Study on lithium extraction from brines based on LiMn2O4/Li1-xMn2O4 by electrochemical method

[Display omitted] •A recovery system with LiMn2O4/Li1-xMn2O4 as electrodes was used to extract lithium.•The influence sequence of coexisting ions on lithium extraction was Mg2+> Na+> Ca2+> K+.•The values of αLi-Na, αLi-Mg and αLi-Ca were more than 300, 70 and 110, respectively.•The specific...

Full description

Saved in:
Bibliographic Details
Published inElectrochimica acta Vol. 252; pp. 350 - 361
Main Authors Zhao, Meng-Yao, Ji, Zhi-Yong, Zhang, Yong-Guang, Guo, Zhi-Yuan, Zhao, Ying-Ying, Liu, Jie, Yuan, Jun-Sheng
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 20.10.2017
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •A recovery system with LiMn2O4/Li1-xMn2O4 as electrodes was used to extract lithium.•The influence sequence of coexisting ions on lithium extraction was Mg2+> Na+> Ca2+> K+.•The values of αLi-Na, αLi-Mg and αLi-Ca were more than 300, 70 and 110, respectively.•The specific energy consumption was between 18 and 19W h·mol−1. Lithium rechargeable batteries have been used for lithium extraction in recent years. Here, we report on a highly selective lithium recovery system that consists of a LiMn2O4 positive electrode, a Li1-xMn2O4 negative electrode and a monovalent selective anion-exchange membrane. The effect of potential, temperature and coexisting ions on lithium extraction were investigated in this paper, and the lithium recovery system was applied to extract lithium from brine and concentrated seawater. The extraction capacity of Li+ reached 34.31 mg· (1g LiMn2O4) −1 at 1.2V. With higher reaction rate and lower energy consumption, 25°C (room temperature) was considered as the appropriate temperature. The system still remained high selective for Li+ even in the presence of impurity ions (K+, Na+, Mg2+, Ca2+). With simulated brine and concentrated seawater as source solutions, the concentrations of Na+, Mg2+ and Ca2+ were reduced more than 300, 70 and 100 times, consuming 18–19W h per mole of lithium recovered. And the electrodes still had high separation coefficients of Li+ and Men+ (Na+, Mg2+, Ca2+) after five cycles although a slight drop was existing.
AbstractList Lithium rechargeable batteries have been used for lithium extraction in recent years. Here, we report on a highly selective lithium recovery system that consists of a LiMn2O4 positive electrode, a Li1-xMn2O4 negative electrode and a monovalent selective anion-exchange membrane. The effect of potential, temperature and coexisting ions on lithium extraction were investigated in this paper, and the lithium recovery system was applied to extract lithium from brine and concentrated seawater. The extraction capacity of Li+ reached 34.31 mg. (1 g LiMn2O4) -1 at 1.2 V. With higher reaction rate and lower energy consumption, 25 °C (room temperature) was considered as the appropriate temperature. The system still remained high selective for Li+ even in the presence of impurity ions (K+, Na+, Mg2+, Ca2+). With simulated brine and concentrated seawater as source solutions, the concentrations of Na+, Mg2+ and Ca2+ were reduced more than 300, 70 and 100 times, consuming 18-19 W h per mole of lithium recovered. And the electrodes still had high separation coefficients of Li+ and Men+ (Na+, Mg2+, Ca2+) after five cycles although a slight drop was existing.
[Display omitted] •A recovery system with LiMn2O4/Li1-xMn2O4 as electrodes was used to extract lithium.•The influence sequence of coexisting ions on lithium extraction was Mg2+> Na+> Ca2+> K+.•The values of αLi-Na, αLi-Mg and αLi-Ca were more than 300, 70 and 110, respectively.•The specific energy consumption was between 18 and 19W h·mol−1. Lithium rechargeable batteries have been used for lithium extraction in recent years. Here, we report on a highly selective lithium recovery system that consists of a LiMn2O4 positive electrode, a Li1-xMn2O4 negative electrode and a monovalent selective anion-exchange membrane. The effect of potential, temperature and coexisting ions on lithium extraction were investigated in this paper, and the lithium recovery system was applied to extract lithium from brine and concentrated seawater. The extraction capacity of Li+ reached 34.31 mg· (1g LiMn2O4) −1 at 1.2V. With higher reaction rate and lower energy consumption, 25°C (room temperature) was considered as the appropriate temperature. The system still remained high selective for Li+ even in the presence of impurity ions (K+, Na+, Mg2+, Ca2+). With simulated brine and concentrated seawater as source solutions, the concentrations of Na+, Mg2+ and Ca2+ were reduced more than 300, 70 and 100 times, consuming 18–19W h per mole of lithium recovered. And the electrodes still had high separation coefficients of Li+ and Men+ (Na+, Mg2+, Ca2+) after five cycles although a slight drop was existing.
Author Liu, Jie
Guo, Zhi-Yuan
Ji, Zhi-Yong
Yuan, Jun-Sheng
Zhao, Meng-Yao
Zhao, Ying-Ying
Zhang, Yong-Guang
Author_xml – sequence: 1
  givenname: Meng-Yao
  surname: Zhao
  fullname: Zhao, Meng-Yao
  organization: Engineering Research Center of Seawater Utilization of Ministry of Education, School of Marine Science and Engineering, Hebei University of Technology, 300130, Tianjin, China
– sequence: 2
  givenname: Zhi-Yong
  surname: Ji
  fullname: Ji, Zhi-Yong
  email: jizhiyong@gmail.com, jizhiyong@hebut.edu.cn
  organization: Engineering Research Center of Seawater Utilization of Ministry of Education, School of Marine Science and Engineering, Hebei University of Technology, 300130, Tianjin, China
– sequence: 3
  givenname: Yong-Guang
  surname: Zhang
  fullname: Zhang, Yong-Guang
  organization: Research Institute for Energy Equipment Materials, Hebei University of Technology, 300130, Tianjin, China
– sequence: 4
  givenname: Zhi-Yuan
  surname: Guo
  fullname: Guo, Zhi-Yuan
  organization: Engineering Research Center of Seawater Utilization of Ministry of Education, School of Marine Science and Engineering, Hebei University of Technology, 300130, Tianjin, China
– sequence: 5
  givenname: Ying-Ying
  surname: Zhao
  fullname: Zhao, Ying-Ying
  organization: Engineering Research Center of Seawater Utilization of Ministry of Education, School of Marine Science and Engineering, Hebei University of Technology, 300130, Tianjin, China
– sequence: 6
  givenname: Jie
  surname: Liu
  fullname: Liu, Jie
  organization: Engineering Research Center of Seawater Utilization of Ministry of Education, School of Marine Science and Engineering, Hebei University of Technology, 300130, Tianjin, China
– sequence: 7
  givenname: Jun-Sheng
  surname: Yuan
  fullname: Yuan, Jun-Sheng
  email: jsyuan@hebut.edu.cn
  organization: Engineering Research Center of Seawater Utilization of Ministry of Education, School of Marine Science and Engineering, Hebei University of Technology, 300130, Tianjin, China
BookMark eNqNkE1LAzEQhoNUsK3-BgOed5vsZ_bgoRS_oNKDepSwSWZplt1NTXal_fdmW_HgRWFghuF93xmeGZp0pgOErikJKaHZog6hAdmXvsKI0DwkLKQ5O0NTyvI4iFlaTNCUEBoHScayCzRzriaE5FlOpuj9pR_UAZsON7rf6qHFsO-tD9N-VVnTYmF1Bw6L0oEadWv93EWbZLHWNNgfRywO-PiDNXILrZZlg1vot0ZdovOqbBxcffc5eru_e109BuvNw9NquQ5kkmR9ALRKo1IkTEWFKAoilAIiIhGBKKSKVQSxUqwkgopUCAZVCklVgQBaKCaBxnN0c8rdWfMxgOt5bQbb-ZOcFhlLCGU09ar8pJLWOGeh4jur29IeOCV8ZMlr_sOSjyw5Ydyz9M7bX06p-3Jk5Fnp5h_-5ckPHsKnBsud1NBJUNp6PVdG_5nxBZkpmcg
CitedBy_id crossref_primary_10_1016_j_electacta_2019_135285
crossref_primary_10_1016_j_gee_2021_12_002
crossref_primary_10_1002_cssc_201803045
crossref_primary_10_1021_acssuschemeng_4c07073
crossref_primary_10_1002_smll_202406607
crossref_primary_10_1016_j_desal_2023_117250
crossref_primary_10_1016_j_seppur_2020_117410
crossref_primary_10_1038_s41598_020_71596_5
crossref_primary_10_3390_pr10122654
crossref_primary_10_1016_j_cej_2022_138454
crossref_primary_10_1016_j_cej_2020_127715
crossref_primary_10_1021_acssuschemeng_9b07644
crossref_primary_10_1016_j_clet_2024_100749
crossref_primary_10_4491_eer_2023_677
crossref_primary_10_1016_j_cej_2022_140928
crossref_primary_10_1016_j_seppur_2025_132657
crossref_primary_10_1016_j_electacta_2020_136385
crossref_primary_10_1002_celc_202400160
crossref_primary_10_1016_j_coelec_2022_101089
crossref_primary_10_1016_j_seppur_2024_127693
crossref_primary_10_1016_j_coelec_2022_101087
crossref_primary_10_1021_acsomega_1c05516
crossref_primary_10_1111_1755_6724_14675
crossref_primary_10_1016_j_seppur_2024_130184
crossref_primary_10_1016_j_seppur_2022_122605
crossref_primary_10_1038_s41586_024_08117_1
crossref_primary_10_4191_kcers_2018_55_1_08
crossref_primary_10_1002_aic_18675
crossref_primary_10_1021_acs_est_9b07646
crossref_primary_10_1016_j_memsci_2020_118416
crossref_primary_10_1016_j_seppur_2023_123777
crossref_primary_10_1016_j_matt_2024_07_014
crossref_primary_10_1016_j_chemosphere_2020_127623
crossref_primary_10_1016_j_desal_2023_116395
crossref_primary_10_1016_j_enconman_2023_117396
crossref_primary_10_1016_j_cclet_2023_108194
crossref_primary_10_1016_j_desal_2025_118570
crossref_primary_10_1016_j_seppur_2018_12_071
crossref_primary_10_1016_j_coelec_2019_04_010
crossref_primary_10_1016_j_matt_2022_04_034
crossref_primary_10_1016_j_seppur_2021_119726
crossref_primary_10_1016_j_resourpol_2023_103572
crossref_primary_10_1016_j_seppur_2024_128131
crossref_primary_10_1016_j_seppur_2020_117807
crossref_primary_10_1016_j_cej_2024_151708
crossref_primary_10_1016_j_memsci_2020_118668
crossref_primary_10_1149_1945_7111_abace8
crossref_primary_10_1002_advs_202201380
crossref_primary_10_1016_j_coelec_2021_100778
crossref_primary_10_1016_j_ces_2023_119400
crossref_primary_10_1149_2_0291814jes
crossref_primary_10_1021_acsami_9b07401
crossref_primary_10_1016_j_seppur_2024_130561
crossref_primary_10_1021_acssuschemeng_9b07427
crossref_primary_10_1016_j_desal_2023_117146
crossref_primary_10_1039_D2TA03295C
crossref_primary_10_1016_j_desal_2021_115324
crossref_primary_10_1016_j_cej_2024_148802
crossref_primary_10_1021_acsestwater_1c00014
crossref_primary_10_1149_1945_7111_abde81
crossref_primary_10_1002_smll_202306530
crossref_primary_10_1016_j_cej_2021_131689
crossref_primary_10_1016_j_seppur_2020_118154
crossref_primary_10_1021_acsmaterialslett_0c00385
crossref_primary_10_1002_cplu_201800185
crossref_primary_10_1016_j_seppur_2020_117108
crossref_primary_10_2139_ssrn_4122757
crossref_primary_10_1016_j_elecom_2022_107302
crossref_primary_10_3390_nano13091471
crossref_primary_10_1016_j_jclepro_2020_124905
crossref_primary_10_1016_j_jiec_2022_07_003
crossref_primary_10_1016_j_desal_2022_115611
crossref_primary_10_1016_j_desal_2022_115732
crossref_primary_10_1016_j_memsci_2019_117317
crossref_primary_10_1038_s44221_024_00326_2
crossref_primary_10_2139_ssrn_4166493
crossref_primary_10_3390_en13236235
crossref_primary_10_1016_j_hydromet_2020_105252
crossref_primary_10_1016_j_seppur_2022_122485
crossref_primary_10_1021_acssuschemeng_0c04359
crossref_primary_10_1016_j_elecom_2021_106980
crossref_primary_10_1016_j_jclepro_2018_05_077
crossref_primary_10_1016_j_mineng_2022_107652
crossref_primary_10_1080_07366299_2021_1876443
crossref_primary_10_1002_adma_201905440
crossref_primary_10_1016_j_rser_2021_111813
crossref_primary_10_1007_s11705_023_2343_7
crossref_primary_10_1021_acsomega_3c10498
crossref_primary_10_1002_ente_202100145
crossref_primary_10_1039_C8EM00498F
crossref_primary_10_1007_s10853_020_05019_1
crossref_primary_10_1021_acs_energyfuels_4c03409
crossref_primary_10_1016_j_seppur_2018_11_046
crossref_primary_10_1039_D4IM00159A
crossref_primary_10_1016_j_cej_2023_145975
crossref_primary_10_1038_s41598_024_74462_w
crossref_primary_10_1016_j_jece_2023_110878
crossref_primary_10_3390_nano13182557
crossref_primary_10_3390_membranes10120371
crossref_primary_10_1149_2_0741810jes
crossref_primary_10_3390_su142114429
crossref_primary_10_1016_j_hydromet_2019_05_005
crossref_primary_10_1016_j_jelechem_2019_113389
crossref_primary_10_3390_polym14214776
crossref_primary_10_1016_j_desal_2024_117618
crossref_primary_10_1126_science_adg8487
crossref_primary_10_1016_j_jclepro_2023_139997
crossref_primary_10_1016_j_seppur_2022_122997
crossref_primary_10_1016_j_nanoms_2024_08_004
crossref_primary_10_1002_smtd_202200508
crossref_primary_10_1016_j_seppur_2020_118009
crossref_primary_10_1016_j_seppur_2019_05_082
crossref_primary_10_1016_j_jclepro_2019_119178
crossref_primary_10_1016_j_seppur_2018_06_012
crossref_primary_10_1016_j_desal_2022_115767
crossref_primary_10_1016_j_seppur_2021_118809
crossref_primary_10_1016_j_watres_2022_118822
crossref_primary_10_1039_C8RA09407A
crossref_primary_10_1016_j_cej_2020_124410
crossref_primary_10_1021_acs_energyfuels_2c04113
crossref_primary_10_1016_j_seppur_2020_118111
crossref_primary_10_1021_acssuschemeng_9b07072
crossref_primary_10_1016_j_jece_2024_113637
crossref_primary_10_1016_j_seppur_2024_129372
crossref_primary_10_1016_j_cej_2021_130550
crossref_primary_10_20964_2021_09_45
crossref_primary_10_1007_s40831_022_00519_7
crossref_primary_10_1002_adfm_202400416
crossref_primary_10_1016_j_desal_2020_114883
crossref_primary_10_1016_j_desal_2022_116228
crossref_primary_10_1016_j_electacta_2022_140508
crossref_primary_10_1016_j_jechem_2020_11_012
crossref_primary_10_1016_j_desal_2020_114360
crossref_primary_10_1007_s12598_018_1053_7
crossref_primary_10_1016_j_desal_2023_116486
crossref_primary_10_1016_j_desal_2022_116188
crossref_primary_10_1021_acssusresmgt_4c00003
crossref_primary_10_1039_D3TA07905H
crossref_primary_10_1016_j_desal_2021_115112
crossref_primary_10_1016_j_geothermics_2024_103079
crossref_primary_10_1007_s10008_023_05461_6
Cites_doi 10.1016/j.jpcs.2007.03.028
10.1039/C4TA01101E
10.1016/j.electacta.2015.02.027
10.1016/j.apsusc.2016.01.203
10.1016/j.hydromet.2012.11.013
10.1039/c3cp50919b
10.1021/cm00059a024
10.1016/j.oregeorev.2012.05.006
10.1007/s11837-013-0666-4
10.1039/c2ee22977c
10.1002/chem.201403535
10.1016/j.chemosphere.2015.01.024
10.1021/ie501098e
10.1016/S1003-6326(13)62578-9
10.1016/j.ssi.2017.01.018
10.1080/07366299.2016.1221266
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright Elsevier BV Oct 20, 2017
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright Elsevier BV Oct 20, 2017
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1016/j.electacta.2017.08.178
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1873-3859
EndPage 361
ExternalDocumentID 10_1016_j_electacta_2017_08_178
S0013468617318492
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSK
SSZ
T5K
TWZ
UPT
WH7
XPP
YK3
ZMT
~02
~G-
29G
41~
53G
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIDUJ
AIGII
AIIUN
AJQLL
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
HMU
HVGLF
HZ~
H~9
LPU
R2-
SC5
SCB
SCH
SEW
SSH
T9H
VH1
WUQ
XOL
ZY4
7SR
7U5
8BQ
8FD
EFKBS
JG9
L7M
ID FETCH-LOGICAL-c446t-e1f52ab48d29b990bdde0b2b2eb9cd3d2e3dd8a0b1b5bb8ef5e4ffebe19d8ce13
IEDL.DBID .~1
ISSN 0013-4686
IngestDate Fri Jul 25 03:06:03 EDT 2025
Tue Jul 01 03:01:33 EDT 2025
Thu Apr 24 23:02:56 EDT 2025
Fri Feb 23 02:18:04 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords lithium
concentrated seawater
electrolytic cell
brine
extraction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-e1f52ab48d29b990bdde0b2b2eb9cd3d2e3dd8a0b1b5bb8ef5e4ffebe19d8ce13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1968401815
PQPubID 2045485
PageCount 12
ParticipantIDs proquest_journals_1968401815
crossref_primary_10_1016_j_electacta_2017_08_178
crossref_citationtrail_10_1016_j_electacta_2017_08_178
elsevier_sciencedirect_doi_10_1016_j_electacta_2017_08_178
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-10-20
PublicationDateYYYYMMDD 2017-10-20
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-20
  day: 20
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Electrochimica acta
PublicationYear 2017
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Ji, Zhao, Zhao, Liu, Peng, Yuan (bib0070) 2017; 301
Zhao, Si, Liu, He, Liang (bib0075) 2013; 133
Kim, Lee, Kang, Jo, Kim, Sung, Yoon (bib0095) 2015; 125
Intaranont, Garcia-Araez, Hector, Milton, Owen (bib0080) 2014; 2
Stephen, Paul, Pablo, Gregory, Mark, Timothy (bib0025) 2012; 48
Lee, Yu, Kim, Sung, Yoon (bib0090) 2013; 15
Zhao, Si, Liang, Liu, He (bib0085) 2013; 23
Garrett (bib0040) 2004
Xing, Peng, Zhang, Chen (bib0015) 2015; 37
Liu, Deng (bib0030) 2006
.
Ammundsen, Jones, Roziere, Burns (bib0055) 1995; 7
Yuan, Yin, Ji, Deng (bib0060) 2014; 53
Ji, Zhao, Yuan, Wang, Zhou, Yin, Sun (bib0100) 2016; 34
Wang, Lai, Li, Zhang, Huang, Hu, Li (bib0010) 2015; 177
Pasta, Battistel, Mantia (bib0020) 2012; 5
Trócoli, Battistel, Mantia (bib0045) 2014; 20
Peiró, Méndez, Ayres (bib0035) 2013; 65
Zhang, Zhou, Yao, Zhou (bib0050) 2016; 368
Yoon, Park, Ahh, Kim, Lee, Kim (bib0065) 2007; 68
Huang, Kan, Chu, Lu, Shen (bib0110) 2006; 30
10.1016/j.electacta.2017.08.178_bib0005
Peiró (10.1016/j.electacta.2017.08.178_bib0035) 2013; 65
Wang (10.1016/j.electacta.2017.08.178_bib0010) 2015; 177
Liu (10.1016/j.electacta.2017.08.178_bib0030) 2006
Pasta (10.1016/j.electacta.2017.08.178_bib0020) 2012; 5
Ji (10.1016/j.electacta.2017.08.178_bib0070) 2017; 301
Zhao (10.1016/j.electacta.2017.08.178_bib0085) 2013; 23
Ammundsen (10.1016/j.electacta.2017.08.178_bib0055) 1995; 7
Zhang (10.1016/j.electacta.2017.08.178_bib0050) 2016; 368
Xing (10.1016/j.electacta.2017.08.178_bib0015) 2015; 37
10.1016/j.electacta.2017.08.178_bib0105
Trócoli (10.1016/j.electacta.2017.08.178_bib0045) 2014; 20
Lee (10.1016/j.electacta.2017.08.178_bib0090) 2013; 15
Ji (10.1016/j.electacta.2017.08.178_bib0100) 2016; 34
Huang (10.1016/j.electacta.2017.08.178_bib0110) 2006; 30
Garrett (10.1016/j.electacta.2017.08.178_bib0040) 2004
Zhao (10.1016/j.electacta.2017.08.178_bib0075) 2013; 133
Yuan (10.1016/j.electacta.2017.08.178_bib0060) 2014; 53
Intaranont (10.1016/j.electacta.2017.08.178_bib0080) 2014; 2
Stephen (10.1016/j.electacta.2017.08.178_bib0025) 2012; 48
Yoon (10.1016/j.electacta.2017.08.178_bib0065) 2007; 68
Kim (10.1016/j.electacta.2017.08.178_bib0095) 2015; 125
References_xml – volume: 368
  start-page: 82
  year: 2016
  end-page: 87
  ident: bib0050
  article-title: Preparation of H
  publication-title: Applied Surface Science
– volume: 53
  start-page: 9889
  year: 2014
  end-page: 9896
  ident: bib0060
  article-title: Effective recycling performance of Li
  publication-title: Industrial & Engineering Chemistry Research
– volume: 20
  start-page: 9888
  year: 2014
  end-page: 9891
  ident: bib0045
  article-title: Selectivity of a lithium-recovery process based on LiFePO
  publication-title: Chemistry-A European Journal
– volume: 125
  start-page: 50
  year: 2015
  end-page: 56
  ident: bib0095
  article-title: Lithium recovery from brine using a λ-MnO
  publication-title: Chemosphere
– year: 2004
  ident: bib0040
  article-title: Handbook of lithium and natural calcium chloride: Their deposites, processing, uses and properties
– start-page: 69
  year: 2006
  end-page: 75
  ident: bib0030
  article-title: Progress on the process and technique of lithium recovery from salt lake brines around the world
  publication-title: World Sci-Tech R&D
– volume: 34
  start-page: 549
  year: 2016
  end-page: 557
  ident: bib0100
  article-title: Li
  publication-title: Solvent Extraction and Ion Exchange
– volume: 68
  start-page: 780
  year: 2007
  end-page: 784
  ident: bib0065
  article-title: Synthesis and characterization of spinel type high-power cathode materials LiM
  publication-title: Journal of Physics and Chemistry of Solids
– volume: 7
  start-page: 2151
  year: 1995
  end-page: 2160
  ident: bib0055
  article-title: Mechanism of proton insertion and characterization of the proton sites in lithium manganese spinels
  publication-title: Chemistry of Materials
– reference: .
– volume: 30
  start-page: 448
  year: 2006
  end-page: 452
  ident: bib0110
  article-title: Cyclic voltammetry and electrochemical properties of LiMn
  publication-title: Chinese Journal of Rare Metals
– volume: 48
  start-page: 55
  year: 2012
  end-page: 69
  ident: bib0025
  article-title: Global lithium resources: Relative importance of pegmatite, brine and other deposits
  publication-title: Ore Geology Reviews
– volume: 5
  start-page: 9487
  year: 2012
  end-page: 9491
  ident: bib0020
  article-title: Batteries for lithium recovery from brines
  publication-title: Energy & Environmental Science
– volume: 65
  start-page: 986
  year: 2013
  end-page: 996
  ident: bib0035
  article-title: Lithium: sources, production, uses, and recovery outlook
  publication-title: The Journal of The Minerals, Metals & Materials Society
– volume: 2
  start-page: 6374
  year: 2014
  end-page: 6377
  ident: bib0080
  article-title: Selective lithium extraction from brines by chemical reaction with battery materials
  publication-title: Journal of Materials Chemistry A
– volume: 15
  start-page: 7690
  year: 2013
  end-page: 7695
  ident: bib0090
  article-title: Highly selective lithium recovery from brine using a λ-MnO
  publication-title: Physical Chemistry Chemical Physics
– volume: 37
  start-page: 0988
  year: 2015
  end-page: 0997
  ident: bib0015
  article-title: Global lithium demand and supply
  publication-title: Resources Science
– volume: 301
  start-page: 116
  year: 2017
  end-page: 124
  ident: bib0070
  article-title: Lithium extraction process on spinel-type LiMn
  publication-title: Solid State Ionics
– volume: 133
  start-page: 75
  year: 2013
  end-page: 83
  ident: bib0075
  article-title: Li extraction from high Mg/Li ratio brine with LiFePO
  publication-title: Hydrometallurgy
– volume: 23
  start-page: 1157
  year: 2013
  end-page: 1164
  ident: bib0085
  article-title: Electrochemical behavior of Li
  publication-title: Transactions of Nonferrous Metals Society of China
– volume: 177
  start-page: 290
  year: 2015
  end-page: 297
  ident: bib0010
  article-title: Excellent stability of spinel LiMn
  publication-title: Electrochimica Acta
– volume: 37
  start-page: 0988
  year: 2015
  ident: 10.1016/j.electacta.2017.08.178_bib0015
  article-title: Global lithium demand and supply
  publication-title: Resources Science
– volume: 68
  start-page: 780
  year: 2007
  ident: 10.1016/j.electacta.2017.08.178_bib0065
  article-title: Synthesis and characterization of spinel type high-power cathode materials LiMxMn2-xO4 (MNi, Co Cr)
  publication-title: Journal of Physics and Chemistry of Solids
  doi: 10.1016/j.jpcs.2007.03.028
– year: 2004
  ident: 10.1016/j.electacta.2017.08.178_bib0040
– volume: 2
  start-page: 6374
  year: 2014
  ident: 10.1016/j.electacta.2017.08.178_bib0080
  article-title: Selective lithium extraction from brines by chemical reaction with battery materials
  publication-title: Journal of Materials Chemistry A
  doi: 10.1039/C4TA01101E
– volume: 177
  start-page: 290
  year: 2015
  ident: 10.1016/j.electacta.2017.08.178_bib0010
  article-title: Excellent stability of spinel LiMn2O4-based cathode materials for lithium-ion batteries
  publication-title: Electrochimica Acta
  doi: 10.1016/j.electacta.2015.02.027
– volume: 30
  start-page: 448
  year: 2006
  ident: 10.1016/j.electacta.2017.08.178_bib0110
  article-title: Cyclic voltammetry and electrochemical properties of LiMn2O4 and Li2CO3 modified LiMn2O4
  publication-title: Chinese Journal of Rare Metals
– volume: 368
  start-page: 82
  year: 2016
  ident: 10.1016/j.electacta.2017.08.178_bib0050
  article-title: Preparation of H2TiO3-lithium adsorbent by the sol-gel process and its adsorption performance
  publication-title: Applied Surface Science
  doi: 10.1016/j.apsusc.2016.01.203
– volume: 133
  start-page: 75
  year: 2013
  ident: 10.1016/j.electacta.2017.08.178_bib0075
  article-title: Li extraction from high Mg/Li ratio brine with LiFePO4/FePO4 as electrode materials
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2012.11.013
– volume: 15
  start-page: 7690
  year: 2013
  ident: 10.1016/j.electacta.2017.08.178_bib0090
  article-title: Highly selective lithium recovery from brine using a λ-MnO2-Ag battery
  publication-title: Physical Chemistry Chemical Physics
  doi: 10.1039/c3cp50919b
– ident: 10.1016/j.electacta.2017.08.178_bib0005
– volume: 7
  start-page: 2151
  year: 1995
  ident: 10.1016/j.electacta.2017.08.178_bib0055
  article-title: Mechanism of proton insertion and characterization of the proton sites in lithium manganese spinels
  publication-title: Chemistry of Materials
  doi: 10.1021/cm00059a024
– volume: 48
  start-page: 55
  year: 2012
  ident: 10.1016/j.electacta.2017.08.178_bib0025
  article-title: Global lithium resources: Relative importance of pegmatite, brine and other deposits
  publication-title: Ore Geology Reviews
  doi: 10.1016/j.oregeorev.2012.05.006
– volume: 65
  start-page: 986
  year: 2013
  ident: 10.1016/j.electacta.2017.08.178_bib0035
  article-title: Lithium: sources, production, uses, and recovery outlook
  publication-title: The Journal of The Minerals, Metals & Materials Society
  doi: 10.1007/s11837-013-0666-4
– start-page: 69
  year: 2006
  ident: 10.1016/j.electacta.2017.08.178_bib0030
  article-title: Progress on the process and technique of lithium recovery from salt lake brines around the world
  publication-title: World Sci-Tech R&D
– volume: 5
  start-page: 9487
  year: 2012
  ident: 10.1016/j.electacta.2017.08.178_bib0020
  article-title: Batteries for lithium recovery from brines
  publication-title: Energy & Environmental Science
  doi: 10.1039/c2ee22977c
– volume: 20
  start-page: 9888
  year: 2014
  ident: 10.1016/j.electacta.2017.08.178_bib0045
  article-title: Selectivity of a lithium-recovery process based on LiFePO4
  publication-title: Chemistry-A European Journal
  doi: 10.1002/chem.201403535
– volume: 125
  start-page: 50
  year: 2015
  ident: 10.1016/j.electacta.2017.08.178_bib0095
  article-title: Lithium recovery from brine using a λ-MnO2/activated carbon hybrid supercapacitor system
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2015.01.024
– volume: 53
  start-page: 9889
  year: 2014
  ident: 10.1016/j.electacta.2017.08.178_bib0060
  article-title: Effective recycling performance of Li+ extraction from spinel-type LiMn2O4 with persulfate
  publication-title: Industrial & Engineering Chemistry Research
  doi: 10.1021/ie501098e
– volume: 23
  start-page: 1157
  year: 2013
  ident: 10.1016/j.electacta.2017.08.178_bib0085
  article-title: Electrochemical behavior of Li+, Mg2+ Na+ and K+ in LiFePO4/FePO4 structures
  publication-title: Transactions of Nonferrous Metals Society of China
  doi: 10.1016/S1003-6326(13)62578-9
– volume: 301
  start-page: 116
  year: 2017
  ident: 10.1016/j.electacta.2017.08.178_bib0070
  article-title: Lithium extraction process on spinel-type LiMn2O4 and characterization based on the hydrolysis of sodium persulfate
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2017.01.018
– ident: 10.1016/j.electacta.2017.08.178_bib0105
– volume: 34
  start-page: 549
  year: 2016
  ident: 10.1016/j.electacta.2017.08.178_bib0100
  article-title: Li+ extraction from spinel-type LiMn2O4 in different eluents and Li+ insertion in the aqueous phase
  publication-title: Solvent Extraction and Ion Exchange
  doi: 10.1080/07366299.2016.1221266
SSID ssj0007670
Score 2.5788152
Snippet [Display omitted] •A recovery system with LiMn2O4/Li1-xMn2O4 as electrodes was used to extract lithium.•The influence sequence of coexisting ions on lithium...
Lithium rechargeable batteries have been used for lithium extraction in recent years. Here, we report on a highly selective lithium recovery system that...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 350
SubjectTerms Anion exchanging
brine
Brines
concentrated seawater
Electrodes
electrolytic cell
Energy consumption
extraction
lithium
Lithium batteries
Rechargeable batteries
Saline water
Seawater
Temperature
Title Study on lithium extraction from brines based on LiMn2O4/Li1-xMn2O4 by electrochemical method
URI https://dx.doi.org/10.1016/j.electacta.2017.08.178
https://www.proquest.com/docview/1968401815
Volume 252
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6LHtSD-MTHKjl4rdu06Tb1tiwu6_ui4EVCp0mxolXcXXAv_nZn2nR9IHgQemhLEsrM9JtJmJmPsYPIhBmdLKEGbOzJMLZeAiLxwAcjQapcVdQJF5fd4Y08vY1uW6zf1MJQWqXD_hrTK7R2bzpOmp2XoqAaXxHKrkIXjHYpE8JhKWOy8sP3zzSPuBv7DYsBjf6W41VRzaR4UY5XTL08BfGt_e6hfmB15YAGK2zZRY68V3_cKmvZco0t9BvCtjW29KW34Dq7owzBKX8uOQba98XkiSMMv9ZlDJyKSjhQ4d-Ikx8zNO68uCiDK9k5L4T3Vt1ymHLHk5O5xgK8ppzeYDeD4-v-0HNcCl6GG76xZ0UeBSkK3wQJoAcChDUfAggsJJkJTWBDY1Tqg4AIQNk8sjLPUcMiMSqzItxkc-VzabcYN4kUuIoSMcQylQZjCkiVIt5ymycm22bdRn46c43Gie_iUTcZZQ96JnhNgte-0ij4bebPJr7UvTb-nnLUKEh_MxuNHuHvye1Gpdr9uSONiIR7Xox7op3_rL3LFumJvFzgt9nc-HVi9zB8GcN-ZZ_7bL53cja8_ABkGPE1
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2V9lB6QLQFUSjgAz2mGzvOxkHigArVlu62l1bqBZlM7IggmlbdrWAv_Cn-IDOJ0w-E1AOqlEOUxJYzY78ZWzPzAN6kLin5ZIk04LNIJ5mPcpR5hDE6jdpUpqVOmBwMR8f600l6sgC_-1wYDqsM2N9heovW4ckgSHNwXtec4ysTPTRkgmle6lyFyMp9P_9B-7bpu70PpOQtpXY_Hu2MokAtEJW0_5lFXlapKmgsTuVIgIy0ymNUqDzmpUuc8olzpohRYopofJV6XVX0wzJ3pvQyoX4fwJImuGDahO1f13El2TCLe9oEHt6toLKW26agi4PKMi4eKpng7d8m8S_j0Fq83cfwKLiq4n0njVVY8M0aLO_0DHFrsHKjmOE6fOaQxLk4awR59l_ry1NBuH_R5U0IzmIRyJmGU8GG0_F343rSqEM9GNcy-tneCpyLQMxThkoGouO4fgLH9yLhp7DYnDX-GQiXa0m9GJlhpgvtyInBwhgmSvdV7soNGPbys2WobM4EG99tH8L2zV4J3rLgbWwsCX4D4quG511xj7ubvO0VZG_NU0sm6O7Gm71KbYCKqSUIpE02OVrp8__p-zUsj44mYzveO9h_AQ_5DZtYFW_C4uzi0r8k32mGr9q5KuDLfS-OP9d8MRo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+on+lithium+extraction+from+brines+based+on+LiMn2O4%2FLi1-xMn2O4+by+electrochemical+method&rft.jtitle=Electrochimica+acta&rft.au=Zhao%2C+Meng-Yao&rft.au=Ji%2C+Zhi-Yong&rft.au=Zhang%2C+Yong-Guang&rft.au=Guo%2C+Zhi-Yuan&rft.date=2017-10-20&rft.pub=Elsevier+Ltd&rft.issn=0013-4686&rft.eissn=1873-3859&rft.volume=252&rft.spage=350&rft.epage=361&rft_id=info:doi/10.1016%2Fj.electacta.2017.08.178&rft.externalDocID=S0013468617318492
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-4686&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-4686&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-4686&client=summon