CNN Architectures and Feature Extraction Methods for EEG Imaginary Speech Recognition
Speech is a complex mechanism allowing us to communicate our needs, desires and thoughts. In some cases of neural dysfunctions, this ability is highly affected, which makes everyday life activities that require communication a challenge. This paper studies different parameters of an intelligent imag...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 22; no. 13; p. 4679 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
21.06.2022
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s22134679 |
Cover
Loading…
Abstract | Speech is a complex mechanism allowing us to communicate our needs, desires and thoughts. In some cases of neural dysfunctions, this ability is highly affected, which makes everyday life activities that require communication a challenge. This paper studies different parameters of an intelligent imaginary speech recognition system to obtain the best performance according to the developed method that can be applied to a low-cost system with limited resources. In developing the system, we used signals from the Kara One database containing recordings acquired for seven phonemes and four words. We used in the feature extraction stage a method based on covariance in the frequency domain that performed better compared to the other time-domain methods. Further, we observed the system performance when using different window lengths for the input signal (0.25 s, 0.5 s and 1 s) to highlight the importance of the short-term analysis of the signals for imaginary speech. The final goal being the development of a low-cost system, we studied several architectures of convolutional neural networks (CNN) and showed that a more complex architecture does not necessarily lead to better results. Our study was conducted on eight different subjects, and it is meant to be a subject’s shared system. The best performance reported in this paper is up to 37% accuracy for all 11 different phonemes and words when using cross-covariance computed over the signal spectrum of a 0.25 s window and a CNN containing two convolutional layers with 64 and 128 filters connected to a dense layer with 64 neurons. The final system qualifies as a low-cost system using limited resources for decision-making and having a running time of 1.8 ms tested on an AMD Ryzen 7 4800HS CPU. |
---|---|
AbstractList | Speech is a complex mechanism allowing us to communicate our needs, desires and thoughts. In some cases of neural dysfunctions, this ability is highly affected, which makes everyday life activities that require communication a challenge. This paper studies different parameters of an intelligent imaginary speech recognition system to obtain the best performance according to the developed method that can be applied to a low-cost system with limited resources. In developing the system, we used signals from the Kara One database containing recordings acquired for seven phonemes and four words. We used in the feature extraction stage a method based on covariance in the frequency domain that performed better compared to the other time-domain methods. Further, we observed the system performance when using different window lengths for the input signal (0.25 s, 0.5 s and 1 s) to highlight the importance of the short-term analysis of the signals for imaginary speech. The final goal being the development of a low-cost system, we studied several architectures of convolutional neural networks (CNN) and showed that a more complex architecture does not necessarily lead to better results. Our study was conducted on eight different subjects, and it is meant to be a subject’s shared system. The best performance reported in this paper is up to 37% accuracy for all 11 different phonemes and words when using cross-covariance computed over the signal spectrum of a 0.25 s window and a CNN containing two convolutional layers with 64 and 128 filters connected to a dense layer with 64 neurons. The final system qualifies as a low-cost system using limited resources for decision-making and having a running time of 1.8 ms tested on an AMD Ryzen 7 4800HS CPU. Speech is a complex mechanism allowing us to communicate our needs, desires and thoughts. In some cases of neural dysfunctions, this ability is highly affected, which makes everyday life activities that require communication a challenge. This paper studies different parameters of an intelligent imaginary speech recognition system to obtain the best performance according to the developed method that can be applied to a low-cost system with limited resources. In developing the system, we used signals from the Kara One database containing recordings acquired for seven phonemes and four words. We used in the feature extraction stage a method based on covariance in the frequency domain that performed better compared to the other time-domain methods. Further, we observed the system performance when using different window lengths for the input signal (0.25 s, 0.5 s and 1 s) to highlight the importance of the short-term analysis of the signals for imaginary speech. The final goal being the development of a low-cost system, we studied several architectures of convolutional neural networks (CNN) and showed that a more complex architecture does not necessarily lead to better results. Our study was conducted on eight different subjects, and it is meant to be a subject's shared system. The best performance reported in this paper is up to 37% accuracy for all 11 different phonemes and words when using cross-covariance computed over the signal spectrum of a 0.25 s window and a CNN containing two convolutional layers with 64 and 128 filters connected to a dense layer with 64 neurons. The final system qualifies as a low-cost system using limited resources for decision-making and having a running time of 1.8 ms tested on an AMD Ryzen 7 4800HS CPU.Speech is a complex mechanism allowing us to communicate our needs, desires and thoughts. In some cases of neural dysfunctions, this ability is highly affected, which makes everyday life activities that require communication a challenge. This paper studies different parameters of an intelligent imaginary speech recognition system to obtain the best performance according to the developed method that can be applied to a low-cost system with limited resources. In developing the system, we used signals from the Kara One database containing recordings acquired for seven phonemes and four words. We used in the feature extraction stage a method based on covariance in the frequency domain that performed better compared to the other time-domain methods. Further, we observed the system performance when using different window lengths for the input signal (0.25 s, 0.5 s and 1 s) to highlight the importance of the short-term analysis of the signals for imaginary speech. The final goal being the development of a low-cost system, we studied several architectures of convolutional neural networks (CNN) and showed that a more complex architecture does not necessarily lead to better results. Our study was conducted on eight different subjects, and it is meant to be a subject's shared system. The best performance reported in this paper is up to 37% accuracy for all 11 different phonemes and words when using cross-covariance computed over the signal spectrum of a 0.25 s window and a CNN containing two convolutional layers with 64 and 128 filters connected to a dense layer with 64 neurons. The final system qualifies as a low-cost system using limited resources for decision-making and having a running time of 1.8 ms tested on an AMD Ryzen 7 4800HS CPU. |
Author | Rusnac, Ana-Luiza Grigore, Ovidiu |
AuthorAffiliation | Department of Applied Electronics and Information Engineering, Faculty of Electronics, Telecommunications and Information Technology, Polytechnic University of Bucharest, 060042 Bucharest, Romania |
AuthorAffiliation_xml | – name: Department of Applied Electronics and Information Engineering, Faculty of Electronics, Telecommunications and Information Technology, Polytechnic University of Bucharest, 060042 Bucharest, Romania |
Author_xml | – sequence: 1 givenname: Ana-Luiza orcidid: 0000-0002-5966-2944 surname: Rusnac fullname: Rusnac, Ana-Luiza – sequence: 2 givenname: Ovidiu orcidid: 0000-0002-6381-5296 surname: Grigore fullname: Grigore, Ovidiu |
BookMark | eNptkU1vEzEQhleoiH7AgX9giQscQv2xtncvSFWUtpFKkYCerVl7NnG0sYO9qeDf422qilacbM88fvTac1odhRiwqt4z-lmIlp5nzpmolW5fVSes5vWs4Zwe_bM_rk5z3lDKhRDNm-pYyIY2TIuT6m5-e0sukl37Ee24T5gJBEcuEaYDWfweE9jRx0C-4riOLpM-JrJYXJHlFlY-QPpDfuwQ7Zp8RxtXwU_w2-p1D0PGd4_rWXV3ufg5v57dfLtazi9uZrau1ThDbmWPHWjXMHAAFJnsdMu4trLr284KabVWSkLpdWB73suWSdnUnQJprTirlgevi7Axu-S3JY-J4M1DIaaVgTR6O6BhXCqrJFNOq9r1xehk7xQDpijyGorry8G123dbdBZDefrwTPq8E_zarOK9ablqtNRF8PFRkOKvPebRbH22OAwQMO6zmTDNVCtlQT-8QDdxn0L5qolSrGmpYoX6dKBsijkn7J_CMGqmwZunwRf2_AVr_QjTLEpWP_znxl8sarBg |
CitedBy_id | crossref_primary_10_1109_TCDS_2024_3431224 crossref_primary_10_3389_fnhum_2024_1398065 crossref_primary_10_3390_s23125575 crossref_primary_10_1088_1741_2552_acc976 crossref_primary_10_1007_s11356_023_25509_4 crossref_primary_10_1016_j_bspc_2023_105154 crossref_primary_10_3390_app122211873 crossref_primary_10_3390_s23104853 crossref_primary_10_3390_s24030877 crossref_primary_10_1016_j_smhl_2024_100477 crossref_primary_10_1007_s12021_024_09698_y crossref_primary_10_1007_s10462_023_10662_6 crossref_primary_10_1088_2399_6528_ad0197 crossref_primary_10_3390_s22218122 |
Cites_doi | 10.1007/s12065-020-00540-3 10.1109/ICASSP.2015.7178118 10.3389/fnbot.2019.00037 10.1016/j.compbiomed.2018.05.019 10.21437/Interspeech.2019-3041 10.1109/EMBC46164.2021.9629732 10.1109/ICASSP.2019.8683572 10.3389/fnins.2021.774857 10.3389/fnins.2019.01267 10.1145/3107411.3107513 10.1109/ACCESS.2021.3091399 10.3389/fnins.2020.00290 10.1093/brain/awh233 10.1109/ICASSP.2019.8682330 10.1038/s41467-021-27725-3 10.1109/CSCC49995.2020.00040 10.1109/ICSPCC.2017.8242581 10.1016/j.jneumeth.2021.109282 10.1007/s11063-019-09981-z 10.1109/86.847815 10.3389/fnins.2020.578126 10.1109/ISSC.2018.8585291 10.3390/s21206744 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s22134679 |
DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) PML(ProQuest Medical Library) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_1256c6516d764dfaaad5fd61a160e24a PMC9268757 10_3390_s22134679 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c446t-e2c5feba7d81adaa0e15b79127c5bf9bc35c77665aaa0bacf2f5915584b6a5cc3 |
IEDL.DBID | 7X7 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:28:46 EDT 2025 Thu Aug 21 14:31:17 EDT 2025 Mon Jul 21 10:41:07 EDT 2025 Fri Jul 25 20:34:14 EDT 2025 Tue Jul 01 02:42:00 EDT 2025 Thu Apr 24 23:11:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c446t-e2c5feba7d81adaa0e15b79127c5bf9bc35c77665aaa0bacf2f5915584b6a5cc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6381-5296 0000-0002-5966-2944 |
OpenAccessLink | https://www.proquest.com/docview/2686189061?pq-origsite=%requestingapplication% |
PMID | 35808173 |
PQID | 2686189061 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1256c6516d764dfaaad5fd61a160e24a pubmedcentral_primary_oai_pubmedcentral_nih_gov_9268757 proquest_miscellaneous_2687716955 proquest_journals_2686189061 crossref_primary_10_3390_s22134679 crossref_citationtrail_10_3390_s22134679 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220621 |
PublicationDateYYYYMMDD | 2022-06-21 |
PublicationDate_xml | – month: 6 year: 2022 text: 20220621 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Dewan (ref_2) 1967; 214 ref_13 Milanes (ref_26) 2021; 9 ref_12 ref_11 Huang (ref_25) 2021; 15 ref_10 Sarvamangala (ref_23) 2021; 15 ref_32 ref_31 ref_30 ref_19 Herff (ref_15) 2019; 13 Dronkers (ref_1) 2004; 127 Proix (ref_16) 2022; 13 Dash (ref_14) 2020; 14 ref_24 Lee (ref_28) 2021; 361 ref_22 ref_21 Xu (ref_20) 2020; 14 Lin (ref_29) 2019; 50 ref_27 Jayabhavani (ref_4) 2013; 5 ref_9 Tsiouris (ref_17) 2018; 99 Xing (ref_18) 2019; 13 ref_8 Kennedy (ref_3) 2000; 8 ref_5 ref_7 ref_6 |
References_xml | – ident: ref_30 – ident: ref_5 – ident: ref_32 – volume: 15 start-page: 1 year: 2021 ident: ref_23 article-title: Convolutional neural networks in medical image understanding: A survey publication-title: Evol. Intel. doi: 10.1007/s12065-020-00540-3 – ident: ref_7 doi: 10.1109/ICASSP.2015.7178118 – volume: 13 start-page: 37 year: 2019 ident: ref_18 article-title: SAE + LSTM: A New Framework for Emotion Recognition From Multi-Channel EEG publication-title: Front. Neurorobot. doi: 10.3389/fnbot.2019.00037 – volume: 99 start-page: 24 year: 2018 ident: ref_17 article-title: A Long Short-Term Memory deep learning network for the prediction of epileptic seizures using EEG signals publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.05.019 – ident: ref_12 doi: 10.21437/Interspeech.2019-3041 – ident: ref_24 doi: 10.1109/EMBC46164.2021.9629732 – ident: ref_21 – ident: ref_22 doi: 10.1109/ICASSP.2019.8683572 – volume: 15 start-page: 774857 year: 2021 ident: ref_25 article-title: Electroencephalogram-Based Motor Imagery Classification Using Deep Residual Convolutional Networks publication-title: Front. Neurosci. doi: 10.3389/fnins.2021.774857 – volume: 13 start-page: 1267 year: 2019 ident: ref_15 article-title: Generating Natural, Intelligible Speech From Brain Activity in Motor, Premotor, and Inferior Frontal Cortices publication-title: Front. Neurosci. doi: 10.3389/fnins.2019.01267 – ident: ref_19 doi: 10.1145/3107411.3107513 – volume: 9 start-page: 98275 year: 2021 ident: ref_26 article-title: Shallow Convolutional Network Excel for Classifying Motor Imagery EEG in BCI Applications publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3091399 – ident: ref_6 – ident: ref_8 – volume: 14 start-page: 290 year: 2020 ident: ref_14 article-title: Decoding Imagined and Spoken Phrases from Non-invasive Neural (MEG) Signals publication-title: Front. Neurosci. doi: 10.3389/fnins.2020.00290 – volume: 127 start-page: 7 year: 2004 ident: ref_1 article-title: Brain areas involved in speech production publication-title: Brain doi: 10.1093/brain/awh233 – ident: ref_31 – ident: ref_9 doi: 10.1109/ICASSP.2019.8682330 – volume: 13 start-page: 48 year: 2022 ident: ref_16 article-title: Imagined speech can be decoded from low- and cross-frequency intracranial EEG features publication-title: Nat. Commun. doi: 10.1038/s41467-021-27725-3 – volume: 214 start-page: 975 year: 1967 ident: ref_2 article-title: Occipital Alpha Rhythm Eye Position and Lens Accommodation publication-title: Nat. Publ. Group – volume: 5 start-page: 1 year: 2013 ident: ref_4 article-title: Brain enabled mechanized speech synthesizer using Brain Mobile Interface publication-title: Int. J. Eng. Technol. – ident: ref_11 doi: 10.1109/CSCC49995.2020.00040 – ident: ref_27 doi: 10.1109/ICSPCC.2017.8242581 – volume: 361 start-page: 109282 year: 2021 ident: ref_28 article-title: A convolutional-recurrent neural network approach to resting-state EEG classification in Parkinson’s disease publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2021.109282 – volume: 50 start-page: 1951 year: 2019 ident: ref_29 article-title: A Fast Algorithm for Convolutional Neural Networks Using Tile-based Fast Fourier Transforms publication-title: Neural Process Lett. doi: 10.1007/s11063-019-09981-z – volume: 8 start-page: 2 year: 2000 ident: ref_3 article-title: Direct control of a computer from the human central nervous system publication-title: IEEE Trans. Rehab. Eng. doi: 10.1109/86.847815 – volume: 14 start-page: 578126 year: 2020 ident: ref_20 article-title: A One-Dimensional CNN-LSTM Model for Epileptic Seizure Recognition Using EEG Signal Analysis publication-title: Front. Neurosci. doi: 10.3389/fnins.2020.578126 – ident: ref_10 doi: 10.1109/ISSC.2018.8585291 – ident: ref_13 doi: 10.3390/s21206744 |
SSID | ssj0023338 |
Score | 2.4518309 |
Snippet | Speech is a complex mechanism allowing us to communicate our needs, desires and thoughts. In some cases of neural dysfunctions, this ability is highly... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 4679 |
SubjectTerms | Accuracy Amyotrophic lateral sclerosis Classification Communication convolutional neural network Electrodes Electroencephalography imaginary speech Kara One database Methods Neural networks Researchers signal processing Speaking Speech Voice recognition Wavelet transforms |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhp-RQmkep2yQoIYdeTCxZrz0mYfOC7CHpQm5mJMuk0HrD7gaaf58Z27vYEOilR1tjY89IzPeh0TeMnWYgoxO5SZXwMlVRQeoUqDRY6ooScVL5Ru1zYm6m6u5JP_VafVFNWCsP3DruDBOwCUYLU1qjygoASl2VRoAwWZSqgUaY81ZkqqNaOTKvVkcoR1J_tpAkXGaoXquXfRqR_gGyHNZF9hLN1Wf2qUOI_Lz9sh22Eetdtt3TDdxj08vJhJ_3tgAWHOqSE5zDCz7-u5y35xX4fdMgesERmvLx-Jrf_qGuRDB_448vMYZn_rAqIJrV-2x6Nf55eZN2_RHSgCRumUZJpWIebOkElABZFNrbkZA2aF-NfMh1sNYYjU7LPIRKVprk4J3yBnQI-Re2Wc_q-JXx0guLb9DOkACc8w6BiEfqESRIXLaQsB8rvxWhEw-nHha_CyQR5OJi7eKEnaxNX1rFjI-MLsj5awMSuW5uYOiLLvTFv0KfsINV6Ipu5S0KaZwRboQwJWHH62FcM7QRAnWcvTY2llSCtE6YHYR88EHDkfrXc6O-PaKntf32P_7gO9uSdJwiM6kUB2xzOX-Nhwhylv6omc_vB7L8jA priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwEB1RemkPVaGtuoUiU_XAJe3a668cqgrQAq3EHoCVuEW240AlmoXsIsG_ZyabRBsJcUw8SZyxR36jsd8D-D50Ilo-0onkXiQySpdY6WQSDKmiRJxUvmb7nOiTqfx7qS7XoNXYbBw4fza1Iz2paXXz4-Hu8TcG_C_KODFl_zkXREumTfoKXuOCZCg-T2VXTBAjTMOWpEJ9895SVDP292Bmf5Pkyqpz9B7eNXCR7S_HdwPWYrkJb1dIBD_A9HAyYfsr9YA5c2XOCNvhBRs_LKrl4QV2WqtFzxniVDYeH7M__0miyFWP7Pw2xnDNztrdRLPyI0yPxheHJ0kjlpAEzOgWSRS0b8w7k1vucueGkStvUi5MUL5IfRipYIzWymGbd6EQhSJueCu9diqE0SdYL2dl_Aws99zgG5TVxAZnvUVU4jEPCcIJjGE3gL3Wb1lomMRJ0OImw4yCXJx1Lh7At870dkmf8ZzRATm_MyDG6_rGrLrKmgDKEIjpoBXXudEyL_AvclXkmjuuh1FI7NR2O3RZO4syoa3mNkXMMoDdrhkDiKoiroyz-9rGEGWQUgMwvSHvdajfUv67rqm4U3pamS8vf3wL3gg6NTHUieDbsL6o7uNXxDILv1PP1CeeSPUl priority: 102 providerName: Scholars Portal |
Title | CNN Architectures and Feature Extraction Methods for EEG Imaginary Speech Recognition |
URI | https://www.proquest.com/docview/2686189061 https://www.proquest.com/docview/2687716955 https://pubmed.ncbi.nlm.nih.gov/PMC9268757 https://doaj.org/article/1256c6516d764dfaaad5fd61a160e24a |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdge4EHxKcojMpDPPBirXb81Se0Tek2pFVoUKlvke04GxIkpekk9t_vzk27RkK8WEp8SZyzz3dnn39HyKeRE9HyTDPJvWAySsesdJIFg1lRIgwqn9A-p_p8Jr_O1bxbcGu7sMrNnJgm6rIJuEZ-JLTV3I5B_XxZ_GGYNQp3V7sUGo_JPkKXYUiXmT84XBn4X2s0oQxc-6NWIHyZxqitHR2UoPp79mU_OnJH3Uyek2ednUiP1x37gjyK9UvydAc98BWZnU6n9HhnI6Clri4pGnVwQfO_q-X61AK9TGmiWwoGKs3zM3rxG3MTueUd_b6IMdzQq00YUVO_JrNJ_uP0nHVZElgAV27FosCAMe9MabkrnRtFrrwZc2GC8tXYh0wFY7RWDuq8C5WoFILCW-m1UyFkb8he3dTxLaGl5wbeoKxGGDjrLZgjHhyQIJwA4XUD8nnDtyJ0EOKYyeJXAa4EsrjYsnhAPm5JF2vcjH8RnSDztwQIdZ1uNMvropOcAiwwHbTiujRalhX8RamqUnPH9SgKCY062HRd0clfWzyMlgE53FaD5OB2iKtjc5toDGIFKTUgptflvQb1a-qfNwmDe4xPK_Pu_x9_T54IPC4x0kzwA7K3Wt7GD2DErPwwjVQo7eRsSPZP8um3q2FaEIDyUtp7hGX4Dg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-N8QA8IP6KwgCDQOIlWuzEdvKA0BgdLdv6AKvUt8x2HIYESWk6wb4Un5G7pOkaCfG2x8QXxznf-e7i8-8AXoVG-IRHKoi5FUHsYxMksYkDp6kqikehsg3a50SNpvGnmZxtwZ_uLAylVXZrYrNQ55Wjf-S7QiWKJyman3fznwFVjaLd1a6ERisWh_7iF4Zs9dvxB5zf10IcDE_2R8GqqkDgMPRZBl5QgpU1Ok-4yY0JPZdWp1xoJ22RWhdJp7VS0mCbNa4QhSQQ9SS2ykjnIuz3GlxHwxuSRunZZYAXYbzXohdFURru1oLg0hRliW3YvKY0QM-f7Wdjbpi3gztwe-WXsr1WkO7Cli_vwa0NtML7MN2fTNjexsZDzUyZM3Ii8YINfy8X7SkJdtyUpa4ZOsRsOPzIxj-oFpJZXLAvc-_dGfvcpS1V5QOYXgn_HsJ2WZX-EbDcco09yEQR7FxiE3R_LAY8ThiBi4UZwJuOb5lbQZZT5YzvGYYuxOJszeIBvFyTzlucjn8RvSfmrwkIWru5US2-ZitNzdDjU05JrnKt4rzAr8hlkStuuAq9iHFQO93UZSt9r7NL6RzAi3Uzaiptv5jSV-cNjSZsIikHoHtT3htQv6X8dtZgfqf0tNSP___y53BjdHJ8lB2NJ4dP4KagoxqhCgTfge3l4tw_RQdqaZ81Usvg9KrV5C8aGDL1 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NISF4QHyKwgCDQOIlauzEdvqA0NhaVgYVAir1LdiOw5AgKU0n2L_GX8ddPrpGQrztMbHjOOc7-y4-_34Az0IjfMIjFcTciiD2sQmS2MSB08SK4lGpbI32OVNH8_jtQi524E93FobSKrs5sZ6os9LRP_KhUIniyQiXn2HepkV8OJy8Wv4MiEGKdlo7Oo1GRY792S8M36qX00Mc6-dCTMafD46ClmEgcBgGrQMvKNnKGp0l3GTGhJ5Lq0dcaCdtPrIukk5rpaTBMmtcLnJJgOpJbJWRzkXY7iW4rCPJycb04jzYizD2a5CMomgUDitB0GmKMsa21r-aJqDn2_YzM7eWuskNuN76qGy_UaqbsOOLW3BtC7nwNswPZjO2v7UJUTFTZIwcSrxg49_rVXNigr2vKaorhs4xG4_fsOkP4kUyqzP2aem9O2EfuxSmsrgD8wuR313YLcrC3wOWWa6xBZkogqBLbIKukMXgxwkjcOIwA3jRyS11LXw5sWh8TzGMIRGnGxEP4Omm6rLB7PhXpdck_E0Fgtmub5Srr2lrtSl6f8opyVWmVZzl-BWZzDPFDVehFzF2aq8burS1_So919QBPNkUo9XSVowpfHla19GEUyTlAHRvyHsd6pcU305q_O8RPS31_f-__DFcQQNJ301nxw_gqqBTG6EKBN-D3fXq1D9EX2ptH9VKy-DLRVvJX_ioNys |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CNN+Architectures+and+Feature+Extraction+Methods+for+EEG+Imaginary+Speech+Recognition&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Ana-Luiza+Rusnac&rft.au=Grigore%2C+Ovidiu&rft.date=2022-06-21&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=13&rft.spage=4679&rft_id=info:doi/10.3390%2Fs22134679&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |