Analyzing the Term Structure of Interest Rates Using the Dynamic Nelson-Siegel Model With Time-Varying Parameters

In this article we introduce time-varying parameters in the dynamic Nelson-Siegel yield curve model for the simultaneous analysis and forecasting of interest rates of different maturities. The Nelson-Siegel model has been recently reformulated as a dynamic factor model with vector autoregressive fac...

Full description

Saved in:
Bibliographic Details
Published inJournal of business & economic statistics Vol. 28; no. 3; pp. 329 - 343
Main Authors Koopman, Siem Jan, Mallee, Max I. P., Van der Wel, Michel
Format Journal Article
LanguageEnglish
Published Alexandria Taylor & Francis 01.07.2010
American Statistical Association
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this article we introduce time-varying parameters in the dynamic Nelson-Siegel yield curve model for the simultaneous analysis and forecasting of interest rates of different maturities. The Nelson-Siegel model has been recently reformulated as a dynamic factor model with vector autoregressive factors. We extend this framework in two directions. First, the factor loadings in the Nelson-Siegel yield model depend on a single loading parameter that we treat as the fourth latent factor. Second, we specify the overall volatility as a generalized autoregressive conditional heteroscedasticity (GARCH) process. We present empirical evidence of considerable increases in within-sample goodness of fit for these advances in the dynamic Nelson-Siegel model.
AbstractList In this article we introduce time-varying parameters in the dynamic Nelson-Siegel yield curve model for the simultaneous analysis and forecasting of interest rates of different maturities. The Nelson-Siegel model has been recently reformulated as a dynamic factor model with vector autoregressive factors. We extend this framework in two directions. First, the factor loadings in the Nelson-Siegel yield model depend on a single loading parameter that we treat as the fourth latent factor. Second, we specify the overall volatility as a generalized autoregressive conditional heteroscedasticity (GARCH) process. We present empirical evidence of considerable increases in within-sample goodness of fit for these advances in the dynamic Nelson-Siegel model. [PUBLICATION ABSTRACT]
In this article we introduce time-varying parameters in the dynamic Nelson—Siegel yield curve model for the simultaneous analysis and forecasting of interest rates of different maturities. The Nelson—Siegel model has been recently reformulated as a dynamic factor model with vector autoregressive factors. We extend this framework in two directions. First, the factor loadings in the Nelson—Siegel yield model depend on a single loading parameter that we treat as the fourth latent factor. Second, we specify the overall volatility as a generalized autoregressive conditional heteroscedasticity (GARCH) process. We present empirical evidence of considerable increases in within-sample goodness of fit for these advances in the dynamic Nelson—Siegel model.
Author Van der Wel, Michel
Koopman, Siem Jan
Mallee, Max I. P.
Author_xml – sequence: 1
  givenname: Siem Jan
  surname: Koopman
  fullname: Koopman, Siem Jan
– sequence: 2
  givenname: Max I. P.
  surname: Mallee
  fullname: Mallee, Max I. P.
– sequence: 3
  givenname: Michel
  surname: Van der Wel
  fullname: Van der Wel, Michel
BookMark eNp1ULlOAzEQtRBIhKOmQrLoN_Gxjh06xBmJSxCgtLybMWy0axPbEQpfj0OAjilmindo3ttBm847QOiAkj6lIzWYVRD7jJBRn0g2EhuoRwWXBZNEbqIekVwUhFCxjXZinJE8Sgx7aH7iTLv8bNwrTm-AJxA6_JjCok6LANhbPHYJAsSEH0yCiJ_iL_Vs6UzX1PgW2uhd8djAK7T4xk_zfmnSG540HRTPJixXinsTTAfZKu6hLWvaCPs_dxc9XZxPTq-K67vL8enJdVGX5TAVU7BTCqICxTmjjAAoYipTcwNWMWWhhGpYcVsZari0XNDaSspsLYELKw3fRUdr3_fg54ucQM_8IuS0UQvCKS2VYpk0WJPq4GMMYPV7aLr8s6ZEr2rVq1r1qlb9XWtWHK4Vs5h8-KMzIgVRJc_48RpvnPWhMx8-tFOdzLL1wQbj6iZq_p_5F2h-jO8
CitedBy_id crossref_primary_10_1002_jae_2680
crossref_primary_10_1007_s10260_017_0378_y
crossref_primary_10_1002_jae_2360
crossref_primary_10_1007_s10614_021_10113_w
crossref_primary_10_1016_j_pacfin_2012_02_002
crossref_primary_10_2139_ssrn_2226406
crossref_primary_10_2139_ssrn_3067911
crossref_primary_10_1016_j_jempfin_2021_04_008
crossref_primary_10_1080_02664763_2013_845142
crossref_primary_10_1002_ijfe_2777
crossref_primary_10_1016_j_jeconom_2011_02_011
crossref_primary_10_1016_j_jeconom_2024_105750
crossref_primary_10_1198_jasa_2011_ap09732
crossref_primary_10_1002_jae_2319
crossref_primary_10_1016_j_iref_2022_01_011
crossref_primary_10_2139_ssrn_2311721
crossref_primary_10_2139_ssrn_2705868
crossref_primary_10_1002_fut_22290
crossref_primary_10_1007_s10614_024_10653_x
crossref_primary_10_1016_j_intfin_2023_101837
crossref_primary_10_1007_s11009_016_9532_5
crossref_primary_10_1016_j_frl_2018_02_020
crossref_primary_10_1108_SEF_11_2015_0273
crossref_primary_10_1080_07350015_2024_2365779
crossref_primary_10_2139_ssrn_2737966
crossref_primary_10_1016_j_econmod_2020_10_015
crossref_primary_10_1016_j_jjie_2022_101204
crossref_primary_10_1080_07474938_2019_1690191
crossref_primary_10_2139_ssrn_2456624
crossref_primary_10_1080_00949655_2023_2299938
crossref_primary_10_2139_ssrn_2079795
crossref_primary_10_4236_jmf_2020_102015
crossref_primary_10_1002_fut_21713
crossref_primary_10_1080_02664763_2014_993363
crossref_primary_10_1016_j_ijforecast_2021_01_027
crossref_primary_10_1515_snde_2019_0094
crossref_primary_10_2139_ssrn_1403105
crossref_primary_10_1002_for_2414
crossref_primary_10_1016_j_csda_2010_07_003
crossref_primary_10_1007_s10614_014_9438_7
crossref_primary_10_1080_01621459_2016_1165104
crossref_primary_10_1016_j_ecosta_2021_03_008
crossref_primary_10_2139_ssrn_2535834
crossref_primary_10_1016_j_econmod_2016_10_003
crossref_primary_10_1142_S2424786322500384
crossref_primary_10_2139_ssrn_1804930
crossref_primary_10_2139_ssrn_4488526
crossref_primary_10_1515_jtse_2012_0025
crossref_primary_10_2139_ssrn_3600955
crossref_primary_10_1093_jjfinec_nbs021
crossref_primary_10_1007_s10203_014_0161_6
crossref_primary_10_1214_12_AOAS551
crossref_primary_10_3982_QE1225
crossref_primary_10_1093_jjfinec_nbu004
crossref_primary_10_1080_02664763_2013_838663
crossref_primary_10_2139_ssrn_3723728
crossref_primary_10_1016_j_ijforecast_2012_12_004
crossref_primary_10_1016_j_ijforecast_2016_11_003
crossref_primary_10_1002_for_1258
crossref_primary_10_1016_j_ijforecast_2018_03_006
crossref_primary_10_2139_ssrn_3538961
crossref_primary_10_26710_jafee_v9i3_2753
crossref_primary_10_2139_ssrn_2232798
crossref_primary_10_1007_s11146_014_9492_x
crossref_primary_10_1016_j_iref_2016_03_008
crossref_primary_10_1057_s41283_020_00062_3
crossref_primary_10_2139_ssrn_2350776
crossref_primary_10_3390_econometrics7010009
crossref_primary_10_1146_annurev_financial_110716_032347
crossref_primary_10_3390_stats3030020
crossref_primary_10_1002_for_2288
crossref_primary_10_1002_jae_2358
crossref_primary_10_1108_JRF_04_2020_0067
crossref_primary_10_1080_07350015_2020_1763805
crossref_primary_10_1093_jjfinec_nbaa027
crossref_primary_10_1093_jjfinec_nbx002
crossref_primary_10_1002_jae_2399
crossref_primary_10_2139_ssrn_4025299
crossref_primary_10_3390_axioms11030135
crossref_primary_10_1016_j_eneco_2021_105350
crossref_primary_10_1016_j_jbankfin_2023_106908
crossref_primary_10_2139_ssrn_2316408
crossref_primary_10_1080_10485252_2022_2080825
crossref_primary_10_3917_redp_302_0231
crossref_primary_10_1016_j_najef_2014_06_008
crossref_primary_10_1016_j_ijforecast_2024_04_006
Cites_doi 10.1016/S0304-3932(03)00032-1
ContentType Journal Article
Copyright 2010 American Statistical Association 2010
2010 American Statistical Association
Copyright American Statistical Association Jul 2010
Copyright_xml – notice: 2010 American Statistical Association 2010
– notice: 2010 American Statistical Association
– notice: Copyright American Statistical Association Jul 2010
DBID AAYXX
CITATION
DOI 10.1198/jbes.2009.07295
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Economics
Statistics
Mathematics
EISSN 1537-2707
EndPage 343
ExternalDocumentID 2061096741
10_1198_jbes_2009_07295
20750843
10711471
Genre Articles
Feature
GroupedDBID -~X
.7F
.QJ
0BK
0R~
29K
2AX
30N
4.4
5GY
7WY
85S
8FL
AAAVI
AAENE
AAIKC
AAJMT
AAKYL
AALDU
AAMIU
AAMNW
AAPUL
AAQRR
ABBHK
ABBKH
ABCCY
ABFAN
ABFIM
ABJVF
ABKVW
ABLIJ
ABLJU
ABPEM
ABQHQ
ABTAI
ABXUL
ABYRZ
ABYWD
ABYYQ
ACGFO
ACGFS
ACHQT
ACMTB
ACNCT
ACTIO
ACTMH
ACVFL
ADCVX
ADGDI
ADGTB
ADMHP
ADODI
ADULT
AEGYZ
AEISY
AELLO
AELPN
AENEX
AEOZL
AEPSL
AEUPB
AEYOC
AFFNX
AFOLD
AFSUE
AFVYC
AFWLO
AFXKK
AGDLA
AGMYJ
AHAJD
AHDLD
AIJEM
AIRXU
AKBRZ
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
BDTQF
BHOJU
BKOMP
BLEHA
CBXGM
CCCUG
CHNMF
CS3
CWXUR
CZBKB
D-I
D0L
DGEBU
DKSSO
DQDLB
DSRWC
DU5
EBS
ECEWR
EFSUC
EJD
E~A
E~B
F20
F5P
FUNRP
FVPDL
GROUPED_ABI_INFORM_COMPLETE
GTTXZ
H13
HQ6
HZ~
H~P
IAO
IEA
IGG
IOF
J.P
JAA
JAAYA
JBMMH
JBU
JBZCM
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JPPEU
JSODD
JST
K60
K6~
KYCEM
M4Z
MS~
N95
NA5
NY~
O9-
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SA0
SJN
SNACF
TEJ
TFL
TFT
TFW
TN5
TTHFI
U5U
UT5
UU3
V1K
WZA
YK4
YQT
ZCA
ZGOLN
~S~
ABJNI
ABQDR
ABXSQ
ABXYU
AGCQS
JENOY
07G
1OL
3R3
3V.
8FI
8FJ
8G5
8H~
8R4
8R5
AAIKQ
AAKBW
AAYXX
ABPAQ
ABTAH
ABUWG
ACAGQ
ACGEE
ADACV
ADBBV
AEUMN
AFFVI
AFKRA
AGLEN
AGROQ
AHDZW
AHMOU
AKVCP
ALCKM
ALIPV
AMATQ
AMXXU
AQUVI
AWYRJ
AZQEC
BCCOT
BENPR
BEZIV
BPHCQ
BPLKW
BVXVI
C06
CCPQU
CITATION
CRFIH
DMQIW
DWIFK
DWQXO
EBU
EOH
FEDTE
FRNLG
FYUFA
GIFXF
GNUQQ
GROUPED_ABI_INFORM_RESEARCH
GUQSH
HECYW
HF~
HGD
HVGLF
H~9
IPNFZ
IPSME
IVXBP
LJTGL
LPU
M0C
M0T
M2O
MVM
NUSFT
PADUT
PQBIZ
PQBZA
PQQKQ
PROAC
Q2X
QCRFL
RNS
S0X
TAQ
TBQAZ
TDBHL
TFMCV
TOXWX
TUROJ
UB9
UKHRP
YCJ
YYP
ZY4
ACDIW
ACUHF
ADMHG
APTMU
ID FETCH-LOGICAL-c446t-defd1e5be8332120ee80abac3aef828fe4eb6b3fba1a37f351cf712fc7e35f7a3
ISSN 0735-0015
IngestDate Thu Oct 10 18:34:27 EDT 2024
Thu Sep 12 17:17:14 EDT 2024
Fri Feb 02 07:02:04 EST 2024
Tue Jun 13 19:28:41 EDT 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c446t-defd1e5be8332120ee80abac3aef828fe4eb6b3fba1a37f351cf712fc7e35f7a3
OpenAccessLink https://www.econstor.eu/bitstream/10419/86192/1/07-095.pdf
PQID 503114882
PQPubID 3244
PageCount 15
ParticipantIDs informaworld_taylorfrancis_310_1198_jbes_2009_07295
proquest_journals_503114882
jstor_primary_20750843
crossref_primary_10_1198_jbes_2009_07295
PublicationCentury 2000
PublicationDate 2010-07-01
PublicationDateYYYYMMDD 2010-07-01
PublicationDate_xml – month: 07
  year: 2010
  text: 2010-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Alexandria
PublicationPlace_xml – name: Alexandria
PublicationTitle Journal of business & economic statistics
PublicationYear 2010
Publisher Taylor & Francis
American Statistical Association
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: American Statistical Association
– name: Taylor & Francis Ltd
References p_2
References_xml – ident: p_2
  doi: 10.1016/S0304-3932(03)00032-1
SSID ssj0000856
Score 2.3188548
Snippet In this article we introduce time-varying parameters in the dynamic Nelson-Siegel yield curve model for the simultaneous analysis and forecasting of interest...
In this article we introduce time-varying parameters in the dynamic Nelson—Siegel yield curve model for the simultaneous analysis and forecasting of interest...
SourceID proquest
crossref
jstor
informaworld
SourceType Aggregation Database
Publisher
StartPage 329
SubjectTerms Curvature
Dynamic modeling
Economic forecasting models
Economic models
Extended Kalman filter
Forecasting
Generalized autoregressive conditional heteroscedasticity model
Interest rates
Mathematical vectors
Maturity
Modeling
Parametric models
Regression analysis
Statistical variance
Stochastic models
Studies
Time series forecasting
Time-varying volatility
Yield curve
Yield curves
Title Analyzing the Term Structure of Interest Rates Using the Dynamic Nelson-Siegel Model With Time-Varying Parameters
URI https://www.tandfonline.com/doi/abs/10.1198/jbes.2009.07295
https://www.jstor.org/stable/20750843
https://www.proquest.com/docview/503114882
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF6F9kA5IChUpAW0Bw5IlkPi9c_6WFFQqBRU0fRHXKxde1cIQVLVroR64iF4EV6JJ2Fmf2yHphIgRVbi2BvL35eZ8e58M4S8GEudsUyj7JfrEEPsUHJdhrwaV2lc6jg3yeOz9-n0JD48T84Hg5-9rKWrRo7K67W6kv9BFfYBrqiS_Qdk20FhB7wHfGELCMP2rzA2FUWuveBpDkYWV5mv7KqA04hg743gA0aUgU0PwEMPbB96MHGmWKNLeIiPzQq66Y_2BexF88koRMJTcWnEUEcCM7kalzO_JqSVPose-aSc5BlnKxpbDrq17sulFz3AT34NDjuKzrC3i50tF9-Cd6PgaOS_OhWYuHsZnNnEApvE2p-1wAX3bCUDxC9HHftLWENIawUzloQY2VmH5a10hkK6rG_GI96jK-vZZOamVKx7Z7Yq1E3PkaMa4rNUtStiCk8dSeck29TFCGMsHrM7ZDMC2wZGdXN_evDxrHP_3LQMbq_b1ZOC8V_9MfpKKLRSKNcnx94IEEzUM39A7jts6b7l3kMyUIttcter2ettcm_W1v2FT1vtja4fkbqlJ4VDKNKTtvSkS009PamhJzX0NIc6elJLz1_ff1hiUkNMisSkfWLSjpiPycnbN_PX09D1-AjLOE6bsFK6mqhEKs4YRFFjpfhYSFEyoTSPuFaxkqlkWoqJAJvCkkmps0mky0yxRGeC7ZCNxXKhnhDKcynzqMqVLFEezYWORVZVXKexgJcYkpf-dhcXtpRLYR6Bc14gMtiRNS8MMkPC-nAUjZk907bVTcFuPWvHoNaO7rkyJHsexsKZj7pIwJ1OwH1Gu7edtke2ur_OU7IBCKlnEAI38rkj3W_2m7bh
link.rule.ids 315,783,787,27936,27937,60214,61003
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4BPQAHWiiIhdL6wKEX0-w6D0figmjRQtlVVZaWS2XZiUctoOWx4QC_nhkngdLHBSmXSI4T2-OZb5yZbwA2I4eZypDTfjVKhtjSaSykLqMyjQuM8xA8Phim_eP44CQ5mYLtNheGwyrZh8aaKCLoat7cfBhd7_Bcfzh1ftJQTRI2TKbhRcrUX5zAEQ0f9bAOtVtJhhPJ0KAh9vlHB09s0hPG0jZK8S9NHczP3kv40X54HXVytnVTua3i7g9Ox-eO7BUsNLhU7NSCtAhTfrwEs23a8mQJ5gcPBK90N8cgteZ4fg1XgdnkjoygoCZiRMpeHAVe2ptrLy5QhGNHGpT4yshWhDCF0PTj7dhS92LomTRSHoU_-ILrs52L77-qn4IzVOQ3e83JWOKL5UgypgNdhuO9T6PdvmxKOciC_M1Klh7Lrk-c10qRsYy815F1tlDWI_l86GPvUqfQ2a4l0VFJt8Cs28Mi8yrBzKoVmBlfjP0qCJ07l_fK3LuCs2C1xdhmZakxjS1dtgPv28U0lzVjhwmeTq4NTy8X3sxNmN4OqN8X21ThkATriiZG_feplSATD733GHbpWHVgvRUS02iCiUlIa5LLqXtrz3rZO5jtjwaH5nB_-Hkd5urYBQ4WfgMztJB-gyBR5d4Gyb8HnNUI0A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4BlQoc-oAiFlrqQw9cDNl1snHECZWueJQV4n1AsuzEo_LQ8thwgF_PjJPQUuCClEskx4nt8cw3zsw3AD8ih6lKkdN-NUqG2NJpzKUuoqIb5xhnIXh8u99dP4g3j5PjEVhpcmE4rJJ9aKyIIoKu5s19VWC1wTO9fOb8sGaaJGiYjMI7wgARC7mK-n_VsA6lW0mEE8nIoOb1eaGDJybpCWFpE6T4TFEH69P7CCfNd1dBJ-dLt6Vbyu__o3R848A-wYcalYrVSow-w4gfTMF4k7Q8nILJ7Ud6V7qbYIhaMTxPw3XgNbknEyioidgnVS_2Aivt7Y0XlyjCoSONSewyrhUhSCE0XbsbWOpe9D1TRsq98P9ecHW2C3F0Wv4RnJ8iD-0Np2KJHctxZEwG-gUOer_2f67LupCDzMnbLGXhsWj7xHmtFJnKyHsdWWdzZT2Sx4c-9q7rFDrbtiQ4KmnnmLY7mKdeJZhaNQNjg8uBnwWhM-eyTpF5l3MOrLYY27QoNHZjS5dtwWKzluaq4uswwc_JtOHp5bKbmQnT2wL171qbMhyRYFXPxKhXn5oJIvHYe4dBl45VC-YbGTG1HhiahHQmOZy6M_eml32H9ztrPfN7o781DxNV4AJHCn-FMVpH_43wUOkWgtw_AIP5B30
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analyzing+the+Term+Structure+of+Interest+Rates+Using+the+Dynamic+Nelson%E2%80%94Siegel+Model+With+Time-Varying+Parameters&rft.jtitle=Journal+of+business+%26+economic+statistics&rft.au=Koopman%2C+Siem+Jan&rft.au=Mallee%2C+Max+I.+P.&rft.au=Van+der+Wel%2C+Michel&rft.date=2010-07-01&rft.pub=American+Statistical+Association&rft.issn=0735-0015&rft.eissn=1537-2707&rft.volume=28&rft.issue=3&rft.spage=329&rft.epage=343&rft_id=info:doi/10.1198%2Fjbes.2009.07295&rft.externalDocID=20750843
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0735-0015&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0735-0015&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0735-0015&client=summon