Influence of inflow turbulence intensity on the performance of bare and diffuser-augmented micro wind turbine model

The performance of a wind turbine is directly affected by the site wind condition. In urban-built locality, the wind is typified by fluctuating velocity and direction, and high turbulence intensity (TI). This paper investigates the impact of turbulence intensity on micro wind turbine efficiency in c...

Full description

Saved in:
Bibliographic Details
Published inRenewable energy Vol. 87; pp. 154 - 167
Main Authors Kosasih, B., Saleh Hudin, H.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.03.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The performance of a wind turbine is directly affected by the site wind condition. In urban-built locality, the wind is typified by fluctuating velocity and direction, and high turbulence intensity (TI). This paper investigates the impact of turbulence intensity on micro wind turbine efficiency in converting the wind energy to power. The performance of bare micro wind turbine (MWT) and diffuser-augmented micro wind turbine (DAMWT) models subject to different level of turbulence intensities is reported. Turbulence intensities ranging from ≈2% to 29% were generated by means of turbulence grids. The turbine performance is assessed in terms of the relationship between the coefficient of performance, CP and tip speed ratio, λ. Computational fluid dynamics (CFD) simulations and wind tunnel tests show that shrouding the turbine with diffuser increases the peak CP by approximately two times. Beyond a certain tip speed ratio, the performance of both MWT and DAMWT is shown to decrease with turbulence intensity, however the Cp of the DAMWT is still greater than bare MWT wind indicating the diffuser augmentation is still achievable even at high level of freestream turbulence. •The effect of inflow turbulence intensity on bare and diffuser-augmented micro wind turbine performance is reported.•The diffuser power augmentation is still achievable at high level of inflow turbulent intensity.•Turbulence decreases the performance of both bare and diffuser-augmented micro turbine at high tip speed ratio.
AbstractList The performance of a wind turbine is directly affected by the site wind condition. In urban-built locality, the wind is typified by fluctuating velocity and direction, and high turbulence intensity (TI). This paper investigates the impact of turbulence intensity on micro wind turbine efficiency in converting the wind energy to power. The performance of bare micro wind turbine (MWT) and diffuser-augmented micro wind turbine (DAMWT) models subject to different level of turbulence intensities is reported. Turbulence intensities ranging from ≈2% to 29% were generated by means of turbulence grids. The turbine performance is assessed in terms of the relationship between the coefficient of performance, CP and tip speed ratio, λ. Computational fluid dynamics (CFD) simulations and wind tunnel tests show that shrouding the turbine with diffuser increases the peak CP by approximately two times. Beyond a certain tip speed ratio, the performance of both MWT and DAMWT is shown to decrease with turbulence intensity, however the Cp of the DAMWT is still greater than bare MWT wind indicating the diffuser augmentation is still achievable even at high level of freestream turbulence.
The performance of a wind turbine is directly affected by the site wind condition. In urban-built locality, the wind is typified by fluctuating velocity and direction, and high turbulence intensity (TI). This paper investigates the impact of turbulence intensity on micro wind turbine efficiency in converting the wind energy to power. The performance of bare micro wind turbine (MWT) and diffuser-augmented micro wind turbine (DAMWT) models subject to different level of turbulence intensities is reported. Turbulence intensities ranging from ≈2% to 29% were generated by means of turbulence grids. The turbine performance is assessed in terms of the relationship between the coefficient of performance, CP and tip speed ratio, λ. Computational fluid dynamics (CFD) simulations and wind tunnel tests show that shrouding the turbine with diffuser increases the peak CP by approximately two times. Beyond a certain tip speed ratio, the performance of both MWT and DAMWT is shown to decrease with turbulence intensity, however the Cp of the DAMWT is still greater than bare MWT wind indicating the diffuser augmentation is still achievable even at high level of freestream turbulence. •The effect of inflow turbulence intensity on bare and diffuser-augmented micro wind turbine performance is reported.•The diffuser power augmentation is still achievable at high level of inflow turbulent intensity.•Turbulence decreases the performance of both bare and diffuser-augmented micro turbine at high tip speed ratio.
Author Saleh Hudin, H.
Kosasih, B.
Author_xml – sequence: 1
  givenname: B.
  surname: Kosasih
  fullname: Kosasih, B.
  email: buyung@uow.edu.au
– sequence: 2
  givenname: H.
  surname: Saleh Hudin
  fullname: Saleh Hudin, H.
BookMark eNqFkMFu3CAURVGVSp2k-YMuWHbj6QNjbHdRqYqaNlKkbpo1wvBIGdkwBdwofx_cyaqLRCwQl3eu4JyTsxADEvKBwZ4Bk58O-4Shrj0H1tVoD6x9Q3Zs6McG5MDPyA5GCQ0TA3tHznM-QB0cerEj-Sa4ecVgkEZHfT3EB1rWNK3zv9CHgiH78khjoOU30iMmF9Oin4lJJ6Q6WGq9c2vG1Oj1fsFKWbp4kyJ98PV2a_QB6RItzu_JW6fnjJfP-wW5u_726-pHc_vz-83V19vGCCFLg8KgnHDqxdC2chpxssDHzprWjg6wfmzETrQMOz7IlqPlPW87EI5J2_F-aC_Ix1PvMcU_K-aiFp8NzrMOGNesOAB0HHqQdVScRuuLc07o1DH5RadHxUBtjtVBnRyrzfGWVscV-_wfZnzRxcdQkvbza_CXE4zVwV-PSWXjN-nWJzRF2ehfLngCIrmeDQ
CitedBy_id crossref_primary_10_1080_23744731_2022_2048595
crossref_primary_10_1016_j_jweia_2018_01_003
crossref_primary_10_1016_j_enconman_2016_06_015
crossref_primary_10_1016_j_enconman_2017_09_073
crossref_primary_10_1016_j_envres_2020_110434
crossref_primary_10_1063_1_5142843
crossref_primary_10_1016_j_renene_2021_01_123
crossref_primary_10_1016_j_rser_2020_110075
crossref_primary_10_1007_s13369_017_2920_5
crossref_primary_10_1016_j_oceaneng_2019_106293
crossref_primary_10_1016_j_jweia_2023_105335
crossref_primary_10_1016_j_enconman_2018_05_042
crossref_primary_10_1016_j_egypro_2019_01_086
crossref_primary_10_3390_aerospace10070617
crossref_primary_10_1016_j_renene_2020_11_059
crossref_primary_10_1016_j_csite_2024_105590
crossref_primary_10_1080_14786451_2019_1685520
crossref_primary_10_1016_j_enconman_2018_03_093
crossref_primary_10_1088_1755_1315_114_1_012002
crossref_primary_10_1002_er_6890
crossref_primary_10_1016_j_enconman_2018_09_067
crossref_primary_10_1177_0309524X211036041
crossref_primary_10_1016_j_rser_2018_03_033
crossref_primary_10_1016_j_jclepro_2017_08_166
crossref_primary_10_1016_j_renene_2018_11_077
crossref_primary_10_1080_23311916_2022_2095951
crossref_primary_10_3390_machines10100876
crossref_primary_10_1016_j_epsr_2020_106280
crossref_primary_10_1016_j_apenergy_2020_115867
crossref_primary_10_1016_j_jweia_2020_104235
crossref_primary_10_1016_j_rser_2021_111798
crossref_primary_10_1016_j_renene_2020_01_068
crossref_primary_10_1016_j_renene_2019_07_022
crossref_primary_10_2208_jscejj_24_16197
crossref_primary_10_1016_j_egypro_2017_11_086
crossref_primary_10_1080_01430750_2022_2102064
crossref_primary_10_1016_j_renene_2023_04_070
crossref_primary_10_1016_j_energy_2018_12_025
crossref_primary_10_1016_j_renene_2018_04_013
crossref_primary_10_1177_1687814016674697
crossref_primary_10_1177_0309524X241282090
crossref_primary_10_1063_5_0118914
crossref_primary_10_1088_1757_899X_1078_1_012017
crossref_primary_10_1016_j_isci_2023_107674
crossref_primary_10_3934_energy_2019_6_841
crossref_primary_10_1016_j_energy_2023_127210
crossref_primary_10_1016_j_rser_2022_112316
crossref_primary_10_1016_j_jweia_2020_104206
crossref_primary_10_1016_j_energy_2022_123267
crossref_primary_10_1016_j_rcim_2022_102436
crossref_primary_10_1088_1757_899X_1034_1_012042
crossref_primary_10_1016_j_renene_2018_07_050
Cites_doi 10.1016/j.renene.2010.10.030
10.1093/ijlct/cts009
10.1016/j.proeng.2012.10.116
10.1016/j.renene.2014.05.002
10.1299/jfst.6.333
10.1016/j.renene.2012.08.015
10.1016/j.jweia.2008.01.013
10.1088/0143-0807/19/1/013
10.1016/j.enbuild.2007.12.004
10.2514/3.10745
10.2514/3.12149
10.3390/en3040634
10.1023/A:1000426316328
10.1016/0142-727X(87)90001-4
10.1002/we.137
10.1002/we.184
ContentType Journal Article
Copyright 2015 Elsevier Ltd
Copyright_xml – notice: 2015 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.renene.2015.10.013
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0682
EndPage 167
ExternalDocumentID 10_1016_j_renene_2015_10_013
S0960148115303669
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMC
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SDP
SEN
SES
SET
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
WUQ
ZCA
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c446t-e4ce6beb748336b9ebd0295dc3d9f0e0689e5431e528632ed2723504f16d52783
IEDL.DBID .~1
ISSN 0960-1481
IngestDate Mon Jul 21 11:43:57 EDT 2025
Tue Jul 01 03:20:30 EDT 2025
Thu Apr 24 22:52:40 EDT 2025
Fri Feb 23 02:20:32 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Diffuser-augmented micro wind turbine
Turbulence intensity
Coefficient of performance
Micro wind turbine
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-e4ce6beb748336b9ebd0295dc3d9f0e0689e5431e528632ed2723504f16d52783
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2000520706
PQPubID 24069
PageCount 14
ParticipantIDs proquest_miscellaneous_2000520706
crossref_primary_10_1016_j_renene_2015_10_013
crossref_citationtrail_10_1016_j_renene_2015_10_013
elsevier_sciencedirect_doi_10_1016_j_renene_2015_10_013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-03-01
PublicationDateYYYYMMDD 2016-03-01
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-03-01
  day: 01
PublicationDecade 2010
PublicationTitle Renewable energy
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Menter (bib12) 1994; 32
Ohya, Karasudani (bib14) 2010; 3
Yang, Shen, Xu, Hong, Liu (bib22) 2014; 70
Kindelspire (bib8) 1988
Gipe (bib4) 1999
Peacock, Jenkins, Ahadzi, Berry, Turan (bib15) 2008; 40
Mikkelsen (bib13) 2013
Ledo, Kosasih, Cooper (bib10) 2011; 36
Sicot, Devinant, Loyer, Hureau (bib19) 2008; 96
Hoffmann (bib6) 1990; 29
Snel, Houwink, Piers, Bussel, Bruining (bib21) 1993
Kosasih, Tondelli (bib9) 2012; 49
Lubitz (bib11) 2014; 61
Gluskin (bib5) 1998; 19
Sicot, Devinant, Laverne, Loyer, Hureau (bib20) 2006; 9
Chokani, Abhari (bib3) 2014
Amandolése, Széchényi (bib1) 2004; 7
Rafailidis (bib16) 1997; 85
Rogers, Omer (bib18) 2012; 8
Kamada, Maeda, Murata, Toki, Tobuchi (bib7) 2011; 6
Roach (bib17) 1987; 8
ANSYS (bib2) 2006
Mikkelsen (10.1016/j.renene.2015.10.013_bib13) 2013
Gipe (10.1016/j.renene.2015.10.013_bib4) 1999
Rogers (10.1016/j.renene.2015.10.013_bib18) 2012; 8
Lubitz (10.1016/j.renene.2015.10.013_bib11) 2014; 61
Snel (10.1016/j.renene.2015.10.013_bib21) 1993
Peacock (10.1016/j.renene.2015.10.013_bib15) 2008; 40
Kindelspire (10.1016/j.renene.2015.10.013_bib8) 1988
Ohya (10.1016/j.renene.2015.10.013_bib14) 2010; 3
Sicot (10.1016/j.renene.2015.10.013_bib20) 2006; 9
Yang (10.1016/j.renene.2015.10.013_bib22) 2014; 70
Kamada (10.1016/j.renene.2015.10.013_bib7) 2011; 6
Kosasih (10.1016/j.renene.2015.10.013_bib9) 2012; 49
Sicot (10.1016/j.renene.2015.10.013_bib19) 2008; 96
Rafailidis (10.1016/j.renene.2015.10.013_bib16) 1997; 85
Menter (10.1016/j.renene.2015.10.013_bib12) 1994; 32
Hoffmann (10.1016/j.renene.2015.10.013_bib6) 1990; 29
Roach (10.1016/j.renene.2015.10.013_bib17) 1987; 8
Gluskin (10.1016/j.renene.2015.10.013_bib5) 1998; 19
Chokani (10.1016/j.renene.2015.10.013_bib3) 2014
Ledo (10.1016/j.renene.2015.10.013_bib10) 2011; 36
Amandolése (10.1016/j.renene.2015.10.013_bib1) 2004; 7
ANSYS (10.1016/j.renene.2015.10.013_bib2) 2006
References_xml – volume: 32
  start-page: 1598
  year: 1994
  end-page: 1605
  ident: bib12
  article-title: Two-equation eddy-viscosity turbulence models for engineering applications
  publication-title: AIAA J.
– volume: 19
  start-page: 93
  year: 1998
  end-page: 95
  ident: bib5
  article-title: A possible way to measure the mechanical torque developed by an electric motor
  publication-title: Eur. J. Phys.
– volume: 8
  start-page: 58
  year: 2012
  end-page: 63
  ident: bib18
  article-title: Yaw analysis of micro-scale horizontal axis wind turbine operating in turbulent wind conditions
  publication-title: Int. J. Low Carbon Technol.
– start-page: 395
  year: 1993
  end-page: 399
  ident: bib21
  article-title: Sectional prediction of 3-D effects for stalled flow on rotating blades and comparison with measurements
  publication-title: EWEC
– volume: 29
  start-page: 1353
  year: 1990
  end-page: 1354
  ident: bib6
  article-title: Effects of freestream turbulence on the performance characteristics of an airfoil
  publication-title: AIAA J.
– volume: 40
  start-page: 1324
  year: 2008
  end-page: 1333
  ident: bib15
  article-title: Micro wind turbines in the UK domestic sector
  publication-title: Wind Energy Build.
– volume: 6
  start-page: 333
  year: 2011
  end-page: 341
  ident: bib7
  article-title: Effects of turbulence intensity on dynamic characteristics of wind turbine airfoil
  publication-title: J. Fluid Sci. Technol.
– year: 1999
  ident: bib4
  article-title: Wind Energy Basics
– year: 1988
  ident: bib8
  article-title: The Effects of Freestream Turbulence on Airfoil Boundary Layer Behavior at Low Reynolds Numbers
– volume: 9
  start-page: 361
  year: 2006
  end-page: 370
  ident: bib20
  article-title: Experimental study of the effect of turbulence on horizontal axis wind turbine aerodynamics
  publication-title: Wind Energy
– volume: 36
  start-page: 1379
  year: 2011
  end-page: 1391
  ident: bib10
  article-title: Roof mounting site analysis for micro-wind turbines
  publication-title: Renew. Energy
– volume: 8
  start-page: 82
  year: 1987
  end-page: 92
  ident: bib17
  article-title: The generation of nearly isotropic turbulence by means of grids
  publication-title: Int. J. Heat Fluid Flow
– volume: 49
  start-page: 92
  year: 2012
  end-page: 98
  ident: bib9
  article-title: Experimental study of shrouded micro-wind turbine
  publication-title: Procedia Eng.
– volume: 3
  start-page: 634
  year: 2010
  end-page: 639
  ident: bib14
  article-title: A shrouded wind turbine generating high output power with wind-lens technology
  publication-title: Energies
– volume: 7
  start-page: 267
  year: 2004
  end-page: 282
  ident: bib1
  article-title: Experimental study of the effect of turbulence on a section model blade oscillating in stall
  publication-title: Wind Energy
– volume: 61
  start-page: 69
  year: 2014
  end-page: 73
  ident: bib11
  article-title: Impact of ambient turbulence on performance of a small wind turbine
  publication-title: Renew. Energy
– volume: 96
  start-page: 1320
  year: 2008
  end-page: 1331
  ident: bib19
  article-title: Rotational and turbulence effects on a wind turbine blade. Investigation of the stall mechanisms
  publication-title: J. Wind Eng. Ind. Aerodyn.
– volume: 70
  start-page: 107
  year: 2014
  end-page: 115
  ident: bib22
  article-title: Prediction of the wind turbine performance by using BEM with airfoil data extracted from CFD
  publication-title: Renew. Energy
– year: 2014
  ident: bib3
  article-title: Siting of Wind Turbines in Complex Terrain Effects of Inclined Freestream Flow and Elevated Freestream Turbulence
– year: 2013
  ident: bib13
  article-title: Effect of Free Stream Turbulence on Wind Turbine Performance
– volume: 85
  start-page: 255
  year: 1997
  end-page: 271
  ident: bib16
  article-title: Influence of building areal density and roof shape on the wind characteristics above a town
  publication-title: Bound. Layer Meteorol.
– year: 2006
  ident: bib2
  article-title: CFX-solver Theory Guide Release 11
– volume: 36
  start-page: 1379
  year: 2011
  ident: 10.1016/j.renene.2015.10.013_bib10
  article-title: Roof mounting site analysis for micro-wind turbines
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2010.10.030
– volume: 8
  start-page: 58
  year: 2012
  ident: 10.1016/j.renene.2015.10.013_bib18
  article-title: Yaw analysis of micro-scale horizontal axis wind turbine operating in turbulent wind conditions
  publication-title: Int. J. Low Carbon Technol.
  doi: 10.1093/ijlct/cts009
– volume: 49
  start-page: 92
  year: 2012
  ident: 10.1016/j.renene.2015.10.013_bib9
  article-title: Experimental study of shrouded micro-wind turbine
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2012.10.116
– year: 2013
  ident: 10.1016/j.renene.2015.10.013_bib13
– volume: 70
  start-page: 107
  year: 2014
  ident: 10.1016/j.renene.2015.10.013_bib22
  article-title: Prediction of the wind turbine performance by using BEM with airfoil data extracted from CFD
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2014.05.002
– year: 2006
  ident: 10.1016/j.renene.2015.10.013_bib2
– volume: 6
  start-page: 333
  year: 2011
  ident: 10.1016/j.renene.2015.10.013_bib7
  article-title: Effects of turbulence intensity on dynamic characteristics of wind turbine airfoil
  publication-title: J. Fluid Sci. Technol.
  doi: 10.1299/jfst.6.333
– volume: 61
  start-page: 69
  year: 2014
  ident: 10.1016/j.renene.2015.10.013_bib11
  article-title: Impact of ambient turbulence on performance of a small wind turbine
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2012.08.015
– year: 1999
  ident: 10.1016/j.renene.2015.10.013_bib4
– volume: 96
  start-page: 1320
  year: 2008
  ident: 10.1016/j.renene.2015.10.013_bib19
  article-title: Rotational and turbulence effects on a wind turbine blade. Investigation of the stall mechanisms
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/j.jweia.2008.01.013
– volume: 19
  start-page: 93
  year: 1998
  ident: 10.1016/j.renene.2015.10.013_bib5
  article-title: A possible way to measure the mechanical torque developed by an electric motor
  publication-title: Eur. J. Phys.
  doi: 10.1088/0143-0807/19/1/013
– start-page: 395
  year: 1993
  ident: 10.1016/j.renene.2015.10.013_bib21
  article-title: Sectional prediction of 3-D effects for stalled flow on rotating blades and comparison with measurements
  publication-title: EWEC
– volume: 40
  start-page: 1324
  year: 2008
  ident: 10.1016/j.renene.2015.10.013_bib15
  article-title: Micro wind turbines in the UK domestic sector
  publication-title: Wind Energy Build.
  doi: 10.1016/j.enbuild.2007.12.004
– volume: 29
  start-page: 1353
  year: 1990
  ident: 10.1016/j.renene.2015.10.013_bib6
  article-title: Effects of freestream turbulence on the performance characteristics of an airfoil
  publication-title: AIAA J.
  doi: 10.2514/3.10745
– volume: 32
  start-page: 1598
  year: 1994
  ident: 10.1016/j.renene.2015.10.013_bib12
  article-title: Two-equation eddy-viscosity turbulence models for engineering applications
  publication-title: AIAA J.
  doi: 10.2514/3.12149
– volume: 3
  start-page: 634
  year: 2010
  ident: 10.1016/j.renene.2015.10.013_bib14
  article-title: A shrouded wind turbine generating high output power with wind-lens technology
  publication-title: Energies
  doi: 10.3390/en3040634
– year: 2014
  ident: 10.1016/j.renene.2015.10.013_bib3
– year: 1988
  ident: 10.1016/j.renene.2015.10.013_bib8
– volume: 85
  start-page: 255
  year: 1997
  ident: 10.1016/j.renene.2015.10.013_bib16
  article-title: Influence of building areal density and roof shape on the wind characteristics above a town
  publication-title: Bound. Layer Meteorol.
  doi: 10.1023/A:1000426316328
– volume: 8
  start-page: 82
  year: 1987
  ident: 10.1016/j.renene.2015.10.013_bib17
  article-title: The generation of nearly isotropic turbulence by means of grids
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/0142-727X(87)90001-4
– volume: 7
  start-page: 267
  year: 2004
  ident: 10.1016/j.renene.2015.10.013_bib1
  article-title: Experimental study of the effect of turbulence on a section model blade oscillating in stall
  publication-title: Wind Energy
  doi: 10.1002/we.137
– volume: 9
  start-page: 361
  year: 2006
  ident: 10.1016/j.renene.2015.10.013_bib20
  article-title: Experimental study of the effect of turbulence on horizontal axis wind turbine aerodynamics
  publication-title: Wind Energy
  doi: 10.1002/we.184
SSID ssj0015874
Score 2.4126196
Snippet The performance of a wind turbine is directly affected by the site wind condition. In urban-built locality, the wind is typified by fluctuating velocity and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 154
SubjectTerms Coefficient of performance
Diffuser-augmented micro wind turbine
Micro wind turbine
Turbulence intensity
turbulent flow
wind
wind power
wind tunnels
wind turbines
Title Influence of inflow turbulence intensity on the performance of bare and diffuser-augmented micro wind turbine model
URI https://dx.doi.org/10.1016/j.renene.2015.10.013
https://www.proquest.com/docview/2000520706
Volume 87
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9jvuiD-InzY0TwNVvbpGn7OIZjKu5FB3srzZLKZLZjrgxf_Nu9S9v5ASL42JCk5XK9-yX53R0hVzoB2BZozTw83BBcGRa6PGEq4lEodQgQBIOT70dyOBa3E3_SIP06FgZplZXtL226tdZVS7eSZncxm3UfEHwDmAdIg2ZYYhCfEAFqeed9Q_Nw_bDMxAydGfauw-csxwuzRmaYLNP1O8jxcvlv7umHobbeZ7BHdivYSHvll-2ThskOyM6XZIKHBC-QynojNE8pKM48X1NwKKqwcUV0VpLVV280zyjAPrr4jBnAESpZGppkmmLNFDy7YEnxZFN2avqCtD26hv27nRFeSm0JnSMyHlw_9oesKqnAprDvWzEjpkYqowIRci5VZJR2vMjXU66j1DGODCOD0fHG90LJPaO9wOO-I1JXah-LchyTZpZn5oTQNIqEl3gK8KMRthClBken0kS6KaAC0yK8lmQ8rfKNY9mLeVwTy57jUv4xyh9bQf4twjajFmW-jT_6B_Uixd_0JgaX8MfIy3pNY_il8J4kyUxevGJlTmQHBY48_ffsZ2QbnmTJVjsnzdWyMBcAX1aqbfWzTbZ6N3fD0QflXPAz
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RTlaSRW0yROnHhEFVWBwkIrdYvi2kFFJalKq4qF386dk5SHhJBYHduJzvbdl-S7-wi50AnAtlBr5uHHDZ8rwyKXJ0xJLiOhI4AgmJx8_yA6ff92EAxqpFXlwiCtsvT9hU-33rpsaZbWbE5Go-Yjgm8A8wBp0A0LuUJWfTi-KGNw-b7kebhBVJRiht4Mu1f5c5bkhWUjM6yW6QaXSPJy-W_x6YentuGnvUU2S9xIr4pH2yY1k-2QjS_VBHcJ_kEqBEdonlLYOeN8QSGiqLlNLKKjgq0-e6N5RgH30cln0gCOUMnU0CTTFEVT8OMFS-ZPtmanpi_I26MLeIG3M8JNqdXQ2SP99nWv1WGlpgIbwovfjBl_aIQyKvQjzoWSRmnHk4Eeci1TxzgikgbT403gRYJ7RnuhxwPHT12hA1Tl2Cf1LM_MAaGplL6XeAoApPGtEqWGSKfSRLgpwALTILyyZDwsC46j7sU4rphlz3Fh_xjtj61g_wZhy1GTouDGH_3DapHibxsnhpjwx8jzak1jOFP4oyTJTD5_RWlOpAeFjjj89-xnZK3Tu-_G3ZuHuyOyDldEQV07JvXZdG5OAMvM1Kndqx9mlvHB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+inflow+turbulence+intensity+on+the+performance+of+bare+and+diffuser-augmented+micro+wind+turbine+model&rft.jtitle=Renewable+energy&rft.au=Kosasih%2C+B.&rft.au=Saleh+Hudin%2C+H.&rft.date=2016-03-01&rft.issn=0960-1481&rft.volume=87&rft.spage=154&rft.epage=167&rft_id=info:doi/10.1016%2Fj.renene.2015.10.013&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_renene_2015_10_013
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1481&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1481&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1481&client=summon