The COVID-19 Vaccine Race: Challenges and Opportunities in Vaccine Formulation
In the race for a safe and effective vaccine against coronavirus disease (COVID)-19, pharmaceutical formulation science plays a critical role throughout the development, manufacturing, distribution, and vaccination phases. The proper choice of the type of vaccine, carrier or vector, adjuvant, excipi...
Saved in:
Published in | AAPS PharmSciTech Vol. 21; no. 6; p. 225 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
05.08.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the race for a safe and effective vaccine against coronavirus disease (COVID)-19, pharmaceutical formulation science plays a critical role throughout the development, manufacturing, distribution, and vaccination phases. The proper choice of the type of vaccine, carrier or vector, adjuvant, excipients, dosage form, and route of administration can directly impact not only the immune responses induced and the resultant efficacy against COVID-19, but also the logistics of manufacturing, storing and distributing the vaccine, and mass vaccination. In this review, we described the COVID-19 vaccines that are currently tested in clinical trials and provided in-depth insight into the various types of vaccines, their compositions, advantages, and potential limitations. We also addressed how challenges in vaccine distribution and administration may be alleviated by applying vaccine-stabilization strategies and the use of specific mucosal immune response-inducing, non-invasive routes of administration, which must be considered early in the development process. |
---|---|
AbstractList | In the race for a safe and effective vaccine against coronavirus disease (COVID)-19, pharmaceutical formulation science plays a critical role throughout the development, manufacturing, distribution, and vaccination phases. The proper choice of the type of vaccine, carrier or vector, adjuvant, excipients, dosage form, and route of administration can directly impact not only the immune responses induced and the resultant efficacy against COVID-19, but also the logistics of manufacturing, storing and distributing the vaccine, and mass vaccination. In this review, we described the COVID-19 vaccines that are currently tested in clinical trials and provided in-depth insight into the various types of vaccines, their compositions, advantages, and potential limitations. We also addressed how challenges in vaccine distribution and administration may be alleviated by applying vaccine-stabilization strategies and the use of specific mucosal immune response-inducing, non-invasive routes of administration, which must be considered early in the development process. In the race for a safe and effective vaccine against coronavirus disease (COVID)-19, pharmaceutical formulation science plays a critical role throughout the development, manufacturing, distribution, and vaccination phases. The proper choice of the type of vaccine, carrier or vector, adjuvant, excipients, dosage form, and route of administration can directly impact not only the immune responses induced and the resultant efficacy against COVID-19, but also the logistics of manufacturing, storing and distributing the vaccine, and mass vaccination. In this review, we described the COVID-19 vaccines that are currently tested in clinical trials and provided in-depth insight into the various types of vaccines, their compositions, advantages, and potential limitations. We also addressed how challenges in vaccine distribution and administration may be alleviated by applying vaccine-stabilization strategies and the use of specific mucosal immune response-inducing, non-invasive routes of administration, which must be considered early in the development process.In the race for a safe and effective vaccine against coronavirus disease (COVID)-19, pharmaceutical formulation science plays a critical role throughout the development, manufacturing, distribution, and vaccination phases. The proper choice of the type of vaccine, carrier or vector, adjuvant, excipients, dosage form, and route of administration can directly impact not only the immune responses induced and the resultant efficacy against COVID-19, but also the logistics of manufacturing, storing and distributing the vaccine, and mass vaccination. In this review, we described the COVID-19 vaccines that are currently tested in clinical trials and provided in-depth insight into the various types of vaccines, their compositions, advantages, and potential limitations. We also addressed how challenges in vaccine distribution and administration may be alleviated by applying vaccine-stabilization strategies and the use of specific mucosal immune response-inducing, non-invasive routes of administration, which must be considered early in the development process. |
ArticleNumber | 225 |
Author | Williams, Robert O. Wang, Jieliang Peng, Ying Xu, Haiyue Cui, Zhengrong |
Author_xml | – sequence: 1 givenname: Jieliang surname: Wang fullname: Wang, Jieliang organization: Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin – sequence: 2 givenname: Ying surname: Peng fullname: Peng, Ying organization: Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin – sequence: 3 givenname: Haiyue surname: Xu fullname: Xu, Haiyue organization: Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin – sequence: 4 givenname: Zhengrong surname: Cui fullname: Cui, Zhengrong organization: Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin – sequence: 5 givenname: Robert O. orcidid: 0000-0003-4993-6427 surname: Williams fullname: Williams, Robert O. email: Bill.williams@austin.utexas.edu organization: Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32761294$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UclOHDEQtRAoLMkPcIj6mEuDy0u7nUOkaBIWCTFSBFwtj7uaMeqxJ3Y3Uv4-hoERyYFTWeW3lN47JLshBiTkGOgJMNqeZmBM6JoyWlNQQtRqhxyA5LTWmrPdN-99cpjzA6WMg-YfyD5nqgGmxQG5vlliNZvfXf6oQVd31jkfsPplHX6tZks7DBjuMVc2dNV8vY5pnIIffdn4sEWfxbSaBjv6GD6Svd4OGT-9zCNye_bzZnZRX83PL2ffr2onRDPWyHthF-V6ARadWCjsO8b7hjmkHQLFpmlb3aJEqbSAxmkhoVOA0ErFW8ePyLeN7nparLBzGMZkB7NOfmXTHxOtN__-BL809_HRKEGlkk0R-PIikOLvCfNoVj47HAYbME7ZMMGhBSlBFejnt15bk9cQC4BtAC7FnBP2WwhQ89SU2TRlSlPmuSnzpNr-R3J-fM6w3OuH96l8Q83Fp9STzEOcUih5v8f6C9tCpuY |
CitedBy_id | crossref_primary_10_7717_peerj_cs_597 crossref_primary_10_1016_j_acci_2022_02_006 crossref_primary_10_3390_vaccines12080857 crossref_primary_10_1002_hsr2_1377 crossref_primary_10_3390_ijerph192214655 crossref_primary_10_3390_vaccines10101589 crossref_primary_10_1016_j_metop_2021_100124 crossref_primary_10_3390_vaccines11010093 crossref_primary_10_1016_j_molliq_2022_120097 crossref_primary_10_21272_hem_2021_3_06 crossref_primary_10_3390_diagnostics11081480 crossref_primary_10_3390_vaccines12111220 crossref_primary_10_1016_j_sapharm_2022_06_001 crossref_primary_10_1007_s10067_021_05700_z crossref_primary_10_1038_s41541_021_00307_6 crossref_primary_10_3390_diseases12040067 crossref_primary_10_1002_pa_2723 crossref_primary_10_1111_ijd_15673 crossref_primary_10_3390_biomedinformatics2040043 crossref_primary_10_1515_jib_2021_0002 crossref_primary_10_3390_ijerph19063349 crossref_primary_10_4103_1995_7645_340567 crossref_primary_10_36106_ijsr_2726571 crossref_primary_10_3934_publichealth_2021030 crossref_primary_10_1007_s10389_023_01879_4 crossref_primary_10_1093_humrep_deab282 crossref_primary_10_1002_ccr3_7872 crossref_primary_10_2174_1568026623666230825094341 crossref_primary_10_20492_aeahtd_940534 crossref_primary_10_1111_all_15080 crossref_primary_10_3390_vaccines11101571 crossref_primary_10_1016_j_tibtech_2020_12_006 crossref_primary_10_1038_s41598_023_39268_2 crossref_primary_10_3390_pharmaceutics14051066 crossref_primary_10_1016_j_pce_2022_103140 crossref_primary_10_1097_MCP_0000000000000868 crossref_primary_10_4018_IJICTHD_313978 crossref_primary_10_1159_000512880 crossref_primary_10_3390_ijtm2020021 crossref_primary_10_1016_j_biopha_2022_114208 crossref_primary_10_1016_j_vaccine_2023_03_033 crossref_primary_10_1016_j_socscimed_2023_116150 crossref_primary_10_4274_forbes_galenos_2021_30974 crossref_primary_10_1007_s10311_020_01110_w crossref_primary_10_3389_fimmu_2021_679344 crossref_primary_10_1136_bmjgh_2021_008139 crossref_primary_10_1016_j_jksuci_2021_10_001 crossref_primary_10_2217_fon_2021_0288 crossref_primary_10_3390_vaccines11091469 crossref_primary_10_1016_j_soh_2023_100048 crossref_primary_10_1002_jmv_26910 crossref_primary_10_1016_S2213_2600_23_00129_7 crossref_primary_10_1007_s11033_022_07132_7 crossref_primary_10_3390_vaccines9091033 crossref_primary_10_21076_vizyoner_1217829 crossref_primary_10_3390_jpm13030402 crossref_primary_10_1128_mBio_01140_21 crossref_primary_10_2139_ssrn_4118569 crossref_primary_10_1208_s12249_021_01974_3 crossref_primary_10_1038_s41598_021_99401_x crossref_primary_10_1021_acs_molpharmaceut_0c00608 crossref_primary_10_1007_s13337_023_00852_9 crossref_primary_10_1007_s40199_022_00446_8 crossref_primary_10_1038_s41598_025_90607_x crossref_primary_10_3389_fpsyt_2022_896419 crossref_primary_10_3390_biomedicines9111690 crossref_primary_10_3390_pathogens11070743 crossref_primary_10_47316_cajmhe_2022_3_3_03 crossref_primary_10_3389_fped_2022_944165 crossref_primary_10_1021_acsnano_3c04507 crossref_primary_10_1021_acs_chemmater_2c00137 crossref_primary_10_22270_jddt_v11i2_4752 crossref_primary_10_1002_adtp_202100059 crossref_primary_10_1016_j_cherd_2023_02_044 crossref_primary_10_1177_02611929231193416 crossref_primary_10_1186_s12879_023_08079_1 crossref_primary_10_1007_s40199_024_00524_z crossref_primary_10_1186_s12939_021_01520_4 crossref_primary_10_3390_bios11030066 crossref_primary_10_1080_21645515_2022_2132082 crossref_primary_10_1016_j_jsb_2020_107690 crossref_primary_10_3390_life13091925 crossref_primary_10_4014_jmb_2411_11036 crossref_primary_10_1007_s40267_021_00852_z crossref_primary_10_3917_heg_112_0126 crossref_primary_10_1109_TCBB_2022_3198365 crossref_primary_10_3390_vaccines10101689 crossref_primary_10_1038_s41578_021_00399_5 crossref_primary_10_1177_08971900211009650 crossref_primary_10_3390_vaccines9121508 crossref_primary_10_1007_s13346_021_00924_7 crossref_primary_10_1186_s13027_023_00547_2 crossref_primary_10_1016_j_ijpharm_2022_122357 crossref_primary_10_1016_j_jviromet_2023_114787 crossref_primary_10_1080_17425247_2023_2288856 crossref_primary_10_1111_jocd_14386 crossref_primary_10_1155_2022_3392667 crossref_primary_10_3390_v14071553 crossref_primary_10_3390_v13061091 crossref_primary_10_1186_s12879_022_07486_0 crossref_primary_10_3892_wasj_2021_83 crossref_primary_10_1016_j_virusres_2021_198454 crossref_primary_10_3390_plants11182436 crossref_primary_10_1038_s41541_022_00447_3 crossref_primary_10_23838_pfm_2021_00156 crossref_primary_10_1038_s41541_022_00549_y crossref_primary_10_1186_s43088_022_00215_1 crossref_primary_10_16899_jcm_1007872 crossref_primary_10_7759_cureus_23726 crossref_primary_10_1080_21645515_2021_1955606 crossref_primary_10_1016_j_xphs_2024_09_015 crossref_primary_10_1097_j_pbj_0000000000000219 crossref_primary_10_3390_vaccines9101086 crossref_primary_10_3389_fdgth_2021_745674 crossref_primary_10_1007_s40199_021_00422_8 crossref_primary_10_3390_vaccines9080866 crossref_primary_10_1002_ccr3_8547 crossref_primary_10_3390_ijms232315415 crossref_primary_10_3390_pr11061718 crossref_primary_10_1016_j_jiph_2020_12_025 crossref_primary_10_2174_0126667975275509231211062032 crossref_primary_10_5005_JABLM_11031_03208 crossref_primary_10_1038_s43856_022_00207_3 crossref_primary_10_1016_j_biopha_2022_113977 crossref_primary_10_1016_j_adcanc_2022_100033 crossref_primary_10_1016_j_procbio_2022_12_002 crossref_primary_10_3390_healthcare12242541 crossref_primary_10_3390_biom11010042 crossref_primary_10_3390_vaccines9121487 crossref_primary_10_1208_s12249_022_02247_3 crossref_primary_10_1007_s10311_021_01224_9 crossref_primary_10_1089_vim_2022_0022 crossref_primary_10_1016_j_addr_2021_02_011 crossref_primary_10_4103_jpbs_jpbs_342_21 crossref_primary_10_1016_j_jnca_2021_103304 crossref_primary_10_1360_TB_2022_1097 crossref_primary_10_3390_vaccines9111239 crossref_primary_10_1016_j_jobb_2021_10_005 crossref_primary_10_1016_j_vaccine_2022_03_025 crossref_primary_10_1016_j_arcmed_2020_12_012 crossref_primary_10_3389_fmed_2022_852922 crossref_primary_10_1016_j_jddst_2022_103762 crossref_primary_10_51847_NPwBdT5ENR crossref_primary_10_1515_ntrev_2021_0115 crossref_primary_10_1016_j_molimm_2022_06_007 crossref_primary_10_3390_brainsci12030306 crossref_primary_10_3390_vaccines9010042 crossref_primary_10_1016_j_jaip_2021_06_019 crossref_primary_10_3390_cells10081952 crossref_primary_10_3390_vaccines9060589 crossref_primary_10_1016_j_hsr_2021_100001 crossref_primary_10_1038_s41392_022_00996_y crossref_primary_10_33889_IJMEMS_2023_8_3_027 crossref_primary_10_5812_semj_121915 crossref_primary_10_1016_j_biopha_2021_111953 crossref_primary_10_1016_j_procs_2021_10_083 crossref_primary_10_1186_s12889_021_11814_5 crossref_primary_10_3390_vaccines9111345 crossref_primary_10_4028_p_b6Jawk crossref_primary_10_7555_JBR_34_20200118 crossref_primary_10_1016_j_xphs_2022_02_015 crossref_primary_10_1016_j_jaad_2021_07_054 crossref_primary_10_1109_JSEN_2022_3170521 crossref_primary_10_1097_MD_0000000000033824 crossref_primary_10_1371_journal_pone_0269944 crossref_primary_10_2174_2666958702101010065 crossref_primary_10_15252_embj_2020105938 crossref_primary_10_3390_pharmaceutics13020140 crossref_primary_10_3390_vaccines10122086 crossref_primary_10_1016_j_jmh_2023_100204 crossref_primary_10_22159_ajpcr_2022_v15i7_44547 crossref_primary_10_3389_fpsyt_2021_774504 crossref_primary_10_3389_fmolb_2021_671633 crossref_primary_10_1021_acs_langmuir_1c02783 crossref_primary_10_37319_iqnjm_3_1_9 crossref_primary_10_2147_IJGM_S312640 crossref_primary_10_34108_eujhs_1121522 crossref_primary_10_1016_j_adaj_2021_03_004 crossref_primary_10_1186_s13287_021_02542_z crossref_primary_10_1038_s41591_021_01334_5 crossref_primary_10_2174_1389201023666220507003726 crossref_primary_10_1002_jmv_26768 crossref_primary_10_4235_agmr_21_0011 crossref_primary_10_3390_idr13040079 crossref_primary_10_21272_bel_5_4__118_126_2021 crossref_primary_10_1186_s43556_024_00222_x crossref_primary_10_1108_GKMC_05_2021_0080 crossref_primary_10_3390_cells10061412 crossref_primary_10_1051_e3sconf_202129203076 crossref_primary_10_1109_TCBB_2023_3265317 crossref_primary_10_1093_cid_ciab381 crossref_primary_10_3389_fimmu_2022_801915 crossref_primary_10_1016_j_cor_2022_105704 crossref_primary_10_1016_j_addr_2021_05_021 crossref_primary_10_1016_j_antiviral_2024_105894 crossref_primary_10_1371_journal_pone_0254595 crossref_primary_10_3389_fmats_2022_1059184 crossref_primary_10_1016_j_heliyon_2024_e35037 crossref_primary_10_31260_RepertMedCir_01217372_1237 crossref_primary_10_3389_frans_2024_1358893 crossref_primary_10_3390_vaccines9020171 crossref_primary_10_2174_1386207325666220228154231 crossref_primary_10_3390_vaccines10020245 crossref_primary_10_3390_healthcare10020222 crossref_primary_10_1016_j_intimp_2022_109161 crossref_primary_10_3390_membranes13020141 crossref_primary_10_1186_s13027_025_00643_5 crossref_primary_10_3390_vaccines9101196 crossref_primary_10_1002_sys_21667 crossref_primary_10_4236_wjv_2021_113005 crossref_primary_10_3390_vaccines11030705 crossref_primary_10_31260_RepertMedCir_01217372_1227 crossref_primary_10_3390_vaccines9020160 crossref_primary_10_1039_D3TB02861E |
Cites_doi | 10.4049/jimmunol.181.6.3755 10.1038/s41541-018-0076-2 10.1016/j.vaccine.2006.10.031 10.1038/s41598-018-35452-x 10.1016/j.chom.2012.06.006 10.1016/j.jconrel.2018.10.020 10.1038/nature06939 10.1021/bi047528r 10.1016/j.apsb.2019.05.003 10.1542/peds.112.6.1394 10.1128/IAI.69.2.1151-1159.2001 10.1002/eji.200324198 10.1089/hum.2014.007 10.4049/jimmunol.0901466 10.1016/j.vaccine.2016.09.070 10.1073/pnas.1513532112 10.1016/j.vaccine.2007.02.052 10.2471/BLT.13.119974 10.18609/cgti.2018.017 10.1126/science.1116480 10.3389/fimmu.2018.02936 10.1016/j.coviro.2015.06.009 10.1128/JVI.78.22.12672-12676.2004 10.1016/j.jconrel.2017.01.019 10.1038/s41586-020-2180-5 10.3390/vaccines4020012 10.1038/mtm.2016.2 10.4049/jimmunol.180.2.948 10.1007/978-1-4939-6445-1 10.1128/JVI.78.21.12090-12095.2004 10.1186/s12967-016-1111-6 10.1016/j.ymthe.2019.02.012 10.1038/s41586-020-2008-3 10.1371/journal.pone.0118963 10.1586/14760584.6.5.821 10.1101/2020.02.19.956235 10.1002/pro.465 10.1371/journal.pone.0001176 10.1128/JVI.02012-06 10.1007/s12052-011-0365-y 10.18609/cgti.2018.004 10.1080/21645515.2016.1259042 10.1080/21645515.2019.1654807 10.1208/s12248-011-9261-1 10.4161/hv.22317 10.1016/j.ejpb.2018.01.010 10.1056/NEJMoa030595 10.1084/jem.20071087 10.4049/jimmunol.0901474 10.1007/s11095-008-9540-4 10.1248/cpb.53.301 10.1016/j.vaccine.2019.11.060 10.1056/NEJMoa2007764 10.1126/science.abc1932 10.1016/j.jcis.2004.09.042 10.1016/j.jconrel.2015.02.035 10.1056/NEJMp048180 10.1016/j.jmb.2008.10.089 10.1136/bmj.f794 10.1006/viro.1998.9516 10.1128/JVI.72.11.8463-8471.1998 10.1016/j.vaccine.2010.07.020 10.1016/j.virol.2005.09.020 10.1016/j.jmmm.2005.01.035 10.1080/21645515.2017.1365995 10.1016/j.jconrel.2010.08.012 10.4155/pbp.14.15 10.1186/s12859-016-0918-8 10.1016/j.bbrc.2004.09.106 10.1111/jam.12359 10.4161/rna.22269 10.1016/j.virol.2005.09.056 10.1007/10_2013_214 10.1089/hgtb.2012.059 10.1038/nature14442 10.1080/14712598.2020.1693541 |
ContentType | Journal Article |
Copyright | American Association of Pharmaceutical Scientists 2020 |
Copyright_xml | – notice: American Association of Pharmaceutical Scientists 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1208/s12249-020-01744-7 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1530-9932 |
ExternalDocumentID | PMC7405756 32761294 10_1208_s12249_020_01744_7 |
Genre | Journal Article Review |
GroupedDBID | --- -56 -5G -BR -EM -~C .86 .VR 06C 06D 0R~ 0VY 1N0 203 23M 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 406 408 40D 40E 53G 5GY 5VS 67N 6J9 6NX 875 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AAKDD AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFO ACGFS ACHSB ACKNC ACMDZ ACMJI ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADURQ ADYFF ADYOE ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD B-. BA0 BAWUL BGNMA CS3 CSCUP DDRTE DIK DNIVK DPUIP E3Z EBLON EBS EIOEI EMOBN ESBYG F5P FERAY FFXSO FIGPU FNLPD FRRFC FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HG6 HH5 HMJXF HRMNR IJ- IKXTQ IWAJR IXC IXD I~X I~Z J-C J0Z JBSCW JZLTJ KOV KPH LLZTM M4Y MA- NPVJJ NQJWS NU0 O93 O9I O9J OK1 P2P PF0 PT4 QOR QOS R89 R9I ROL RPM RPX RSV S16 S27 S3A S3B SAP SBL SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 TR2 TSG TSV TUC U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 XSB YLTOR Z45 Z7U Z7V Z7W Z7X Z81 Z87 ZMTXR ZOVNA ~A9 -Y2 2VQ 4.4 AANXM AAPKM AARHV AAYXX ABBRH ABDBE ABFSG ABULA ACBXY ACMFV ACSTC AEBTG AEKMD AEZWR AFDZB AFGCZ AFHIU AFOHR AGJBK AHPBZ AHSBF AHWEU AIXLP AJBLW AOIJS ATHPR AYFIA BDATZ BSONS C1A CAG CITATION COF EJD EN4 FINBP FSGXE GX1 H13 HYE HZ~ LGEZI LOTEE NADUK NXXTH O9- OVD S1Z TEORI CGR CUY CVF ECM EIF NPM 7X8 5PM ABRTQ |
ID | FETCH-LOGICAL-c446t-e3f4ab22441aec4b7efd23f62ce0de10e668898e5e579416c9451d71e185738c3 |
IEDL.DBID | U2A |
ISSN | 1530-9932 |
IngestDate | Thu Aug 21 18:12:04 EDT 2025 Fri Jul 11 08:59:54 EDT 2025 Wed Feb 19 02:04:20 EST 2025 Thu Apr 24 23:02:02 EDT 2025 Tue Jul 01 01:45:36 EDT 2025 Fri Feb 21 02:33:15 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | mucosal vaccination coronavirus vaccine adjuvant route of administration |
Language | English |
License | This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c446t-e3f4ab22441aec4b7efd23f62ce0de10e668898e5e579416c9451d71e185738c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-4993-6427 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7405756 |
PMID | 32761294 |
PQID | 2431815517 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7405756 proquest_miscellaneous_2431815517 pubmed_primary_32761294 crossref_primary_10_1208_s12249_020_01744_7 crossref_citationtrail_10_1208_s12249_020_01744_7 springer_journals_10_1208_s12249_020_01744_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-08-05 |
PublicationDateYYYYMMDD | 2020-08-05 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: United States |
PublicationSubtitle | An Official Journal of the American Association of Pharmaceutical Scientists |
PublicationTitle | AAPS PharmSciTech |
PublicationTitleAbbrev | AAPS PharmSciTech |
PublicationTitleAlternate | AAPS PharmSciTech |
PublicationYear | 2020 |
Publisher | Springer International Publishing |
Publisher_xml | – name: Springer International Publishing |
References | Gretebeck LM, Subbarao K. Animal models for SARS and MERS coronaviruses. Curr Opin Virol [Internet]. 2015;13:123–9 Available from: https://linkinghub.elsevier.com/retrieve/pii/S187962571500098X. BandeiraVPeixotoCRodriguesAFCruzPEAlvesPMCoroadinhaASCarrondoMJTDownstream processing of lentiviral vectors: releasing bottlenecksHum Gene Ther Methods2012232552631:CAS:528:DC%2BC3sXpvVyitL0%3D10.1089/hgtb.2012.059 Garden R. Remarks by President Trump on vaccine development [Internet]. 2020 [cited 2020 May 25]. Available from: https://www.whitehouse.gov/briefings-statements/remarks-president-trump-vaccine-development SchellBBraedelSProbstJCarralotJPWagnerHSchildHImmunostimulating capacities of stabilized RNA moleculesEur J Immunol200434253754710.1002/eji.200324198 Niu L, Panyam J. Freeze concentration-induced PLGA and polystyrene nanoparticle aggregation: Imaging and rational design of lyoprotection. J Control Release [Internet]. 2017;248:125–132. Available from: https://doi.org/10.1016/j.jconrel.2017.01.019 Lapelosa M, Gallicchio E, Arnold GF, Arnold E, Levy RM. In silico vaccine design based on molecular simulations of rhinovirus chimeras presenting HIV-1 gp41 epitopes. J Mol Biol [Internet]. 2009;385(2):675–91 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0022283608014022. VellingaJSmithJPLipiecAMajhenDLemckertAvan OoijMIvesPYallopCCustersJHavengaMChallenges in manufacturing adenoviral vectors for global vaccine product deploymentHum Gene Ther20142543183271:CAS:528:DC%2BC2cXmsFWltro%3D10.1089/hum.2014.007 Fang M, Cheng H, Dai Z, Bu Z, Sigal LJ. Immunization with a single extracellular enveloped virus protein produced in bacteria provides partial protection from a lethal orthopoxvirus infection in a natural host. Virology [Internet]. 2006;345(1):231–43 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0042682205006306. ConnellTDCholera toxin, LT-I, LT-IIa and LT-IIb: the critical role of ganglioside binding in immunomodulation by type I and type II heat-labile enterotoxinsExpert Rev Vaccines [Internet]2007658218341:CAS:528:DC%2BD2sXhtFGgsr3M10.1586/14760584.6.5.821Available from TomarJTonnisWFPatilHPde boerAHHagedoornPVanbeverRPulmonary immunization: deposition site is of minor relevance for influenza vaccination but deep lung deposition is crucial for hepatitis B vaccinationActa Pharm Sin B [Internet]2019961231124010.1016/j.apsb.2019.05.003Available from MohananDSlütterBHenriksen-LaceyMJiskootWBouwstraJAPerrieYKündigTMGanderBJohansenPAdministration routes affect the quality of immune responses: a cross-sectional evaluation of particulate antigen-delivery systemsJ Control Release [Internet]201014733423491:CAS:528:DC%2BC3cXhtlygt7jI10.1016/j.jconrel.2010.08.012Available from Montel MendozaGPasterisSEOteroMCFatima Nader-MacíasMESurvival and beneficial properties of lactic acid bacteria from raniculture subjected to freeze-drying and storageJ Appl Microbiol201411611571661:CAS:528:DC%2BC3sXhvFKqtLvK10.1111/jam.12359 Sánchez-RamónSConejeroLNeteaMGSanchoDPalomaresÓSubizaJLTrained immunity-based vaccines: a new paradigm for the development of broad-Spectrum anti-infectious formulationsFront Immunol20189December293610.3389/fimmu.2018.02936 EditorCBFWalkerJMFoxCBVaccine adjuvants [Internet]Methods in Molecular Biology2017New YorkSpringer New York10.1007/978-1-4939-6445-1Available from Astudillo A, Leung SSY, Kutter E, Morales S, Chan H-K. Nebulization effects on structural stability of bacteriophage PEV 44. Eur J Pharm Biopharm [Internet]. 2018;125(December 2017):124–30 Available from: https://linkinghub.elsevier.com/retrieve/pii/S093964111731007X. Ong E, Wong MU, Huffman A, He Y. COVID-19 coronavirus vaccine design using reverse vaccinology and machine learning. bioRxiv [Internet]. 2020 ;2020.03.20.000141. Available from: http://biorxiv.org/content/early/2020/03/21/2020.03.20.000141.abstract KoolMPetrilliVDe SmedtTRolazAHammadHvan NimwegenMCutting edge: alum adjuvant stimulates inflammatory dendritic cells through activation of the NALP3 inflammasomeJ Immunol [Internet].20081816375537591:CAS:528:DC%2BD1cXhtVKntLzK10.4049/jimmunol.181.6.375518768827Available from Aso Y, Yoshioka S. Effect of freezing rate on physical stability of lyophilized cationic liposomes. Chem Pharm Bull (Tokyo) [Internet]. 2005;53(3):301–4 Available from: http://joi.jlc.jst.go.jp/JST.JSTAGE/cpb/53.301?from=CrossRef. Hanson CM, George AM, Sawadogo A, Schreiber B. Is freezing in the vaccine cold chain an ongoing issue? A literature review. Vaccine [Internet]. 2017;35(17):2127–33 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0264410X16309471. MoleirinhoMGSilvaRJSAlvesPMCarrondoMJTPeixotoCCurrent challenges in biotherapeutic particles manufacturingExpert Opin Biol Ther20202054514651:CAS:528:DC%2BC1MXit1GlsL%2FL10.1080/14712598.2020.1693541 Shamriz S, Ofoghi H. Design, structure prediction and molecular dynamics simulation of a fusion construct containing malaria pre-erythrocytic vaccine candidate, PfCelTOS, and human interleukin 2 as adjuvant. BMC Bioinformatics [Internet]. 2016;17(1):–71 Available from: http://www.biomedcentral.com/1471-2105/17/71. MorefieldGLA rational, systematic approach for the development of vaccine formulationsAAPS J20111321912001:CAS:528:DC%2BC3MXlsFansrw%3D10.1208/s12248-011-9261-1 KoolMSoulliéTvan NimwegenMWillartMAMMuskensFJungSAlum adjuvant boosts adaptive immunity by inducing uric acid and activating inflammatory dendritic cellsJ Exp Med [Internet]200820548698821:CAS:528:DC%2BD1cXkvVyrsrc%3D10.1084/jem.20071087Available from UlanovaMTarkowskiAHahn-ZoricMHansonLÅThe common vaccine adjuvant aluminum hydroxide up-regulates accessory properties of human monocytes via an interleukin-4-dependent mechanismInfect Immun2001692115111591:CAS:528:DC%2BD3MXns1WhtQ%3D%3D10.1128/IAI.69.2.1151-1159.2001 LinehanJLDileepanTKashemSWKaplanDHClearyPJenkinsMKGeneration of Th17 cells in response to intranasal infection requires TGF-β1 from dendritic cells and IL-6 from CD301b + dendritic cellsProc Natl Acad Sci [Internet]20151124112782127871:CAS:528:DC%2BC2MXhsFKnt7bL10.1073/pnas.1513532112Available from Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Trono D, et al. A third-generation lentivirus vector with a conditional packaging system. J Virol. 1998. DasUHariprasadGEthayathullaASManralPDasTKPashaSInhibition of protein aggregation: supramolecular assemblies of arginine hold the key. Rutherford S, editorPLoS One [Internet]2007211e11761:CAS:528:DC%2BD1cXjslSntw%3D%3D10.1371/journal.pone.0001176Available from Mannhalter JW, Neychev HO, Zlabinger GJ, Ahmad R, Eibl MM. Modulation of the human immune response by the non-toxic and non-pyrogenic adjuvant aluminium hydroxide: effect on antigen uptake and antigen presentation. Clin Exp Immunol. 1985. MutschMZhouWRhodesPBoppMChenRTLinderTSpyrCSteffenRUse of the inactivated intranasal influenza vaccine and the risk of Bell’s palsy in SwitzerlandN Engl J Med [Internet]200435098969031:CAS:528:DC%2BD2cXhsFygsbY%3D10.1056/NEJMoa030595Available from EdwardsDKJasnyEYoonHHorscroftNSchanenBGeterTFotin-MleczekMPetschBWittmanVAdjuvant effects of a sequence-engineered mRNA vaccine: translational profiling demonstrates similar human and murine innate responseJ Transl Med201715111810.1186/s12967-016-1111-6 LanJGeJYuJShanSZhouHFanSZhangQShiXWangQZhangLWangXStructure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptorNature [Internet].202058178072152201:CAS:528:DC%2BB3cXoslOqtL8%3D10.1038/s41586-020-2180-532225176Available from Merten O-W, Schweizer M, Chahal P, Kamen A. Manufacturing of viral vectors: part II. Downstream processing and safety aspects. Pharm Bioprocess. 2014. KowalskiPSRudraAMiaoLAndersonDGDelivering the messenger: advances in technologies for therapeutic mRNA deliveryMol Ther [Internet]20192747107281:CAS:528:DC%2BC1MXntFOnsbw%3D10.1016/j.ymthe.2019.02.012Available from INOVIO Expands manufacturing of COVID-19 DNA vaccine INO-4800 With New Funding from CEPI [Internet]. [cited 2020 May 18]. Available from: http://ir.inovio.com/news-releases/news-releases-details/2020/INOVIO-Expands-Manufacturing-of-COVID-19-DNA-Vaccine-INO-4800-With-New-Funding-from-CEPI/default.aspx BelyakovIMAhlersJDWhat role does the route of immunization play in the generation of protective immunity against mucosal pathogens?J Immunol200918311688368921:CAS:528:DC%2BD1MXhsVehsLjI10.4049/jimmunol.0901466 Hung IF-N, Lung K-C, Tso EY-K, Liu R, Chung TW-H, Chu M-Y, et al. Triple combination of interferon beta-1b, lopinavir–ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. Lancet [Internet]. 2020;395(10238):1695–704 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0140673620310424. Temperature sensitivity of vaccines [Internet]. World Health Organization; 2006. Available from: https://apps.who.int/iris/handle/10665/69387 ThakkarSGRuwonaTBWilliamsROCuiZThe immunogenicity of thin-film freeze-dried, aluminum salt-adjuvanted vaccine when exposed to different temperaturesHum Vaccines Immunother [Internet]201713493694610.1080/21645515.2016.1259042Available from ClémentNGriegerJCManufacturing of recombinant adeno-associated viral vectors for clinical trialsMol Ther Methods Clin Dev201631600210.1038/mtm.2016.2 Quintin J, Saeed S, Martens JHA, Giamarellos-Bourboulis EJ, Ifrim DC, Logie C, et al. Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes. Cell Host Microbe [Internet]. 2012;12(2):223–32 Available from: https://linkinghub.elsevier.com/retrieve/pii/S1931312812002326. MillerEAndrewsNStellitanoLStoweJWinstoneAMShneersonJRisk of narcolepsy in children and young people receiving AS03 adjuvanted pandemic A/H1N1 2009 influenza vaccine: retrospective analysisBMJ [Internet].2013346f79410.1136/bmj.f79423444425Available from SchlakeTThessAFotin-MleczekMKallenKJDeveloping mRNA-vaccine technologiesRNA Biol2012911131913301:CAS:528:DC%2BC3sXjsFKktL8%3D10.4161/rna.22269 Khurana S, Coy Q Gao (1744_CR41) 2020; 6 N Clément (1744_CR55) 2016; 3 PS Kowalski (1744_CR35) 2019; 27 1744_CR19 V Bandeira (1744_CR61) 2012; 23 PA Offit (1744_CR72) 2003; 112 N Faust (1744_CR54) 2018; 4 J Lan (1744_CR2) 2020; 581 A Detmer (1744_CR30) 2006; 5 T Schlake (1744_CR34) 2012; 9 M Mutsch (1744_CR89) 2004; 350 1744_CR52 1744_CR53 1744_CR10 1744_CR93 IM Belyakov (1744_CR85) 2009; 183 1744_CR15 1744_CR59 1744_CR16 E Miller (1744_CR90) 2013; 346 1744_CR17 1744_CR18 H Xu (1744_CR81) 2017; 13 1744_CR12 1744_CR13 1744_CR14 SG Thakkar (1744_CR80) 2017; 13 F Li (1744_CR11) 2005; 309 D Mohanan (1744_CR86) 2010; 147 BM Baynes (1744_CR74) 2005; 44 O Terova (1744_CR58) 2018; 4 KA Hanley (1744_CR8) 2011; 4 1744_CR62 1744_CR63 1744_CR20 1744_CR21 1744_CR65 S Chaudhury (1744_CR22) 2020; 16 A Angelidou (1744_CR40) 2020; 38 1744_CR60 TD Connell (1744_CR91) 2007; 6 1744_CR26 1744_CR27 PA Offit (1744_CR9) 2005; 352 1744_CR28 M Kool (1744_CR44) 2008; 181 1744_CR66 1744_CR23 1744_CR67 GL Morefield (1744_CR76) 2011; 13 1744_CR24 1744_CR68 1744_CR25 CBF Editor (1744_CR42) 2017 ZOLGENSMA (1744_CR64) 2019 B Pastorino (1744_CR69) 2015; 10 JD Engstrom (1744_CR77) 2008; 25 U Das (1744_CR75) 2007; 2 X Li (1744_CR78) 2015; 204 J Tomar (1744_CR87) 2019; 9 DK Edwards (1744_CR51) 2017; 15 1744_CR32 1744_CR70 1744_CR71 SG Thakkar (1744_CR82) 2018; 292 M Ulanova (1744_CR47) 2001; 69 1744_CR5 1744_CR4 1744_CR38 K Murphy (1744_CR6) 2017 1744_CR7 1744_CR39 PS Kulkarni (1744_CR88) 2013; 9 1744_CR1 1744_CR33 SC Eisenbarth (1744_CR45) 2008; 453 1744_CR79 1744_CR36 B Schell (1744_CR50) 2004; 34 L Du (1744_CR29) 2008; 180 JL Linehan (1744_CR92) 2015; 112 G Montel Mendoza (1744_CR31) 2014; 116 1744_CR84 J Vellinga (1744_CR56) 2014; 25 1744_CR83 S Sánchez-Ramón (1744_CR37) 2018; 9 1744_CR48 JH Beigel (1744_CR3) 2020; 22 A Tischer (1744_CR73) 2010; 19 MG Moleirinho (1744_CR57) 2020; 20 1744_CR46 AM Didierlaurent (1744_CR49) 2009; 183 M Kool (1744_CR43) 2008; 205 |
References_xml | – reference: Zepp F. Principles of vaccine design—lessons from nature. Vaccine [Internet]. 2010;28:C14–24 Available from: http://linkinghub.elsevier.com/retrieve/pii/S0264410X10010030. – reference: AngelidouAContiMGDiray-ArceJBennCSShannFNeteaMGLicensed Bacille Calmette-Guérin (BCG) formulations differ markedly in bacterial viability, RNA content and innate immune activationVaccine [Internet]2020389222922401:CAS:528:DC%2BB3cXhvVensbs%3D10.1016/j.vaccine.2019.11.060Available from: – reference: EdwardsDKJasnyEYoonHHorscroftNSchanenBGeterTFotin-MleczekMPetschBWittmanVAdjuvant effects of a sequence-engineered mRNA vaccine: translational profiling demonstrates similar human and murine innate responseJ Transl Med201715111810.1186/s12967-016-1111-6 – reference: GaoQBaoLMaoHWangLXuKYangMDevelopment of an inactivated vaccine candidate for SARS-CoV-2Science (80-) [Internet]20206eabc19321:CAS:528:DC%2BB3cXhtlCmtL3P10.1126/science.abc1932Available from: – reference: Fang M, Cheng H, Dai Z, Bu Z, Sigal LJ. Immunization with a single extracellular enveloped virus protein produced in bacteria provides partial protection from a lethal orthopoxvirus infection in a natural host. Virology [Internet]. 2006;345(1):231–43 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0042682205006306. – reference: FaustNAddressing the challenges of commercial-scale viral vector productionCell Gene Ther Insights201842313610.18609/cgti.2018.004 – reference: Temperature sensitivity of vaccines [Internet]. World Health Organization; 2006. Available from: https://apps.who.int/iris/handle/10665/69387 – reference: MohananDSlütterBHenriksen-LaceyMJiskootWBouwstraJAPerrieYKündigTMGanderBJohansenPAdministration routes affect the quality of immune responses: a cross-sectional evaluation of particulate antigen-delivery systemsJ Control Release [Internet]201014733423491:CAS:528:DC%2BC3cXhtlygt7jI10.1016/j.jconrel.2010.08.012Available from: – reference: McCray PB, Pewe L, Wohlford-Lenane C, Hickey M, Manzel L, Shi L, et al. Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. J Virol [Internet]. 2007;81(2):813–21 Available from: https://jvi.asm.org/content/81/2/813. – reference: ChaudhurySDuncanEHAtreTDuttaSSpringMDLeitnerWWBergmann-LeitnerESCombining immunoprofiling with machine learning to assess the effects of adjuvant formulation on human vaccine-induced immunityHum Vaccin Immunother [Internet]20201624004111:CAS:528:DC%2BB3cXosVensLY%3D10.1080/21645515.2019.1654807Available from: – reference: Sánchez-RamónSConejeroLNeteaMGSanchoDPalomaresÓSubizaJLTrained immunity-based vaccines: a new paradigm for the development of broad-Spectrum anti-infectious formulationsFront Immunol20189December293610.3389/fimmu.2018.02936 – reference: Aso Y, Yoshioka S. Effect of freezing rate on physical stability of lyophilized cationic liposomes. Chem Pharm Bull (Tokyo) [Internet]. 2005;53(3):301–4 Available from: http://joi.jlc.jst.go.jp/JST.JSTAGE/cpb/53.301?from=CrossRef. – reference: Shamriz S, Ofoghi H. Design, structure prediction and molecular dynamics simulation of a fusion construct containing malaria pre-erythrocytic vaccine candidate, PfCelTOS, and human interleukin 2 as adjuvant. BMC Bioinformatics [Internet]. 2016;17(1):–71 Available from: http://www.biomedcentral.com/1471-2105/17/71. – reference: ConnellTDCholera toxin, LT-I, LT-IIa and LT-IIb: the critical role of ganglioside binding in immunomodulation by type I and type II heat-labile enterotoxinsExpert Rev Vaccines [Internet]2007658218341:CAS:528:DC%2BD2sXhtFGgsr3M10.1586/14760584.6.5.821Available from: – reference: KoolMPetrilliVDe SmedtTRolazAHammadHvan NimwegenMCutting edge: alum adjuvant stimulates inflammatory dendritic cells through activation of the NALP3 inflammasomeJ Immunol [Internet].20081816375537591:CAS:528:DC%2BD1cXhtVKntLzK10.4049/jimmunol.181.6.375518768827Available from: – reference: DuLZhaoGLinYSuiHChanCMaSIntranasal vaccination of recombinant adeno-associated virus encoding receptor-binding domain of severe acute respiratory syndrome coronavirus (SARS-CoV) spike protein induces strong mucosal immune responses and provides long-term protection against SARSJ Immunol [Internet]200818029489561:CAS:528:DC%2BD1cXhsVygsQ%3D%3D10.4049/jimmunol.180.2.948Available from: – reference: TerovaOSoltysSHermansPDe RooijJDetmersFOvercoming downstream purification challenges for viral vector manufacturing: enabling advancement of gene therapies in the clinicCell Gene Ther Insights.20184210111110.18609/cgti.2018.017 – reference: MorefieldGLA rational, systematic approach for the development of vaccine formulationsAAPS J20111321912001:CAS:528:DC%2BC3MXlsFansrw%3D10.1208/s12248-011-9261-1 – reference: He Y, Zhou Y, Liu S, Kou Z, Li W, Farzan M, et al. Receptor-binding domain of SARS-CoV spike protein induces highly potent neutralizing antibodies: implication for developing subunit vaccine. Biochem Biophys Res Commun [Internet]. 2004;324(2):773–81 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0006291X04021588. – reference: INOVIO Expands manufacturing of COVID-19 DNA vaccine INO-4800 With New Funding from CEPI [Internet]. [cited 2020 May 18]. Available from: http://ir.inovio.com/news-releases/news-releases-details/2020/INOVIO-Expands-Manufacturing-of-COVID-19-DNA-Vaccine-INO-4800-With-New-Funding-from-CEPI/default.aspx – reference: OffitPAJewRKAddressing parents’ concerns: do vaccines contain harmful preservatives, adjuvants, additives, or residuals?Pediatrics [Internet]200311261394139710.1542/peds.112.6.1394Available from: – reference: Montel MendozaGPasterisSEOteroMCFatima Nader-MacíasMESurvival and beneficial properties of lactic acid bacteria from raniculture subjected to freeze-drying and storageJ Appl Microbiol201411611571661:CAS:528:DC%2BC3sXhvFKqtLvK10.1111/jam.12359 – reference: BCG vaccine [Package insert] [Internet]. Roseland, NJ: Merck & Co; 2019. Available from: https://nctr-crs.fda.gov/fdalabel/services/spl/set-ids/a83f0b99-9038-4c5a-aaac-8792b32838fe/spl-doc?hl=BCG – reference: HanleyKAThe double-edged sword: how evolution can make or break a live-attenuated virus vaccineEvol Educ Outreach [Internet]20114463564310.1007/s12052-011-0365-yAvailable from: – reference: EditorCBFWalkerJMFoxCBVaccine adjuvants [Internet]Methods in Molecular Biology2017New YorkSpringer New York10.1007/978-1-4939-6445-1Available from: – reference: Weingartl H, Czub M, Czub S, Neufeld J, Marszal P, Gren J, et al. Immunization with modified Vaccinia virus Ankara-based recombinant vaccine against severe acute respiratory syndrome is associated with enhanced hepatitis in ferrets. J Virol [Internet]. 2004;78(22):12672–6 Available from: https://jvi.asm.org/content/78/22/12672. – reference: LanJGeJYuJShanSZhouHFanSZhangQShiXWangQZhangLWangXStructure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptorNature [Internet].202058178072152201:CAS:528:DC%2BB3cXoslOqtL8%3D10.1038/s41586-020-2180-532225176Available from: – reference: BandeiraVPeixotoCRodriguesAFCruzPEAlvesPMCoroadinhaASCarrondoMJTDownstream processing of lentiviral vectors: releasing bottlenecksHum Gene Ther Methods2012232552631:CAS:528:DC%2BC3sXpvVyitL0%3D10.1089/hgtb.2012.059 – reference: Hung IF-N, Lung K-C, Tso EY-K, Liu R, Chung TW-H, Chu M-Y, et al. Triple combination of interferon beta-1b, lopinavir–ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. Lancet [Internet]. 2020;395(10238):1695–704 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0140673620310424. – reference: MurphyKCaseyWJaneway’s immunobiology20179New YorkGarland Science729741 – reference: Mannhalter JW, Neychev HO, Zlabinger GJ, Ahmad R, Eibl MM. Modulation of the human immune response by the non-toxic and non-pyrogenic adjuvant aluminium hydroxide: effect on antigen uptake and antigen presentation. Clin Exp Immunol. 1985. – reference: ZOLGENSMAPackage insert2019BannockburnAveXis, Inc. – reference: Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. bioRxiv. 2020. – reference: SchlakeTThessAFotin-MleczekMKallenKJDeveloping mRNA-vaccine technologiesRNA Biol2012911131913301:CAS:528:DC%2BC3sXjsFKktL8%3D10.4161/rna.22269 – reference: TomarJTonnisWFPatilHPde boerAHHagedoornPVanbeverRPulmonary immunization: deposition site is of minor relevance for influenza vaccination but deep lung deposition is crucial for hepatitis B vaccinationActa Pharm Sin B [Internet]2019961231124010.1016/j.apsb.2019.05.003Available from: – reference: Novavax. Novavax to present COVID-19 vaccine candidate progress in World Vaccine Congress Webinar Series [Internet]. 2020 [cited 2020 May 25]. Available from:http://ir.novavax.com/news-releases/news-release-details/novavax-present-covid-19-vaccine-candidate-progress-world – reference: DidierlaurentAMMorelSLockmanLGianniniSLBisteauMCarlsenHKiellandAVostersOVanderheydeNSchiavettiFLarocqueDvan MechelenMGarçonNAS04, an aluminum salt- and TLR4 agonist-based adjuvant system, induces a transient localized innate immune response leading to enhanced adaptive immunityJ Immunol [Internet].200918310618661971:CAS:528:DC%2BD1MXhtlKhsbjE10.4049/jimmunol.090147419864596Available from: – reference: Acar HY c, Garaas RS, Syud F, Bonitatebus P, Kulkarni AM. Superparamagnetic nanoparticles stabilized by polymerized PEGylated coatings. J Magn Magn Mater [Internet]. 2005;293(1):1–7. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0304885305001009. – reference: UlanovaMTarkowskiAHahn-ZoricMHansonLÅThe common vaccine adjuvant aluminum hydroxide up-regulates accessory properties of human monocytes via an interleukin-4-dependent mechanismInfect Immun2001692115111591:CAS:528:DC%2BD3MXns1WhtQ%3D%3D10.1128/IAI.69.2.1151-1159.2001 – reference: PastorinoBBarontiCGouldEACharrelRNde LamballerieXEffect of Chemical Stabilizers on the Thermostability and Infectivity of a Representative Panel of Freeze Dried Viruses. Digard P, editorPLoS One [Internet]2015104e01189631:CAS:528:DC%2BC28XhtlGqt7%2FF10.1371/journal.pone.0118963Available from: – reference: Zhang Y, Zhang J. Surface modification of monodisperse magnetite nanoparticles for improved intracellular uptake to breast cancer cells. J Colloid Interface Sci [Internet]. 2005;283(2):352–7 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0021979704009592. – reference: ClémentNGriegerJCManufacturing of recombinant adeno-associated viral vectors for clinical trialsMol Ther Methods Clin Dev201631600210.1038/mtm.2016.2 – reference: SchellBBraedelSProbstJCarralotJPWagnerHSchildHImmunostimulating capacities of stabilized RNA moleculesEur J Immunol200434253754710.1002/eji.200324198 – reference: LiFLiWFarzanMHarrisonSCStructural biology: structure of SARS coronavirus spike receptor-binding domain complexed with receptorScience.20053095742186481:CAS:528:DC%2BD2MXpvFCisLw%3D10.1126/science.1116480 – reference: Hernandez Bort JA. Challenges in the downstream process of gene therapy products. Am Pharm Rev. 2019;22(4). – reference: EngstromJDLaiESLudherBSChenBMilnerTEWilliamsROFormation of stable submicron protein particles by thin film freezingPharm Res2008256133413461:CAS:528:DC%2BD1cXltFCjsLc%3D10.1007/s11095-008-9540-4 – reference: Matthias DM, Robertson J, Garrison MM, Newland S, Nelson C. Freezing temperatures in the vaccine cold chain: a systematic literature review. Vaccine [Internet]. 2007;25(20):3980–6 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0264410X07002289. – reference: MutschMZhouWRhodesPBoppMChenRTLinderTSpyrCSteffenRUse of the inactivated intranasal influenza vaccine and the risk of Bell’s palsy in SwitzerlandN Engl J Med [Internet]200435098969031:CAS:528:DC%2BD2cXhsFygsbY%3D10.1056/NEJMoa030595Available from: – reference: Garden R. Remarks by President Trump on vaccine development [Internet]. 2020 [cited 2020 May 25]. Available from: https://www.whitehouse.gov/briefings-statements/remarks-president-trump-vaccine-development/ – reference: Lapelosa M, Gallicchio E, Arnold GF, Arnold E, Levy RM. In silico vaccine design based on molecular simulations of rhinovirus chimeras presenting HIV-1 gp41 epitopes. J Mol Biol [Internet]. 2009;385(2):675–91 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0022283608014022. – reference: MoleirinhoMGSilvaRJSAlvesPMCarrondoMJTPeixotoCCurrent challenges in biotherapeutic particles manufacturingExpert Opin Biol Ther20202054514651:CAS:528:DC%2BC1MXit1GlsL%2FL10.1080/14712598.2020.1693541 – reference: Vartak A, Sucheck S. Recent advances in subunit vaccine carriers. Vaccines [Internet]. 2016;4(2):12 Available from: http://www.mdpi.com/2076-393X/4/2/12. – reference: Smyth H, Zhang H, Cui Z, Wang J, Xu H, Zhang Y, et al. Biologically active dry powder compositions and method of their manufacture and use,. U.S. Patent Application No. 63/012,792, 2020. – reference: Wang Y, Zhang D, Du G, Du R, Zhao J, Jin Y, et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet [Internet]. 2020; Available from: https://linkinghub.elsevier.com/retrieve/pii/S0140673620310229. – reference: VellingaJSmithJPLipiecAMajhenDLemckertAvan OoijMIvesPYallopCCustersJHavengaMChallenges in manufacturing adenoviral vectors for global vaccine product deploymentHum Gene Ther20142543183271:CAS:528:DC%2BC2cXmsFWltro%3D10.1089/hum.2014.007 – reference: Merten O-W, Schweizer M, Chahal P, Kamen A. Manufacturing of viral vectors: part II. Downstream processing and safety aspects. Pharm Bioprocess. 2014. – reference: ThakkarSGWarnkenZNAlzhraniRFValdesSAAldayelAMXuHIntranasal immunization with aluminum salt-adjuvanted dry powder vaccineJ Control Release [Internet]20182921111181:CAS:528:DC%2BC1cXitFGns7bL10.1016/j.jconrel.2018.10.020Available from: – reference: DasUHariprasadGEthayathullaASManralPDasTKPashaSInhibition of protein aggregation: supramolecular assemblies of arginine hold the key. Rutherford S, editorPLoS One [Internet]2007211e11761:CAS:528:DC%2BD1cXjslSntw%3D%3D10.1371/journal.pone.0001176Available from: – reference: Chaudhury S, Duncan EH, Atre T, Storme CK, Beck K, Kaba SA, et al. Identification of immune signatures of novel adjuvant formulations using machine learning. Sci Rep [Internet]. 2018;8(1):17508 Available from: http://www.nature.com/articles/s41598-018-35452-x. – reference: Marzi A, Gramberg T, Simmons G, Möller P, Rennekamp AJ, Krumbiegel M, et al. DC-SIGN and DC-SIGNR interact with the glycoprotein of Marburg virus and the S protein of severe acute respiratory syndrome coronavirus. J Virol [Internet]. 2004;78(21):12090–5 Available from: https://jvi.asm.org/content/78/21/12090. – reference: KoolMSoulliéTvan NimwegenMWillartMAMMuskensFJungSAlum adjuvant boosts adaptive immunity by inducing uric acid and activating inflammatory dendritic cellsJ Exp Med [Internet]200820548698821:CAS:528:DC%2BD1cXkvVyrsrc%3D10.1084/jem.20071087Available from: – reference: TischerALilieHRudolphRLangeCL-arginine hydrochloride increases the solubility of folded and unfolded recombinant plasminogen activator rPAProtein Sci [Internet]2010199178317951:CAS:528:DC%2BC3cXhtV2gsLvJ10.1002/pro.465Available from: – reference: LinehanJLDileepanTKashemSWKaplanDHClearyPJenkinsMKGeneration of Th17 cells in response to intranasal infection requires TGF-β1 from dendritic cells and IL-6 from CD301b + dendritic cellsProc Natl Acad Sci [Internet]20151124112782127871:CAS:528:DC%2BC2MXhsFKnt7bL10.1073/pnas.1513532112Available from: – reference: Hanson CM, George AM, Sawadogo A, Schreiber B. Is freezing in the vaccine cold chain an ongoing issue? A literature review. Vaccine [Internet]. 2017;35(17):2127–33 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0264410X16309471. – reference: Texas A&M University. BCG vaccine for health care workers as defense against COVID 19 (BADAS) [Internet]. 2020 [cited 2020 May 20]. Available from: https://clinicaltrials.gov/ct2/show/NCT04348370 – reference: LiXThakkarSGRuwonaTBWilliamsROCuiZA method of lyophilizing vaccines containing aluminum salts into a dry powder without causing particle aggregation or decreasing the immunogenicity following reconstitutionJ Control Release [Internet].201520438501:CAS:528:DC%2BC2MXjs1Sjs7s%3D10.1016/j.jconrel.2015.02.035257358964385422Available from: – reference: Du L, Zhao G, He Y, Guo Y, Zheng B-J, Jiang S, et al. Receptor-binding domain of SARS-CoV spike protein induces long-term protective immunity in an animal model. Vaccine [Internet]. 2007;25(15):2832–8 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0264410X06011534. – reference: ThakkarSGRuwonaTBWilliamsROCuiZThe immunogenicity of thin-film freeze-dried, aluminum salt-adjuvanted vaccine when exposed to different temperaturesHum Vaccines Immunother [Internet]201713493694610.1080/21645515.2016.1259042Available from: – reference: EisenbarthSCColegioORO’ConnorWSutterwalaFSFlavellRACrucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvantsNature.20084537198112211261:CAS:528:DC%2BD1cXntlGjtLg%3D10.1038/nature06939 – reference: Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Trono D, et al. A third-generation lentivirus vector with a conditional packaging system. J Virol. 1998. – reference: Murhekar MV, Dutta S, Kapoor AN, Bitragunta S, Dodum R, Ghosh P, et al. Frequent exposure to suboptimal temperatures in vaccine cold-chain system in India: results of temperature monitoring in 10 states. Bull World Health Organ [Internet]. 2013;91(12):906–13 Available from: http://www.who.int/entity/bulletin/volumes/91/12/13-119974.pdf. – reference: KowalskiPSRudraAMiaoLAndersonDGDelivering the messenger: advances in technologies for therapeutic mRNA deliveryMol Ther [Internet]20192747107281:CAS:528:DC%2BC1MXntFOnsbw%3D10.1016/j.ymthe.2019.02.012Available from: – reference: MillerEAndrewsNStellitanoLStoweJWinstoneAMShneersonJRisk of narcolepsy in children and young people receiving AS03 adjuvanted pandemic A/H1N1 2009 influenza vaccine: retrospective analysisBMJ [Internet].2013346f79410.1136/bmj.f79423444425Available from: – reference: OffitPAThe cutter incident, 50 years laterN Engl J Med [Internet].200535214141114121:CAS:528:DC%2BD2MXjtVWgu74%3D10.1056/NEJMp04818015814877Available from: – reference: Gretebeck LM, Subbarao K. Animal models for SARS and MERS coronaviruses. Curr Opin Virol [Internet]. 2015;13:123–9 Available from: https://linkinghub.elsevier.com/retrieve/pii/S187962571500098X. – reference: Khurana S, Coyle EM, Manischewitz J, King LR, Gao J, Germain RN, et al. AS03-adjuvanted H5N1 vaccine promotes antibody diversity and affinity maturation, NAI titers, cross-clade H5N1 neutralization, but not H1N1 cross-subtype neutralization. NPJ vaccines [Internet]. 2018;3(March):40. Available from: https://www.ncbi.nlm.nih.gov/pubmed/30302282%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC6167326. – reference: Gramer MJ. Product quality considerations for mammalian cell culture process development and manufacturing. Adv Biochem Eng Biotechnol. 2014. – reference: Astudillo A, Leung SSY, Kutter E, Morales S, Chan H-K. Nebulization effects on structural stability of bacteriophage PEV 44. Eur J Pharm Biopharm [Internet]. 2018;125(December 2017):124–30 Available from: https://linkinghub.elsevier.com/retrieve/pii/S093964111731007X. – reference: Dudek T, Knipe DM. Replication-defective viruses as vaccines and vaccine vectors. Virology [Internet]. 2006;344(1):230–9 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0042682205005891. – reference: Holmes EC, Zhang Y-Z. Novel 2019 coronavirus genome [Internet]. virological.org. 2020 [cited 2020 May 26]. Available from: http://virological.org/t/novel-2019-coronavirus-genome/319 – reference: Galmiche MC, Goenaga J, Wittek R, Rindisbacher L. Neutralizing and protective antibodies directed against Vaccinia virus envelope antigens. Virology [Internet]. 1999;254(1):71–80 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0042682298995162. – reference: DetmerAGlentingJLive bacterial vaccines—a review and identification of potential hazardsMicrob Cell Fact20065iii112 – reference: Niu L, Panyam J. Freeze concentration-induced PLGA and polystyrene nanoparticle aggregation: Imaging and rational design of lyoprotection. J Control Release [Internet]. 2017;248:125–132. Available from: https://doi.org/10.1016/j.jconrel.2017.01.019 – reference: XuHRuwonaTBThakkarSGChenYZengMCuiZNasal aluminum (oxy)hydroxide enables adsorbed antigens to induce specific systemic and mucosal immune responsesHum Vaccines Immunother201713112688269410.1080/21645515.2017.1365995 – reference: Thi EP, Mire CE, Lee ACH, Geisbert JB, Zhou JZ, Agans KN, et al. Lipid nanoparticle siRNA treatment of Ebola-virus-Makona-infected nonhuman primates. Nature [Internet]. 2015;521(7552):362–5 Available from: http://www.nature.com/articles/nature14442. – reference: Quintin J, Saeed S, Martens JHA, Giamarellos-Bourboulis EJ, Ifrim DC, Logie C, et al. Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes. Cell Host Microbe [Internet]. 2012;12(2):223–32 Available from: https://linkinghub.elsevier.com/retrieve/pii/S1931312812002326. – reference: Wu F, Zhao S, Yu B, Chen Y, Wang W, Song Z, et al. A new coronavirus associated with human respiratory disease in China. Nature [Internet]. 2020;579(7798):265–9 Available from: http://www.nature.com/articles/s41586-020-2008-3. – reference: BelyakovIMAhlersJDWhat role does the route of immunization play in the generation of protective immunity against mucosal pathogens?J Immunol200918311688368921:CAS:528:DC%2BD1MXhsVehsLjI10.4049/jimmunol.0901466 – reference: BaynesBMWangDICTroutBLRole of arginine in the stabilization of proteins against aggregationBiochem Int20054412491949251:CAS:528:DC%2BD2MXhvV2rtL4%3D10.1021/bi047528rAvailable from: – reference: KulkarniPSRautSKDhereRMA post-marketing surveillance study of a human live-virus pandemic influenza A (H1N1) vaccine (Nasovac ® ) in IndiaHum Vaccin Immunother [Internet].20139112212410.4161/hv.22317234425863667925Available from: – reference: BeigelJHTomashekKMDoddLEMehtaAKZingmanBSKalilACRemdesivir for the treatment of Covid-19—preliminary reportN Engl J Med [Internet]202022NEJMoa200776410.1056/NEJMoa2007764Available from: – reference: Ong E, Wong MU, Huffman A, He Y. COVID-19 coronavirus vaccine design using reverse vaccinology and machine learning. bioRxiv [Internet]. 2020 ;2020.03.20.000141. Available from: http://biorxiv.org/content/early/2020/03/21/2020.03.20.000141.abstract – reference: Safety and immunogenicity study of 2019-nCoV vaccine (mRNA-1273) for prophylaxis of SARS-CoV-2 Infection (COVID-19) [Internet]. 2020 [cited 2020 May 20]. Available from: https://clinicaltrials.gov/ct2/show/NCT04283461 – volume: 181 start-page: 3755 issue: 6 year: 2008 ident: 1744_CR44 publication-title: J Immunol [Internet]. doi: 10.4049/jimmunol.181.6.3755 – ident: 1744_CR48 doi: 10.1038/s41541-018-0076-2 – ident: 1744_CR25 doi: 10.1016/j.vaccine.2006.10.031 – ident: 1744_CR39 – ident: 1744_CR21 doi: 10.1038/s41598-018-35452-x – ident: 1744_CR38 doi: 10.1016/j.chom.2012.06.006 – volume: 292 start-page: 111 year: 2018 ident: 1744_CR82 publication-title: J Control Release [Internet] doi: 10.1016/j.jconrel.2018.10.020 – volume: 453 start-page: 1122 issue: 7198 year: 2008 ident: 1744_CR45 publication-title: Nature. doi: 10.1038/nature06939 – ident: 1744_CR16 – volume: 44 start-page: 4919 issue: 12 year: 2005 ident: 1744_CR74 publication-title: Biochem Int doi: 10.1021/bi047528r – volume: 9 start-page: 1231 issue: 6 year: 2019 ident: 1744_CR87 publication-title: Acta Pharm Sin B [Internet] doi: 10.1016/j.apsb.2019.05.003 – volume: 112 start-page: 1394 issue: 6 year: 2003 ident: 1744_CR72 publication-title: Pediatrics [Internet] doi: 10.1542/peds.112.6.1394 – ident: 1744_CR32 – volume: 69 start-page: 1151 issue: 2 year: 2001 ident: 1744_CR47 publication-title: Infect Immun doi: 10.1128/IAI.69.2.1151-1159.2001 – volume: 34 start-page: 537 issue: 2 year: 2004 ident: 1744_CR50 publication-title: Eur J Immunol doi: 10.1002/eji.200324198 – volume: 25 start-page: 318 issue: 4 year: 2014 ident: 1744_CR56 publication-title: Hum Gene Ther doi: 10.1089/hum.2014.007 – volume: 183 start-page: 6883 issue: 11 year: 2009 ident: 1744_CR85 publication-title: J Immunol doi: 10.4049/jimmunol.0901466 – ident: 1744_CR59 – ident: 1744_CR36 – ident: 1744_CR66 doi: 10.1016/j.vaccine.2016.09.070 – volume: 112 start-page: 12782 issue: 41 year: 2015 ident: 1744_CR92 publication-title: Proc Natl Acad Sci [Internet] doi: 10.1073/pnas.1513532112 – ident: 1744_CR67 doi: 10.1016/j.vaccine.2007.02.052 – ident: 1744_CR83 – ident: 1744_CR65 doi: 10.2471/BLT.13.119974 – volume: 4 start-page: 101 issue: 2 year: 2018 ident: 1744_CR58 publication-title: Cell Gene Ther Insights. doi: 10.18609/cgti.2018.017 – start-page: 729 volume-title: Janeway’s immunobiology year: 2017 ident: 1744_CR6 – volume: 309 start-page: 1864 issue: 5742 year: 2005 ident: 1744_CR11 publication-title: Science. doi: 10.1126/science.1116480 – volume: 9 start-page: 2936 issue: December year: 2018 ident: 1744_CR37 publication-title: Front Immunol doi: 10.3389/fimmu.2018.02936 – ident: 1744_CR13 doi: 10.1016/j.coviro.2015.06.009 – ident: 1744_CR15 doi: 10.1128/JVI.78.22.12672-12676.2004 – ident: 1744_CR68 doi: 10.1016/j.jconrel.2017.01.019 – volume: 581 start-page: 215 issue: 7807 year: 2020 ident: 1744_CR2 publication-title: Nature [Internet]. doi: 10.1038/s41586-020-2180-5 – ident: 1744_CR10 doi: 10.3390/vaccines4020012 – ident: 1744_CR46 – volume: 3 start-page: 16002 year: 2016 ident: 1744_CR55 publication-title: Mol Ther Methods Clin Dev doi: 10.1038/mtm.2016.2 – volume: 180 start-page: 948 issue: 2 year: 2008 ident: 1744_CR29 publication-title: J Immunol [Internet] doi: 10.4049/jimmunol.180.2.948 – volume-title: Methods in Molecular Biology year: 2017 ident: 1744_CR42 doi: 10.1007/978-1-4939-6445-1 – ident: 1744_CR14 doi: 10.1128/JVI.78.21.12090-12095.2004 – volume: 15 start-page: 1 issue: 1 year: 2017 ident: 1744_CR51 publication-title: J Transl Med doi: 10.1186/s12967-016-1111-6 – volume: 27 start-page: 710 issue: 4 year: 2019 ident: 1744_CR35 publication-title: Mol Ther [Internet] doi: 10.1016/j.ymthe.2019.02.012 – ident: 1744_CR1 doi: 10.1038/s41586-020-2008-3 – volume: 10 start-page: e0118963 issue: 4 year: 2015 ident: 1744_CR69 publication-title: PLoS One [Internet] doi: 10.1371/journal.pone.0118963 – volume: 6 start-page: 821 issue: 5 year: 2007 ident: 1744_CR91 publication-title: Expert Rev Vaccines [Internet] doi: 10.1586/14760584.6.5.821 – ident: 1744_CR18 doi: 10.1101/2020.02.19.956235 – volume: 19 start-page: 1783 issue: 9 year: 2010 ident: 1744_CR73 publication-title: Protein Sci [Internet] doi: 10.1002/pro.465 – volume: 2 start-page: e1176 issue: 11 year: 2007 ident: 1744_CR75 publication-title: PLoS One [Internet] doi: 10.1371/journal.pone.0001176 – ident: 1744_CR84 – ident: 1744_CR12 doi: 10.1128/JVI.02012-06 – volume: 4 start-page: 635 issue: 4 year: 2011 ident: 1744_CR8 publication-title: Evol Educ Outreach [Internet] doi: 10.1007/s12052-011-0365-y – volume: 4 start-page: 31 issue: 2 year: 2018 ident: 1744_CR54 publication-title: Cell Gene Ther Insights doi: 10.18609/cgti.2018.004 – ident: 1744_CR63 – volume: 13 start-page: 936 issue: 4 year: 2017 ident: 1744_CR80 publication-title: Hum Vaccines Immunother [Internet] doi: 10.1080/21645515.2016.1259042 – volume: 16 start-page: 400 issue: 2 year: 2020 ident: 1744_CR22 publication-title: Hum Vaccin Immunother [Internet] doi: 10.1080/21645515.2019.1654807 – volume: 13 start-page: 191 issue: 2 year: 2011 ident: 1744_CR76 publication-title: AAPS J doi: 10.1208/s12248-011-9261-1 – volume: 9 start-page: 122 issue: 1 year: 2013 ident: 1744_CR88 publication-title: Hum Vaccin Immunother [Internet]. doi: 10.4161/hv.22317 – ident: 1744_CR93 doi: 10.1016/j.ejpb.2018.01.010 – volume: 350 start-page: 896 issue: 9 year: 2004 ident: 1744_CR89 publication-title: N Engl J Med [Internet] doi: 10.1056/NEJMoa030595 – volume: 205 start-page: 869 issue: 4 year: 2008 ident: 1744_CR43 publication-title: J Exp Med [Internet] doi: 10.1084/jem.20071087 – volume: 183 start-page: 6186 issue: 10 year: 2009 ident: 1744_CR49 publication-title: J Immunol [Internet]. doi: 10.4049/jimmunol.0901474 – volume: 25 start-page: 1334 issue: 6 year: 2008 ident: 1744_CR77 publication-title: Pharm Res doi: 10.1007/s11095-008-9540-4 – ident: 1744_CR79 doi: 10.1248/cpb.53.301 – volume: 38 start-page: 2229 issue: 9 year: 2020 ident: 1744_CR40 publication-title: Vaccine [Internet] doi: 10.1016/j.vaccine.2019.11.060 – ident: 1744_CR28 – volume: 22 start-page: NEJMoa2007764 year: 2020 ident: 1744_CR3 publication-title: N Engl J Med [Internet] doi: 10.1056/NEJMoa2007764 – volume: 6 start-page: eabc1932 year: 2020 ident: 1744_CR41 publication-title: Science (80-) [Internet] doi: 10.1126/science.abc1932 – ident: 1744_CR70 doi: 10.1016/j.jcis.2004.09.042 – volume: 204 start-page: 38 year: 2015 ident: 1744_CR78 publication-title: J Control Release [Internet]. doi: 10.1016/j.jconrel.2015.02.035 – ident: 1744_CR5 – volume: 352 start-page: 1411 issue: 14 year: 2005 ident: 1744_CR9 publication-title: N Engl J Med [Internet]. doi: 10.1056/NEJMp048180 – ident: 1744_CR19 doi: 10.1016/j.jmb.2008.10.089 – volume: 346 start-page: f794 year: 2013 ident: 1744_CR90 publication-title: BMJ [Internet]. doi: 10.1136/bmj.f794 – ident: 1744_CR27 doi: 10.1006/viro.1998.9516 – ident: 1744_CR53 doi: 10.1128/JVI.72.11.8463-8471.1998 – ident: 1744_CR17 – ident: 1744_CR7 doi: 10.1016/j.vaccine.2010.07.020 – ident: 1744_CR52 doi: 10.1016/j.virol.2005.09.020 – ident: 1744_CR71 doi: 10.1016/j.jmmm.2005.01.035 – volume: 13 start-page: 2688 issue: 11 year: 2017 ident: 1744_CR81 publication-title: Hum Vaccines Immunother doi: 10.1080/21645515.2017.1365995 – volume: 147 start-page: 342 issue: 3 year: 2010 ident: 1744_CR86 publication-title: J Control Release [Internet] doi: 10.1016/j.jconrel.2010.08.012 – ident: 1744_CR60 doi: 10.4155/pbp.14.15 – ident: 1744_CR20 doi: 10.1186/s12859-016-0918-8 – ident: 1744_CR24 doi: 10.1016/j.bbrc.2004.09.106 – volume-title: Package insert year: 2019 ident: 1744_CR64 – volume: 116 start-page: 157 issue: 1 year: 2014 ident: 1744_CR31 publication-title: J Appl Microbiol doi: 10.1111/jam.12359 – volume: 9 start-page: 1319 issue: 11 year: 2012 ident: 1744_CR34 publication-title: RNA Biol doi: 10.4161/rna.22269 – ident: 1744_CR26 doi: 10.1016/j.virol.2005.09.056 – volume: 5 start-page: 1 issue: iii year: 2006 ident: 1744_CR30 publication-title: Microb Cell Fact – ident: 1744_CR62 doi: 10.1007/10_2013_214 – volume: 23 start-page: 255 year: 2012 ident: 1744_CR61 publication-title: Hum Gene Ther Methods doi: 10.1089/hgtb.2012.059 – ident: 1744_CR23 – ident: 1744_CR33 doi: 10.1038/nature14442 – ident: 1744_CR4 – volume: 20 start-page: 451 issue: 5 year: 2020 ident: 1744_CR57 publication-title: Expert Opin Biol Ther doi: 10.1080/14712598.2020.1693541 |
SSID | ssj0023193 |
Score | 2.637845 |
SecondaryResourceType | review_article |
Snippet | In the race for a safe and effective vaccine against coronavirus disease (COVID)-19, pharmaceutical formulation science plays a critical role throughout the... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 225 |
SubjectTerms | Animals Biochemistry Biomedical and Life Sciences Biomedicine Biotechnology Coronavirus Infections - prevention & control COVID-19 COVID-19 Vaccines Drug Compounding Humans Immunity, Mucosal Pandemics - prevention & control Pharmacology/Toxicology Pharmacy Pneumonia, Viral - prevention & control Review Review Article Vaccination Viral Vaccines - chemistry Viral Vaccines - pharmacology Viral Vaccines - therapeutic use |
Title | The COVID-19 Vaccine Race: Challenges and Opportunities in Vaccine Formulation |
URI | https://link.springer.com/article/10.1208/s12249-020-01744-7 https://www.ncbi.nlm.nih.gov/pubmed/32761294 https://www.proquest.com/docview/2431815517 https://pubmed.ncbi.nlm.nih.gov/PMC7405756 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RuPRSUehjoUWuVHHpWs3Dr_S22rKlrQqoYhE9WbbjqEhVQGT3wL_v2HmgBYTE2eMo8jcTf5OxvwH4mFlXmIQ5KmRZhV83KbUVz6kzAt0Fo6-Il8J-HYnDOftxzs-7S2FNf9q9L0nGL3VUQEjU5ybUgAoa0h30IsaofAYbPOTu6MXzbDKkWehUeXc95uF5q1vQPV55_3jknRpp3Hpmm_Ci44xk0oL8EtZ8vQX7J63o9M2YnN7eoWrGZJ-c3MpR32zDEQ6T6fHZ9680LciZcaGUTn4b57-Qad9KpSGmLsnxVWDjyzqqrJKLerCeIbPt-ny9gvns4HR6SLsuCtRhqregPq-YsbgGLDXeMSt9VWZ5JTLnk9KniRdCqUJ57jnGZipcwXhaytQHlahcufw1rNeXtX8LpFTGWqWEwqyKmbKwLCkzI6Xl3OXSuhGk_cJq10mMh04X_3RINRAM3YKhEQwdwdByBJ-GOVetwMaj1h96vDTGQShumNpfLhudIRNSgf-hzZsWv-F5eSaRyBVsBHIF2cEgaGyvjtQXf6PWtoyEVoxg3PuA7oK8eeQ1d55mvgvPs-ifiib8Hawvrpf-PXKdhd2Djcm3Pz8P9qKL_wfgf_eQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RONBLVfpi20JdqeLStZqHYzu9oYXV0sKCql3EzbIdRyChgJrdA_--Y-eBFiokzh5Hkb-Z-JuM_Q3At8TYXEfMUi6K0v-6iakps5RazdFdMPrycCnsZMonc_brIrtoL4XV3Wn3riQZvtRBASGSP2pfA8qpT3fQixij4gVsIBmQ_iDXPNnv0yx0qrS9HvP_eatb0CNe-fh45IMaadh6xq_hVcsZyX4D8hasueoN7J01otN3QzK7v0NVD8keObuXo757C1McJqPT86MDGufkXFtfSid_tHU_yahrpVITXRXk9Naz8WUVVFbJVdVbj5HZtn2-3sF8fDgbTWjbRYFaTPUW1KUl0wbXgMXaWWaEK4skLXliXVS4OHKcS5lLl7kMYzPmNmdZXIjYeZWoVNr0PaxXN5XbBlJIbYyUXGJWxXSRGxYViRbCZJlNhbEDiLuFVbaVGPedLq6VTzUQDNWAoRAMFcBQYgDf-zm3jcDGk9ZfO7wUxoEvbujK3SxrlSATkp7_oc2HBr_-eWkikMjlbABiBdnewGtsr45UV5dBa1sEQssHMOx8QLVBXj_xmh-fZ_4FNiezk2N1fDT9_QleJsFXJY2yz7C--Lt0O8h7FmY3uPk_7UL47w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBZtCqWX0vS5faQqlFy6IpYtS3JvYdMl6WOzlGzITehlGijKUu8e8u87kh_JJiXQqzUyxt-M9Y1H8wmhj7mxlc6YJVy4Ov66ocTUZUGs5uAuEH1Vagr7MeOHC_b1rDy71sWfdrv3Jcm2pyGqNIXV3tLVrRpCJveaWA-qSEx9wKMYI-I-egCfYxr9epHvDykXXCm6Vpl_z9tcjm5xzNtbJW_US9MyNH2CHnf8Ee-3gG-jez48RbvzVoD6coxPrvqpmjHexfMraerLZ2gGw3hyfHp0QGiFT7WNZXX8U1v_GU_6Y1UarIPDx8vIzNchKa7i8zBYT4Hldmd-PUeL6ZeTySHpTlQgFtK-FfFFzbSBd8Co9pYZ4WuXFzXPrc-cp5nnXMpK-tKXEKeU24qV1Anqo2JUIW3xAm2Fi-BfIeykNkZKLiHDYtpVhmUu10KYsrSFMHaEaP9ile3kxuOpF79VTDsADNWCoQAMlcBQYoQ-DXOWrdjGndYferwUxEQsdOjgL9aNyoEVycgFweZli99wvyIXQOoqNkJiA9nBIOptb46E819Jd1skcstHaNz7gOoCvrnjMV__n_l79HB-MFXfj2bf3qBHeXJVSbLyLdpa_Vn7d0CBVmYneflfIrT9Kw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+COVID-19+Vaccine+Race%3A+Challenges+and+Opportunities+in+Vaccine+Formulation&rft.jtitle=AAPS+PharmSciTech&rft.au=Wang%2C+Jieliang&rft.au=Peng%2C+Ying&rft.au=Xu%2C+Haiyue&rft.au=Cui%2C+Zhengrong&rft.date=2020-08-05&rft.pub=Springer+International+Publishing&rft.eissn=1530-9932&rft.volume=21&rft.issue=6&rft_id=info:doi/10.1208%2Fs12249-020-01744-7&rft_id=info%3Apmid%2F32761294&rft.externalDocID=PMC7405756 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-9932&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-9932&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-9932&client=summon |