Development and Applications of Superfolder and Split Fluorescent Protein Detection Systems in Biology
Molecular engineering of the green fluorescent protein (GFP) into a robust and stable variant named Superfolder GFP (sfGFP) has revolutionized the field of biosensor development and the use of fluorescent markers in diverse area of biology. sfGFP-based self-associating bipartite split-FP systems hav...
Saved in:
Published in | International journal of molecular sciences Vol. 20; no. 14; p. 3479 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
15.07.2019
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Molecular engineering of the green fluorescent protein (GFP) into a robust and stable variant named Superfolder GFP (sfGFP) has revolutionized the field of biosensor development and the use of fluorescent markers in diverse area of biology. sfGFP-based self-associating bipartite split-FP systems have been widely exploited to monitor soluble expression in vitro, localization, and trafficking of proteins in cellulo. A more recent class of split-FP variants, named « tripartite » split-FP, that rely on the self-assembly of three GFP fragments, is particularly well suited for the detection of protein–protein interactions. In this review, we describe the different steps and evolutions that have led to the diversification of superfolder and split-FP reporter systems, and we report an update of their applications in various areas of biology, from structural biology to cell biology. |
---|---|
AbstractList | Molecular engineering of the green fluorescent protein (GFP) into a robust and stable variant named Superfolder GFP (sfGFP) has revolutionized the field of biosensor development and the use of fluorescent markers in diverse area of biology. sfGFP-based self-associating bipartite split-FP systems have been widely exploited to monitor soluble expression in vitro, localization, and trafficking of proteins in cellulo. A more recent class of split-FP variants, named « tripartite » split-FP, that rely on the self-assembly of three GFP fragments, is particularly well suited for the detection of protein-protein interactions. In this review, we describe the different steps and evolutions that have led to the diversification of superfolder and split-FP reporter systems, and we report an update of their applications in various areas of biology, from structural biology to cell biology. Superfolder Fluorescent Proteins: Progenitor of Split Fluorescent Protein (FP) Systems Previously described mutations that improve the physical properties and expression of green fluorescent protein (GFP) color variants in the host organism have already been the subject of several reviews [1,2,3,4] and will not be described here. The auto-catalytic post-translational modifications of Ser 65, Tyr 66, and Gly 67 can occur when the protein is expressed in prokaryotic or eukaryotic species [8]. avGFP has a maximum excitation peak at 396–398 nm (corresponding to the neutral state of Tyr 66 in the chromophore) and a lower secondary peak at 476–478 nm (corresponding to the deprotonated anionic state of Tyr 66) [9,10], the emission peak is at 510 nm [9]. [...]the excitation of avGFP by the 488 nm line of the Argon laser (standard in microscopy and flow cytometry) indicates low fluorescence intensity levels. avGFP was then evolved by site-directed mutagenesis to optimize brightness and excitation efficiency at 488 nm. Subsequently, the gene sequence of the corresponding S65T/F64L double mutant was converted to human codons to form the “enhanced-GFP” (eGFP), which combines a high expression rate in mammalian cells and a fluorescence intensity 30 times higher than that of avGFP [12]. The advantage with bright cyan FPs donors is that they can accommodate a large palette of acceptors, either green, yellow, or orange, with high Förster resonance energy transfer (FRET) efficiencies. sfTq2 is now used in FRET experiments with acceptor mNeonGreen [32] for the detection of protein–protein interactions in cytoplasmic and periplasmic compartments. sfTq2 mutant C70V named sfTq2ox, when paired with mNeonGreen shows even brighter fluorescence signal in the periplasm [31]. Molecular engineering of the green fluorescent protein (GFP) into a robust and stable variant named Superfolder GFP (sfGFP) has revolutionized the field of biosensor development and the use of fluorescent markers in diverse area of biology. sfGFP-based self-associating bipartite split-FP systems have been widely exploited to monitor soluble expression in vitro, localization, and trafficking of proteins in cellulo. A more recent class of split-FP variants, named « tripartite » split-FP, that rely on the self-assembly of three GFP fragments, is particularly well suited for the detection of protein-protein interactions. In this review, we describe the different steps and evolutions that have led to the diversification of superfolder and split-FP reporter systems, and we report an update of their applications in various areas of biology, from structural biology to cell biology.Molecular engineering of the green fluorescent protein (GFP) into a robust and stable variant named Superfolder GFP (sfGFP) has revolutionized the field of biosensor development and the use of fluorescent markers in diverse area of biology. sfGFP-based self-associating bipartite split-FP systems have been widely exploited to monitor soluble expression in vitro, localization, and trafficking of proteins in cellulo. A more recent class of split-FP variants, named « tripartite » split-FP, that rely on the self-assembly of three GFP fragments, is particularly well suited for the detection of protein-protein interactions. In this review, we describe the different steps and evolutions that have led to the diversification of superfolder and split-FP reporter systems, and we report an update of their applications in various areas of biology, from structural biology to cell biology. |
Author | Cabantous, Stéphanie Pedelacq, Jean-Denis |
AuthorAffiliation | 1 Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France 2 Centre de Recherche en Cancérologie de Toulouse (CRCT), Inserm, Université Paul Sabatier-Toulouse III, CNRS, 31037 Toulouse, France |
AuthorAffiliation_xml | – name: 1 Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France – name: 2 Centre de Recherche en Cancérologie de Toulouse (CRCT), Inserm, Université Paul Sabatier-Toulouse III, CNRS, 31037 Toulouse, France |
Author_xml | – sequence: 1 givenname: Jean-Denis surname: Pedelacq fullname: Pedelacq, Jean-Denis – sequence: 2 givenname: Stéphanie orcidid: 0000-0002-8406-9421 surname: Cabantous fullname: Cabantous, Stéphanie |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31311175$$D View this record in MEDLINE/PubMed https://hal.science/hal-02378354$$DView record in HAL |
BookMark | eNptkk1v1DAQhi1URD_gxhlF4gISC_6I7eSCtLSUIq0E0sLZcuJx65UTp3ay0v57nG6LlhUnWzPPOzN-PefopA89IPSa4I-M1fiT23SJYlKyUtbP0BkpKV1gLOTJwf0Unae0wZgyyusX6JQRRgiR_AzZK9iCD0MH_Vjo3hTLYfCu1aMLfSqCLdbTANEGbyA-5Nc5PRbXfgoRUjurfsYwguuLKxihnXXFepdG6FKRg19c8OF29xI9t9onePV4XqDf119_Xd4sVj--fb9crhZtWYpxYYwlnJvWAmmIKAklxkpTiQaMaWktCYfKMCsBa8IFhoYxXcuGWkF0XUrOLtDnfd1hajow83xRezVE1-m4U0E79W-md3fqNmyVELISoswF3u8L3B3JbpYrNceyh7JivNySzL57bBbD_QRpVJ3LlnivewhTUjSbzTjnFc7o2yN0E6bYZysUZYxlhAiRqTeH0__t__RdGaB7oI0hpQhWtW58-Kv8GOcVwWreCXW4E1n04Uj0VPe_-B9QhLlM |
CitedBy_id | crossref_primary_10_1016_j_coph_2022_102236 crossref_primary_10_1002_pro_70007 crossref_primary_10_1016_j_actbio_2021_08_055 crossref_primary_10_1186_s13068_022_02206_x crossref_primary_10_1186_s12934_021_01672_6 crossref_primary_10_3390_microorganisms10040781 crossref_primary_10_1038_s41467_024_52484_2 crossref_primary_10_7554_eLife_74884 crossref_primary_10_3390_md18110582 crossref_primary_10_3389_fimmu_2022_980539 crossref_primary_10_1002_cplu_202100304 crossref_primary_10_2139_ssrn_4119000 crossref_primary_10_31857_S0041377123040119 crossref_primary_10_3389_fpls_2020_01280 crossref_primary_10_1016_j_dyepig_2020_108571 crossref_primary_10_1016_j_nbt_2024_05_004 crossref_primary_10_34172_apb_2024_050 crossref_primary_10_1134_S1990519X23060123 crossref_primary_10_1080_21541248_2021_1957384 crossref_primary_10_1002_bit_28393 crossref_primary_10_1038_s41598_024_58588_5 crossref_primary_10_3390_ijms241310524 crossref_primary_10_3390_biology9110407 crossref_primary_10_1051_medsci_2020108 crossref_primary_10_1038_s42003_021_01780_4 crossref_primary_10_1002_ange_201914919 crossref_primary_10_1016_j_isci_2024_111083 crossref_primary_10_3390_ijms21072301 crossref_primary_10_1186_s12934_025_02646_8 crossref_primary_10_1016_j_ijbiomac_2024_130092 crossref_primary_10_1038_s41564_024_01840_5 crossref_primary_10_1016_j_tibtech_2025_02_011 crossref_primary_10_1186_s42483_023_00209_6 crossref_primary_10_7554_eLife_53913 crossref_primary_10_1002_bit_28776 crossref_primary_10_1111_tra_12908 crossref_primary_10_1371_journal_pone_0241461 crossref_primary_10_1002_anie_201914919 crossref_primary_10_1016_j_semcdb_2023_07_003 crossref_primary_10_3390_ijms25105474 crossref_primary_10_1002_jbio_202300423 crossref_primary_10_1021_acsmeasuresciau_3c00068 crossref_primary_10_1039_D3AN00320E crossref_primary_10_1016_j_biotechadv_2023_108213 crossref_primary_10_1021_acscentsci_9b01051 crossref_primary_10_1002_cctc_202300494 crossref_primary_10_1007_s43393_024_00269_5 crossref_primary_10_1021_acsami_4c01388 crossref_primary_10_1016_j_apsb_2024_05_003 |
Cites_doi | 10.1038/nmeth.2413 10.1021/bi802027g 10.1101/385484 10.1038/ncomms10024 10.1242/jcs.095059 10.1371/journal.pone.0026222 10.1038/28190 10.1091/mbc.e16-05-0337 10.1002/wsbm.1415 10.3389/fnmol.2012.00018 10.1371/journal.pone.0043505 10.1038/nprot.2017.052 10.1021/acssynbio.6b00034 10.1021/ja046699g 10.1038/nmeth.2934 10.1038/s41598-017-14459-w 10.1038/s41467-017-00494-8 10.1016/j.cell.2013.06.008 10.1111/mmi.14206 10.1107/S0907444913024608 10.1016/j.neuron.2008.12.033 10.1242/jcs.210419 10.1038/ncomms1738 10.1073/pnas.0407645101 10.1073/pnas.082243699 10.1093/nar/gkr548 10.1016/S0968-0004(00)89099-4 10.1016/S0076-6879(06)06011-3 10.1021/bi060773l 10.1007/978-1-4939-7366-8_9 10.1093/hmg/ddu519 10.1038/srep08541 10.1021/ja994421w 10.1016/j.drudis.2015.11.004 10.1038/nmeth932 10.1038/nmeth1204-255 10.1021/ja110256c 10.1088/2050-6120/aaef01 10.1128/JVI.05820-11 10.1038/s41592-018-0171-3 10.1073/pnas.93.16.8362 10.1007/s10969-009-9077-8 10.1007/s10969-005-5247-5 10.1021/ja043277y 10.1021/jacs.8b13042 10.1111/j.1600-0854.2011.01168.x 10.1111/tra.12281 10.1038/nmeth.1437 10.1073/pnas.91.26.12501 10.1021/acsinfecdis.7b00052 10.1111/j.1471-4159.2007.04941.x 10.2144/000113512 10.1002/jcsm.12249 10.1038/s41598-018-30367-z 10.1021/acs.analchem.7b04756 10.1007/978-1-4939-9624-7_20 10.1146/annurev.biochem.67.1.509 10.1093/nar/gku408 10.1038/nbt0102-87 10.1242/jcs.208686 10.1038/nchembio790 10.1083/jcb.201607043 10.1111/tpj.13874 10.1126/science.8303295 10.1038/373663b0 10.3390/ijms10062763 10.1002/cbic.201200734 10.1038/s41598-018-23625-7 10.1038/nbt1044 10.1038/nsmb.1727 10.1038/nn.3709 10.1038/srep02854 10.1101/290114 10.1016/j.tibs.2016.09.010 10.1074/jbc.M112.381798 10.1038/s41418-017-0033-z 10.1016/j.bpj.2018.03.016 10.1016/j.neuron.2007.11.030 10.1371/journal.pone.0050736 10.1038/s41598-018-36559-x 10.1073/pnas.1612098114 10.1038/10904 10.1038/nbt0396-315 10.1146/annurev-biophys-051013-022846 10.1016/0378-1119(95)00685-0 10.1038/ncomms12405 10.1126/science.1168683 10.1038/srep20568 10.1007/978-1-4939-9624-7_15 10.1371/journal.pone.0170118 10.1093/protein/9.11.1029 10.1002/pro.2866 10.1111/tpj.12397 10.1073/pnas.1101929108 10.7554/eLife.38853 10.1242/jcs.005801 10.1016/j.tibs.2009.06.009 10.1002/pmic.200600966 10.1146/annurev.biophys.37.032807.125842 10.1111/j.1462-2920.2007.01482.x 10.1038/nmeth.4074 10.1152/physrev.00038.2009 10.1038/nbt1172 10.1101/055285 10.1038/s41467-017-00062-0 10.1016/j.molbiopara.2012.11.004 10.1038/ncomms8670 10.1038/nbt816 10.1126/science.1068539 10.1038/s41592-019-0352-8 10.1016/0378-1119(92)90691-H 10.1038/ncomms11046 10.1016/j.jsb.2013.07.010 10.1038/nbt1037 10.1073/pnas.1618087114 10.1515/hsz-2016-0214 |
ContentType | Journal Article |
Copyright | 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License 2019 by the authors. 2019 |
Copyright_xml | – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: 2019 by the authors. 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH K9. M0S M1P M2O MBDVC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS Q9U 7X8 1XC VOOES 5PM |
DOI | 10.3390/ijms20143479 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Proquest Central ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Engineering |
EISSN | 1422-0067 |
ExternalDocumentID | PMC6678664 oai_HAL_hal_02378354v1 31311175 10_3390_ijms20143479 |
Genre | Journal Article Review |
GroupedDBID | --- 29J 2WC 53G 5GY 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8G5 A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 DWQXO E3Z EBD EBS EJD ESX F5P FRP FYUFA GNUQQ GUQSH GX1 HH5 HMCUK HYE IAO IHR ITC KQ8 LK8 M1P M2O M48 MODMG O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TR2 TUS UKHRP ~8M 3V. ABJCF BBNVY BHPHI CGR CUY CVF ECM EIF GROUPED_DOAJ HCIFZ KB. M7P M~E NPM PDBOC 7XB 8FK K9. MBDVC PJZUB PKEHL PPXIY PQEST PQUKI PRINS Q9U 7X8 1XC ADRAZ C1A IPNFZ RIG VOOES 5PM |
ID | FETCH-LOGICAL-c446t-ddf155dcfe1b164121df7d86beddc29715e8d3f7e0a1560eb33a97b2f61a94753 |
IEDL.DBID | M48 |
ISSN | 1422-0067 1661-6596 |
IngestDate | Thu Aug 21 18:06:55 EDT 2025 Fri May 09 12:20:14 EDT 2025 Thu Jul 10 19:12:43 EDT 2025 Fri Jul 25 20:23:46 EDT 2025 Wed Feb 19 02:31:51 EST 2025 Thu Apr 24 22:58:17 EDT 2025 Tue Jul 01 01:45:50 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | fluorescent protein tripartite folding PPI split-GFP bipartite superfolder |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c446t-ddf155dcfe1b164121df7d86beddc29715e8d3f7e0a1560eb33a97b2f61a94753 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-8406-9421 0000-0002-3202-2517 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijms20143479 |
PMID | 31311175 |
PQID | 2333580166 |
PQPubID | 2032341 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6678664 hal_primary_oai_HAL_hal_02378354v1 proquest_miscellaneous_2259355580 proquest_journals_2333580166 pubmed_primary_31311175 crossref_citationtrail_10_3390_ijms20143479 crossref_primary_10_3390_ijms20143479 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190715 |
PublicationDateYYYYMMDD | 2019-07-15 |
PublicationDate_xml | – month: 7 year: 2019 text: 20190715 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | International journal of molecular sciences |
PublicationTitleAlternate | Int J Mol Sci |
PublicationYear | 2019 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Bornscheuer (ref_44) 2018; 1685 ref_94 Campbell (ref_33) 2002; 99 Cabantous (ref_40) 2006; 3 Zhang (ref_91) 2018; 90 Gence (ref_92) 2018; 131 Chudakov (ref_2) 2010; 90 ref_96 ref_95 Kirchhofer (ref_117) 2009; 17 Hu (ref_79) 2003; 21 Magliery (ref_84) 2005; 127 ref_18 Kellermann (ref_100) 2013; 14 Nguyen (ref_35) 2013; 69 Fischer (ref_107) 2004; 101 Wilson (ref_77) 2004; 1 Cubitt (ref_8) 1995; 20 Feinberg (ref_53) 2008; 57 Chalfie (ref_19) 1994; 263 Sahai (ref_93) 2006; 406 Rodriguez (ref_1) 2017; 42 Finnigan (ref_98) 2016; 27 ref_22 Kremers (ref_3) 2011; 124 Li (ref_73) 2014; 77 ref_26 Aronson (ref_29) 2011; 12 Meiresonne (ref_31) 2019; 111 Slingerland (ref_97) 2013; 126 Polge (ref_76) 2009; 10 Heim (ref_9) 1994; 91 Cieri (ref_62) 2018; 2 Kerppola (ref_89) 2008; 37 Cormack (ref_12) 1996; 173 Huang (ref_114) 2009; 48 Lambert (ref_5) 2019; 16 Pedelacq (ref_15) 2006; 24 Batan (ref_72) 2018; 114 ref_81 Pedelacq (ref_45) 2011; 39 Zhong (ref_59) 2012; 287 Chou (ref_99) 2018; 94 ref_86 ref_85 Romei (ref_4) 2019; 48 Tsien (ref_7) 1998; 67 Macdonald (ref_83) 2006; 2 Lievens (ref_75) 2009; 34 Zacharias (ref_17) 2002; 296 Zhang (ref_104) 2019; 141 Yang (ref_74) 2017; 114 Shu (ref_106) 2009; 324 Avilov (ref_70) 2018; 7 Cabantous (ref_39) 2005; 23 Listwan (ref_41) 2010; 11 ref_58 ref_57 ref_56 Polge (ref_103) 2018; 9 Wehr (ref_90) 2016; 21 ref_52 ref_51 Fan (ref_54) 2013; 154 Shaner (ref_32) 2013; 10 Avilov (ref_67) 2012; 86 ref_60 Prasher (ref_6) 1992; 111 Bischof (ref_80) 2018; 7 Marshall (ref_23) 2014; 17 ref_66 ref_63 Petersen (ref_69) 2013; 187 Chun (ref_47) 2007; 103 Tripet (ref_87) 1996; 9 Pinaud (ref_50) 2011; 108 Carlin (ref_102) 2016; 5 ref_115 Bindels (ref_38) 2016; 14 ref_116 Shaner (ref_28) 2004; 22 Miesenbock (ref_25) 1998; 394 ref_36 ref_34 Ghosh (ref_78) 2000; 122 ref_111 Goedhart (ref_30) 2012; 3 ref_112 Cava (ref_20) 2008; 10 ref_37 Cabantous (ref_42) 2005; 6 Marvin (ref_21) 2018; 15 Waldo (ref_13) 1999; 17 To (ref_110) 2016; 25 Banaszynski (ref_88) 2005; 127 Kent (ref_113) 2011; 133 ref_105 ref_108 ref_109 Young (ref_71) 2017; 3 Kellermann (ref_101) 2017; 398 Yang (ref_64) 2018; 131 Cali (ref_61) 2015; 24 Gordon (ref_55) 2009; 61 Chattoraj (ref_10) 1996; 93 Palmer (ref_68) 2010; 7 Nagai (ref_16) 2001; 20 Morciano (ref_24) 2017; 12 Morell (ref_82) 2007; 7 Rottier (ref_43) 2013; 183 ref_49 ref_48 Costantini (ref_27) 2015; 6 Heim (ref_11) 1995; 373 Massemin (ref_46) 2019; 2025 Crameri (ref_14) 1996; 14 Smoyer (ref_65) 2016; 215 |
References_xml | – volume: 10 start-page: 407 year: 2013 ident: ref_32 article-title: A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum publication-title: Nat. Methods doi: 10.1038/nmeth.2413 – volume: 48 start-page: 929 year: 2009 ident: ref_114 article-title: Complementation and Reconstitution of Fluorescence from Circularly Permuted and Truncated Green Fluorescent Protein publication-title: Biochemistry doi: 10.1021/bi802027g – ident: ref_22 doi: 10.1101/385484 – ident: ref_57 doi: 10.1038/ncomms10024 – volume: 124 start-page: 2676 year: 2011 ident: ref_3 article-title: Fluorescent proteins at a glance publication-title: J. Cell Sci. doi: 10.1242/jcs.095059 – ident: ref_37 doi: 10.1371/journal.pone.0026222 – volume: 394 start-page: 192 year: 1998 ident: ref_25 article-title: Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins publication-title: Nature doi: 10.1038/28190 – volume: 27 start-page: 2708 year: 2016 ident: ref_98 article-title: Detection of protein–protein interactions at the septin collar in Saccharomyces cerevisiae using a tripartite split-GFP system publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e16-05-0337 – ident: ref_81 doi: 10.1002/wsbm.1415 – ident: ref_56 doi: 10.3389/fnmol.2012.00018 – ident: ref_48 doi: 10.1371/journal.pone.0043505 – volume: 12 start-page: 1542 year: 2017 ident: ref_24 article-title: Use of luciferase probes to measure ATP in living cells and animals publication-title: Nat. Protoc. doi: 10.1038/nprot.2017.052 – volume: 5 start-page: 1348 year: 2016 ident: ref_102 article-title: Combinatorial Pairwise Assembly Efficiently Generates High Affinity Binders and Enables a “Mix-and-Read” Detection Scheme publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.6b00034 – volume: 127 start-page: 146 year: 2005 ident: ref_84 article-title: Detecting protein-protein interactions with a green fluorescent protein fragment reassembly trap scope and mechanism publication-title: J. Am. Chem. Soc. doi: 10.1021/ja046699g – ident: ref_109 doi: 10.1038/nmeth.2934 – ident: ref_95 doi: 10.1038/s41598-017-14459-w – ident: ref_36 doi: 10.1038/s41467-017-00494-8 – volume: 154 start-page: 89 year: 2013 ident: ref_54 article-title: Genetic and Neural Mechanisms that Inhibit Drosophila from Mating with Other Species publication-title: Cell doi: 10.1016/j.cell.2013.06.008 – volume: 111 start-page: 1025 year: 2019 ident: ref_31 article-title: Superfolder mTurquoise2 ox optimized for the bacterial periplasm allows high efficiency in vivo FRET of cell division antibiotic targets publication-title: Mol. Microbiol. doi: 10.1111/mmi.14206 – volume: 69 start-page: 2513 year: 2013 ident: ref_35 article-title: Split green fluorescent protein as a modular binding partner for protein crystallization publication-title: Acta Crystallogr. Sect. D Biol. Crystallogr. doi: 10.1107/S0907444913024608 – volume: 61 start-page: 373 year: 2009 ident: ref_55 article-title: Article Motor Control in a Drosophila Taste Circuit publication-title: Neuron doi: 10.1016/j.neuron.2008.12.033 – volume: 131 start-page: jcs210419 year: 2018 ident: ref_92 article-title: High-content tripartite split-GFP cell-based assays to screen for modulators of small GTPase activation publication-title: J. Cell Sci. doi: 10.1242/jcs.210419 – volume: 3 start-page: 751 year: 2012 ident: ref_30 article-title: Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93% publication-title: Nat. Commun. doi: 10.1038/ncomms1738 – volume: 101 start-page: 17334 year: 2004 ident: ref_107 article-title: Harnessing phytochrome’s glowing potential publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0407645101 – volume: 99 start-page: 7877 year: 2002 ident: ref_33 article-title: A monomeric red fluorescent protein publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.082243699 – volume: 39 start-page: e125 year: 2011 ident: ref_45 article-title: Experimental mapping of soluble protein domains using a hierarchical approach publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr548 – volume: 20 start-page: 448 year: 1995 ident: ref_8 article-title: Understanding, improving and using green fluorescent proteins publication-title: Trends Biochem. Sci. doi: 10.1016/S0968-0004(00)89099-4 – volume: 406 start-page: 128 year: 2006 ident: ref_93 article-title: Purification of TAT-C3 Exoenzyme publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(06)06011-3 – ident: ref_34 doi: 10.1021/bi060773l – volume: 1685 start-page: 157 year: 2018 ident: ref_44 article-title: Normalized screening of protein engineering libraries by split-GFP crude cell extract quantification publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-7366-8_9 – volume: 24 start-page: 1045 year: 2015 ident: ref_61 article-title: A new split-GFP-based probe reveals DJ-1 translocation into the mitochondrial matrix to sustain ATP synthesis upon nutrient deprivation publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddu519 – ident: ref_60 doi: 10.1038/srep08541 – volume: 122 start-page: 5658 year: 2000 ident: ref_78 article-title: Antiparallel Leucine Zipper-Directed Protein Reassembly: Application to the Green Fluorescent Protein publication-title: J. Am. Chem. Soc. doi: 10.1021/ja994421w – volume: 21 start-page: 415 year: 2016 ident: ref_90 article-title: Split protein biosensor assays in molecular pharmacological studies publication-title: Drug Discov. Today doi: 10.1016/j.drudis.2015.11.004 – volume: 3 start-page: 845 year: 2006 ident: ref_40 article-title: In vivo and in vitro protein solubility assays using split GFP publication-title: Nat. Methods doi: 10.1038/nmeth932 – volume: 1 start-page: 255 year: 2004 ident: ref_77 article-title: Detecting protein-protein interactions with GFP-fragment reassembly publication-title: Nat. Methods doi: 10.1038/nmeth1204-255 – volume: 133 start-page: 4046 year: 2011 ident: ref_113 article-title: Light-Activated Reassembly of Split Green Fluorescent Protein publication-title: J. Am. Chem. Soc. doi: 10.1021/ja110256c – volume: 7 start-page: 012001 year: 2018 ident: ref_70 article-title: Fluorescence protein complementation in microscopy: Applications beyond detecting bi-molecular interactions publication-title: Methods Appl. Fluoresc. doi: 10.1088/2050-6120/aaef01 – volume: 86 start-page: 1433 year: 2012 ident: ref_67 article-title: Replication-Competent Influenza A Virus That Encodes a Split-Green Live-Cell Imaging of the Virus Life Cycle publication-title: J. Virol. doi: 10.1128/JVI.05820-11 – volume: 15 start-page: 936 year: 2018 ident: ref_21 article-title: Stability, affinity, and chromatic variants of the glutamate sensor iGluSnFR publication-title: Nat. Methods doi: 10.1038/s41592-018-0171-3 – volume: 93 start-page: 8362 year: 1996 ident: ref_10 article-title: Ultra-fast excited state dynamics in green fluorescent protein: Multiple states and proton transfer publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.93.16.8362 – volume: 11 start-page: 41 year: 2010 ident: ref_41 article-title: The optimization of in vitro high-throughput chemical lysis of Escherichia coli. Application to ACP domain of the polyketide synthase ppsC from Mycobacterium tuberculosis publication-title: J. Struct. Funct. Genom. doi: 10.1007/s10969-009-9077-8 – volume: 6 start-page: 113 year: 2005 ident: ref_42 article-title: Recent advances in GFP folding reporter and split-GFP solubility reporter technologies. Application to improving the folding and solubility of recalcitrant proteins from Mycobacterium tuberculosis publication-title: J. Struct. Funct. Genom. doi: 10.1007/s10969-005-5247-5 – volume: 127 start-page: 4715 year: 2005 ident: ref_88 article-title: Characterization of the FKBP-Rapamycin-FRB Ternary Complex publication-title: J. Am. Chem. Soc. doi: 10.1021/ja043277y – volume: 141 start-page: 4526 year: 2019 ident: ref_104 article-title: Designing a Green Fluorogenic Protease Reporter by Flipping a Beta Strand of GFP for Imaging Apoptosis in Animals publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b13042 – volume: 12 start-page: 543 year: 2011 ident: ref_29 article-title: Superfolder GFP Is Fluorescent in Oxidizing Environments When Targeted via the Sec Translocon publication-title: Traffic doi: 10.1111/j.1600-0854.2011.01168.x – ident: ref_58 doi: 10.1111/tra.12281 – volume: 7 start-page: 325 year: 2010 ident: ref_68 article-title: Imaging type-III secretion reveals dynamics and spatial segregation of Salmonella effectors publication-title: Nat. Methods doi: 10.1038/nmeth.1437 – volume: 91 start-page: 12501 year: 1994 ident: ref_9 article-title: Wavelength mutations and posttranslational autoxidation of green fluorescent protein publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.91.26.12501 – volume: 3 start-page: 575 year: 2017 ident: ref_71 article-title: Optimized Fluorescence Complementation Platform for Visualizing Salmonella Effector Proteins Reveals Distinctly Different Intracellular Niches in Different Cell Types publication-title: ACS Infect. Dis. doi: 10.1021/acsinfecdis.7b00052 – volume: 103 start-page: 2529 year: 2007 ident: ref_47 article-title: Split GFP complementation assay: A novel approach to quantitatively measure aggregation of tau in situ: Effects of GSK3 b activation and caspase 3 cleavage publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.2007.04941.x – ident: ref_49 doi: 10.2144/000113512 – volume: 9 start-page: 129 year: 2018 ident: ref_103 article-title: A muscle-specific MuRF1-E2 network requires stabilization of MuRF1-E2 complexes by telethonin, a newly identified substrate publication-title: J. Cachexia Sarcopenia Muscle doi: 10.1002/jcsm.12249 – ident: ref_26 doi: 10.1038/s41598-018-30367-z – volume: 90 start-page: 3245 year: 2018 ident: ref_91 article-title: Transpeptidation-Mediated Assembly of Tripartite Split Green Fluorescent Protein for Label-Free Assay of Sortase Activity publication-title: Anal. Chem. doi: 10.1021/acs.analchem.7b04756 – ident: ref_86 doi: 10.1007/978-1-4939-9624-7_20 – volume: 67 start-page: 509 year: 1998 ident: ref_7 article-title: The Green Fluorescent Protein publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.67.1.509 – ident: ref_105 doi: 10.1093/nar/gku408 – volume: 20 start-page: 87 year: 2001 ident: ref_16 article-title: A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications publication-title: Nat. Biotechnol. doi: 10.1038/nbt0102-87 – volume: 131 start-page: jcs208686 year: 2018 ident: ref_64 article-title: A novel fluorescent reporter detects plastic remodeling of mitochondria–ER contact sites publication-title: J. Cell Sci. doi: 10.1242/jcs.208686 – volume: 2 start-page: 329 year: 2006 ident: ref_83 article-title: Identifying off-target effects and hidden phenotypes of drugs in human cells publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio790 – volume: 215 start-page: 575 year: 2016 ident: ref_65 article-title: Analysis of membrane proteins localizing to the inner nuclear envelope in living cells publication-title: J. Cell Biol. doi: 10.1083/jcb.201607043 – volume: 94 start-page: 426 year: 2018 ident: ref_99 article-title: Detection of membrane protein—protein interaction in planta based on dual-intein-coupled tripartite split-GFP association publication-title: Plant J. doi: 10.1111/tpj.13874 – volume: 126 start-page: 3278 year: 2013 ident: ref_97 article-title: In vivo interactions of TTDA mutant proteins within TFIIH publication-title: J. Cell Sci. – volume: 263 start-page: 802 year: 1994 ident: ref_19 article-title: Green Fluorescent Protein as a Marker for Gene Expression publication-title: Science doi: 10.1126/science.8303295 – volume: 373 start-page: 663 year: 1995 ident: ref_11 article-title: Improved green fluorescence publication-title: Nature doi: 10.1038/373663b0 – volume: 10 start-page: 2763 year: 2009 ident: ref_76 article-title: Yeast Two-Hybrid, a Powerful Tool for Systems Biology publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms10062763 – volume: 14 start-page: 200 year: 2013 ident: ref_100 article-title: Tetramolecular Fluorescence Complementation for Detection of Specific RNAs in Vitro publication-title: ChemBioChem doi: 10.1002/cbic.201200734 – ident: ref_111 doi: 10.1038/s41598-018-23625-7 – volume: 23 start-page: 102 year: 2005 ident: ref_39 article-title: Protein tagging and detection with engineered self-assembling fragments of green fluorescent protein publication-title: Nat. Biotechnol. doi: 10.1038/nbt1044 – volume: 17 start-page: 133 year: 2009 ident: ref_117 article-title: Modulation of protein properties in living cells using nanobodies publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.1727 – volume: 17 start-page: 884 year: 2014 ident: ref_23 article-title: High-fidelity optical reporting of neuronal electrical activity with an ultrafast fluorescent voltage sensor publication-title: Nat. Neurosci. doi: 10.1038/nn.3709 – ident: ref_85 doi: 10.1038/srep02854 – ident: ref_63 doi: 10.1101/290114 – volume: 42 start-page: 111 year: 2017 ident: ref_1 article-title: The Growing and Glowing Toolbox of Fluorescent and Photoactive Proteins publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2016.09.010 – volume: 287 start-page: 28057 year: 2012 ident: ref_59 article-title: Live Cell Imaging of Protein Dislocation from the Endoplasmic Reticulum publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.381798 – volume: 2 start-page: 1131 year: 2018 ident: ref_62 article-title: SPLICS: A split green fl uorescent protein-based contact site sensor for narrow and wide heterotypic organelle juxtaposition publication-title: Cell Death Differ. doi: 10.1038/s41418-017-0033-z – volume: 114 start-page: 251 year: 2018 ident: ref_72 article-title: A Multicolor Split-Fluorescent Protein Approach to Visualize Listeria Protein Secretion in Infection publication-title: Biophys. J. doi: 10.1016/j.bpj.2018.03.016 – volume: 57 start-page: 353 year: 2008 ident: ref_53 article-title: Neurotechnique GFP Reconstitution Across Synaptic Partners ( GRASP ) Defines Cell Contacts and Synapses in Living Nervous Systems publication-title: Neuron doi: 10.1016/j.neuron.2007.11.030 – ident: ref_96 doi: 10.1371/journal.pone.0050736 – ident: ref_115 doi: 10.1038/s41598-018-36559-x – volume: 114 start-page: 2982 year: 2017 ident: ref_74 article-title: Agrobacterium-delivered virulence protein VirE2 is trafficked inside host cells via a myosin XI-K–powered ER/actin network publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1612098114 – volume: 17 start-page: 691 year: 1999 ident: ref_13 article-title: Rapid protein-folding assay using green fluorescent protein publication-title: Nat. Biotechnol. doi: 10.1038/10904 – volume: 14 start-page: 315 year: 1996 ident: ref_14 article-title: Improved Green Fluorescent Protein by Molecular Evolution Using DNA Shuffling publication-title: Nat. Biotechnol. doi: 10.1038/nbt0396-315 – volume: 48 start-page: 19 year: 2019 ident: ref_4 article-title: Split Green Fluorescent Proteins: Scope, Limitations, and Outlook publication-title: Annu. Rev. Biophys. doi: 10.1146/annurev-biophys-051013-022846 – volume: 173 start-page: 33 year: 1996 ident: ref_12 article-title: FACS-optimized mutants of the green fluorescent protein (GFP) publication-title: Gene doi: 10.1016/0378-1119(95)00685-0 – ident: ref_108 doi: 10.1038/ncomms12405 – volume: 324 start-page: 804 year: 2009 ident: ref_106 article-title: Mammalian Expression of Infrared Fluorescent Proteins Engineered from a Bacterial Phytochrome publication-title: Science doi: 10.1126/science.1168683 – ident: ref_116 doi: 10.1038/srep20568 – volume: 2025 start-page: 321 year: 2019 ident: ref_46 article-title: High-Throughput Isolation of Soluble Protein Domains Using a Bipartite Split-GFP Complementation System publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-9624-7_15 – ident: ref_66 doi: 10.1371/journal.pone.0170118 – volume: 9 start-page: 1029 year: 1996 ident: ref_87 article-title: Engineering a de novo-designed coiled-coil heterodimerization domain for the rapid detection, purification and characterization of recombinantly expressed peptides and proteins publication-title: Protein Eng. Des. Sel. doi: 10.1093/protein/9.11.1029 – volume: 25 start-page: 748 year: 2016 ident: ref_110 article-title: Structure-guided design of a reversible fluorogenic reporter of protein-protein interactions publication-title: Protein Sci. doi: 10.1002/pro.2866 – volume: 77 start-page: 487 year: 2014 ident: ref_73 article-title: Direct visualization of Agrobacterium-delivered VirE2 in recipient cells publication-title: Plant J. doi: 10.1111/tpj.12397 – volume: 108 start-page: 201 year: 2011 ident: ref_50 article-title: Targeting and imaging single biomolecules in living cells by complementation-activated light microscopy with split- fl uorescent proteins publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1101929108 – volume: 7 start-page: e38853 year: 2018 ident: ref_80 article-title: Generation of a versatile BiFC ORFeome library for analyzing protein–protein interactions in live Drosophila publication-title: Elife doi: 10.7554/eLife.38853 – ident: ref_18 doi: 10.1242/jcs.005801 – volume: 34 start-page: 579 year: 2009 ident: ref_75 article-title: Mammalian two-hybrids come of age publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2009.06.009 – volume: 7 start-page: 1023 year: 2007 ident: ref_82 article-title: Detection of transient protein–protein interactions by bimolecular fluorescence complementation: The Abl-SH3 case publication-title: Proteomics doi: 10.1002/pmic.200600966 – volume: 37 start-page: 465 year: 2008 ident: ref_89 article-title: Bimolecular Fluorescence Complementation ( BiFC ) Analysis as a Probe of Protein Interactions in Living Cells publication-title: Annu. Rev. Biophys. doi: 10.1146/annurev.biophys.37.032807.125842 – volume: 10 start-page: 605 year: 2008 ident: ref_20 article-title: Expression and use of superfolder green fluorescent protein at high temperatures in vivo: A tool to study extreme thermophile biology publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2007.01482.x – volume: 14 start-page: 53 year: 2016 ident: ref_38 article-title: mScarlet: A bright monomeric red fluorescent protein for cellular imaging publication-title: Nat. Methods doi: 10.1038/nmeth.4074 – volume: 90 start-page: 1103 year: 2010 ident: ref_2 article-title: Fluorescent Proteins and Their Applications in Imaging Living Cells and Tissues publication-title: Physiol. Rev. doi: 10.1152/physrev.00038.2009 – volume: 24 start-page: 79 year: 2006 ident: ref_15 article-title: Engineering and characterization of a superfolder green fluorescent protein publication-title: Nat. Biotechnol. doi: 10.1038/nbt1172 – ident: ref_52 doi: 10.1101/055285 – ident: ref_94 doi: 10.1038/s41467-017-00062-0 – volume: 187 start-page: 87 year: 2013 ident: ref_69 article-title: Molecular & Biochemical Parasitology Use of self-assembling GFP to determine protein topology and compartmentalisation in the Plasmodium falciparum -infected erythrocyte publication-title: Mol. Biochem. Parasitol. doi: 10.1016/j.molbiopara.2012.11.004 – volume: 6 start-page: 7670 year: 2015 ident: ref_27 article-title: A palette of fluorescent proteins optimized for diverse cellular environments publication-title: Nat. Commun. doi: 10.1038/ncomms8670 – volume: 21 start-page: 539 year: 2003 ident: ref_79 article-title: Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis publication-title: Nat. Biotechnol. doi: 10.1038/nbt816 – volume: 296 start-page: 913 year: 2002 ident: ref_17 article-title: Partitioning of Lipid-Modified Monomeric GFPs into Membrane Microdomains of Live Cells publication-title: Science doi: 10.1126/science.1068539 – volume: 16 start-page: 277 year: 2019 ident: ref_5 article-title: FPbase: A community-editable fluorescent protein database publication-title: Nat. Methods doi: 10.1038/s41592-019-0352-8 – volume: 111 start-page: 229 year: 1992 ident: ref_6 article-title: Primary structure of the Aequorea victoria green-fluorescent protein publication-title: Gene doi: 10.1016/0378-1119(92)90691-H – ident: ref_51 doi: 10.1038/ncomms11046 – volume: 183 start-page: 320 year: 2013 ident: ref_43 article-title: Detection of soluble co-factor dependent protein expression in vivo: Application to the 4′-phosphopantetheinyl transferase PptT from Mycobacterium tuberculosis publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2013.07.010 – volume: 22 start-page: 1567 year: 2004 ident: ref_28 article-title: Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein publication-title: Nat. Biotechnol. doi: 10.1038/nbt1037 – ident: ref_112 doi: 10.1073/pnas.1618087114 – volume: 398 start-page: 69 year: 2017 ident: ref_101 article-title: A FACS-based screening strategy to assess sequence-specific RNA-binding of Pumilio protein variants in E. coli publication-title: Biol. Chem. doi: 10.1515/hsz-2016-0214 |
SSID | ssj0023259 |
Score | 2.4639025 |
SecondaryResourceType | review_article |
Snippet | Molecular engineering of the green fluorescent protein (GFP) into a robust and stable variant named Superfolder GFP (sfGFP) has revolutionized the field of... Superfolder Fluorescent Proteins: Progenitor of Split Fluorescent Protein (FP) Systems Previously described mutations that improve the physical properties and... |
SourceID | pubmedcentral hal proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 3479 |
SubjectTerms | Animals Biochemistry, Molecular Biology Biotechnology E coli Energy transfer Engineering Evolution Experiments Green Fluorescent Proteins - chemistry Green Fluorescent Proteins - genetics Green Fluorescent Proteins - metabolism Green Fluorescent Proteins - standards Humans Life Sciences Localization Microscopy, Fluorescence - methods Mutagenesis Mutation Neurosciences Protein Engineering - methods Protein Folding Proteins Review Sensors |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB3RIiR6qKB8hRZkEJyQ1bWd2MkJrYBlhQAhlUq9RYkdq4tKsu1mkfrvO5N4QxYE13giOxl_zLOf3wC8MoWX0iWCeyctj7VzPI0Lwa3xWrhMKGfoNvKXr3p-Gn86S87Chtsq0Co3c2I3UbvG0h75sVSKTuyE1m-Xl5yyRtHpakihsQO3Ba40ROlKZx8HwKVklywN3xFcJ5nuie8KYf7x4sfPlSRtu5hIXKMlaeecCJF_R5t_kiZHq9DsHuyH8JFNe3_fh1tVfQB3-oSS1wewN5IXfAB-xAhiRe3YdHRazRrPTtZLYrdTou6u_ASLWza7WDdXvcoT-0YyDouava_ajrNVsyBxzvBhqPYhnM4-fH835yGvArcI_lrunMcowllfiRLRkpDCeeNSXVbOWZkZkVSpU95Uk4LuWSPcVkVmSoneK7IY8c0j2K2bunoCzKoEbYRRHtFtkdiUNuomNkEUlMjSFxG82fza3AbRccp9cZEj-CBH5GNHRPB6sF72Yhv_sHuJXhpMSCF7Pv2c0zN0ereX9UtEcLRxYh7G5Sr_3YsieDEU44iiY5Kirpo12mCvUSSDNongce_zoSpF6kQYcUVgtnrDVlu2S-rFeafarTEs0Dp--v9mHcJd_Eq6V8ZFcgS77dW6eoZhT1s-7_r2Df5IAsM priority: 102 providerName: ProQuest |
Title | Development and Applications of Superfolder and Split Fluorescent Protein Detection Systems in Biology |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31311175 https://www.proquest.com/docview/2333580166 https://www.proquest.com/docview/2259355580 https://hal.science/hal-02378354 https://pubmed.ncbi.nlm.nih.gov/PMC6678664 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwED6tm5DgAY3xKzAqg-AJhdV2HCcPE-rGSoXYNDEq9S1KYlsrKunoUsT-e-6SNEoZ8JIH-yInvrPuPvv8HcBrnTohjOK-MyL3g9AYPwpS7ufahdzEXBpNt5FPz8LxJPg0VdMtWFcbbSbw-q_QjupJTZbzd79-3LzHBX9IiBMh-8Hs2_drQTx1gY57sIM-SVMtg9OgPU_AsKEqm8bRG_mhisM6Bf7W2xvOqXdJqZG3484_0yc7_mi0C_ebQJINa80_gC1b7MGdurTkzR7c6xANPgTXyQ1iaWHYsHNuzRaOXayuKM-dSnZX_RfYXbLRfLVY1nxP7JwIHWYF-2DLKnurYA3ZOcPGZthHMBmdfD0e-02FBT9HGFj6xjiMJ0zuLM8QN3HBjdMmCjNrTC5izZWNjHTaDlK6cY3AW6axzgTqMY0DRDqPYbtYFPYpsFwqlOFaOsS5qcoj2rIb5ArxkBKZSz14u57aJG_ox6kKxjxBGEKKSLqK8OBNK31V0278Q-4VaqkVIa7s8fBzQm2o9GpX6yf3YH-txGRtYImQkk6A0SI8eNl249qiA5O0sIsVyqDVSCJEG3jwpNZ5O5QkniKMvTzQG9aw8S2bPcXssuLvDjFACMPg2f8_6zncxb-kG2Y-V_uwXS5X9gUGQGXWh56eanxGo4992Dk6OTv_0ieXpPqV1f8GZ14Jww |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9QwDLfGEAIeEIyvwoCA2BOqdkna9PqA0Ilx3NhtQtom7a1r86EdGu2x64H2T_E3YveLHgje9tpYihs7iR3bPwO8jlInhAm574zQfqCM8YdByn0dOcVNzKWJqBp5_0BNjoNPJ-HJGvxsa2EorbI9E6uD2hSa3si3hZQUseNKvZt_86lrFEVX2xYatVrs2csf6LIt3u7uoHy3hBh_OHo_8ZuuAr5G16f0jXF4hxrtLM_QV-CCGxeZocqsMVrEEQ_t0EgX2UFKVcbobMo0jjKBvKdxEFGXCDzyrwcSb3KqTB9_7Bw8KarmbMgj91UYqzrRHgkH27MvXxeCsPQCShrrXYHXzigB82_r9s8kzd6tN74LdxpzlY1q_boHazbfgBt1A8vLDbjdgzO8D66XgcTS3LBRLzrOCscOl3PKpqfG4NX4IQ6XbHy-LC5qVCn2mWAjZjnbsWWVI5azBlKd4cdm2gdwfCUr_hDW8yK3j4FpGSINj6RDbzoN9ZAeBgc6RK8rFJlLPXjTLm2iG5Bz6rVxnqCzQ4JI-oLwYKujntfgHv-ge4VS6kgIkXsymib0DYVevZ195x5stkJMmnNgkfzWWg9edsO4gyksk-a2WCINao0k2LWBB49qmXdTSUJDQgvPg2hFG1Z4WR3JZ2cVSrhCM0Sp4Mn_2XoBNydH-9Nkunuw9xRu4R9TTZvPw01YLy-W9hmaXGX2vNJzBqdXvbF-Aah3QJU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NTiB4QDB-LDDAIPaEotZ2YjcPCBW6qmOjqhiT9pYlcawVbUlZU9D-Nf467pI0pCB422t8Upzc2b7P_vwdwGsdWSGMz11rROJ6yhi370XcTbRV3ARcGk23kT9N1PjY-3jin2zAz9VdGKJVrubEcqI2eUJ75F0hJZ3YcaW6tqZFTIejd_NvLlWQopPWVTmNKkQO0qsfCN8Wb_eH6OtdIUZ7Xz6M3brCgJsgDCpcYyyupyaxKY8RN3DBjdWmr-LUmEQEmvtp30ir015EN44ReMoo0LHA74gCT1PFCJz-NzWhog5svt-bTD83cE-KslQb9pi7yg9URbuXMuh1Z18vFoKU9TyikLUWxBtnRMf8O9f9k7LZWgNH9-BunbyyQRVt92EjzbbgZlXO8moL7rTEDR-AbfGRWJQZNmidlbPcsqPlnLj1VCa8bD_C5oKNzpf5ZaUxxaYkIjHL2DAtSsZYxmqBdYYP69c-hONr-eePoJPlWboNLJE-2nAtLWLryE_6tE3YS3zEYL6IbeTAm9WvDZNa8pwqb5yHCH3IEWHbEQ7sNtbzSurjH3av0EuNCelzjweHIT1Dp5c7ad-5AzsrJ4b1rLAIf8ewAy-bZhzPdEgTZWm-RBuMGkkibD0HHlc-b14lSRsJ8z0H9Fo0rPVlvSWbnZWa4QqTEqW8J__v1gu4hYMqPNyfHDyF2_jBdMHN5f4OdIrLZfoM868ifl4HOoPT6x5bvwDDukYn |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+and+Applications+of+Superfolder+and+Split+Fluorescent+Protein+Detection+Systems+in+Biology&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Jean-Denis+Pedelacq&rft.au=Cabantous%2C+St%C3%A9phanie&rft.date=2019-07-15&rft.pub=MDPI+AG&rft.issn=1661-6596&rft.eissn=1422-0067&rft.volume=20&rft.issue=14&rft_id=info:doi/10.3390%2Fijms20143479&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon |