Study on lithium extraction from brines based on LiMn2O4/Li1-xMn2O4 by electrochemical method
[Display omitted] •A recovery system with LiMn2O4/Li1-xMn2O4 as electrodes was used to extract lithium.•The influence sequence of coexisting ions on lithium extraction was Mg2+> Na+> Ca2+> K+.•The values of αLi-Na, αLi-Mg and αLi-Ca were more than 300, 70 and 110, respectively.•The specific...
Saved in:
Published in | Electrochimica acta Vol. 252; pp. 350 - 361 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
20.10.2017
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•A recovery system with LiMn2O4/Li1-xMn2O4 as electrodes was used to extract lithium.•The influence sequence of coexisting ions on lithium extraction was Mg2+> Na+> Ca2+> K+.•The values of αLi-Na, αLi-Mg and αLi-Ca were more than 300, 70 and 110, respectively.•The specific energy consumption was between 18 and 19W h·mol−1.
Lithium rechargeable batteries have been used for lithium extraction in recent years. Here, we report on a highly selective lithium recovery system that consists of a LiMn2O4 positive electrode, a Li1-xMn2O4 negative electrode and a monovalent selective anion-exchange membrane. The effect of potential, temperature and coexisting ions on lithium extraction were investigated in this paper, and the lithium recovery system was applied to extract lithium from brine and concentrated seawater. The extraction capacity of Li+ reached 34.31 mg· (1g LiMn2O4) −1 at 1.2V. With higher reaction rate and lower energy consumption, 25°C (room temperature) was considered as the appropriate temperature. The system still remained high selective for Li+ even in the presence of impurity ions (K+, Na+, Mg2+, Ca2+). With simulated brine and concentrated seawater as source solutions, the concentrations of Na+, Mg2+ and Ca2+ were reduced more than 300, 70 and 100 times, consuming 18–19W h per mole of lithium recovered. And the electrodes still had high separation coefficients of Li+ and Men+ (Na+, Mg2+, Ca2+) after five cycles although a slight drop was existing. |
---|---|
AbstractList | Lithium rechargeable batteries have been used for lithium extraction in recent years. Here, we report on a highly selective lithium recovery system that consists of a LiMn2O4 positive electrode, a Li1-xMn2O4 negative electrode and a monovalent selective anion-exchange membrane. The effect of potential, temperature and coexisting ions on lithium extraction were investigated in this paper, and the lithium recovery system was applied to extract lithium from brine and concentrated seawater. The extraction capacity of Li+ reached 34.31 mg. (1 g LiMn2O4) -1 at 1.2 V. With higher reaction rate and lower energy consumption, 25 °C (room temperature) was considered as the appropriate temperature. The system still remained high selective for Li+ even in the presence of impurity ions (K+, Na+, Mg2+, Ca2+). With simulated brine and concentrated seawater as source solutions, the concentrations of Na+, Mg2+ and Ca2+ were reduced more than 300, 70 and 100 times, consuming 18-19 W h per mole of lithium recovered. And the electrodes still had high separation coefficients of Li+ and Men+ (Na+, Mg2+, Ca2+) after five cycles although a slight drop was existing. [Display omitted] •A recovery system with LiMn2O4/Li1-xMn2O4 as electrodes was used to extract lithium.•The influence sequence of coexisting ions on lithium extraction was Mg2+> Na+> Ca2+> K+.•The values of αLi-Na, αLi-Mg and αLi-Ca were more than 300, 70 and 110, respectively.•The specific energy consumption was between 18 and 19W h·mol−1. Lithium rechargeable batteries have been used for lithium extraction in recent years. Here, we report on a highly selective lithium recovery system that consists of a LiMn2O4 positive electrode, a Li1-xMn2O4 negative electrode and a monovalent selective anion-exchange membrane. The effect of potential, temperature and coexisting ions on lithium extraction were investigated in this paper, and the lithium recovery system was applied to extract lithium from brine and concentrated seawater. The extraction capacity of Li+ reached 34.31 mg· (1g LiMn2O4) −1 at 1.2V. With higher reaction rate and lower energy consumption, 25°C (room temperature) was considered as the appropriate temperature. The system still remained high selective for Li+ even in the presence of impurity ions (K+, Na+, Mg2+, Ca2+). With simulated brine and concentrated seawater as source solutions, the concentrations of Na+, Mg2+ and Ca2+ were reduced more than 300, 70 and 100 times, consuming 18–19W h per mole of lithium recovered. And the electrodes still had high separation coefficients of Li+ and Men+ (Na+, Mg2+, Ca2+) after five cycles although a slight drop was existing. |
Author | Liu, Jie Guo, Zhi-Yuan Ji, Zhi-Yong Yuan, Jun-Sheng Zhao, Meng-Yao Zhao, Ying-Ying Zhang, Yong-Guang |
Author_xml | – sequence: 1 givenname: Meng-Yao surname: Zhao fullname: Zhao, Meng-Yao organization: Engineering Research Center of Seawater Utilization of Ministry of Education, School of Marine Science and Engineering, Hebei University of Technology, 300130, Tianjin, China – sequence: 2 givenname: Zhi-Yong surname: Ji fullname: Ji, Zhi-Yong email: jizhiyong@gmail.com, jizhiyong@hebut.edu.cn organization: Engineering Research Center of Seawater Utilization of Ministry of Education, School of Marine Science and Engineering, Hebei University of Technology, 300130, Tianjin, China – sequence: 3 givenname: Yong-Guang surname: Zhang fullname: Zhang, Yong-Guang organization: Research Institute for Energy Equipment Materials, Hebei University of Technology, 300130, Tianjin, China – sequence: 4 givenname: Zhi-Yuan surname: Guo fullname: Guo, Zhi-Yuan organization: Engineering Research Center of Seawater Utilization of Ministry of Education, School of Marine Science and Engineering, Hebei University of Technology, 300130, Tianjin, China – sequence: 5 givenname: Ying-Ying surname: Zhao fullname: Zhao, Ying-Ying organization: Engineering Research Center of Seawater Utilization of Ministry of Education, School of Marine Science and Engineering, Hebei University of Technology, 300130, Tianjin, China – sequence: 6 givenname: Jie surname: Liu fullname: Liu, Jie organization: Engineering Research Center of Seawater Utilization of Ministry of Education, School of Marine Science and Engineering, Hebei University of Technology, 300130, Tianjin, China – sequence: 7 givenname: Jun-Sheng surname: Yuan fullname: Yuan, Jun-Sheng email: jsyuan@hebut.edu.cn organization: Engineering Research Center of Seawater Utilization of Ministry of Education, School of Marine Science and Engineering, Hebei University of Technology, 300130, Tianjin, China |
BookMark | eNqNkE1LAzEQhoNUsK3-BgOed5vsZ_bgoRS_oNKDepSwSWZplt1NTXal_fdmW_HgRWFghuF93xmeGZp0pgOErikJKaHZog6hAdmXvsKI0DwkLKQ5O0NTyvI4iFlaTNCUEBoHScayCzRzriaE5FlOpuj9pR_UAZsON7rf6qHFsO-tD9N-VVnTYmF1Bw6L0oEadWv93EWbZLHWNNgfRywO-PiDNXILrZZlg1vot0ZdovOqbBxcffc5eru_e109BuvNw9NquQ5kkmR9ALRKo1IkTEWFKAoilAIiIhGBKKSKVQSxUqwkgopUCAZVCklVgQBaKCaBxnN0c8rdWfMxgOt5bQbb-ZOcFhlLCGU09ar8pJLWOGeh4jur29IeOCV8ZMlr_sOSjyw5Ydyz9M7bX06p-3Jk5Fnp5h_-5ckPHsKnBsud1NBJUNp6PVdG_5nxBZkpmcg |
CitedBy_id | crossref_primary_10_1016_j_electacta_2019_135285 crossref_primary_10_1016_j_gee_2021_12_002 crossref_primary_10_1002_cssc_201803045 crossref_primary_10_1021_acssuschemeng_4c07073 crossref_primary_10_1002_smll_202406607 crossref_primary_10_1016_j_desal_2023_117250 crossref_primary_10_1016_j_seppur_2020_117410 crossref_primary_10_1038_s41598_020_71596_5 crossref_primary_10_3390_pr10122654 crossref_primary_10_1016_j_cej_2022_138454 crossref_primary_10_1016_j_cej_2020_127715 crossref_primary_10_1021_acssuschemeng_9b07644 crossref_primary_10_1016_j_clet_2024_100749 crossref_primary_10_4491_eer_2023_677 crossref_primary_10_1016_j_cej_2022_140928 crossref_primary_10_1016_j_seppur_2025_132657 crossref_primary_10_1016_j_electacta_2020_136385 crossref_primary_10_1002_celc_202400160 crossref_primary_10_1016_j_coelec_2022_101089 crossref_primary_10_1016_j_seppur_2024_127693 crossref_primary_10_1016_j_coelec_2022_101087 crossref_primary_10_1021_acsomega_1c05516 crossref_primary_10_1111_1755_6724_14675 crossref_primary_10_1016_j_seppur_2024_130184 crossref_primary_10_1016_j_seppur_2022_122605 crossref_primary_10_1038_s41586_024_08117_1 crossref_primary_10_4191_kcers_2018_55_1_08 crossref_primary_10_1002_aic_18675 crossref_primary_10_1021_acs_est_9b07646 crossref_primary_10_1016_j_memsci_2020_118416 crossref_primary_10_1016_j_seppur_2023_123777 crossref_primary_10_1016_j_matt_2024_07_014 crossref_primary_10_1016_j_chemosphere_2020_127623 crossref_primary_10_1016_j_desal_2023_116395 crossref_primary_10_1016_j_enconman_2023_117396 crossref_primary_10_1016_j_cclet_2023_108194 crossref_primary_10_1016_j_desal_2025_118570 crossref_primary_10_1016_j_seppur_2018_12_071 crossref_primary_10_1016_j_coelec_2019_04_010 crossref_primary_10_1016_j_matt_2022_04_034 crossref_primary_10_1016_j_seppur_2021_119726 crossref_primary_10_1016_j_resourpol_2023_103572 crossref_primary_10_1016_j_seppur_2024_128131 crossref_primary_10_1016_j_seppur_2020_117807 crossref_primary_10_1016_j_cej_2024_151708 crossref_primary_10_1016_j_memsci_2020_118668 crossref_primary_10_1149_1945_7111_abace8 crossref_primary_10_1002_advs_202201380 crossref_primary_10_1016_j_coelec_2021_100778 crossref_primary_10_1016_j_ces_2023_119400 crossref_primary_10_1149_2_0291814jes crossref_primary_10_1021_acsami_9b07401 crossref_primary_10_1016_j_seppur_2024_130561 crossref_primary_10_1021_acssuschemeng_9b07427 crossref_primary_10_1016_j_desal_2023_117146 crossref_primary_10_1039_D2TA03295C crossref_primary_10_1016_j_desal_2021_115324 crossref_primary_10_1016_j_cej_2024_148802 crossref_primary_10_1021_acsestwater_1c00014 crossref_primary_10_1149_1945_7111_abde81 crossref_primary_10_1002_smll_202306530 crossref_primary_10_1016_j_cej_2021_131689 crossref_primary_10_1016_j_seppur_2020_118154 crossref_primary_10_1021_acsmaterialslett_0c00385 crossref_primary_10_1002_cplu_201800185 crossref_primary_10_1016_j_seppur_2020_117108 crossref_primary_10_2139_ssrn_4122757 crossref_primary_10_1016_j_elecom_2022_107302 crossref_primary_10_3390_nano13091471 crossref_primary_10_1016_j_jclepro_2020_124905 crossref_primary_10_1016_j_jiec_2022_07_003 crossref_primary_10_1016_j_desal_2022_115611 crossref_primary_10_1016_j_desal_2022_115732 crossref_primary_10_1016_j_memsci_2019_117317 crossref_primary_10_1038_s44221_024_00326_2 crossref_primary_10_2139_ssrn_4166493 crossref_primary_10_3390_en13236235 crossref_primary_10_1016_j_hydromet_2020_105252 crossref_primary_10_1016_j_seppur_2022_122485 crossref_primary_10_1021_acssuschemeng_0c04359 crossref_primary_10_1016_j_elecom_2021_106980 crossref_primary_10_1016_j_jclepro_2018_05_077 crossref_primary_10_1016_j_mineng_2022_107652 crossref_primary_10_1080_07366299_2021_1876443 crossref_primary_10_1002_adma_201905440 crossref_primary_10_1016_j_rser_2021_111813 crossref_primary_10_1007_s11705_023_2343_7 crossref_primary_10_1021_acsomega_3c10498 crossref_primary_10_1002_ente_202100145 crossref_primary_10_1039_C8EM00498F crossref_primary_10_1007_s10853_020_05019_1 crossref_primary_10_1021_acs_energyfuels_4c03409 crossref_primary_10_1016_j_seppur_2018_11_046 crossref_primary_10_1039_D4IM00159A crossref_primary_10_1016_j_cej_2023_145975 crossref_primary_10_1038_s41598_024_74462_w crossref_primary_10_1016_j_jece_2023_110878 crossref_primary_10_3390_nano13182557 crossref_primary_10_3390_membranes10120371 crossref_primary_10_1149_2_0741810jes crossref_primary_10_3390_su142114429 crossref_primary_10_1016_j_hydromet_2019_05_005 crossref_primary_10_1016_j_jelechem_2019_113389 crossref_primary_10_3390_polym14214776 crossref_primary_10_1016_j_desal_2024_117618 crossref_primary_10_1126_science_adg8487 crossref_primary_10_1016_j_jclepro_2023_139997 crossref_primary_10_1016_j_seppur_2022_122997 crossref_primary_10_1016_j_nanoms_2024_08_004 crossref_primary_10_1002_smtd_202200508 crossref_primary_10_1016_j_seppur_2020_118009 crossref_primary_10_1016_j_seppur_2019_05_082 crossref_primary_10_1016_j_jclepro_2019_119178 crossref_primary_10_1016_j_seppur_2018_06_012 crossref_primary_10_1016_j_desal_2022_115767 crossref_primary_10_1016_j_seppur_2021_118809 crossref_primary_10_1016_j_watres_2022_118822 crossref_primary_10_1039_C8RA09407A crossref_primary_10_1016_j_cej_2020_124410 crossref_primary_10_1021_acs_energyfuels_2c04113 crossref_primary_10_1016_j_seppur_2020_118111 crossref_primary_10_1021_acssuschemeng_9b07072 crossref_primary_10_1016_j_jece_2024_113637 crossref_primary_10_1016_j_seppur_2024_129372 crossref_primary_10_1016_j_cej_2021_130550 crossref_primary_10_20964_2021_09_45 crossref_primary_10_1007_s40831_022_00519_7 crossref_primary_10_1002_adfm_202400416 crossref_primary_10_1016_j_desal_2020_114883 crossref_primary_10_1016_j_desal_2022_116228 crossref_primary_10_1016_j_electacta_2022_140508 crossref_primary_10_1016_j_jechem_2020_11_012 crossref_primary_10_1016_j_desal_2020_114360 crossref_primary_10_1007_s12598_018_1053_7 crossref_primary_10_1016_j_desal_2023_116486 crossref_primary_10_1016_j_desal_2022_116188 crossref_primary_10_1021_acssusresmgt_4c00003 crossref_primary_10_1039_D3TA07905H crossref_primary_10_1016_j_desal_2021_115112 crossref_primary_10_1016_j_geothermics_2024_103079 crossref_primary_10_1007_s10008_023_05461_6 |
Cites_doi | 10.1016/j.jpcs.2007.03.028 10.1039/C4TA01101E 10.1016/j.electacta.2015.02.027 10.1016/j.apsusc.2016.01.203 10.1016/j.hydromet.2012.11.013 10.1039/c3cp50919b 10.1021/cm00059a024 10.1016/j.oregeorev.2012.05.006 10.1007/s11837-013-0666-4 10.1039/c2ee22977c 10.1002/chem.201403535 10.1016/j.chemosphere.2015.01.024 10.1021/ie501098e 10.1016/S1003-6326(13)62578-9 10.1016/j.ssi.2017.01.018 10.1080/07366299.2016.1221266 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd Copyright Elsevier BV Oct 20, 2017 |
Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Copyright Elsevier BV Oct 20, 2017 |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1016/j.electacta.2017.08.178 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1873-3859 |
EndPage | 361 |
ExternalDocumentID | 10_1016_j_electacta_2017_08_178 S0013468617318492 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNUV ABYKQ ACBEA ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSK SSZ T5K TWZ UPT WH7 XPP YK3 ZMT ~02 ~G- 29G 41~ 53G AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIDUJ AIGII AIIUN AJQLL AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB HMU HVGLF HZ~ H~9 LPU R2- SC5 SCB SCH SEW SSH T9H VH1 WUQ XOL ZY4 7SR 7U5 8BQ 8FD EFKBS JG9 L7M |
ID | FETCH-LOGICAL-c446t-e1f52ab48d29b990bdde0b2b2eb9cd3d2e3dd8a0b1b5bb8ef5e4ffebe19d8ce13 |
IEDL.DBID | .~1 |
ISSN | 0013-4686 |
IngestDate | Fri Jul 25 03:06:03 EDT 2025 Tue Jul 01 03:01:33 EDT 2025 Thu Apr 24 23:02:56 EDT 2025 Fri Feb 23 02:18:04 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | lithium concentrated seawater electrolytic cell brine extraction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c446t-e1f52ab48d29b990bdde0b2b2eb9cd3d2e3dd8a0b1b5bb8ef5e4ffebe19d8ce13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1968401815 |
PQPubID | 2045485 |
PageCount | 12 |
ParticipantIDs | proquest_journals_1968401815 crossref_primary_10_1016_j_electacta_2017_08_178 crossref_citationtrail_10_1016_j_electacta_2017_08_178 elsevier_sciencedirect_doi_10_1016_j_electacta_2017_08_178 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-10-20 |
PublicationDateYYYYMMDD | 2017-10-20 |
PublicationDate_xml | – month: 10 year: 2017 text: 2017-10-20 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Electrochimica acta |
PublicationYear | 2017 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Ji, Zhao, Zhao, Liu, Peng, Yuan (bib0070) 2017; 301 Zhao, Si, Liu, He, Liang (bib0075) 2013; 133 Kim, Lee, Kang, Jo, Kim, Sung, Yoon (bib0095) 2015; 125 Intaranont, Garcia-Araez, Hector, Milton, Owen (bib0080) 2014; 2 Stephen, Paul, Pablo, Gregory, Mark, Timothy (bib0025) 2012; 48 Lee, Yu, Kim, Sung, Yoon (bib0090) 2013; 15 Zhao, Si, Liang, Liu, He (bib0085) 2013; 23 Garrett (bib0040) 2004 Xing, Peng, Zhang, Chen (bib0015) 2015; 37 Liu, Deng (bib0030) 2006 . Ammundsen, Jones, Roziere, Burns (bib0055) 1995; 7 Yuan, Yin, Ji, Deng (bib0060) 2014; 53 Ji, Zhao, Yuan, Wang, Zhou, Yin, Sun (bib0100) 2016; 34 Wang, Lai, Li, Zhang, Huang, Hu, Li (bib0010) 2015; 177 Pasta, Battistel, Mantia (bib0020) 2012; 5 Trócoli, Battistel, Mantia (bib0045) 2014; 20 Peiró, Méndez, Ayres (bib0035) 2013; 65 Zhang, Zhou, Yao, Zhou (bib0050) 2016; 368 Yoon, Park, Ahh, Kim, Lee, Kim (bib0065) 2007; 68 Huang, Kan, Chu, Lu, Shen (bib0110) 2006; 30 10.1016/j.electacta.2017.08.178_bib0005 Peiró (10.1016/j.electacta.2017.08.178_bib0035) 2013; 65 Wang (10.1016/j.electacta.2017.08.178_bib0010) 2015; 177 Liu (10.1016/j.electacta.2017.08.178_bib0030) 2006 Pasta (10.1016/j.electacta.2017.08.178_bib0020) 2012; 5 Ji (10.1016/j.electacta.2017.08.178_bib0070) 2017; 301 Zhao (10.1016/j.electacta.2017.08.178_bib0085) 2013; 23 Ammundsen (10.1016/j.electacta.2017.08.178_bib0055) 1995; 7 Zhang (10.1016/j.electacta.2017.08.178_bib0050) 2016; 368 Xing (10.1016/j.electacta.2017.08.178_bib0015) 2015; 37 10.1016/j.electacta.2017.08.178_bib0105 Trócoli (10.1016/j.electacta.2017.08.178_bib0045) 2014; 20 Lee (10.1016/j.electacta.2017.08.178_bib0090) 2013; 15 Ji (10.1016/j.electacta.2017.08.178_bib0100) 2016; 34 Huang (10.1016/j.electacta.2017.08.178_bib0110) 2006; 30 Garrett (10.1016/j.electacta.2017.08.178_bib0040) 2004 Zhao (10.1016/j.electacta.2017.08.178_bib0075) 2013; 133 Yuan (10.1016/j.electacta.2017.08.178_bib0060) 2014; 53 Intaranont (10.1016/j.electacta.2017.08.178_bib0080) 2014; 2 Stephen (10.1016/j.electacta.2017.08.178_bib0025) 2012; 48 Yoon (10.1016/j.electacta.2017.08.178_bib0065) 2007; 68 Kim (10.1016/j.electacta.2017.08.178_bib0095) 2015; 125 |
References_xml | – volume: 368 start-page: 82 year: 2016 end-page: 87 ident: bib0050 article-title: Preparation of H publication-title: Applied Surface Science – volume: 53 start-page: 9889 year: 2014 end-page: 9896 ident: bib0060 article-title: Effective recycling performance of Li publication-title: Industrial & Engineering Chemistry Research – volume: 20 start-page: 9888 year: 2014 end-page: 9891 ident: bib0045 article-title: Selectivity of a lithium-recovery process based on LiFePO publication-title: Chemistry-A European Journal – volume: 125 start-page: 50 year: 2015 end-page: 56 ident: bib0095 article-title: Lithium recovery from brine using a λ-MnO publication-title: Chemosphere – year: 2004 ident: bib0040 article-title: Handbook of lithium and natural calcium chloride: Their deposites, processing, uses and properties – start-page: 69 year: 2006 end-page: 75 ident: bib0030 article-title: Progress on the process and technique of lithium recovery from salt lake brines around the world publication-title: World Sci-Tech R&D – volume: 34 start-page: 549 year: 2016 end-page: 557 ident: bib0100 article-title: Li publication-title: Solvent Extraction and Ion Exchange – volume: 68 start-page: 780 year: 2007 end-page: 784 ident: bib0065 article-title: Synthesis and characterization of spinel type high-power cathode materials LiM publication-title: Journal of Physics and Chemistry of Solids – volume: 7 start-page: 2151 year: 1995 end-page: 2160 ident: bib0055 article-title: Mechanism of proton insertion and characterization of the proton sites in lithium manganese spinels publication-title: Chemistry of Materials – reference: . – volume: 30 start-page: 448 year: 2006 end-page: 452 ident: bib0110 article-title: Cyclic voltammetry and electrochemical properties of LiMn publication-title: Chinese Journal of Rare Metals – volume: 48 start-page: 55 year: 2012 end-page: 69 ident: bib0025 article-title: Global lithium resources: Relative importance of pegmatite, brine and other deposits publication-title: Ore Geology Reviews – volume: 5 start-page: 9487 year: 2012 end-page: 9491 ident: bib0020 article-title: Batteries for lithium recovery from brines publication-title: Energy & Environmental Science – volume: 65 start-page: 986 year: 2013 end-page: 996 ident: bib0035 article-title: Lithium: sources, production, uses, and recovery outlook publication-title: The Journal of The Minerals, Metals & Materials Society – volume: 2 start-page: 6374 year: 2014 end-page: 6377 ident: bib0080 article-title: Selective lithium extraction from brines by chemical reaction with battery materials publication-title: Journal of Materials Chemistry A – volume: 15 start-page: 7690 year: 2013 end-page: 7695 ident: bib0090 article-title: Highly selective lithium recovery from brine using a λ-MnO publication-title: Physical Chemistry Chemical Physics – volume: 37 start-page: 0988 year: 2015 end-page: 0997 ident: bib0015 article-title: Global lithium demand and supply publication-title: Resources Science – volume: 301 start-page: 116 year: 2017 end-page: 124 ident: bib0070 article-title: Lithium extraction process on spinel-type LiMn publication-title: Solid State Ionics – volume: 133 start-page: 75 year: 2013 end-page: 83 ident: bib0075 article-title: Li extraction from high Mg/Li ratio brine with LiFePO publication-title: Hydrometallurgy – volume: 23 start-page: 1157 year: 2013 end-page: 1164 ident: bib0085 article-title: Electrochemical behavior of Li publication-title: Transactions of Nonferrous Metals Society of China – volume: 177 start-page: 290 year: 2015 end-page: 297 ident: bib0010 article-title: Excellent stability of spinel LiMn publication-title: Electrochimica Acta – volume: 37 start-page: 0988 year: 2015 ident: 10.1016/j.electacta.2017.08.178_bib0015 article-title: Global lithium demand and supply publication-title: Resources Science – volume: 68 start-page: 780 year: 2007 ident: 10.1016/j.electacta.2017.08.178_bib0065 article-title: Synthesis and characterization of spinel type high-power cathode materials LiMxMn2-xO4 (MNi, Co Cr) publication-title: Journal of Physics and Chemistry of Solids doi: 10.1016/j.jpcs.2007.03.028 – year: 2004 ident: 10.1016/j.electacta.2017.08.178_bib0040 – volume: 2 start-page: 6374 year: 2014 ident: 10.1016/j.electacta.2017.08.178_bib0080 article-title: Selective lithium extraction from brines by chemical reaction with battery materials publication-title: Journal of Materials Chemistry A doi: 10.1039/C4TA01101E – volume: 177 start-page: 290 year: 2015 ident: 10.1016/j.electacta.2017.08.178_bib0010 article-title: Excellent stability of spinel LiMn2O4-based cathode materials for lithium-ion batteries publication-title: Electrochimica Acta doi: 10.1016/j.electacta.2015.02.027 – volume: 30 start-page: 448 year: 2006 ident: 10.1016/j.electacta.2017.08.178_bib0110 article-title: Cyclic voltammetry and electrochemical properties of LiMn2O4 and Li2CO3 modified LiMn2O4 publication-title: Chinese Journal of Rare Metals – volume: 368 start-page: 82 year: 2016 ident: 10.1016/j.electacta.2017.08.178_bib0050 article-title: Preparation of H2TiO3-lithium adsorbent by the sol-gel process and its adsorption performance publication-title: Applied Surface Science doi: 10.1016/j.apsusc.2016.01.203 – volume: 133 start-page: 75 year: 2013 ident: 10.1016/j.electacta.2017.08.178_bib0075 article-title: Li extraction from high Mg/Li ratio brine with LiFePO4/FePO4 as electrode materials publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2012.11.013 – volume: 15 start-page: 7690 year: 2013 ident: 10.1016/j.electacta.2017.08.178_bib0090 article-title: Highly selective lithium recovery from brine using a λ-MnO2-Ag battery publication-title: Physical Chemistry Chemical Physics doi: 10.1039/c3cp50919b – ident: 10.1016/j.electacta.2017.08.178_bib0005 – volume: 7 start-page: 2151 year: 1995 ident: 10.1016/j.electacta.2017.08.178_bib0055 article-title: Mechanism of proton insertion and characterization of the proton sites in lithium manganese spinels publication-title: Chemistry of Materials doi: 10.1021/cm00059a024 – volume: 48 start-page: 55 year: 2012 ident: 10.1016/j.electacta.2017.08.178_bib0025 article-title: Global lithium resources: Relative importance of pegmatite, brine and other deposits publication-title: Ore Geology Reviews doi: 10.1016/j.oregeorev.2012.05.006 – volume: 65 start-page: 986 year: 2013 ident: 10.1016/j.electacta.2017.08.178_bib0035 article-title: Lithium: sources, production, uses, and recovery outlook publication-title: The Journal of The Minerals, Metals & Materials Society doi: 10.1007/s11837-013-0666-4 – start-page: 69 year: 2006 ident: 10.1016/j.electacta.2017.08.178_bib0030 article-title: Progress on the process and technique of lithium recovery from salt lake brines around the world publication-title: World Sci-Tech R&D – volume: 5 start-page: 9487 year: 2012 ident: 10.1016/j.electacta.2017.08.178_bib0020 article-title: Batteries for lithium recovery from brines publication-title: Energy & Environmental Science doi: 10.1039/c2ee22977c – volume: 20 start-page: 9888 year: 2014 ident: 10.1016/j.electacta.2017.08.178_bib0045 article-title: Selectivity of a lithium-recovery process based on LiFePO4 publication-title: Chemistry-A European Journal doi: 10.1002/chem.201403535 – volume: 125 start-page: 50 year: 2015 ident: 10.1016/j.electacta.2017.08.178_bib0095 article-title: Lithium recovery from brine using a λ-MnO2/activated carbon hybrid supercapacitor system publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.01.024 – volume: 53 start-page: 9889 year: 2014 ident: 10.1016/j.electacta.2017.08.178_bib0060 article-title: Effective recycling performance of Li+ extraction from spinel-type LiMn2O4 with persulfate publication-title: Industrial & Engineering Chemistry Research doi: 10.1021/ie501098e – volume: 23 start-page: 1157 year: 2013 ident: 10.1016/j.electacta.2017.08.178_bib0085 article-title: Electrochemical behavior of Li+, Mg2+ Na+ and K+ in LiFePO4/FePO4 structures publication-title: Transactions of Nonferrous Metals Society of China doi: 10.1016/S1003-6326(13)62578-9 – volume: 301 start-page: 116 year: 2017 ident: 10.1016/j.electacta.2017.08.178_bib0070 article-title: Lithium extraction process on spinel-type LiMn2O4 and characterization based on the hydrolysis of sodium persulfate publication-title: Solid State Ionics doi: 10.1016/j.ssi.2017.01.018 – ident: 10.1016/j.electacta.2017.08.178_bib0105 – volume: 34 start-page: 549 year: 2016 ident: 10.1016/j.electacta.2017.08.178_bib0100 article-title: Li+ extraction from spinel-type LiMn2O4 in different eluents and Li+ insertion in the aqueous phase publication-title: Solvent Extraction and Ion Exchange doi: 10.1080/07366299.2016.1221266 |
SSID | ssj0007670 |
Score | 2.5788152 |
Snippet | [Display omitted]
•A recovery system with LiMn2O4/Li1-xMn2O4 as electrodes was used to extract lithium.•The influence sequence of coexisting ions on lithium... Lithium rechargeable batteries have been used for lithium extraction in recent years. Here, we report on a highly selective lithium recovery system that... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 350 |
SubjectTerms | Anion exchanging brine Brines concentrated seawater Electrodes electrolytic cell Energy consumption extraction lithium Lithium batteries Rechargeable batteries Saline water Seawater Temperature |
Title | Study on lithium extraction from brines based on LiMn2O4/Li1-xMn2O4 by electrochemical method |
URI | https://dx.doi.org/10.1016/j.electacta.2017.08.178 https://www.proquest.com/docview/1968401815 |
Volume | 252 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6LHtSD-MTHKjl4rdu06Tb1tiwu6_ui4EVCp0mxolXcXXAv_nZn2nR9IHgQemhLEsrM9JtJmJmPsYPIhBmdLKEGbOzJMLZeAiLxwAcjQapcVdQJF5fd4Y08vY1uW6zf1MJQWqXD_hrTK7R2bzpOmp2XoqAaXxHKrkIXjHYpE8JhKWOy8sP3zzSPuBv7DYsBjf6W41VRzaR4UY5XTL08BfGt_e6hfmB15YAGK2zZRY68V3_cKmvZco0t9BvCtjW29KW34Dq7owzBKX8uOQba98XkiSMMv9ZlDJyKSjhQ4d-Ikx8zNO68uCiDK9k5L4T3Vt1ymHLHk5O5xgK8ppzeYDeD4-v-0HNcCl6GG76xZ0UeBSkK3wQJoAcChDUfAggsJJkJTWBDY1Tqg4AIQNk8sjLPUcMiMSqzItxkc-VzabcYN4kUuIoSMcQylQZjCkiVIt5ymycm22bdRn46c43Gie_iUTcZZQ96JnhNgte-0ij4bebPJr7UvTb-nnLUKEh_MxuNHuHvye1Gpdr9uSONiIR7Xox7op3_rL3LFumJvFzgt9nc-HVi9zB8GcN-ZZ_7bL53cja8_ABkGPE1 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2V9lB6QLQFUSjgAz2mGzvOxkHigArVlu62l1bqBZlM7IggmlbdrWAv_Cn-IDOJ0w-E1AOqlEOUxJYzY78ZWzPzAN6kLin5ZIk04LNIJ5mPcpR5hDE6jdpUpqVOmBwMR8f600l6sgC_-1wYDqsM2N9heovW4ckgSHNwXtec4ysTPTRkgmle6lyFyMp9P_9B-7bpu70PpOQtpXY_Hu2MokAtEJW0_5lFXlapKmgsTuVIgIy0ymNUqDzmpUuc8olzpohRYopofJV6XVX0wzJ3pvQyoX4fwJImuGDahO1f13El2TCLe9oEHt6toLKW26agi4PKMi4eKpng7d8m8S_j0Fq83cfwKLiq4n0njVVY8M0aLO_0DHFrsHKjmOE6fOaQxLk4awR59l_ry1NBuH_R5U0IzmIRyJmGU8GG0_F343rSqEM9GNcy-tneCpyLQMxThkoGouO4fgLH9yLhp7DYnDX-GQiXa0m9GJlhpgvtyInBwhgmSvdV7soNGPbys2WobM4EG99tH8L2zV4J3rLgbWwsCX4D4quG511xj7ubvO0VZG_NU0sm6O7Gm71KbYCKqSUIpE02OVrp8__p-zUsj44mYzveO9h_AQ_5DZtYFW_C4uzi0r8k32mGr9q5KuDLfS-OP9d8MRo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+on+lithium+extraction+from+brines+based+on+LiMn2O4%2FLi1-xMn2O4+by+electrochemical+method&rft.jtitle=Electrochimica+acta&rft.au=Zhao%2C+Meng-Yao&rft.au=Ji%2C+Zhi-Yong&rft.au=Zhang%2C+Yong-Guang&rft.au=Guo%2C+Zhi-Yuan&rft.date=2017-10-20&rft.pub=Elsevier+Ltd&rft.issn=0013-4686&rft.eissn=1873-3859&rft.volume=252&rft.spage=350&rft.epage=361&rft_id=info:doi/10.1016%2Fj.electacta.2017.08.178&rft.externalDocID=S0013468617318492 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-4686&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-4686&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-4686&client=summon |