The COVID-19 Vaccine Race: Challenges and Opportunities in Vaccine Formulation

In the race for a safe and effective vaccine against coronavirus disease (COVID)-19, pharmaceutical formulation science plays a critical role throughout the development, manufacturing, distribution, and vaccination phases. The proper choice of the type of vaccine, carrier or vector, adjuvant, excipi...

Full description

Saved in:
Bibliographic Details
Published inAAPS PharmSciTech Vol. 21; no. 6; p. 225
Main Authors Wang, Jieliang, Peng, Ying, Xu, Haiyue, Cui, Zhengrong, Williams, Robert O.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 05.08.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the race for a safe and effective vaccine against coronavirus disease (COVID)-19, pharmaceutical formulation science plays a critical role throughout the development, manufacturing, distribution, and vaccination phases. The proper choice of the type of vaccine, carrier or vector, adjuvant, excipients, dosage form, and route of administration can directly impact not only the immune responses induced and the resultant efficacy against COVID-19, but also the logistics of manufacturing, storing and distributing the vaccine, and mass vaccination. In this review, we described the COVID-19 vaccines that are currently tested in clinical trials and provided in-depth insight into the various types of vaccines, their compositions, advantages, and potential limitations. We also addressed how challenges in vaccine distribution and administration may be alleviated by applying vaccine-stabilization strategies and the use of specific mucosal immune response-inducing, non-invasive routes of administration, which must be considered early in the development process.
AbstractList In the race for a safe and effective vaccine against coronavirus disease (COVID)-19, pharmaceutical formulation science plays a critical role throughout the development, manufacturing, distribution, and vaccination phases. The proper choice of the type of vaccine, carrier or vector, adjuvant, excipients, dosage form, and route of administration can directly impact not only the immune responses induced and the resultant efficacy against COVID-19, but also the logistics of manufacturing, storing and distributing the vaccine, and mass vaccination. In this review, we described the COVID-19 vaccines that are currently tested in clinical trials and provided in-depth insight into the various types of vaccines, their compositions, advantages, and potential limitations. We also addressed how challenges in vaccine distribution and administration may be alleviated by applying vaccine-stabilization strategies and the use of specific mucosal immune response-inducing, non-invasive routes of administration, which must be considered early in the development process.
In the race for a safe and effective vaccine against coronavirus disease (COVID)-19, pharmaceutical formulation science plays a critical role throughout the development, manufacturing, distribution, and vaccination phases. The proper choice of the type of vaccine, carrier or vector, adjuvant, excipients, dosage form, and route of administration can directly impact not only the immune responses induced and the resultant efficacy against COVID-19, but also the logistics of manufacturing, storing and distributing the vaccine, and mass vaccination. In this review, we described the COVID-19 vaccines that are currently tested in clinical trials and provided in-depth insight into the various types of vaccines, their compositions, advantages, and potential limitations. We also addressed how challenges in vaccine distribution and administration may be alleviated by applying vaccine-stabilization strategies and the use of specific mucosal immune response-inducing, non-invasive routes of administration, which must be considered early in the development process.In the race for a safe and effective vaccine against coronavirus disease (COVID)-19, pharmaceutical formulation science plays a critical role throughout the development, manufacturing, distribution, and vaccination phases. The proper choice of the type of vaccine, carrier or vector, adjuvant, excipients, dosage form, and route of administration can directly impact not only the immune responses induced and the resultant efficacy against COVID-19, but also the logistics of manufacturing, storing and distributing the vaccine, and mass vaccination. In this review, we described the COVID-19 vaccines that are currently tested in clinical trials and provided in-depth insight into the various types of vaccines, their compositions, advantages, and potential limitations. We also addressed how challenges in vaccine distribution and administration may be alleviated by applying vaccine-stabilization strategies and the use of specific mucosal immune response-inducing, non-invasive routes of administration, which must be considered early in the development process.
ArticleNumber 225
Author Williams, Robert O.
Wang, Jieliang
Peng, Ying
Xu, Haiyue
Cui, Zhengrong
Author_xml – sequence: 1
  givenname: Jieliang
  surname: Wang
  fullname: Wang, Jieliang
  organization: Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin
– sequence: 2
  givenname: Ying
  surname: Peng
  fullname: Peng, Ying
  organization: Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin
– sequence: 3
  givenname: Haiyue
  surname: Xu
  fullname: Xu, Haiyue
  organization: Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin
– sequence: 4
  givenname: Zhengrong
  surname: Cui
  fullname: Cui, Zhengrong
  organization: Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin
– sequence: 5
  givenname: Robert O.
  orcidid: 0000-0003-4993-6427
  surname: Williams
  fullname: Williams, Robert O.
  email: Bill.williams@austin.utexas.edu
  organization: Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32761294$$D View this record in MEDLINE/PubMed
BookMark eNp9UclOHDEQtRAoLMkPcIj6mEuDy0u7nUOkaBIWCTFSBFwtj7uaMeqxJ3Y3Uv4-hoERyYFTWeW3lN47JLshBiTkGOgJMNqeZmBM6JoyWlNQQtRqhxyA5LTWmrPdN-99cpjzA6WMg-YfyD5nqgGmxQG5vlliNZvfXf6oQVd31jkfsPplHX6tZks7DBjuMVc2dNV8vY5pnIIffdn4sEWfxbSaBjv6GD6Svd4OGT-9zCNye_bzZnZRX83PL2ffr2onRDPWyHthF-V6ARadWCjsO8b7hjmkHQLFpmlb3aJEqbSAxmkhoVOA0ErFW8ePyLeN7nparLBzGMZkB7NOfmXTHxOtN__-BL809_HRKEGlkk0R-PIikOLvCfNoVj47HAYbME7ZMMGhBSlBFejnt15bk9cQC4BtAC7FnBP2WwhQ89SU2TRlSlPmuSnzpNr-R3J-fM6w3OuH96l8Q83Fp9STzEOcUih5v8f6C9tCpuY
CitedBy_id crossref_primary_10_7717_peerj_cs_597
crossref_primary_10_1016_j_acci_2022_02_006
crossref_primary_10_3390_vaccines12080857
crossref_primary_10_1002_hsr2_1377
crossref_primary_10_3390_ijerph192214655
crossref_primary_10_3390_vaccines10101589
crossref_primary_10_1016_j_metop_2021_100124
crossref_primary_10_3390_vaccines11010093
crossref_primary_10_1016_j_molliq_2022_120097
crossref_primary_10_21272_hem_2021_3_06
crossref_primary_10_3390_diagnostics11081480
crossref_primary_10_3390_vaccines12111220
crossref_primary_10_1016_j_sapharm_2022_06_001
crossref_primary_10_1007_s10067_021_05700_z
crossref_primary_10_1038_s41541_021_00307_6
crossref_primary_10_3390_diseases12040067
crossref_primary_10_1002_pa_2723
crossref_primary_10_1111_ijd_15673
crossref_primary_10_3390_biomedinformatics2040043
crossref_primary_10_1515_jib_2021_0002
crossref_primary_10_3390_ijerph19063349
crossref_primary_10_4103_1995_7645_340567
crossref_primary_10_36106_ijsr_2726571
crossref_primary_10_3934_publichealth_2021030
crossref_primary_10_1007_s10389_023_01879_4
crossref_primary_10_1093_humrep_deab282
crossref_primary_10_1002_ccr3_7872
crossref_primary_10_2174_1568026623666230825094341
crossref_primary_10_20492_aeahtd_940534
crossref_primary_10_1111_all_15080
crossref_primary_10_3390_vaccines11101571
crossref_primary_10_1016_j_tibtech_2020_12_006
crossref_primary_10_1038_s41598_023_39268_2
crossref_primary_10_3390_pharmaceutics14051066
crossref_primary_10_1016_j_pce_2022_103140
crossref_primary_10_1097_MCP_0000000000000868
crossref_primary_10_4018_IJICTHD_313978
crossref_primary_10_1159_000512880
crossref_primary_10_3390_ijtm2020021
crossref_primary_10_1016_j_biopha_2022_114208
crossref_primary_10_1016_j_vaccine_2023_03_033
crossref_primary_10_1016_j_socscimed_2023_116150
crossref_primary_10_4274_forbes_galenos_2021_30974
crossref_primary_10_1007_s10311_020_01110_w
crossref_primary_10_3389_fimmu_2021_679344
crossref_primary_10_1136_bmjgh_2021_008139
crossref_primary_10_1016_j_jksuci_2021_10_001
crossref_primary_10_2217_fon_2021_0288
crossref_primary_10_3390_vaccines11091469
crossref_primary_10_1016_j_soh_2023_100048
crossref_primary_10_1002_jmv_26910
crossref_primary_10_1016_S2213_2600_23_00129_7
crossref_primary_10_1007_s11033_022_07132_7
crossref_primary_10_3390_vaccines9091033
crossref_primary_10_21076_vizyoner_1217829
crossref_primary_10_3390_jpm13030402
crossref_primary_10_1128_mBio_01140_21
crossref_primary_10_2139_ssrn_4118569
crossref_primary_10_1208_s12249_021_01974_3
crossref_primary_10_1038_s41598_021_99401_x
crossref_primary_10_1021_acs_molpharmaceut_0c00608
crossref_primary_10_1007_s13337_023_00852_9
crossref_primary_10_1007_s40199_022_00446_8
crossref_primary_10_1038_s41598_025_90607_x
crossref_primary_10_3389_fpsyt_2022_896419
crossref_primary_10_3390_biomedicines9111690
crossref_primary_10_3390_pathogens11070743
crossref_primary_10_47316_cajmhe_2022_3_3_03
crossref_primary_10_3389_fped_2022_944165
crossref_primary_10_1021_acsnano_3c04507
crossref_primary_10_1021_acs_chemmater_2c00137
crossref_primary_10_22270_jddt_v11i2_4752
crossref_primary_10_1002_adtp_202100059
crossref_primary_10_1016_j_cherd_2023_02_044
crossref_primary_10_1177_02611929231193416
crossref_primary_10_1186_s12879_023_08079_1
crossref_primary_10_1007_s40199_024_00524_z
crossref_primary_10_1186_s12939_021_01520_4
crossref_primary_10_3390_bios11030066
crossref_primary_10_1080_21645515_2022_2132082
crossref_primary_10_1016_j_jsb_2020_107690
crossref_primary_10_3390_life13091925
crossref_primary_10_4014_jmb_2411_11036
crossref_primary_10_1007_s40267_021_00852_z
crossref_primary_10_3917_heg_112_0126
crossref_primary_10_1109_TCBB_2022_3198365
crossref_primary_10_3390_vaccines10101689
crossref_primary_10_1038_s41578_021_00399_5
crossref_primary_10_1177_08971900211009650
crossref_primary_10_3390_vaccines9121508
crossref_primary_10_1007_s13346_021_00924_7
crossref_primary_10_1186_s13027_023_00547_2
crossref_primary_10_1016_j_ijpharm_2022_122357
crossref_primary_10_1016_j_jviromet_2023_114787
crossref_primary_10_1080_17425247_2023_2288856
crossref_primary_10_1111_jocd_14386
crossref_primary_10_1155_2022_3392667
crossref_primary_10_3390_v14071553
crossref_primary_10_3390_v13061091
crossref_primary_10_1186_s12879_022_07486_0
crossref_primary_10_3892_wasj_2021_83
crossref_primary_10_1016_j_virusres_2021_198454
crossref_primary_10_3390_plants11182436
crossref_primary_10_1038_s41541_022_00447_3
crossref_primary_10_23838_pfm_2021_00156
crossref_primary_10_1038_s41541_022_00549_y
crossref_primary_10_1186_s43088_022_00215_1
crossref_primary_10_16899_jcm_1007872
crossref_primary_10_7759_cureus_23726
crossref_primary_10_1080_21645515_2021_1955606
crossref_primary_10_1016_j_xphs_2024_09_015
crossref_primary_10_1097_j_pbj_0000000000000219
crossref_primary_10_3390_vaccines9101086
crossref_primary_10_3389_fdgth_2021_745674
crossref_primary_10_1007_s40199_021_00422_8
crossref_primary_10_3390_vaccines9080866
crossref_primary_10_1002_ccr3_8547
crossref_primary_10_3390_ijms232315415
crossref_primary_10_3390_pr11061718
crossref_primary_10_1016_j_jiph_2020_12_025
crossref_primary_10_2174_0126667975275509231211062032
crossref_primary_10_5005_JABLM_11031_03208
crossref_primary_10_1038_s43856_022_00207_3
crossref_primary_10_1016_j_biopha_2022_113977
crossref_primary_10_1016_j_adcanc_2022_100033
crossref_primary_10_1016_j_procbio_2022_12_002
crossref_primary_10_3390_healthcare12242541
crossref_primary_10_3390_biom11010042
crossref_primary_10_3390_vaccines9121487
crossref_primary_10_1208_s12249_022_02247_3
crossref_primary_10_1007_s10311_021_01224_9
crossref_primary_10_1089_vim_2022_0022
crossref_primary_10_1016_j_addr_2021_02_011
crossref_primary_10_4103_jpbs_jpbs_342_21
crossref_primary_10_1016_j_jnca_2021_103304
crossref_primary_10_1360_TB_2022_1097
crossref_primary_10_3390_vaccines9111239
crossref_primary_10_1016_j_jobb_2021_10_005
crossref_primary_10_1016_j_vaccine_2022_03_025
crossref_primary_10_1016_j_arcmed_2020_12_012
crossref_primary_10_3389_fmed_2022_852922
crossref_primary_10_1016_j_jddst_2022_103762
crossref_primary_10_51847_NPwBdT5ENR
crossref_primary_10_1515_ntrev_2021_0115
crossref_primary_10_1016_j_molimm_2022_06_007
crossref_primary_10_3390_brainsci12030306
crossref_primary_10_3390_vaccines9010042
crossref_primary_10_1016_j_jaip_2021_06_019
crossref_primary_10_3390_cells10081952
crossref_primary_10_3390_vaccines9060589
crossref_primary_10_1016_j_hsr_2021_100001
crossref_primary_10_1038_s41392_022_00996_y
crossref_primary_10_33889_IJMEMS_2023_8_3_027
crossref_primary_10_5812_semj_121915
crossref_primary_10_1016_j_biopha_2021_111953
crossref_primary_10_1016_j_procs_2021_10_083
crossref_primary_10_1186_s12889_021_11814_5
crossref_primary_10_3390_vaccines9111345
crossref_primary_10_4028_p_b6Jawk
crossref_primary_10_7555_JBR_34_20200118
crossref_primary_10_1016_j_xphs_2022_02_015
crossref_primary_10_1016_j_jaad_2021_07_054
crossref_primary_10_1109_JSEN_2022_3170521
crossref_primary_10_1097_MD_0000000000033824
crossref_primary_10_1371_journal_pone_0269944
crossref_primary_10_2174_2666958702101010065
crossref_primary_10_15252_embj_2020105938
crossref_primary_10_3390_pharmaceutics13020140
crossref_primary_10_3390_vaccines10122086
crossref_primary_10_1016_j_jmh_2023_100204
crossref_primary_10_22159_ajpcr_2022_v15i7_44547
crossref_primary_10_3389_fpsyt_2021_774504
crossref_primary_10_3389_fmolb_2021_671633
crossref_primary_10_1021_acs_langmuir_1c02783
crossref_primary_10_37319_iqnjm_3_1_9
crossref_primary_10_2147_IJGM_S312640
crossref_primary_10_34108_eujhs_1121522
crossref_primary_10_1016_j_adaj_2021_03_004
crossref_primary_10_1186_s13287_021_02542_z
crossref_primary_10_1038_s41591_021_01334_5
crossref_primary_10_2174_1389201023666220507003726
crossref_primary_10_1002_jmv_26768
crossref_primary_10_4235_agmr_21_0011
crossref_primary_10_3390_idr13040079
crossref_primary_10_21272_bel_5_4__118_126_2021
crossref_primary_10_1186_s43556_024_00222_x
crossref_primary_10_1108_GKMC_05_2021_0080
crossref_primary_10_3390_cells10061412
crossref_primary_10_1051_e3sconf_202129203076
crossref_primary_10_1109_TCBB_2023_3265317
crossref_primary_10_1093_cid_ciab381
crossref_primary_10_3389_fimmu_2022_801915
crossref_primary_10_1016_j_cor_2022_105704
crossref_primary_10_1016_j_addr_2021_05_021
crossref_primary_10_1016_j_antiviral_2024_105894
crossref_primary_10_1371_journal_pone_0254595
crossref_primary_10_3389_fmats_2022_1059184
crossref_primary_10_1016_j_heliyon_2024_e35037
crossref_primary_10_31260_RepertMedCir_01217372_1237
crossref_primary_10_3389_frans_2024_1358893
crossref_primary_10_3390_vaccines9020171
crossref_primary_10_2174_1386207325666220228154231
crossref_primary_10_3390_vaccines10020245
crossref_primary_10_3390_healthcare10020222
crossref_primary_10_1016_j_intimp_2022_109161
crossref_primary_10_3390_membranes13020141
crossref_primary_10_1186_s13027_025_00643_5
crossref_primary_10_3390_vaccines9101196
crossref_primary_10_1002_sys_21667
crossref_primary_10_4236_wjv_2021_113005
crossref_primary_10_3390_vaccines11030705
crossref_primary_10_31260_RepertMedCir_01217372_1227
crossref_primary_10_3390_vaccines9020160
crossref_primary_10_1039_D3TB02861E
Cites_doi 10.4049/jimmunol.181.6.3755
10.1038/s41541-018-0076-2
10.1016/j.vaccine.2006.10.031
10.1038/s41598-018-35452-x
10.1016/j.chom.2012.06.006
10.1016/j.jconrel.2018.10.020
10.1038/nature06939
10.1021/bi047528r
10.1016/j.apsb.2019.05.003
10.1542/peds.112.6.1394
10.1128/IAI.69.2.1151-1159.2001
10.1002/eji.200324198
10.1089/hum.2014.007
10.4049/jimmunol.0901466
10.1016/j.vaccine.2016.09.070
10.1073/pnas.1513532112
10.1016/j.vaccine.2007.02.052
10.2471/BLT.13.119974
10.18609/cgti.2018.017
10.1126/science.1116480
10.3389/fimmu.2018.02936
10.1016/j.coviro.2015.06.009
10.1128/JVI.78.22.12672-12676.2004
10.1016/j.jconrel.2017.01.019
10.1038/s41586-020-2180-5
10.3390/vaccines4020012
10.1038/mtm.2016.2
10.4049/jimmunol.180.2.948
10.1007/978-1-4939-6445-1
10.1128/JVI.78.21.12090-12095.2004
10.1186/s12967-016-1111-6
10.1016/j.ymthe.2019.02.012
10.1038/s41586-020-2008-3
10.1371/journal.pone.0118963
10.1586/14760584.6.5.821
10.1101/2020.02.19.956235
10.1002/pro.465
10.1371/journal.pone.0001176
10.1128/JVI.02012-06
10.1007/s12052-011-0365-y
10.18609/cgti.2018.004
10.1080/21645515.2016.1259042
10.1080/21645515.2019.1654807
10.1208/s12248-011-9261-1
10.4161/hv.22317
10.1016/j.ejpb.2018.01.010
10.1056/NEJMoa030595
10.1084/jem.20071087
10.4049/jimmunol.0901474
10.1007/s11095-008-9540-4
10.1248/cpb.53.301
10.1016/j.vaccine.2019.11.060
10.1056/NEJMoa2007764
10.1126/science.abc1932
10.1016/j.jcis.2004.09.042
10.1016/j.jconrel.2015.02.035
10.1056/NEJMp048180
10.1016/j.jmb.2008.10.089
10.1136/bmj.f794
10.1006/viro.1998.9516
10.1128/JVI.72.11.8463-8471.1998
10.1016/j.vaccine.2010.07.020
10.1016/j.virol.2005.09.020
10.1016/j.jmmm.2005.01.035
10.1080/21645515.2017.1365995
10.1016/j.jconrel.2010.08.012
10.4155/pbp.14.15
10.1186/s12859-016-0918-8
10.1016/j.bbrc.2004.09.106
10.1111/jam.12359
10.4161/rna.22269
10.1016/j.virol.2005.09.056
10.1007/10_2013_214
10.1089/hgtb.2012.059
10.1038/nature14442
10.1080/14712598.2020.1693541
ContentType Journal Article
Copyright American Association of Pharmaceutical Scientists 2020
Copyright_xml – notice: American Association of Pharmaceutical Scientists 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1208/s12249-020-01744-7
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1530-9932
ExternalDocumentID PMC7405756
32761294
10_1208_s12249_020_01744_7
Genre Journal Article
Review
GroupedDBID ---
-56
-5G
-BR
-EM
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
203
23M
29~
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
406
408
40D
40E
53G
5GY
5VS
67N
6J9
6NX
875
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AAKDD
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACHSB
ACKNC
ACMDZ
ACMJI
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADURQ
ADYFF
ADYOE
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
B-.
BA0
BAWUL
BGNMA
CS3
CSCUP
DDRTE
DIK
DNIVK
DPUIP
E3Z
EBLON
EBS
EIOEI
EMOBN
ESBYG
F5P
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HG6
HH5
HMJXF
HRMNR
IJ-
IKXTQ
IWAJR
IXC
IXD
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KOV
KPH
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O93
O9I
O9J
OK1
P2P
PF0
PT4
QOR
QOS
R89
R9I
ROL
RPM
RPX
RSV
S16
S27
S3A
S3B
SAP
SBL
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
TR2
TSG
TSV
TUC
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
XSB
YLTOR
Z45
Z7U
Z7V
Z7W
Z7X
Z81
Z87
ZMTXR
ZOVNA
~A9
-Y2
2VQ
4.4
AANXM
AAPKM
AARHV
AAYXX
ABBRH
ABDBE
ABFSG
ABULA
ACBXY
ACMFV
ACSTC
AEBTG
AEKMD
AEZWR
AFDZB
AFGCZ
AFHIU
AFOHR
AGJBK
AHPBZ
AHSBF
AHWEU
AIXLP
AJBLW
AOIJS
ATHPR
AYFIA
BDATZ
BSONS
C1A
CAG
CITATION
COF
EJD
EN4
FINBP
FSGXE
GX1
H13
HYE
HZ~
LGEZI
LOTEE
NADUK
NXXTH
O9-
OVD
S1Z
TEORI
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ABRTQ
ID FETCH-LOGICAL-c446t-e3f4ab22441aec4b7efd23f62ce0de10e668898e5e579416c9451d71e185738c3
IEDL.DBID U2A
ISSN 1530-9932
IngestDate Thu Aug 21 18:12:04 EDT 2025
Fri Jul 11 08:59:54 EDT 2025
Wed Feb 19 02:04:20 EST 2025
Thu Apr 24 23:02:02 EDT 2025
Tue Jul 01 01:45:36 EDT 2025
Fri Feb 21 02:33:15 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords mucosal vaccination
coronavirus
vaccine
adjuvant
route of administration
Language English
License This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-e3f4ab22441aec4b7efd23f62ce0de10e668898e5e579416c9451d71e185738c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0003-4993-6427
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7405756
PMID 32761294
PQID 2431815517
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7405756
proquest_miscellaneous_2431815517
pubmed_primary_32761294
crossref_primary_10_1208_s12249_020_01744_7
crossref_citationtrail_10_1208_s12249_020_01744_7
springer_journals_10_1208_s12249_020_01744_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-08-05
PublicationDateYYYYMMDD 2020-08-05
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-05
  day: 05
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: United States
PublicationSubtitle An Official Journal of the American Association of Pharmaceutical Scientists
PublicationTitle AAPS PharmSciTech
PublicationTitleAbbrev AAPS PharmSciTech
PublicationTitleAlternate AAPS PharmSciTech
PublicationYear 2020
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
References Gretebeck LM, Subbarao K. Animal models for SARS and MERS coronaviruses. Curr Opin Virol [Internet]. 2015;13:123–9 Available from: https://linkinghub.elsevier.com/retrieve/pii/S187962571500098X.
BandeiraVPeixotoCRodriguesAFCruzPEAlvesPMCoroadinhaASCarrondoMJTDownstream processing of lentiviral vectors: releasing bottlenecksHum Gene Ther Methods2012232552631:CAS:528:DC%2BC3sXpvVyitL0%3D10.1089/hgtb.2012.059
Garden R. Remarks by President Trump on vaccine development [Internet]. 2020 [cited 2020 May 25]. Available from: https://www.whitehouse.gov/briefings-statements/remarks-president-trump-vaccine-development
SchellBBraedelSProbstJCarralotJPWagnerHSchildHImmunostimulating capacities of stabilized RNA moleculesEur J Immunol200434253754710.1002/eji.200324198
Niu L, Panyam J. Freeze concentration-induced PLGA and polystyrene nanoparticle aggregation: Imaging and rational design of lyoprotection. J Control Release [Internet]. 2017;248:125–132. Available from: https://doi.org/10.1016/j.jconrel.2017.01.019
Lapelosa M, Gallicchio E, Arnold GF, Arnold E, Levy RM. In silico vaccine design based on molecular simulations of rhinovirus chimeras presenting HIV-1 gp41 epitopes. J Mol Biol [Internet]. 2009;385(2):675–91 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0022283608014022.
VellingaJSmithJPLipiecAMajhenDLemckertAvan OoijMIvesPYallopCCustersJHavengaMChallenges in manufacturing adenoviral vectors for global vaccine product deploymentHum Gene Ther20142543183271:CAS:528:DC%2BC2cXmsFWltro%3D10.1089/hum.2014.007
Fang M, Cheng H, Dai Z, Bu Z, Sigal LJ. Immunization with a single extracellular enveloped virus protein produced in bacteria provides partial protection from a lethal orthopoxvirus infection in a natural host. Virology [Internet]. 2006;345(1):231–43 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0042682205006306.
ConnellTDCholera toxin, LT-I, LT-IIa and LT-IIb: the critical role of ganglioside binding in immunomodulation by type I and type II heat-labile enterotoxinsExpert Rev Vaccines [Internet]2007658218341:CAS:528:DC%2BD2sXhtFGgsr3M10.1586/14760584.6.5.821Available from
TomarJTonnisWFPatilHPde boerAHHagedoornPVanbeverRPulmonary immunization: deposition site is of minor relevance for influenza vaccination but deep lung deposition is crucial for hepatitis B vaccinationActa Pharm Sin B [Internet]2019961231124010.1016/j.apsb.2019.05.003Available from
MohananDSlütterBHenriksen-LaceyMJiskootWBouwstraJAPerrieYKündigTMGanderBJohansenPAdministration routes affect the quality of immune responses: a cross-sectional evaluation of particulate antigen-delivery systemsJ Control Release [Internet]201014733423491:CAS:528:DC%2BC3cXhtlygt7jI10.1016/j.jconrel.2010.08.012Available from
Montel MendozaGPasterisSEOteroMCFatima Nader-MacíasMESurvival and beneficial properties of lactic acid bacteria from raniculture subjected to freeze-drying and storageJ Appl Microbiol201411611571661:CAS:528:DC%2BC3sXhvFKqtLvK10.1111/jam.12359
Sánchez-RamónSConejeroLNeteaMGSanchoDPalomaresÓSubizaJLTrained immunity-based vaccines: a new paradigm for the development of broad-Spectrum anti-infectious formulationsFront Immunol20189December293610.3389/fimmu.2018.02936
EditorCBFWalkerJMFoxCBVaccine adjuvants [Internet]Methods in Molecular Biology2017New YorkSpringer New York10.1007/978-1-4939-6445-1Available from
Astudillo A, Leung SSY, Kutter E, Morales S, Chan H-K. Nebulization effects on structural stability of bacteriophage PEV 44. Eur J Pharm Biopharm [Internet]. 2018;125(December 2017):124–30 Available from: https://linkinghub.elsevier.com/retrieve/pii/S093964111731007X.
Ong E, Wong MU, Huffman A, He Y. COVID-19 coronavirus vaccine design using reverse vaccinology and machine learning. bioRxiv [Internet]. 2020 ;2020.03.20.000141. Available from: http://biorxiv.org/content/early/2020/03/21/2020.03.20.000141.abstract
KoolMPetrilliVDe SmedtTRolazAHammadHvan NimwegenMCutting edge: alum adjuvant stimulates inflammatory dendritic cells through activation of the NALP3 inflammasomeJ Immunol [Internet].20081816375537591:CAS:528:DC%2BD1cXhtVKntLzK10.4049/jimmunol.181.6.375518768827Available from
Aso Y, Yoshioka S. Effect of freezing rate on physical stability of lyophilized cationic liposomes. Chem Pharm Bull (Tokyo) [Internet]. 2005;53(3):301–4 Available from: http://joi.jlc.jst.go.jp/JST.JSTAGE/cpb/53.301?from=CrossRef.
Hanson CM, George AM, Sawadogo A, Schreiber B. Is freezing in the vaccine cold chain an ongoing issue? A literature review. Vaccine [Internet]. 2017;35(17):2127–33 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0264410X16309471.
MoleirinhoMGSilvaRJSAlvesPMCarrondoMJTPeixotoCCurrent challenges in biotherapeutic particles manufacturingExpert Opin Biol Ther20202054514651:CAS:528:DC%2BC1MXit1GlsL%2FL10.1080/14712598.2020.1693541
Shamriz S, Ofoghi H. Design, structure prediction and molecular dynamics simulation of a fusion construct containing malaria pre-erythrocytic vaccine candidate, PfCelTOS, and human interleukin 2 as adjuvant. BMC Bioinformatics [Internet]. 2016;17(1):–71 Available from: http://www.biomedcentral.com/1471-2105/17/71.
MorefieldGLA rational, systematic approach for the development of vaccine formulationsAAPS J20111321912001:CAS:528:DC%2BC3MXlsFansrw%3D10.1208/s12248-011-9261-1
KoolMSoulliéTvan NimwegenMWillartMAMMuskensFJungSAlum adjuvant boosts adaptive immunity by inducing uric acid and activating inflammatory dendritic cellsJ Exp Med [Internet]200820548698821:CAS:528:DC%2BD1cXkvVyrsrc%3D10.1084/jem.20071087Available from
UlanovaMTarkowskiAHahn-ZoricMHansonLÅThe common vaccine adjuvant aluminum hydroxide up-regulates accessory properties of human monocytes via an interleukin-4-dependent mechanismInfect Immun2001692115111591:CAS:528:DC%2BD3MXns1WhtQ%3D%3D10.1128/IAI.69.2.1151-1159.2001
LinehanJLDileepanTKashemSWKaplanDHClearyPJenkinsMKGeneration of Th17 cells in response to intranasal infection requires TGF-β1 from dendritic cells and IL-6 from CD301b + dendritic cellsProc Natl Acad Sci [Internet]20151124112782127871:CAS:528:DC%2BC2MXhsFKnt7bL10.1073/pnas.1513532112Available from
Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Trono D, et al. A third-generation lentivirus vector with a conditional packaging system. J Virol. 1998.
DasUHariprasadGEthayathullaASManralPDasTKPashaSInhibition of protein aggregation: supramolecular assemblies of arginine hold the key. Rutherford S, editorPLoS One [Internet]2007211e11761:CAS:528:DC%2BD1cXjslSntw%3D%3D10.1371/journal.pone.0001176Available from
Mannhalter JW, Neychev HO, Zlabinger GJ, Ahmad R, Eibl MM. Modulation of the human immune response by the non-toxic and non-pyrogenic adjuvant aluminium hydroxide: effect on antigen uptake and antigen presentation. Clin Exp Immunol. 1985.
MutschMZhouWRhodesPBoppMChenRTLinderTSpyrCSteffenRUse of the inactivated intranasal influenza vaccine and the risk of Bell’s palsy in SwitzerlandN Engl J Med [Internet]200435098969031:CAS:528:DC%2BD2cXhsFygsbY%3D10.1056/NEJMoa030595Available from
EdwardsDKJasnyEYoonHHorscroftNSchanenBGeterTFotin-MleczekMPetschBWittmanVAdjuvant effects of a sequence-engineered mRNA vaccine: translational profiling demonstrates similar human and murine innate responseJ Transl Med201715111810.1186/s12967-016-1111-6
LanJGeJYuJShanSZhouHFanSZhangQShiXWangQZhangLWangXStructure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptorNature [Internet].202058178072152201:CAS:528:DC%2BB3cXoslOqtL8%3D10.1038/s41586-020-2180-532225176Available from
Merten O-W, Schweizer M, Chahal P, Kamen A. Manufacturing of viral vectors: part II. Downstream processing and safety aspects. Pharm Bioprocess. 2014.
KowalskiPSRudraAMiaoLAndersonDGDelivering the messenger: advances in technologies for therapeutic mRNA deliveryMol Ther [Internet]20192747107281:CAS:528:DC%2BC1MXntFOnsbw%3D10.1016/j.ymthe.2019.02.012Available from
INOVIO Expands manufacturing of COVID-19 DNA vaccine INO-4800 With New Funding from CEPI [Internet]. [cited 2020 May 18]. Available from: http://ir.inovio.com/news-releases/news-releases-details/2020/INOVIO-Expands-Manufacturing-of-COVID-19-DNA-Vaccine-INO-4800-With-New-Funding-from-CEPI/default.aspx
BelyakovIMAhlersJDWhat role does the route of immunization play in the generation of protective immunity against mucosal pathogens?J Immunol200918311688368921:CAS:528:DC%2BD1MXhsVehsLjI10.4049/jimmunol.0901466
Hung IF-N, Lung K-C, Tso EY-K, Liu R, Chung TW-H, Chu M-Y, et al. Triple combination of interferon beta-1b, lopinavir–ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. Lancet [Internet]. 2020;395(10238):1695–704 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0140673620310424.
Temperature sensitivity of vaccines [Internet]. World Health Organization; 2006. Available from: https://apps.who.int/iris/handle/10665/69387
ThakkarSGRuwonaTBWilliamsROCuiZThe immunogenicity of thin-film freeze-dried, aluminum salt-adjuvanted vaccine when exposed to different temperaturesHum Vaccines Immunother [Internet]201713493694610.1080/21645515.2016.1259042Available from
ClémentNGriegerJCManufacturing of recombinant adeno-associated viral vectors for clinical trialsMol Ther Methods Clin Dev201631600210.1038/mtm.2016.2
Quintin J, Saeed S, Martens JHA, Giamarellos-Bourboulis EJ, Ifrim DC, Logie C, et al. Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes. Cell Host Microbe [Internet]. 2012;12(2):223–32 Available from: https://linkinghub.elsevier.com/retrieve/pii/S1931312812002326.
MillerEAndrewsNStellitanoLStoweJWinstoneAMShneersonJRisk of narcolepsy in children and young people receiving AS03 adjuvanted pandemic A/H1N1 2009 influenza vaccine: retrospective analysisBMJ [Internet].2013346f79410.1136/bmj.f79423444425Available from
SchlakeTThessAFotin-MleczekMKallenKJDeveloping mRNA-vaccine technologiesRNA Biol2012911131913301:CAS:528:DC%2BC3sXjsFKktL8%3D10.4161/rna.22269
Khurana S, Coy
Q Gao (1744_CR41) 2020; 6
N Clément (1744_CR55) 2016; 3
PS Kowalski (1744_CR35) 2019; 27
1744_CR19
V Bandeira (1744_CR61) 2012; 23
PA Offit (1744_CR72) 2003; 112
N Faust (1744_CR54) 2018; 4
J Lan (1744_CR2) 2020; 581
A Detmer (1744_CR30) 2006; 5
T Schlake (1744_CR34) 2012; 9
M Mutsch (1744_CR89) 2004; 350
1744_CR52
1744_CR53
1744_CR10
1744_CR93
IM Belyakov (1744_CR85) 2009; 183
1744_CR15
1744_CR59
1744_CR16
E Miller (1744_CR90) 2013; 346
1744_CR17
1744_CR18
H Xu (1744_CR81) 2017; 13
1744_CR12
1744_CR13
1744_CR14
SG Thakkar (1744_CR80) 2017; 13
F Li (1744_CR11) 2005; 309
D Mohanan (1744_CR86) 2010; 147
BM Baynes (1744_CR74) 2005; 44
O Terova (1744_CR58) 2018; 4
KA Hanley (1744_CR8) 2011; 4
1744_CR62
1744_CR63
1744_CR20
1744_CR21
1744_CR65
S Chaudhury (1744_CR22) 2020; 16
A Angelidou (1744_CR40) 2020; 38
1744_CR60
TD Connell (1744_CR91) 2007; 6
1744_CR26
1744_CR27
PA Offit (1744_CR9) 2005; 352
1744_CR28
M Kool (1744_CR44) 2008; 181
1744_CR66
1744_CR23
1744_CR67
GL Morefield (1744_CR76) 2011; 13
1744_CR24
1744_CR68
1744_CR25
CBF Editor (1744_CR42) 2017
ZOLGENSMA (1744_CR64) 2019
B Pastorino (1744_CR69) 2015; 10
JD Engstrom (1744_CR77) 2008; 25
U Das (1744_CR75) 2007; 2
X Li (1744_CR78) 2015; 204
J Tomar (1744_CR87) 2019; 9
DK Edwards (1744_CR51) 2017; 15
1744_CR32
1744_CR70
1744_CR71
SG Thakkar (1744_CR82) 2018; 292
M Ulanova (1744_CR47) 2001; 69
1744_CR5
1744_CR4
1744_CR38
K Murphy (1744_CR6) 2017
1744_CR7
1744_CR39
PS Kulkarni (1744_CR88) 2013; 9
1744_CR1
1744_CR33
SC Eisenbarth (1744_CR45) 2008; 453
1744_CR79
1744_CR36
B Schell (1744_CR50) 2004; 34
L Du (1744_CR29) 2008; 180
JL Linehan (1744_CR92) 2015; 112
G Montel Mendoza (1744_CR31) 2014; 116
1744_CR84
J Vellinga (1744_CR56) 2014; 25
1744_CR83
S Sánchez-Ramón (1744_CR37) 2018; 9
1744_CR48
JH Beigel (1744_CR3) 2020; 22
A Tischer (1744_CR73) 2010; 19
MG Moleirinho (1744_CR57) 2020; 20
1744_CR46
AM Didierlaurent (1744_CR49) 2009; 183
M Kool (1744_CR43) 2008; 205
References_xml – reference: Zepp F. Principles of vaccine design—lessons from nature. Vaccine [Internet]. 2010;28:C14–24 Available from: http://linkinghub.elsevier.com/retrieve/pii/S0264410X10010030.
– reference: AngelidouAContiMGDiray-ArceJBennCSShannFNeteaMGLicensed Bacille Calmette-Guérin (BCG) formulations differ markedly in bacterial viability, RNA content and innate immune activationVaccine [Internet]2020389222922401:CAS:528:DC%2BB3cXhvVensbs%3D10.1016/j.vaccine.2019.11.060Available from:
– reference: EdwardsDKJasnyEYoonHHorscroftNSchanenBGeterTFotin-MleczekMPetschBWittmanVAdjuvant effects of a sequence-engineered mRNA vaccine: translational profiling demonstrates similar human and murine innate responseJ Transl Med201715111810.1186/s12967-016-1111-6
– reference: GaoQBaoLMaoHWangLXuKYangMDevelopment of an inactivated vaccine candidate for SARS-CoV-2Science (80-) [Internet]20206eabc19321:CAS:528:DC%2BB3cXhtlCmtL3P10.1126/science.abc1932Available from:
– reference: Fang M, Cheng H, Dai Z, Bu Z, Sigal LJ. Immunization with a single extracellular enveloped virus protein produced in bacteria provides partial protection from a lethal orthopoxvirus infection in a natural host. Virology [Internet]. 2006;345(1):231–43 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0042682205006306.
– reference: FaustNAddressing the challenges of commercial-scale viral vector productionCell Gene Ther Insights201842313610.18609/cgti.2018.004
– reference: Temperature sensitivity of vaccines [Internet]. World Health Organization; 2006. Available from: https://apps.who.int/iris/handle/10665/69387
– reference: MohananDSlütterBHenriksen-LaceyMJiskootWBouwstraJAPerrieYKündigTMGanderBJohansenPAdministration routes affect the quality of immune responses: a cross-sectional evaluation of particulate antigen-delivery systemsJ Control Release [Internet]201014733423491:CAS:528:DC%2BC3cXhtlygt7jI10.1016/j.jconrel.2010.08.012Available from:
– reference: McCray PB, Pewe L, Wohlford-Lenane C, Hickey M, Manzel L, Shi L, et al. Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. J Virol [Internet]. 2007;81(2):813–21 Available from: https://jvi.asm.org/content/81/2/813.
– reference: ChaudhurySDuncanEHAtreTDuttaSSpringMDLeitnerWWBergmann-LeitnerESCombining immunoprofiling with machine learning to assess the effects of adjuvant formulation on human vaccine-induced immunityHum Vaccin Immunother [Internet]20201624004111:CAS:528:DC%2BB3cXosVensLY%3D10.1080/21645515.2019.1654807Available from:
– reference: Sánchez-RamónSConejeroLNeteaMGSanchoDPalomaresÓSubizaJLTrained immunity-based vaccines: a new paradigm for the development of broad-Spectrum anti-infectious formulationsFront Immunol20189December293610.3389/fimmu.2018.02936
– reference: Aso Y, Yoshioka S. Effect of freezing rate on physical stability of lyophilized cationic liposomes. Chem Pharm Bull (Tokyo) [Internet]. 2005;53(3):301–4 Available from: http://joi.jlc.jst.go.jp/JST.JSTAGE/cpb/53.301?from=CrossRef.
– reference: Shamriz S, Ofoghi H. Design, structure prediction and molecular dynamics simulation of a fusion construct containing malaria pre-erythrocytic vaccine candidate, PfCelTOS, and human interleukin 2 as adjuvant. BMC Bioinformatics [Internet]. 2016;17(1):–71 Available from: http://www.biomedcentral.com/1471-2105/17/71.
– reference: ConnellTDCholera toxin, LT-I, LT-IIa and LT-IIb: the critical role of ganglioside binding in immunomodulation by type I and type II heat-labile enterotoxinsExpert Rev Vaccines [Internet]2007658218341:CAS:528:DC%2BD2sXhtFGgsr3M10.1586/14760584.6.5.821Available from:
– reference: KoolMPetrilliVDe SmedtTRolazAHammadHvan NimwegenMCutting edge: alum adjuvant stimulates inflammatory dendritic cells through activation of the NALP3 inflammasomeJ Immunol [Internet].20081816375537591:CAS:528:DC%2BD1cXhtVKntLzK10.4049/jimmunol.181.6.375518768827Available from:
– reference: DuLZhaoGLinYSuiHChanCMaSIntranasal vaccination of recombinant adeno-associated virus encoding receptor-binding domain of severe acute respiratory syndrome coronavirus (SARS-CoV) spike protein induces strong mucosal immune responses and provides long-term protection against SARSJ Immunol [Internet]200818029489561:CAS:528:DC%2BD1cXhsVygsQ%3D%3D10.4049/jimmunol.180.2.948Available from:
– reference: TerovaOSoltysSHermansPDe RooijJDetmersFOvercoming downstream purification challenges for viral vector manufacturing: enabling advancement of gene therapies in the clinicCell Gene Ther Insights.20184210111110.18609/cgti.2018.017
– reference: MorefieldGLA rational, systematic approach for the development of vaccine formulationsAAPS J20111321912001:CAS:528:DC%2BC3MXlsFansrw%3D10.1208/s12248-011-9261-1
– reference: He Y, Zhou Y, Liu S, Kou Z, Li W, Farzan M, et al. Receptor-binding domain of SARS-CoV spike protein induces highly potent neutralizing antibodies: implication for developing subunit vaccine. Biochem Biophys Res Commun [Internet]. 2004;324(2):773–81 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0006291X04021588.
– reference: INOVIO Expands manufacturing of COVID-19 DNA vaccine INO-4800 With New Funding from CEPI [Internet]. [cited 2020 May 18]. Available from: http://ir.inovio.com/news-releases/news-releases-details/2020/INOVIO-Expands-Manufacturing-of-COVID-19-DNA-Vaccine-INO-4800-With-New-Funding-from-CEPI/default.aspx
– reference: OffitPAJewRKAddressing parents’ concerns: do vaccines contain harmful preservatives, adjuvants, additives, or residuals?Pediatrics [Internet]200311261394139710.1542/peds.112.6.1394Available from:
– reference: Montel MendozaGPasterisSEOteroMCFatima Nader-MacíasMESurvival and beneficial properties of lactic acid bacteria from raniculture subjected to freeze-drying and storageJ Appl Microbiol201411611571661:CAS:528:DC%2BC3sXhvFKqtLvK10.1111/jam.12359
– reference: BCG vaccine [Package insert] [Internet]. Roseland, NJ: Merck & Co; 2019. Available from: https://nctr-crs.fda.gov/fdalabel/services/spl/set-ids/a83f0b99-9038-4c5a-aaac-8792b32838fe/spl-doc?hl=BCG
– reference: HanleyKAThe double-edged sword: how evolution can make or break a live-attenuated virus vaccineEvol Educ Outreach [Internet]20114463564310.1007/s12052-011-0365-yAvailable from:
– reference: EditorCBFWalkerJMFoxCBVaccine adjuvants [Internet]Methods in Molecular Biology2017New YorkSpringer New York10.1007/978-1-4939-6445-1Available from:
– reference: Weingartl H, Czub M, Czub S, Neufeld J, Marszal P, Gren J, et al. Immunization with modified Vaccinia virus Ankara-based recombinant vaccine against severe acute respiratory syndrome is associated with enhanced hepatitis in ferrets. J Virol [Internet]. 2004;78(22):12672–6 Available from: https://jvi.asm.org/content/78/22/12672.
– reference: LanJGeJYuJShanSZhouHFanSZhangQShiXWangQZhangLWangXStructure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptorNature [Internet].202058178072152201:CAS:528:DC%2BB3cXoslOqtL8%3D10.1038/s41586-020-2180-532225176Available from:
– reference: BandeiraVPeixotoCRodriguesAFCruzPEAlvesPMCoroadinhaASCarrondoMJTDownstream processing of lentiviral vectors: releasing bottlenecksHum Gene Ther Methods2012232552631:CAS:528:DC%2BC3sXpvVyitL0%3D10.1089/hgtb.2012.059
– reference: Hung IF-N, Lung K-C, Tso EY-K, Liu R, Chung TW-H, Chu M-Y, et al. Triple combination of interferon beta-1b, lopinavir–ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. Lancet [Internet]. 2020;395(10238):1695–704 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0140673620310424.
– reference: MurphyKCaseyWJaneway’s immunobiology20179New YorkGarland Science729741
– reference: Mannhalter JW, Neychev HO, Zlabinger GJ, Ahmad R, Eibl MM. Modulation of the human immune response by the non-toxic and non-pyrogenic adjuvant aluminium hydroxide: effect on antigen uptake and antigen presentation. Clin Exp Immunol. 1985.
– reference: ZOLGENSMAPackage insert2019BannockburnAveXis, Inc.
– reference: Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. bioRxiv. 2020.
– reference: SchlakeTThessAFotin-MleczekMKallenKJDeveloping mRNA-vaccine technologiesRNA Biol2012911131913301:CAS:528:DC%2BC3sXjsFKktL8%3D10.4161/rna.22269
– reference: TomarJTonnisWFPatilHPde boerAHHagedoornPVanbeverRPulmonary immunization: deposition site is of minor relevance for influenza vaccination but deep lung deposition is crucial for hepatitis B vaccinationActa Pharm Sin B [Internet]2019961231124010.1016/j.apsb.2019.05.003Available from:
– reference: Novavax. Novavax to present COVID-19 vaccine candidate progress in World Vaccine Congress Webinar Series [Internet]. 2020 [cited 2020 May 25]. Available from:http://ir.novavax.com/news-releases/news-release-details/novavax-present-covid-19-vaccine-candidate-progress-world
– reference: DidierlaurentAMMorelSLockmanLGianniniSLBisteauMCarlsenHKiellandAVostersOVanderheydeNSchiavettiFLarocqueDvan MechelenMGarçonNAS04, an aluminum salt- and TLR4 agonist-based adjuvant system, induces a transient localized innate immune response leading to enhanced adaptive immunityJ Immunol [Internet].200918310618661971:CAS:528:DC%2BD1MXhtlKhsbjE10.4049/jimmunol.090147419864596Available from:
– reference: Acar HY c, Garaas RS, Syud F, Bonitatebus P, Kulkarni AM. Superparamagnetic nanoparticles stabilized by polymerized PEGylated coatings. J Magn Magn Mater [Internet]. 2005;293(1):1–7. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0304885305001009.
– reference: UlanovaMTarkowskiAHahn-ZoricMHansonLÅThe common vaccine adjuvant aluminum hydroxide up-regulates accessory properties of human monocytes via an interleukin-4-dependent mechanismInfect Immun2001692115111591:CAS:528:DC%2BD3MXns1WhtQ%3D%3D10.1128/IAI.69.2.1151-1159.2001
– reference: PastorinoBBarontiCGouldEACharrelRNde LamballerieXEffect of Chemical Stabilizers on the Thermostability and Infectivity of a Representative Panel of Freeze Dried Viruses. Digard P, editorPLoS One [Internet]2015104e01189631:CAS:528:DC%2BC28XhtlGqt7%2FF10.1371/journal.pone.0118963Available from:
– reference: Zhang Y, Zhang J. Surface modification of monodisperse magnetite nanoparticles for improved intracellular uptake to breast cancer cells. J Colloid Interface Sci [Internet]. 2005;283(2):352–7 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0021979704009592.
– reference: ClémentNGriegerJCManufacturing of recombinant adeno-associated viral vectors for clinical trialsMol Ther Methods Clin Dev201631600210.1038/mtm.2016.2
– reference: SchellBBraedelSProbstJCarralotJPWagnerHSchildHImmunostimulating capacities of stabilized RNA moleculesEur J Immunol200434253754710.1002/eji.200324198
– reference: LiFLiWFarzanMHarrisonSCStructural biology: structure of SARS coronavirus spike receptor-binding domain complexed with receptorScience.20053095742186481:CAS:528:DC%2BD2MXpvFCisLw%3D10.1126/science.1116480
– reference: Hernandez Bort JA. Challenges in the downstream process of gene therapy products. Am Pharm Rev. 2019;22(4).
– reference: EngstromJDLaiESLudherBSChenBMilnerTEWilliamsROFormation of stable submicron protein particles by thin film freezingPharm Res2008256133413461:CAS:528:DC%2BD1cXltFCjsLc%3D10.1007/s11095-008-9540-4
– reference: Matthias DM, Robertson J, Garrison MM, Newland S, Nelson C. Freezing temperatures in the vaccine cold chain: a systematic literature review. Vaccine [Internet]. 2007;25(20):3980–6 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0264410X07002289.
– reference: MutschMZhouWRhodesPBoppMChenRTLinderTSpyrCSteffenRUse of the inactivated intranasal influenza vaccine and the risk of Bell’s palsy in SwitzerlandN Engl J Med [Internet]200435098969031:CAS:528:DC%2BD2cXhsFygsbY%3D10.1056/NEJMoa030595Available from:
– reference: Garden R. Remarks by President Trump on vaccine development [Internet]. 2020 [cited 2020 May 25]. Available from: https://www.whitehouse.gov/briefings-statements/remarks-president-trump-vaccine-development/
– reference: Lapelosa M, Gallicchio E, Arnold GF, Arnold E, Levy RM. In silico vaccine design based on molecular simulations of rhinovirus chimeras presenting HIV-1 gp41 epitopes. J Mol Biol [Internet]. 2009;385(2):675–91 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0022283608014022.
– reference: MoleirinhoMGSilvaRJSAlvesPMCarrondoMJTPeixotoCCurrent challenges in biotherapeutic particles manufacturingExpert Opin Biol Ther20202054514651:CAS:528:DC%2BC1MXit1GlsL%2FL10.1080/14712598.2020.1693541
– reference: Vartak A, Sucheck S. Recent advances in subunit vaccine carriers. Vaccines [Internet]. 2016;4(2):12 Available from: http://www.mdpi.com/2076-393X/4/2/12.
– reference: Smyth H, Zhang H, Cui Z, Wang J, Xu H, Zhang Y, et al. Biologically active dry powder compositions and method of their manufacture and use,. U.S. Patent Application No. 63/012,792, 2020.
– reference: Wang Y, Zhang D, Du G, Du R, Zhao J, Jin Y, et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet [Internet]. 2020; Available from: https://linkinghub.elsevier.com/retrieve/pii/S0140673620310229.
– reference: VellingaJSmithJPLipiecAMajhenDLemckertAvan OoijMIvesPYallopCCustersJHavengaMChallenges in manufacturing adenoviral vectors for global vaccine product deploymentHum Gene Ther20142543183271:CAS:528:DC%2BC2cXmsFWltro%3D10.1089/hum.2014.007
– reference: Merten O-W, Schweizer M, Chahal P, Kamen A. Manufacturing of viral vectors: part II. Downstream processing and safety aspects. Pharm Bioprocess. 2014.
– reference: ThakkarSGWarnkenZNAlzhraniRFValdesSAAldayelAMXuHIntranasal immunization with aluminum salt-adjuvanted dry powder vaccineJ Control Release [Internet]20182921111181:CAS:528:DC%2BC1cXitFGns7bL10.1016/j.jconrel.2018.10.020Available from:
– reference: DasUHariprasadGEthayathullaASManralPDasTKPashaSInhibition of protein aggregation: supramolecular assemblies of arginine hold the key. Rutherford S, editorPLoS One [Internet]2007211e11761:CAS:528:DC%2BD1cXjslSntw%3D%3D10.1371/journal.pone.0001176Available from:
– reference: Chaudhury S, Duncan EH, Atre T, Storme CK, Beck K, Kaba SA, et al. Identification of immune signatures of novel adjuvant formulations using machine learning. Sci Rep [Internet]. 2018;8(1):17508 Available from: http://www.nature.com/articles/s41598-018-35452-x.
– reference: Marzi A, Gramberg T, Simmons G, Möller P, Rennekamp AJ, Krumbiegel M, et al. DC-SIGN and DC-SIGNR interact with the glycoprotein of Marburg virus and the S protein of severe acute respiratory syndrome coronavirus. J Virol [Internet]. 2004;78(21):12090–5 Available from: https://jvi.asm.org/content/78/21/12090.
– reference: KoolMSoulliéTvan NimwegenMWillartMAMMuskensFJungSAlum adjuvant boosts adaptive immunity by inducing uric acid and activating inflammatory dendritic cellsJ Exp Med [Internet]200820548698821:CAS:528:DC%2BD1cXkvVyrsrc%3D10.1084/jem.20071087Available from:
– reference: TischerALilieHRudolphRLangeCL-arginine hydrochloride increases the solubility of folded and unfolded recombinant plasminogen activator rPAProtein Sci [Internet]2010199178317951:CAS:528:DC%2BC3cXhtV2gsLvJ10.1002/pro.465Available from:
– reference: LinehanJLDileepanTKashemSWKaplanDHClearyPJenkinsMKGeneration of Th17 cells in response to intranasal infection requires TGF-β1 from dendritic cells and IL-6 from CD301b + dendritic cellsProc Natl Acad Sci [Internet]20151124112782127871:CAS:528:DC%2BC2MXhsFKnt7bL10.1073/pnas.1513532112Available from:
– reference: Hanson CM, George AM, Sawadogo A, Schreiber B. Is freezing in the vaccine cold chain an ongoing issue? A literature review. Vaccine [Internet]. 2017;35(17):2127–33 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0264410X16309471.
– reference: Texas A&M University. BCG vaccine for health care workers as defense against COVID 19 (BADAS) [Internet]. 2020 [cited 2020 May 20]. Available from: https://clinicaltrials.gov/ct2/show/NCT04348370
– reference: LiXThakkarSGRuwonaTBWilliamsROCuiZA method of lyophilizing vaccines containing aluminum salts into a dry powder without causing particle aggregation or decreasing the immunogenicity following reconstitutionJ Control Release [Internet].201520438501:CAS:528:DC%2BC2MXjs1Sjs7s%3D10.1016/j.jconrel.2015.02.035257358964385422Available from:
– reference: Du L, Zhao G, He Y, Guo Y, Zheng B-J, Jiang S, et al. Receptor-binding domain of SARS-CoV spike protein induces long-term protective immunity in an animal model. Vaccine [Internet]. 2007;25(15):2832–8 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0264410X06011534.
– reference: ThakkarSGRuwonaTBWilliamsROCuiZThe immunogenicity of thin-film freeze-dried, aluminum salt-adjuvanted vaccine when exposed to different temperaturesHum Vaccines Immunother [Internet]201713493694610.1080/21645515.2016.1259042Available from:
– reference: EisenbarthSCColegioORO’ConnorWSutterwalaFSFlavellRACrucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvantsNature.20084537198112211261:CAS:528:DC%2BD1cXntlGjtLg%3D10.1038/nature06939
– reference: Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Trono D, et al. A third-generation lentivirus vector with a conditional packaging system. J Virol. 1998.
– reference: Murhekar MV, Dutta S, Kapoor AN, Bitragunta S, Dodum R, Ghosh P, et al. Frequent exposure to suboptimal temperatures in vaccine cold-chain system in India: results of temperature monitoring in 10 states. Bull World Health Organ [Internet]. 2013;91(12):906–13 Available from: http://www.who.int/entity/bulletin/volumes/91/12/13-119974.pdf.
– reference: KowalskiPSRudraAMiaoLAndersonDGDelivering the messenger: advances in technologies for therapeutic mRNA deliveryMol Ther [Internet]20192747107281:CAS:528:DC%2BC1MXntFOnsbw%3D10.1016/j.ymthe.2019.02.012Available from:
– reference: MillerEAndrewsNStellitanoLStoweJWinstoneAMShneersonJRisk of narcolepsy in children and young people receiving AS03 adjuvanted pandemic A/H1N1 2009 influenza vaccine: retrospective analysisBMJ [Internet].2013346f79410.1136/bmj.f79423444425Available from:
– reference: OffitPAThe cutter incident, 50 years laterN Engl J Med [Internet].200535214141114121:CAS:528:DC%2BD2MXjtVWgu74%3D10.1056/NEJMp04818015814877Available from:
– reference: Gretebeck LM, Subbarao K. Animal models for SARS and MERS coronaviruses. Curr Opin Virol [Internet]. 2015;13:123–9 Available from: https://linkinghub.elsevier.com/retrieve/pii/S187962571500098X.
– reference: Khurana S, Coyle EM, Manischewitz J, King LR, Gao J, Germain RN, et al. AS03-adjuvanted H5N1 vaccine promotes antibody diversity and affinity maturation, NAI titers, cross-clade H5N1 neutralization, but not H1N1 cross-subtype neutralization. NPJ vaccines [Internet]. 2018;3(March):40. Available from: https://www.ncbi.nlm.nih.gov/pubmed/30302282%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC6167326.
– reference: Gramer MJ. Product quality considerations for mammalian cell culture process development and manufacturing. Adv Biochem Eng Biotechnol. 2014.
– reference: Astudillo A, Leung SSY, Kutter E, Morales S, Chan H-K. Nebulization effects on structural stability of bacteriophage PEV 44. Eur J Pharm Biopharm [Internet]. 2018;125(December 2017):124–30 Available from: https://linkinghub.elsevier.com/retrieve/pii/S093964111731007X.
– reference: Dudek T, Knipe DM. Replication-defective viruses as vaccines and vaccine vectors. Virology [Internet]. 2006;344(1):230–9 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0042682205005891.
– reference: Holmes EC, Zhang Y-Z. Novel 2019 coronavirus genome [Internet]. virological.org. 2020 [cited 2020 May 26]. Available from: http://virological.org/t/novel-2019-coronavirus-genome/319
– reference: Galmiche MC, Goenaga J, Wittek R, Rindisbacher L. Neutralizing and protective antibodies directed against Vaccinia virus envelope antigens. Virology [Internet]. 1999;254(1):71–80 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0042682298995162.
– reference: DetmerAGlentingJLive bacterial vaccines—a review and identification of potential hazardsMicrob Cell Fact20065iii112
– reference: Niu L, Panyam J. Freeze concentration-induced PLGA and polystyrene nanoparticle aggregation: Imaging and rational design of lyoprotection. J Control Release [Internet]. 2017;248:125–132. Available from: https://doi.org/10.1016/j.jconrel.2017.01.019
– reference: XuHRuwonaTBThakkarSGChenYZengMCuiZNasal aluminum (oxy)hydroxide enables adsorbed antigens to induce specific systemic and mucosal immune responsesHum Vaccines Immunother201713112688269410.1080/21645515.2017.1365995
– reference: Thi EP, Mire CE, Lee ACH, Geisbert JB, Zhou JZ, Agans KN, et al. Lipid nanoparticle siRNA treatment of Ebola-virus-Makona-infected nonhuman primates. Nature [Internet]. 2015;521(7552):362–5 Available from: http://www.nature.com/articles/nature14442.
– reference: Quintin J, Saeed S, Martens JHA, Giamarellos-Bourboulis EJ, Ifrim DC, Logie C, et al. Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes. Cell Host Microbe [Internet]. 2012;12(2):223–32 Available from: https://linkinghub.elsevier.com/retrieve/pii/S1931312812002326.
– reference: Wu F, Zhao S, Yu B, Chen Y, Wang W, Song Z, et al. A new coronavirus associated with human respiratory disease in China. Nature [Internet]. 2020;579(7798):265–9 Available from: http://www.nature.com/articles/s41586-020-2008-3.
– reference: BelyakovIMAhlersJDWhat role does the route of immunization play in the generation of protective immunity against mucosal pathogens?J Immunol200918311688368921:CAS:528:DC%2BD1MXhsVehsLjI10.4049/jimmunol.0901466
– reference: BaynesBMWangDICTroutBLRole of arginine in the stabilization of proteins against aggregationBiochem Int20054412491949251:CAS:528:DC%2BD2MXhvV2rtL4%3D10.1021/bi047528rAvailable from:
– reference: KulkarniPSRautSKDhereRMA post-marketing surveillance study of a human live-virus pandemic influenza A (H1N1) vaccine (Nasovac ® ) in IndiaHum Vaccin Immunother [Internet].20139112212410.4161/hv.22317234425863667925Available from:
– reference: BeigelJHTomashekKMDoddLEMehtaAKZingmanBSKalilACRemdesivir for the treatment of Covid-19—preliminary reportN Engl J Med [Internet]202022NEJMoa200776410.1056/NEJMoa2007764Available from:
– reference: Ong E, Wong MU, Huffman A, He Y. COVID-19 coronavirus vaccine design using reverse vaccinology and machine learning. bioRxiv [Internet]. 2020 ;2020.03.20.000141. Available from: http://biorxiv.org/content/early/2020/03/21/2020.03.20.000141.abstract
– reference: Safety and immunogenicity study of 2019-nCoV vaccine (mRNA-1273) for prophylaxis of SARS-CoV-2 Infection (COVID-19) [Internet]. 2020 [cited 2020 May 20]. Available from: https://clinicaltrials.gov/ct2/show/NCT04283461
– volume: 181
  start-page: 3755
  issue: 6
  year: 2008
  ident: 1744_CR44
  publication-title: J Immunol [Internet].
  doi: 10.4049/jimmunol.181.6.3755
– ident: 1744_CR48
  doi: 10.1038/s41541-018-0076-2
– ident: 1744_CR25
  doi: 10.1016/j.vaccine.2006.10.031
– ident: 1744_CR39
– ident: 1744_CR21
  doi: 10.1038/s41598-018-35452-x
– ident: 1744_CR38
  doi: 10.1016/j.chom.2012.06.006
– volume: 292
  start-page: 111
  year: 2018
  ident: 1744_CR82
  publication-title: J Control Release [Internet]
  doi: 10.1016/j.jconrel.2018.10.020
– volume: 453
  start-page: 1122
  issue: 7198
  year: 2008
  ident: 1744_CR45
  publication-title: Nature.
  doi: 10.1038/nature06939
– ident: 1744_CR16
– volume: 44
  start-page: 4919
  issue: 12
  year: 2005
  ident: 1744_CR74
  publication-title: Biochem Int
  doi: 10.1021/bi047528r
– volume: 9
  start-page: 1231
  issue: 6
  year: 2019
  ident: 1744_CR87
  publication-title: Acta Pharm Sin B [Internet]
  doi: 10.1016/j.apsb.2019.05.003
– volume: 112
  start-page: 1394
  issue: 6
  year: 2003
  ident: 1744_CR72
  publication-title: Pediatrics [Internet]
  doi: 10.1542/peds.112.6.1394
– ident: 1744_CR32
– volume: 69
  start-page: 1151
  issue: 2
  year: 2001
  ident: 1744_CR47
  publication-title: Infect Immun
  doi: 10.1128/IAI.69.2.1151-1159.2001
– volume: 34
  start-page: 537
  issue: 2
  year: 2004
  ident: 1744_CR50
  publication-title: Eur J Immunol
  doi: 10.1002/eji.200324198
– volume: 25
  start-page: 318
  issue: 4
  year: 2014
  ident: 1744_CR56
  publication-title: Hum Gene Ther
  doi: 10.1089/hum.2014.007
– volume: 183
  start-page: 6883
  issue: 11
  year: 2009
  ident: 1744_CR85
  publication-title: J Immunol
  doi: 10.4049/jimmunol.0901466
– ident: 1744_CR59
– ident: 1744_CR36
– ident: 1744_CR66
  doi: 10.1016/j.vaccine.2016.09.070
– volume: 112
  start-page: 12782
  issue: 41
  year: 2015
  ident: 1744_CR92
  publication-title: Proc Natl Acad Sci [Internet]
  doi: 10.1073/pnas.1513532112
– ident: 1744_CR67
  doi: 10.1016/j.vaccine.2007.02.052
– ident: 1744_CR83
– ident: 1744_CR65
  doi: 10.2471/BLT.13.119974
– volume: 4
  start-page: 101
  issue: 2
  year: 2018
  ident: 1744_CR58
  publication-title: Cell Gene Ther Insights.
  doi: 10.18609/cgti.2018.017
– start-page: 729
  volume-title: Janeway’s immunobiology
  year: 2017
  ident: 1744_CR6
– volume: 309
  start-page: 1864
  issue: 5742
  year: 2005
  ident: 1744_CR11
  publication-title: Science.
  doi: 10.1126/science.1116480
– volume: 9
  start-page: 2936
  issue: December
  year: 2018
  ident: 1744_CR37
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2018.02936
– ident: 1744_CR13
  doi: 10.1016/j.coviro.2015.06.009
– ident: 1744_CR15
  doi: 10.1128/JVI.78.22.12672-12676.2004
– ident: 1744_CR68
  doi: 10.1016/j.jconrel.2017.01.019
– volume: 581
  start-page: 215
  issue: 7807
  year: 2020
  ident: 1744_CR2
  publication-title: Nature [Internet].
  doi: 10.1038/s41586-020-2180-5
– ident: 1744_CR10
  doi: 10.3390/vaccines4020012
– ident: 1744_CR46
– volume: 3
  start-page: 16002
  year: 2016
  ident: 1744_CR55
  publication-title: Mol Ther Methods Clin Dev
  doi: 10.1038/mtm.2016.2
– volume: 180
  start-page: 948
  issue: 2
  year: 2008
  ident: 1744_CR29
  publication-title: J Immunol [Internet]
  doi: 10.4049/jimmunol.180.2.948
– volume-title: Methods in Molecular Biology
  year: 2017
  ident: 1744_CR42
  doi: 10.1007/978-1-4939-6445-1
– ident: 1744_CR14
  doi: 10.1128/JVI.78.21.12090-12095.2004
– volume: 15
  start-page: 1
  issue: 1
  year: 2017
  ident: 1744_CR51
  publication-title: J Transl Med
  doi: 10.1186/s12967-016-1111-6
– volume: 27
  start-page: 710
  issue: 4
  year: 2019
  ident: 1744_CR35
  publication-title: Mol Ther [Internet]
  doi: 10.1016/j.ymthe.2019.02.012
– ident: 1744_CR1
  doi: 10.1038/s41586-020-2008-3
– volume: 10
  start-page: e0118963
  issue: 4
  year: 2015
  ident: 1744_CR69
  publication-title: PLoS One [Internet]
  doi: 10.1371/journal.pone.0118963
– volume: 6
  start-page: 821
  issue: 5
  year: 2007
  ident: 1744_CR91
  publication-title: Expert Rev Vaccines [Internet]
  doi: 10.1586/14760584.6.5.821
– ident: 1744_CR18
  doi: 10.1101/2020.02.19.956235
– volume: 19
  start-page: 1783
  issue: 9
  year: 2010
  ident: 1744_CR73
  publication-title: Protein Sci [Internet]
  doi: 10.1002/pro.465
– volume: 2
  start-page: e1176
  issue: 11
  year: 2007
  ident: 1744_CR75
  publication-title: PLoS One [Internet]
  doi: 10.1371/journal.pone.0001176
– ident: 1744_CR84
– ident: 1744_CR12
  doi: 10.1128/JVI.02012-06
– volume: 4
  start-page: 635
  issue: 4
  year: 2011
  ident: 1744_CR8
  publication-title: Evol Educ Outreach [Internet]
  doi: 10.1007/s12052-011-0365-y
– volume: 4
  start-page: 31
  issue: 2
  year: 2018
  ident: 1744_CR54
  publication-title: Cell Gene Ther Insights
  doi: 10.18609/cgti.2018.004
– ident: 1744_CR63
– volume: 13
  start-page: 936
  issue: 4
  year: 2017
  ident: 1744_CR80
  publication-title: Hum Vaccines Immunother [Internet]
  doi: 10.1080/21645515.2016.1259042
– volume: 16
  start-page: 400
  issue: 2
  year: 2020
  ident: 1744_CR22
  publication-title: Hum Vaccin Immunother [Internet]
  doi: 10.1080/21645515.2019.1654807
– volume: 13
  start-page: 191
  issue: 2
  year: 2011
  ident: 1744_CR76
  publication-title: AAPS J
  doi: 10.1208/s12248-011-9261-1
– volume: 9
  start-page: 122
  issue: 1
  year: 2013
  ident: 1744_CR88
  publication-title: Hum Vaccin Immunother [Internet].
  doi: 10.4161/hv.22317
– ident: 1744_CR93
  doi: 10.1016/j.ejpb.2018.01.010
– volume: 350
  start-page: 896
  issue: 9
  year: 2004
  ident: 1744_CR89
  publication-title: N Engl J Med [Internet]
  doi: 10.1056/NEJMoa030595
– volume: 205
  start-page: 869
  issue: 4
  year: 2008
  ident: 1744_CR43
  publication-title: J Exp Med [Internet]
  doi: 10.1084/jem.20071087
– volume: 183
  start-page: 6186
  issue: 10
  year: 2009
  ident: 1744_CR49
  publication-title: J Immunol [Internet].
  doi: 10.4049/jimmunol.0901474
– volume: 25
  start-page: 1334
  issue: 6
  year: 2008
  ident: 1744_CR77
  publication-title: Pharm Res
  doi: 10.1007/s11095-008-9540-4
– ident: 1744_CR79
  doi: 10.1248/cpb.53.301
– volume: 38
  start-page: 2229
  issue: 9
  year: 2020
  ident: 1744_CR40
  publication-title: Vaccine [Internet]
  doi: 10.1016/j.vaccine.2019.11.060
– ident: 1744_CR28
– volume: 22
  start-page: NEJMoa2007764
  year: 2020
  ident: 1744_CR3
  publication-title: N Engl J Med [Internet]
  doi: 10.1056/NEJMoa2007764
– volume: 6
  start-page: eabc1932
  year: 2020
  ident: 1744_CR41
  publication-title: Science (80-) [Internet]
  doi: 10.1126/science.abc1932
– ident: 1744_CR70
  doi: 10.1016/j.jcis.2004.09.042
– volume: 204
  start-page: 38
  year: 2015
  ident: 1744_CR78
  publication-title: J Control Release [Internet].
  doi: 10.1016/j.jconrel.2015.02.035
– ident: 1744_CR5
– volume: 352
  start-page: 1411
  issue: 14
  year: 2005
  ident: 1744_CR9
  publication-title: N Engl J Med [Internet].
  doi: 10.1056/NEJMp048180
– ident: 1744_CR19
  doi: 10.1016/j.jmb.2008.10.089
– volume: 346
  start-page: f794
  year: 2013
  ident: 1744_CR90
  publication-title: BMJ [Internet].
  doi: 10.1136/bmj.f794
– ident: 1744_CR27
  doi: 10.1006/viro.1998.9516
– ident: 1744_CR53
  doi: 10.1128/JVI.72.11.8463-8471.1998
– ident: 1744_CR17
– ident: 1744_CR7
  doi: 10.1016/j.vaccine.2010.07.020
– ident: 1744_CR52
  doi: 10.1016/j.virol.2005.09.020
– ident: 1744_CR71
  doi: 10.1016/j.jmmm.2005.01.035
– volume: 13
  start-page: 2688
  issue: 11
  year: 2017
  ident: 1744_CR81
  publication-title: Hum Vaccines Immunother
  doi: 10.1080/21645515.2017.1365995
– volume: 147
  start-page: 342
  issue: 3
  year: 2010
  ident: 1744_CR86
  publication-title: J Control Release [Internet]
  doi: 10.1016/j.jconrel.2010.08.012
– ident: 1744_CR60
  doi: 10.4155/pbp.14.15
– ident: 1744_CR20
  doi: 10.1186/s12859-016-0918-8
– ident: 1744_CR24
  doi: 10.1016/j.bbrc.2004.09.106
– volume-title: Package insert
  year: 2019
  ident: 1744_CR64
– volume: 116
  start-page: 157
  issue: 1
  year: 2014
  ident: 1744_CR31
  publication-title: J Appl Microbiol
  doi: 10.1111/jam.12359
– volume: 9
  start-page: 1319
  issue: 11
  year: 2012
  ident: 1744_CR34
  publication-title: RNA Biol
  doi: 10.4161/rna.22269
– ident: 1744_CR26
  doi: 10.1016/j.virol.2005.09.056
– volume: 5
  start-page: 1
  issue: iii
  year: 2006
  ident: 1744_CR30
  publication-title: Microb Cell Fact
– ident: 1744_CR62
  doi: 10.1007/10_2013_214
– volume: 23
  start-page: 255
  year: 2012
  ident: 1744_CR61
  publication-title: Hum Gene Ther Methods
  doi: 10.1089/hgtb.2012.059
– ident: 1744_CR23
– ident: 1744_CR33
  doi: 10.1038/nature14442
– ident: 1744_CR4
– volume: 20
  start-page: 451
  issue: 5
  year: 2020
  ident: 1744_CR57
  publication-title: Expert Opin Biol Ther
  doi: 10.1080/14712598.2020.1693541
SSID ssj0023193
Score 2.637845
SecondaryResourceType review_article
Snippet In the race for a safe and effective vaccine against coronavirus disease (COVID)-19, pharmaceutical formulation science plays a critical role throughout the...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 225
SubjectTerms Animals
Biochemistry
Biomedical and Life Sciences
Biomedicine
Biotechnology
Coronavirus Infections - prevention & control
COVID-19
COVID-19 Vaccines
Drug Compounding
Humans
Immunity, Mucosal
Pandemics - prevention & control
Pharmacology/Toxicology
Pharmacy
Pneumonia, Viral - prevention & control
Review
Review Article
Vaccination
Viral Vaccines - chemistry
Viral Vaccines - pharmacology
Viral Vaccines - therapeutic use
Title The COVID-19 Vaccine Race: Challenges and Opportunities in Vaccine Formulation
URI https://link.springer.com/article/10.1208/s12249-020-01744-7
https://www.ncbi.nlm.nih.gov/pubmed/32761294
https://www.proquest.com/docview/2431815517
https://pubmed.ncbi.nlm.nih.gov/PMC7405756
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RuPRSUehjoUWuVHHpWs3Dr_S22rKlrQqoYhE9WbbjqEhVQGT3wL_v2HmgBYTE2eMo8jcTf5OxvwH4mFlXmIQ5KmRZhV83KbUVz6kzAt0Fo6-Il8J-HYnDOftxzs-7S2FNf9q9L0nGL3VUQEjU5ybUgAoa0h30IsaofAYbPOTu6MXzbDKkWehUeXc95uF5q1vQPV55_3jknRpp3Hpmm_Ci44xk0oL8EtZ8vQX7J63o9M2YnN7eoWrGZJ-c3MpR32zDEQ6T6fHZ9680LciZcaGUTn4b57-Qad9KpSGmLsnxVWDjyzqqrJKLerCeIbPt-ny9gvns4HR6SLsuCtRhqregPq-YsbgGLDXeMSt9VWZ5JTLnk9KniRdCqUJ57jnGZipcwXhaytQHlahcufw1rNeXtX8LpFTGWqWEwqyKmbKwLCkzI6Xl3OXSuhGk_cJq10mMh04X_3RINRAM3YKhEQwdwdByBJ-GOVetwMaj1h96vDTGQShumNpfLhudIRNSgf-hzZsWv-F5eSaRyBVsBHIF2cEgaGyvjtQXf6PWtoyEVoxg3PuA7oK8eeQ1d55mvgvPs-ifiib8Hawvrpf-PXKdhd2Djcm3Pz8P9qKL_wfgf_eQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RONBLVfpi20JdqeLStZqHYzu9oYXV0sKCql3EzbIdRyChgJrdA_--Y-eBFiokzh5Hkb-Z-JuM_Q3At8TYXEfMUi6K0v-6iakps5RazdFdMPrycCnsZMonc_brIrtoL4XV3Wn3riQZvtRBASGSP2pfA8qpT3fQixij4gVsIBmQ_iDXPNnv0yx0qrS9HvP_eatb0CNe-fh45IMaadh6xq_hVcsZyX4D8hasueoN7J01otN3QzK7v0NVD8keObuXo757C1McJqPT86MDGufkXFtfSid_tHU_yahrpVITXRXk9Naz8WUVVFbJVdVbj5HZtn2-3sF8fDgbTWjbRYFaTPUW1KUl0wbXgMXaWWaEK4skLXliXVS4OHKcS5lLl7kMYzPmNmdZXIjYeZWoVNr0PaxXN5XbBlJIbYyUXGJWxXSRGxYViRbCZJlNhbEDiLuFVbaVGPedLq6VTzUQDNWAoRAMFcBQYgDf-zm3jcDGk9ZfO7wUxoEvbujK3SxrlSATkp7_oc2HBr_-eWkikMjlbABiBdnewGtsr45UV5dBa1sEQssHMOx8QLVBXj_xmh-fZ_4FNiezk2N1fDT9_QleJsFXJY2yz7C--Lt0O8h7FmY3uPk_7UL47w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBZtCqWX0vS5faQqlFy6IpYtS3JvYdMl6WOzlGzITehlGijKUu8e8u87kh_JJiXQqzUyxt-M9Y1H8wmhj7mxlc6YJVy4Ov66ocTUZUGs5uAuEH1Vagr7MeOHC_b1rDy71sWfdrv3Jcm2pyGqNIXV3tLVrRpCJveaWA-qSEx9wKMYI-I-egCfYxr9epHvDykXXCm6Vpl_z9tcjm5xzNtbJW_US9MyNH2CHnf8Ee-3gG-jez48RbvzVoD6coxPrvqpmjHexfMraerLZ2gGw3hyfHp0QGiFT7WNZXX8U1v_GU_6Y1UarIPDx8vIzNchKa7i8zBYT4Hldmd-PUeL6ZeTySHpTlQgFtK-FfFFzbSBd8Co9pYZ4WuXFzXPrc-cp5nnXMpK-tKXEKeU24qV1Anqo2JUIW3xAm2Fi-BfIeykNkZKLiHDYtpVhmUu10KYsrSFMHaEaP9ile3kxuOpF79VTDsADNWCoQAMlcBQYoQ-DXOWrdjGndYferwUxEQsdOjgL9aNyoEVycgFweZli99wvyIXQOoqNkJiA9nBIOptb46E819Jd1skcstHaNz7gOoCvrnjMV__n_l79HB-MFXfj2bf3qBHeXJVSbLyLdpa_Vn7d0CBVmYneflfIrT9Kw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+COVID-19+Vaccine+Race%3A+Challenges+and+Opportunities+in+Vaccine+Formulation&rft.jtitle=AAPS+PharmSciTech&rft.au=Wang%2C+Jieliang&rft.au=Peng%2C+Ying&rft.au=Xu%2C+Haiyue&rft.au=Cui%2C+Zhengrong&rft.date=2020-08-05&rft.pub=Springer+International+Publishing&rft.eissn=1530-9932&rft.volume=21&rft.issue=6&rft_id=info:doi/10.1208%2Fs12249-020-01744-7&rft_id=info%3Apmid%2F32761294&rft.externalDocID=PMC7405756
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-9932&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-9932&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-9932&client=summon