1315_114_1_012002 crossref_primary_10_1002_er_6890 crossref_primary_10_1016_j_enconman_2018_09_067 crossref_primary_10_1177_0309524X211036041 crossref_primary_10_1016_j_rser_2018_03_033 crossref_primary_10_1016_j_jclepro_2017_08_166 crossref_primary_10_1016_j_renene_2018_11_077 crossref_primary_10_1080_23311916_2022_2095951 crossref_primary_10_3390_machines10100876 crossref_primary_10_1016_j_epsr_2020_106280 crossref_primary_10_1016_j_apenergy_2020_115867 crossref_primary_10_1016_j_jweia_2020_104235 crossref_primary_10_1016_j_rser_2021_111798 crossref_primary_10_1016_j_renene_2020_01_068 crossref_primary_10_1016_j_renene_2019_07_022 crossref_primary_10_2208_jscejj_24_16197 crossref_primary_10_1016_j_egypro_2017_11_086 crossref_primary_10_1080_01430750_2022_2102064 crossref_primary_10_1016_j_renene_2023_04_070 crossref_primary_10_1016_j_energy_2018_12_025 crossref_primary_10_1016_j_renene_2018_04_013 crossref_primary_10_1177_1687814016674697 crossref_primary_10_1177_0309524X241282090 crossref_primary_10_1063_5_0118914 crossref_primary_10_1088_1757_899X_1078_1_012017 crossref_primary_10_1016_j_isci_2023_107674 crossref_primary_10_3934_energy_2019_6_841 crossref_primary_10_1016_j_energy_2023_127210 crossref_primary_10_1016_j_rser_2022_112316 crossref_primary_10_1016_j_jweia_2020_104206 crossref_primary_10_1016_j_energy_2022_123267 crossref_primary_10_1016_j_rcim_2022_102436 crossref_primary_10_1088_1757_899X_1034_1_012042 crossref_primary_10_1016_j_renene_2018_07_050 |
Cites_doi | 10.1016/j.renene.2010.10.030 10.1093/ijlct/cts009 10.1016/j.proeng.2012.10.116 10.1016/j.renene.2014.05.002 10.1299/jfst.6.333 10.1016/j.renene.2012.08.015 10.1016/j.jweia.2008.01.013 10.1088/0143-0807/19/1/013 10.1016/j.enbuild.2007.12.004 10.2514/3.10745 10.2514/3.12149 10.3390/en3040634 10.1023/A:1000426316328 10.1016/0142-727X(87)90001-4 10.1002/we.137 10.1002/we.184 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Ltd |
Copyright_xml | – notice: 2015 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.renene.2015.10.013 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-0682 |
EndPage | 167 |
ExternalDocumentID | 10_1016_j_renene_2015_10_013 S0960148115303669 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMC HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SDP SEN SES SET SEW SPC SPCBC SSR SST SSZ T5K TN5 WUQ ZCA ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c446t-e4ce6beb748336b9ebd0295dc3d9f0e0689e5431e528632ed2723504f16d52783 |
IEDL.DBID | .~1 |
ISSN | 0960-1481 |
IngestDate | Mon Jul 21 11:43:57 EDT 2025 Tue Jul 01 03:20:30 EDT 2025 Thu Apr 24 22:52:40 EDT 2025 Fri Feb 23 02:20:32 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Diffuser-augmented micro wind turbine Turbulence intensity Coefficient of performance Micro wind turbine |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c446t-e4ce6beb748336b9ebd0295dc3d9f0e0689e5431e528632ed2723504f16d52783 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2000520706 |
PQPubID | 24069 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2000520706 crossref_primary_10_1016_j_renene_2015_10_013 crossref_citationtrail_10_1016_j_renene_2015_10_013 elsevier_sciencedirect_doi_10_1016_j_renene_2015_10_013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-03-01 |
PublicationDateYYYYMMDD | 2016-03-01 |
PublicationDate_xml | – month: 03 year: 2016 text: 2016-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Renewable energy |
PublicationYear | 2016 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Menter (bib12) 1994; 32 Ohya, Karasudani (bib14) 2010; 3 Yang, Shen, Xu, Hong, Liu (bib22) 2014; 70 Kindelspire (bib8) 1988 Gipe (bib4) 1999 Peacock, Jenkins, Ahadzi, Berry, Turan (bib15) 2008; 40 Mikkelsen (bib13) 2013 Ledo, Kosasih, Cooper (bib10) 2011; 36 Sicot, Devinant, Loyer, Hureau (bib19) 2008; 96 Hoffmann (bib6) 1990; 29 Snel, Houwink, Piers, Bussel, Bruining (bib21) 1993 Kosasih, Tondelli (bib9) 2012; 49 Lubitz (bib11) 2014; 61 Gluskin (bib5) 1998; 19 Sicot, Devinant, Laverne, Loyer, Hureau (bib20) 2006; 9 Chokani, Abhari (bib3) 2014 Amandolése, Széchényi (bib1) 2004; 7 Rafailidis (bib16) 1997; 85 Rogers, Omer (bib18) 2012; 8 Kamada, Maeda, Murata, Toki, Tobuchi (bib7) 2011; 6 Roach (bib17) 1987; 8 ANSYS (bib2) 2006 Mikkelsen (10.1016/j.renene.2015.10.013_bib13) 2013 Gipe (10.1016/j.renene.2015.10.013_bib4) 1999 Rogers (10.1016/j.renene.2015.10.013_bib18) 2012; 8 Lubitz (10.1016/j.renene.2015.10.013_bib11) 2014; 61 Snel (10.1016/j.renene.2015.10.013_bib21) 1993 Peacock (10.1016/j.renene.2015.10.013_bib15) 2008; 40 Kindelspire (10.1016/j.renene.2015.10.013_bib8) 1988 Ohya (10.1016/j.renene.2015.10.013_bib14) 2010; 3 Sicot (10.1016/j.renene.2015.10.013_bib20) 2006; 9 Yang (10.1016/j.renene.2015.10.013_bib22) 2014; 70 Kamada (10.1016/j.renene.2015.10.013_bib7) 2011; 6 Kosasih (10.1016/j.renene.2015.10.013_bib9) 2012; 49 Sicot (10.1016/j.renene.2015.10.013_bib19) 2008; 96 Rafailidis (10.1016/j.renene.2015.10.013_bib16) 1997; 85 Menter (10.1016/j.renene.2015.10.013_bib12) 1994; 32 Hoffmann (10.1016/j.renene.2015.10.013_bib6) 1990; 29 Roach (10.1016/j.renene.2015.10.013_bib17) 1987; 8 Gluskin (10.1016/j.renene.2015.10.013_bib5) 1998; 19 Chokani (10.1016/j.renene.2015.10.013_bib3) 2014 Ledo (10.1016/j.renene.2015.10.013_bib10) 2011; 36 Amandolése (10.1016/j.renene.2015.10.013_bib1) 2004; 7 ANSYS (10.1016/j.renene.2015.10.013_bib2) 2006 |
References_xml | – volume: 32 start-page: 1598 year: 1994 end-page: 1605 ident: bib12 article-title: Two-equation eddy-viscosity turbulence models for engineering applications publication-title: AIAA J. – volume: 19 start-page: 93 year: 1998 end-page: 95 ident: bib5 article-title: A possible way to measure the mechanical torque developed by an electric motor publication-title: Eur. J. Phys. – volume: 8 start-page: 58 year: 2012 end-page: 63 ident: bib18 article-title: Yaw analysis of micro-scale horizontal axis wind turbine operating in turbulent wind conditions publication-title: Int. J. Low Carbon Technol. – start-page: 395 year: 1993 end-page: 399 ident: bib21 article-title: Sectional prediction of 3-D effects for stalled flow on rotating blades and comparison with measurements publication-title: EWEC – volume: 29 start-page: 1353 year: 1990 end-page: 1354 ident: bib6 article-title: Effects of freestream turbulence on the performance characteristics of an airfoil publication-title: AIAA J. – volume: 40 start-page: 1324 year: 2008 end-page: 1333 ident: bib15 article-title: Micro wind turbines in the UK domestic sector publication-title: Wind Energy Build. – volume: 6 start-page: 333 year: 2011 end-page: 341 ident: bib7 article-title: Effects of turbulence intensity on dynamic characteristics of wind turbine airfoil publication-title: J. Fluid Sci. Technol. – year: 1999 ident: bib4 article-title: Wind Energy Basics – year: 1988 ident: bib8 article-title: The Effects of Freestream Turbulence on Airfoil Boundary Layer Behavior at Low Reynolds Numbers – volume: 9 start-page: 361 year: 2006 end-page: 370 ident: bib20 article-title: Experimental study of the effect of turbulence on horizontal axis wind turbine aerodynamics publication-title: Wind Energy – volume: 36 start-page: 1379 year: 2011 end-page: 1391 ident: bib10 article-title: Roof mounting site analysis for micro-wind turbines publication-title: Renew. Energy – volume: 8 start-page: 82 year: 1987 end-page: 92 ident: bib17 article-title: The generation of nearly isotropic turbulence by means of grids publication-title: Int. J. Heat Fluid Flow – volume: 49 start-page: 92 year: 2012 end-page: 98 ident: bib9 article-title: Experimental study of shrouded micro-wind turbine publication-title: Procedia Eng. – volume: 3 start-page: 634 year: 2010 end-page: 639 ident: bib14 article-title: A shrouded wind turbine generating high output power with wind-lens technology publication-title: Energies – volume: 7 start-page: 267 year: 2004 end-page: 282 ident: bib1 article-title: Experimental study of the effect of turbulence on a section model blade oscillating in stall publication-title: Wind Energy – volume: 61 start-page: 69 year: 2014 end-page: 73 ident: bib11 article-title: Impact of ambient turbulence on performance of a small wind turbine publication-title: Renew. Energy – volume: 96 start-page: 1320 year: 2008 end-page: 1331 ident: bib19 article-title: Rotational and turbulence effects on a wind turbine blade. Investigation of the stall mechanisms publication-title: J. Wind Eng. Ind. Aerodyn. – volume: 70 start-page: 107 year: 2014 end-page: 115 ident: bib22 article-title: Prediction of the wind turbine performance by using BEM with airfoil data extracted from CFD publication-title: Renew. Energy – year: 2014 ident: bib3 article-title: Siting of Wind Turbines in Complex Terrain Effects of Inclined Freestream Flow and Elevated Freestream Turbulence – year: 2013 ident: bib13 article-title: Effect of Free Stream Turbulence on Wind Turbine Performance – volume: 85 start-page: 255 year: 1997 end-page: 271 ident: bib16 article-title: Influence of building areal density and roof shape on the wind characteristics above a town publication-title: Bound. Layer Meteorol. – year: 2006 ident: bib2 article-title: CFX-solver Theory Guide Release 11 – volume: 36 start-page: 1379 year: 2011 ident: 10.1016/j.renene.2015.10.013_bib10 article-title: Roof mounting site analysis for micro-wind turbines publication-title: Renew. Energy doi: 10.1016/j.renene.2010.10.030 – volume: 8 start-page: 58 year: 2012 ident: 10.1016/j.renene.2015.10.013_bib18 article-title: Yaw analysis of micro-scale horizontal axis wind turbine operating in turbulent wind conditions publication-title: Int. J. Low Carbon Technol. doi: 10.1093/ijlct/cts009 – volume: 49 start-page: 92 year: 2012 ident: 10.1016/j.renene.2015.10.013_bib9 article-title: Experimental study of shrouded micro-wind turbine publication-title: Procedia Eng. doi: 10.1016/j.proeng.2012.10.116 – year: 2013 ident: 10.1016/j.renene.2015.10.013_bib13 – volume: 70 start-page: 107 year: 2014 ident: 10.1016/j.renene.2015.10.013_bib22 article-title: Prediction of the wind turbine performance by using BEM with airfoil data extracted from CFD publication-title: Renew. Energy doi: 10.1016/j.renene.2014.05.002 – year: 2006 ident: 10.1016/j.renene.2015.10.013_bib2 – volume: 6 start-page: 333 year: 2011 ident: 10.1016/j.renene.2015.10.013_bib7 article-title: Effects of turbulence intensity on dynamic characteristics of wind turbine airfoil publication-title: J. Fluid Sci. Technol. doi: 10.1299/jfst.6.333 – volume: 61 start-page: 69 year: 2014 ident: 10.1016/j.renene.2015.10.013_bib11 article-title: Impact of ambient turbulence on performance of a small wind turbine publication-title: Renew. Energy doi: 10.1016/j.renene.2012.08.015 – year: 1999 ident: 10.1016/j.renene.2015.10.013_bib4 – volume: 96 start-page: 1320 year: 2008 ident: 10.1016/j.renene.2015.10.013_bib19 article-title: Rotational and turbulence effects on a wind turbine blade. Investigation of the stall mechanisms publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/j.jweia.2008.01.013 – volume: 19 start-page: 93 year: 1998 ident: 10.1016/j.renene.2015.10.013_bib5 article-title: A possible way to measure the mechanical torque developed by an electric motor publication-title: Eur. J. Phys. doi: 10.1088/0143-0807/19/1/013 – start-page: 395 year: 1993 ident: 10.1016/j.renene.2015.10.013_bib21 article-title: Sectional prediction of 3-D effects for stalled flow on rotating blades and comparison with measurements publication-title: EWEC – volume: 40 start-page: 1324 year: 2008 ident: 10.1016/j.renene.2015.10.013_bib15 article-title: Micro wind turbines in the UK domestic sector publication-title: Wind Energy Build. doi: 10.1016/j.enbuild.2007.12.004 – volume: 29 start-page: 1353 year: 1990 ident: 10.1016/j.renene.2015.10.013_bib6 article-title: Effects of freestream turbulence on the performance characteristics of an airfoil publication-title: AIAA J. doi: 10.2514/3.10745 – volume: 32 start-page: 1598 year: 1994 ident: 10.1016/j.renene.2015.10.013_bib12 article-title: Two-equation eddy-viscosity turbulence models for engineering applications publication-title: AIAA J. doi: 10.2514/3.12149 – volume: 3 start-page: 634 year: 2010 ident: 10.1016/j.renene.2015.10.013_bib14 article-title: A shrouded wind turbine generating high output power with wind-lens technology publication-title: Energies doi: 10.3390/en3040634 – year: 2014 ident: 10.1016/j.renene.2015.10.013_bib3 – year: 1988 ident: 10.1016/j.renene.2015.10.013_bib8 – volume: 85 start-page: 255 year: 1997 ident: 10.1016/j.renene.2015.10.013_bib16 article-title: Influence of building areal density and roof shape on the wind characteristics above a town publication-title: Bound. Layer Meteorol. doi: 10.1023/A:1000426316328 – volume: 8 start-page: 82 year: 1987 ident: 10.1016/j.renene.2015.10.013_bib17 article-title: The generation of nearly isotropic turbulence by means of grids publication-title: Int. J. Heat Fluid Flow doi: 10.1016/0142-727X(87)90001-4 – volume: 7 start-page: 267 year: 2004 ident: 10.1016/j.renene.2015.10.013_bib1 article-title: Experimental study of the effect of turbulence on a section model blade oscillating in stall publication-title: Wind Energy doi: 10.1002/we.137 – volume: 9 start-page: 361 year: 2006 ident: 10.1016/j.renene.2015.10.013_bib20 article-title: Experimental study of the effect of turbulence on horizontal axis wind turbine aerodynamics publication-title: Wind Energy doi: 10.1002/we.184 |
SSID | ssj0015874 |
Score | 2.4126196 |
Snippet | The performance of a wind turbine is directly affected by the site wind condition. In urban-built locality, the wind is typified by fluctuating velocity and... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 154 |
SubjectTerms | Coefficient of performance Diffuser-augmented micro wind turbine Micro wind turbine Turbulence intensity turbulent flow wind wind power wind tunnels wind turbines |
Title | Influence of inflow turbulence intensity on the performance of bare and diffuser-augmented micro wind turbine model |
URI | https://dx.doi.org/10.1016/j.renene.2015.10.013 https://www.proquest.com/docview/2000520706 |
Volume | 87 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9jvuiD-InzY0TwNVvbpGn7OIZjKu5FB3srzZLKZLZjrgxf_Nu9S9v5ASL42JCk5XK9-yX53R0hVzoB2BZozTw83BBcGRa6PGEq4lEodQgQBIOT70dyOBa3E3_SIP06FgZplZXtL226tdZVS7eSZncxm3UfEHwDmAdIg2ZYYhCfEAFqeed9Q_Nw_bDMxAydGfauw-csxwuzRmaYLNP1O8jxcvlv7umHobbeZ7BHdivYSHvll-2ThskOyM6XZIKHBC-QynojNE8pKM48X1NwKKqwcUV0VpLVV280zyjAPrr4jBnAESpZGppkmmLNFDy7YEnxZFN2avqCtD26hv27nRFeSm0JnSMyHlw_9oesKqnAprDvWzEjpkYqowIRci5VZJR2vMjXU66j1DGODCOD0fHG90LJPaO9wOO-I1JXah-LchyTZpZn5oTQNIqEl3gK8KMRthClBken0kS6KaAC0yK8lmQ8rfKNY9mLeVwTy57jUv4xyh9bQf4twjajFmW-jT_6B_Uixd_0JgaX8MfIy3pNY_il8J4kyUxevGJlTmQHBY48_ffsZ2QbnmTJVjsnzdWyMBcAX1aqbfWzTbZ6N3fD0QflXPAz |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RTlaSRW0yROnHhEFVWBwkIrdYvi2kFFJalKq4qF386dk5SHhJBYHduJzvbdl-S7-wi50AnAtlBr5uHHDZ8rwyKXJ0xJLiOhI4AgmJx8_yA6ff92EAxqpFXlwiCtsvT9hU-33rpsaZbWbE5Go-Yjgm8A8wBp0A0LuUJWfTi-KGNw-b7kebhBVJRiht4Mu1f5c5bkhWUjM6yW6QaXSPJy-W_x6YentuGnvUU2S9xIr4pH2yY1k-2QjS_VBHcJ_kEqBEdonlLYOeN8QSGiqLlNLKKjgq0-e6N5RgH30cln0gCOUMnU0CTTFEVT8OMFS-ZPtmanpi_I26MLeIG3M8JNqdXQ2SP99nWv1WGlpgIbwovfjBl_aIQyKvQjzoWSRmnHk4Eeci1TxzgikgbT403gRYJ7RnuhxwPHT12hA1Tl2Cf1LM_MAaGplL6XeAoApPGtEqWGSKfSRLgpwALTILyyZDwsC46j7sU4rphlz3Fh_xjtj61g_wZhy1GTouDGH_3DapHibxsnhpjwx8jzak1jOFP4oyTJTD5_RWlOpAeFjjj89-xnZK3Tu-_G3ZuHuyOyDldEQV07JvXZdG5OAMvM1Kndqx9mlvHB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+inflow+turbulence+intensity+on+the+performance+of+bare+and+diffuser-augmented+micro+wind+turbine+model&rft.jtitle=Renewable+energy&rft.au=Kosasih%2C+B.&rft.au=Saleh+Hudin%2C+H.&rft.date=2016-03-01&rft.issn=0960-1481&rft.volume=87&rft.spage=154&rft.epage=167&rft_id=info:doi/10.1016%2Fj.renene.2015.10.013&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_renene_2015_10_013 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1481&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1481&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1481&client=summon |