Opportunistic Screening Techniques for Analysis of CT Scans
Purpose of Review Opportunistic screening is a combination of techniques to identify subjects of high risk for osteoporotic fracture using routine clinical CT scans prescribed for diagnoses unrelated to osteoporosis. The two main components are automated detection of vertebral fractures and measurem...
Saved in:
Published in | Current osteoporosis reports Vol. 21; no. 1; pp. 65 - 76 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.02.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1544-1873 1544-2241 1544-2241 |
DOI | 10.1007/s11914-022-00764-5 |
Cover
Loading…
Abstract | Purpose of Review
Opportunistic screening is a combination of techniques to identify subjects of high risk for osteoporotic fracture using routine clinical CT scans prescribed for diagnoses unrelated to osteoporosis. The two main components are automated detection of vertebral fractures and measurement of bone mineral density (BMD) in CT scans, in which a phantom for calibration of CT to BMD values is not used. This review describes the particular challenges of opportunistic screening and provides an overview and comparison of current techniques used for opportunistic screening. The review further outlines the performance of opportunistic screening.
Recent Findings
A wide range of technologies for the automatic detection of vertebral fractures have been developed and successfully validated. Most of them are based on artificial intelligence algorithms. The automated differentiation of osteoporotic from traumatic fractures and vertebral deformities unrelated to osteoporosis, the grading of vertebral fracture severity, and the detection of mild vertebral fractures is still problematic. The accuracy of automated fracture detection compared to classical radiological semi-quantitative Genant scoring is about 80%. Accuracy errors of alternative BMD calibration methods compared to simultaneous phantom-based calibration used in standard quantitative CT (QCT) range from below 5% to about 10%. The impact of contrast agents, frequently administered in clinical CT on the determination of BMD and on fracture risk determination is still controversial.
Summary
Opportunistic screening, the identification of vertebral fracture and the measurement of BMD using clinical routine CT scans, is feasible but corresponding techniques still need to be integrated into the clinical workflow and further validated with respect to the prediction of fracture risk. |
---|---|
AbstractList | Opportunistic screening is a combination of techniques to identify subjects of high risk for osteoporotic fracture using routine clinical CT scans prescribed for diagnoses unrelated to osteoporosis. The two main components are automated detection of vertebral fractures and measurement of bone mineral density (BMD) in CT scans, in which a phantom for calibration of CT to BMD values is not used. This review describes the particular challenges of opportunistic screening and provides an overview and comparison of current techniques used for opportunistic screening. The review further outlines the performance of opportunistic screening.
A wide range of technologies for the automatic detection of vertebral fractures have been developed and successfully validated. Most of them are based on artificial intelligence algorithms. The automated differentiation of osteoporotic from traumatic fractures and vertebral deformities unrelated to osteoporosis, the grading of vertebral fracture severity, and the detection of mild vertebral fractures is still problematic. The accuracy of automated fracture detection compared to classical radiological semi-quantitative Genant scoring is about 80%. Accuracy errors of alternative BMD calibration methods compared to simultaneous phantom-based calibration used in standard quantitative CT (QCT) range from below 5% to about 10%. The impact of contrast agents, frequently administered in clinical CT on the determination of BMD and on fracture risk determination is still controversial. Opportunistic screening, the identification of vertebral fracture and the measurement of BMD using clinical routine CT scans, is feasible but corresponding techniques still need to be integrated into the clinical workflow and further validated with respect to the prediction of fracture risk. Purpose of Review Opportunistic screening is a combination of techniques to identify subjects of high risk for osteoporotic fracture using routine clinical CT scans prescribed for diagnoses unrelated to osteoporosis. The two main components are automated detection of vertebral fractures and measurement of bone mineral density (BMD) in CT scans, in which a phantom for calibration of CT to BMD values is not used. This review describes the particular challenges of opportunistic screening and provides an overview and comparison of current techniques used for opportunistic screening. The review further outlines the performance of opportunistic screening. Recent Findings A wide range of technologies for the automatic detection of vertebral fractures have been developed and successfully validated. Most of them are based on artificial intelligence algorithms. The automated differentiation of osteoporotic from traumatic fractures and vertebral deformities unrelated to osteoporosis, the grading of vertebral fracture severity, and the detection of mild vertebral fractures is still problematic. The accuracy of automated fracture detection compared to classical radiological semi-quantitative Genant scoring is about 80%. Accuracy errors of alternative BMD calibration methods compared to simultaneous phantom-based calibration used in standard quantitative CT (QCT) range from below 5% to about 10%. The impact of contrast agents, frequently administered in clinical CT on the determination of BMD and on fracture risk determination is still controversial. Summary Opportunistic screening, the identification of vertebral fracture and the measurement of BMD using clinical routine CT scans, is feasible but corresponding techniques still need to be integrated into the clinical workflow and further validated with respect to the prediction of fracture risk. Opportunistic screening is a combination of techniques to identify subjects of high risk for osteoporotic fracture using routine clinical CT scans prescribed for diagnoses unrelated to osteoporosis. The two main components are automated detection of vertebral fractures and measurement of bone mineral density (BMD) in CT scans, in which a phantom for calibration of CT to BMD values is not used. This review describes the particular challenges of opportunistic screening and provides an overview and comparison of current techniques used for opportunistic screening. The review further outlines the performance of opportunistic screening.PURPOSE OF REVIEWOpportunistic screening is a combination of techniques to identify subjects of high risk for osteoporotic fracture using routine clinical CT scans prescribed for diagnoses unrelated to osteoporosis. The two main components are automated detection of vertebral fractures and measurement of bone mineral density (BMD) in CT scans, in which a phantom for calibration of CT to BMD values is not used. This review describes the particular challenges of opportunistic screening and provides an overview and comparison of current techniques used for opportunistic screening. The review further outlines the performance of opportunistic screening.A wide range of technologies for the automatic detection of vertebral fractures have been developed and successfully validated. Most of them are based on artificial intelligence algorithms. The automated differentiation of osteoporotic from traumatic fractures and vertebral deformities unrelated to osteoporosis, the grading of vertebral fracture severity, and the detection of mild vertebral fractures is still problematic. The accuracy of automated fracture detection compared to classical radiological semi-quantitative Genant scoring is about 80%. Accuracy errors of alternative BMD calibration methods compared to simultaneous phantom-based calibration used in standard quantitative CT (QCT) range from below 5% to about 10%. The impact of contrast agents, frequently administered in clinical CT on the determination of BMD and on fracture risk determination is still controversial. Opportunistic screening, the identification of vertebral fracture and the measurement of BMD using clinical routine CT scans, is feasible but corresponding techniques still need to be integrated into the clinical workflow and further validated with respect to the prediction of fracture risk.RECENT FINDINGSA wide range of technologies for the automatic detection of vertebral fractures have been developed and successfully validated. Most of them are based on artificial intelligence algorithms. The automated differentiation of osteoporotic from traumatic fractures and vertebral deformities unrelated to osteoporosis, the grading of vertebral fracture severity, and the detection of mild vertebral fractures is still problematic. The accuracy of automated fracture detection compared to classical radiological semi-quantitative Genant scoring is about 80%. Accuracy errors of alternative BMD calibration methods compared to simultaneous phantom-based calibration used in standard quantitative CT (QCT) range from below 5% to about 10%. The impact of contrast agents, frequently administered in clinical CT on the determination of BMD and on fracture risk determination is still controversial. Opportunistic screening, the identification of vertebral fracture and the measurement of BMD using clinical routine CT scans, is feasible but corresponding techniques still need to be integrated into the clinical workflow and further validated with respect to the prediction of fracture risk. |
Author | Bartenschlager, Stefan Chaudry, Oliver Engelke, Klaus |
Author_xml | – sequence: 1 givenname: Klaus orcidid: 0000-0001-9875-4123 surname: Engelke fullname: Engelke, Klaus email: Klaus.Engelke@imp.uni-erlangen.de organization: Department of Medicine III, Friedrich-Alexander University of Erlangen-Nürnberg, University Hospital Erlangen, Institute of Medical Physics (IMP), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) – sequence: 2 givenname: Oliver surname: Chaudry fullname: Chaudry, Oliver organization: Department of Medicine III, Friedrich-Alexander University of Erlangen-Nürnberg, University Hospital Erlangen, Institute of Medical Physics (IMP), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) – sequence: 3 givenname: Stefan surname: Bartenschlager fullname: Bartenschlager, Stefan organization: Department of Medicine III, Friedrich-Alexander University of Erlangen-Nürnberg, University Hospital Erlangen, Institute of Medical Physics (IMP), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36435912$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UctKAzEUDaLYh_6AC5mlm9E8Jw2CUIovKHRhXYc0k2lTpklNZoT-vamtRV2ULHJvch7JPT1w6rwzAFwheIsg5HcRIYFoDjHOU1vQnJ2ALmKU5hhTdLqv0YCTDujFuIQJiSg5Bx1SUMIEwl1wP1mvfWhaZ2NjdfamgzHOunk2NXrh7EdrYlb5kA2dqjfRxsxX2WiacMrFC3BWqTqay_3eB-9Pj9PRSz6ePL-OhuNcU1o0eakhFZBiUxGCU1VwVjBINRNlWcJBxQUXFHIoZqrgquRUiIFRDPJSGyI4J33wsNNdt7OVSaeuCaqW62BXKmykV1b-vXF2Ief-UwqBGRMwCdzsBYLf_qiRKxu1qWvljG-jxJxClhbZel3_9jqY_EwsAfAOoIOPMZjqAEFQbmORu1hkGrb8jkWyRBr8I2nbqMb67XttfZxKdtSYfNzcBLn0bUhpxGOsL_dBoFk |
CitedBy_id | crossref_primary_10_1007_s11914_023_00830_6 crossref_primary_10_1016_j_acra_2024_07_010 crossref_primary_10_1016_j_clinimag_2024_110282 crossref_primary_10_1136_bmjopen_2024_086855 crossref_primary_10_1055_a_2045_7222 crossref_primary_10_3390_diagnostics14161789 crossref_primary_10_1007_s00198_024_07340_w crossref_primary_10_3390_jcm13195961 crossref_primary_10_1007_s00198_024_07373_1 crossref_primary_10_1007_s00330_024_11046_2 crossref_primary_10_1093_jbmr_zjaf009 crossref_primary_10_1007_s00256_024_04632_4 crossref_primary_10_1055_s_0043_1771037 crossref_primary_10_1136_bmjopen_2023_079417 crossref_primary_10_1002_ajpa_24899 crossref_primary_10_1186_s12891_024_07324_1 crossref_primary_10_1016_j_jor_2023_11_061 crossref_primary_10_1055_s_0044_1788816 crossref_primary_10_1016_j_jacr_2024_12_011 crossref_primary_10_1038_s41598_023_48851_6 crossref_primary_10_1186_s13018_023_03560_8 crossref_primary_10_1016_j_xnsj_2025_100591 crossref_primary_10_3390_diagnostics13122119 crossref_primary_10_1007_s00256_024_04722_3 crossref_primary_10_1007_s00198_024_07047_y crossref_primary_10_1016_j_jacr_2024_11_010 crossref_primary_10_3390_diagnostics13152572 crossref_primary_10_1016_j_clinimag_2024_110210 crossref_primary_10_1093_bjr_tqae053 crossref_primary_10_1007_s11914_023_00845_z crossref_primary_10_1007_s00586_025_08697_0 crossref_primary_10_1016_j_banm_2023_07_017 crossref_primary_10_1016_j_ejrad_2023_111283 crossref_primary_10_1186_s41747_024_00483_9 |
Cites_doi | 10.1093/rheumatology/keab878 10.1007/s00198-020-05384-2 10.1007/s00330-021-08323-9 10.1002/jbmr.2080 10.1038/s41591-019-0720-z 10.1148/radiol.2019181648 10.2214/AJR.06.1006 10.2214/AJR.16.16744 10.1002/jcsm.12996 10.1007/s00198-019-04910-1 10.1097/RCT.0000000000000744 10.1148/radiol.2019190201 10.1002/9781119266594.ch40 10.1016/j.media.2009.02.004 10.1007/s00198-015-3224-9 10.1007/s11657-018-0492-y 10.1016/j.jocd.2007.12.010 10.1007/s00198-018-4444-6 10.1007/s00330-019-06018-w 10.1016/j.jocd.2015.06.011 10.1016/j.media.2006.05.005 10.1016/j.medengphy.2020.01.009 10.1097/00004728-198911000-00015 10.1186/1475-925X-12-48 10.1371/journal.pone.0265524 10.1148/radiol.210937 10.24835/1607-0763-2020-4-108-118 10.3389/fendo.2022.882163 10.1371/journal.pone.0071204 10.1038/s41598-021-01296-1 10.1080/15389588.2015.1054029 10.1097/RCT.0000000000000518 10.1097/RCT.0b013e3182032537 10.2214/AJR.20.22943 10.2214/AJR.17.17853 10.1118/1.595951 10.1016/j.jocd.2015.06.012 10.1007/s00256-021-03801-z 10.1186/s41747-021-00241-1 10.1155/2019/4102410 10.1007/s00198-011-1774-z 10.1007/s00330-020-07319-1 10.1097/00004424-197711000-00015 10.1002/jbmr.2069 10.1109/TBME.2013.2256460 10.1002/jcsm.12616 10.1259/bjr.20180726 10.1016/j.bone.2022.116427 10.1148/radiol.2018181112 10.1371/journal.pone.0240084 10.2106/JBJS.16.00749 10.1177/2151458514525042 10.1016/j.bone.2020.115759 10.7326/0003-4819-158-8-201304160-00003 10.1002/jbmr.86 10.1002/jbmr.5650080915 10.1007/s11547-020-01145-7 10.1007/s00330-014-3584-0 10.1109/TMI.2013.2268424 10.1038/s41598-020-76866-w 10.1148/radiol.2015141984 10.1002/jbmr.4575 10.1097/CORR.0000000000000480 10.1016/j.jocd.2014.03.002 10.1007/s00330-014-3408-2 10.1371/journal.pone.0220564 10.1016/j.ejrad.2021.109568 10.1055/s-0043-102941 10.1007/s00330-013-3089-2 10.1007/s00330-019-06263-z 10.1016/j.bone.2017.07.029 10.1148/radiol.2017162100 10.1148/ryai.2020190138 10.1007/s00198-016-3804-3 10.1007/s00330-020-06679-y 10.1007/s00330-021-08071-w 10.2214/AJR.17.17820 10.12659/MSM.915916 10.2214/AJR.15.15128 10.1007/s00198-020-05521-x 10.1016/j.jocd.2015.11.001 10.1016/j.zemedi.2022.04.001 10.1016/j.bone.2021.116304 10.21037/qims-22-433 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 2022. The Author(s). |
Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1007/s11914-022-00764-5 |
DatabaseName | SpringerOpen Free (Free internet resource, activated by CARLI) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1544-2241 |
EndPage | 76 |
ExternalDocumentID | PMC9925590 36435912 10_1007_s11914_022_00764_5 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie grantid: 01EC190B funderid: http://dx.doi.org/10.13039/501100010571 – fundername: ; grantid: 01EC190B |
GroupedDBID | --- -5E -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 203 29F 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 53G 5GY 5VS 6NX 875 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHQN ABIPD ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADJJI ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD B-. BA0 BDATZ BGNMA C6C CAG COF CS3 CSCUP CUW DDRTE DNIVK DPUIP EBD EBLON EBS EIOEI EJD EMOBN ESBYG F5P FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG6 HMJXF HRMNR HZ~ IJ- IKXTQ IMOTQ IWAJR IXC IXD IXE I~Z J-C JBSCW JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O9J P9S PF0 PT4 QOR QOS R89 R9I ROL RPX RSV S16 S1Z S27 S37 S3B SAP SDH SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 TSG TSK TSV TUC U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z7U Z82 Z87 ZMTXR ZOVNA ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION CGR CUY CVF ECM EIF NPM 7X8 ABRTQ 5PM |
ID | FETCH-LOGICAL-c446t-dc049042ef3324906756504c59ddd08f797940709ba67ad74998ea507dce39773 |
IEDL.DBID | U2A |
ISSN | 1544-1873 1544-2241 |
IngestDate | Thu Aug 21 18:38:09 EDT 2025 Tue Aug 05 09:53:43 EDT 2025 Wed Feb 19 02:24:42 EST 2025 Tue Jul 01 02:26:27 EDT 2025 Thu Apr 24 23:08:28 EDT 2025 Fri Feb 21 02:44:44 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Vertebral fracture assessment Computed tomography Fracture risk Opportunistic screening Internal BMD calibration |
Language | English |
License | 2022. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c446t-dc049042ef3324906756504c59ddd08f797940709ba67ad74998ea507dce39773 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-9875-4123 |
OpenAccessLink | https://link.springer.com/10.1007/s11914-022-00764-5 |
PMID | 36435912 |
PQID | 2740505037 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9925590 proquest_miscellaneous_2740505037 pubmed_primary_36435912 crossref_primary_10_1007_s11914_022_00764_5 crossref_citationtrail_10_1007_s11914_022_00764_5 springer_journals_10_1007_s11914_022_00764_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-01 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationTitle | Current osteoporosis reports |
PublicationTitleAbbrev | Curr Osteoporos Rep |
PublicationTitleAlternate | Curr Osteoporos Rep |
PublicationYear | 2023 |
Publisher | Springer US |
Publisher_xml | – name: Springer US |
References | Keaveny, Clarke, Cosman, Orwoll, Siris, Khosla, Bouxsein (CR98) 2020; 31 Cauley, Blackwell, Zmuda, Fullman, Ensrud, Stone, Barrett-Connor, Orwoll (CR79) 2010; 25 Rebello, Anjelly, Grand, Machan, Beland, Furman, Shapiro, LeLeiko, Sands, Mallette, Bright, Moniz, Merrick, Shah (CR64) 2018; 29 Genant, Boyd (CR92) 1977; 12 Kim, Demissie, Genant, Cheng, Yu, Samelson, Kiel, Bouxsein (CR41) 2012; 23 Monchka, Schousboe, Davidson, Kimelman, Hans, Raina, Leslie (CR38) 2022; 161 Eggermont, Verdonschot, van der Linden, Tanck (CR51) 2019; 14 Kaesmacher, Liebl, Baum, Kirschke (CR76) 2017; 41 Klein, Martel, Sahgal, Whyne, Hardisty (CR16) 2019 Alacreu, Moratal, Arana (CR80) 2017; 28 Chettrit, Meir, Lebel, Orlovsky, Gordon, Akselrod-Ballin, Bar (CR25) 2020 Garner, Paturzo, Gaudier, Pickhardt, Wessell (CR66) 2017; 208 Bauer, Henning, Mueller, Lu, Majumdar, Link (CR45) 2007; 188 Engelke, Nagase, Fuerst, Small, Kuwayama, Deacon, Eastell, Genant (CR86) 2014; 29 CR42 CR40 Fang, Franconeri, Boos, Nimhuircheartaigh, Zhang, Brook, Brook (CR34) 2018; 42 Park, Jeong, Lee, Kim, Kim, Park, Ahn (CR63) 2020; 15 Loffler, Sekuboyina, Jacob, Grau, Scharr, El Husseini, Kallweit, Zimmer, Baum, Kirschke (CR15) 2020; 2 Wang, Yin, Zhao, Su, Sun, Liu, Yang, Yu, Blake, Cheng, Wu, Veldhuis, Engelke (CR102) 2020; 11 Roski, Hammel, Mei, Baum, Kirschke, Laugerette, Kopp, Bodden, Pfeiffer, Pfeiffer, Rummeny, Noel, Gersing, Schwaiger (CR96) 2019; 29 Janssens, Zeng, Zheng (CR12) 2018 Griffith, Genant, Bilezikian (CR4) 2018 Pickhardt, Lauder, Pooler, Del Rio, Rosas, Bruce, Binkley (CR44) 2016; 27 Klinder, Ostermann, Ehm, Franz, Kneser, Lorenz (CR27) 2009; 13 CR53 Boutin, Hernandez, Lenchik, Seibert, Gress, Boone (CR67) 2021; 216 Christensen, Nappo, Wolfe, Wade, Brooks, Potter, Forsberg, Tintle (CR85) 2019; 477 Hendrickson, Pickhardt, Del Rio, Rosas, Anderson (CR82) 2018; 38 Pompe, Willemink, Dijkhuis, Verhaar, Mohamed Hoesein, de Jong (CR75) 2015; 25 Zysset, Qin, Lang, Khosla, Leslie, Shepherd, Schousboe, Engelke (CR99) 2015; 18 Fidler, Murthy, Khosla, Clarke, Bruining, Kopperdahl, Lee, Keaveny (CR84) 2016; 278 Cohen, Foldes, Hiller, Simanovsky, Szalat (CR62) 2021; 136 Jang, Graffy, Ziemlewicz, Lee, Summers, Pickhardt (CR58) 2019; 291 Chen, Shen, Qin, Ni, Shi, Cheng, Heng (CR8) 2015 Engelke, Van Rietbergen, Van Lenthe, Grimal (CR69) 2022 Rasoulian, Rohling, Abolmaesumi (CR29) 2013; 32 Summers, Baecher, Yao, Liu, Pickhardt, Choi, Hill (CR31) 2011; 35 Emohare, Cagan, Morgan, Davis, Asis, Switzer, Polly (CR60) 2014; 5 Buckens, de Jong, Mol, Bakker, Stallman, Mali, van der Graaf, Verkooijen (CR88) 2013; 8 Gluer, Genant (CR94) 1989; 13 Oktay, Akgul (CR10) 2013; 60 Pickhardt, Pooler, Lauder, del Rio, Bruce, Binkley (CR59) 2013; 158 Lee, Kim, Jang (CR56) 2019; 2019 Roski, Hammel, Mei, Haller, Baum, Kirschke, Pfeiffer, Woertler, Pfeiffer, Noël (CR77) 2021; 31 Prado, Khosla, Chaput, Giambini (CR55) 2021; 31 Pickhardt, Lee, Liu, Yao, Lay, Graffy, Summers (CR5) 2019; 92 Murata, Endo, Aihara, Suzuki, Sawaji, Matsuoka, Nishimura, Takamatsu, Konishi, Maekawa, Yamauchi, Kanazawa, Endo, Tsuji, Inoue, Fukushima, Kikuchi, Sato, Yamamoto (CR39) 2020; 10 Huang, Jian, Wu, Li (CR26) 2013; 12 Petraikin, Smorchkova, Kudryavtsev, Sergunova, Artyukova, Abuladze, Iassin, Petraikin, Lobanov, Nikolaev, Khoruzhaya, Semenov, Nisovstova, Vladzymyrskyy, Morozov (CR48) 2020; 24 Jain, Lee, Mathai, Dako, Gogineni, Weiner, Vokes (CR61) 2020; 31 Genant, Wu, Van Kuijk, Nevitt (CR3) 1993; 8 Guermazi, Tannoury, Kompel, Murakami, Ducarouge, Gillibert, Li, Tournier, Lahoud, Jarraya, Lacave, Rahimi, Pourchot, Parisien, Merritt, Comeau, Regnard, Hayashi (CR90) 2022; 302 Glocker, Feulner, Criminisi, Haynor, Konukoglu (CR9) 2012 Wang, Yin, Yang, Ge, Liu, Su, Guo, Yan, Xu, Huang, Geng, Liu, Wang, Blake, Cao, He, Lyu, Cheng, Wu, Jiang, Vlug, Engelke (CR101) 2022; 13 Weaver, Beavers, Hightower, Lynch, Miller, Stitzel (CR50) 2015; 16 Gausden, Nwachukwu, Schreiber, Lorich, Lane (CR68) 2017; 99 Buerger, von Berg, Franz, Klinder, Lorenz, Lenga (CR7) 2020 Muhlberg, Museyko, Bousson, Pottecher, Laredo, Engelke (CR100) 2019; 290 You, Gu, Liu, Lu, Tang, Yang (CR18) 2022 Pisov, Kondratenko, Zakharov, Petraikin, Gombolevskiy, Morozov, Belyaev (CR21) 2020 Pickhardt, Bodeen, Brett, Brown, Binkley (CR65) 2015; 18 Engelke, Adams, Armbrecht, Augat, Bogado, Bouxsein, Felsenberg, Ito, Prevrhal, Hans, Lewiecki (CR1) 2008; 11 Valentinitsch, Trebeschi, Kaesmacher, Lorenz, Loffler, Zimmer, Baum, Kirschke (CR30) 2019; 30 Ghosh, Raja'S, Chaudhary, Dhillon (CR35) 2011 Yao, Burns, Wiese, Summers (CR36) 2012 Nicolaes, Raeymaeckers, Robben, Wilms, Vandermeulen, Libanati, Debois (CR6) 2019 Yilmaz, Buerger, Fricke, Sagar, Peña, Lorenz, Glüer, Meyer (CR24) 2021 Derkatch, Kirby, Kimelman, Jozani, Davidson, Leslie (CR37) 2019; 293 Dagan, Elnekave, Barda, Bregman-Amitai, Bar, Orlovsky, Bachmat, Balicer (CR91) 2020; 26 Loffler, Jacob, Valentinitsch, Rienmuller, Zimmer, Ryang, Baum, Kirschke (CR46) 2019; 29 Cheng, Yang, Yu, He (CR14) 2021; 11 Baum, Bauer, Klinder, Dobritz, Rummeny, Noel, Lorenz (CR32) 2014; 24 Li, Wong, Law, Fang, Lau, Vardhanabuti, Lee, Cheng, Ho, Lam (CR83) 2018; 13 Gruenewald, Koch, Martin, Yel, Eichler, Gruber-Rouh, Lenga, Wichmann, Alizadeh, Albrecht, Mader, Huizinga, D'Angelo, Mazziotti, Wesarg, Vogl, Booz (CR71) 2022; 32 Burns, Yao, Summers (CR20) 2017; 284 Amin, Zakaria, Yahya (CR81) 2021; 50 Engelke, Lang, Khosla, Qin, Zysset, Leslie, Shepherd, Schousboe (CR2) 2015; 18 Ataei, Eikhout, van Leeuwen, Tanck, Eggermont (CR52) 2022; 17 Lee, Hoffmann, Kopperdahl, Keaveny (CR49) 2017; 103 Winsor, Li, Qasim, Henak, Pickhardt, Ploeg, Viceconti (CR54) 2021; 143 Mastmeyer, Engelke, Fuchs, Kalender (CR28) 2006; 10 CR97 Su, Zhang, Liao, Yan, Zhu, Yan, Li, Tan (CR33) 2019; 25 Graffy, Lee, Ziemlewicz, Pickhardt (CR70) 2017; 209 Vetter, Perman, Kalender, Mazess, Holden (CR93) 1986; 13 Hempe, Yilmaz, Meyer, Heinrich (CR19) 2022 Buckens, Dijkhuis, de Keizer, Verhaar, de Jong (CR72) 2015; 25 Sekuboyina, Kukačka, Kirschke, Menze, Valentinitsch (CR13) 2017 Yang, Xiong, Xu, Zhou, Xu, Chen, Park, Grbic, Tran, Chin (CR11) 2017 Toelly, Bardach, Weber, Gong, Lai, Wang, Guo, Kirschke, Baum, Gruber (CR74) 2017; 189 Lee, Anderson, Pickhardt (CR73) 2017; 209 Sollmann, Loffler, El Husseini, Sekuboyina, Dieckmeyer, Ruhling, Zimmer, Menze, Joseph, Baum, Kirschke (CR87) 2022; 37 Husseini, Sekuboyina, Loeffler, Navarro, Menze, Kirschke (CR23) 2020 Kopperdahl, Aspelund, Hoffmann, Sigurdsson, Siggeirsdottir, Harris, Gudnason, Keaveny (CR78) 2014; 29 Koch, Hokamp, Albrecht, Gruenewald, Yel, Borggrefe, Wesarg, Eichler, Burck, Gruber-Rouh, Lenga, Vogl, Martin, Wichmann, Hammerstingl, Alizadeh, Mader, Huizinga, D'Angelo, Ascenti, Mazziotti, Booz (CR95) 2021; 5 Dieckmeyer, Loffler, El Husseini, Sekuboyina, Menze, Sollmann, Wostrack, Zimmer, Baum, Kirschke (CR47) 2022; 13 Roux, Rozes, Reizine, Hajage, Daniel, Maire, Breant, Taright, Gordon, Fechtenbaum, Kolta, Feydy, Briot, Tubach (CR89) 2022; 61 Ziemlewicz, Maciejewski, Binkley, Brett, Brown, Pickhardt (CR43) 2016; 206 Adela, Rangarajan (CR22) 2020; 125 Michalski, Besler, Michalak, Boyd (CR57) 2020; 78 Pan, Shi, Wang, Chen, Cui, Cheng, Lu (CR17) 2020; 30 J Fang (764_CR34) 2018; 42 A Valentinitsch (764_CR30) 2019; 30 M Pisov (764_CR21) 2020 F Roski (764_CR77) 2021; 31 TM Keaveny (764_CR98) 2020; 31 764_CR53 D Chettrit (764_CR25) 2020 N Sollmann (764_CR87) 2022; 37 V Koch (764_CR95) 2021; 5 DL Christensen (764_CR85) 2019; 477 A Muhlberg (764_CR100) 2019; 290 H Chen (764_CR8) 2015 PM Graffy (764_CR70) 2017; 209 R Jain (764_CR61) 2020; 31 P Zysset (764_CR99) 2015; 18 MFM Amin (764_CR81) 2021; 50 Y Pan (764_CR17) 2020; 30 P Cheng (764_CR14) 2021; 11 F Roski (764_CR96) 2019; 29 K Murata (764_CR39) 2020; 10 JR Vetter (764_CR93) 1986; 13 Q Su (764_CR33) 2019; 25 CC Gluer (764_CR94) 1989; 13 YL Li (764_CR83) 2018; 13 K Engelke (764_CR2) 2015; 18 F Eggermont (764_CR51) 2019; 14 JS Bauer (764_CR45) 2007; 188 G Klein (764_CR16) 2019 PJ Pickhardt (764_CR5) 2019; 92 AA Weaver (764_CR50) 2015; 16 D Rebello (764_CR64) 2018; 29 AB Oktay (764_CR10) 2013; 60 R Janssens (764_CR12) 2018 T Baum (764_CR32) 2014; 24 PJ Pickhardt (764_CR44) 2016; 27 JA Cauley (764_CR79) 2010; 25 A Ataei (764_CR52) 2022; 17 T Klinder (764_CR27) 2009; 13 X You (764_CR18) 2022 N Dagan (764_CR91) 2020; 26 B Glocker (764_CR9) 2012 M Prado (764_CR55) 2021; 31 NR Hendrickson (764_CR82) 2018; 38 J Yao (764_CR36) 2012 L Wang (764_CR101) 2022; 13 MT Loffler (764_CR15) 2020; 2 SJ Lee (764_CR73) 2017; 209 S Jang (764_CR58) 2019; 291 A Guermazi (764_CR90) 2022; 302 M Husseini (764_CR23) 2020 DL Kopperdahl (764_CR78) 2014; 29 H Hempe (764_CR19) 2022 J Kaesmacher (764_CR76) 2017; 41 J Griffith (764_CR4) 2018 764_CR97 A Toelly (764_CR74) 2017; 189 K Engelke (764_CR86) 2014; 29 A Rasoulian (764_CR29) 2013; 32 C Roux (764_CR89) 2022; 61 JE Burns (764_CR20) 2017; 284 EB Gausden (764_CR68) 2017; 99 E Pompe (764_CR75) 2015; 25 JL Fidler (764_CR84) 2016; 278 A Sekuboyina (764_CR13) 2017 M Dieckmeyer (764_CR47) 2022; 13 S Derkatch (764_CR37) 2019; 293 DC Lee (764_CR49) 2017; 103 J Nicolaes (764_CR6) 2019 BA Monchka (764_CR38) 2022; 161 C Buerger (764_CR7) 2020 HK Genant (764_CR92) 1977; 12 SH Park (764_CR63) 2020; 15 CF Buckens (764_CR72) 2015; 25 PJ Pickhardt (764_CR65) 2015; 18 RD Boutin (764_CR67) 2021; 216 O Emohare (764_CR60) 2014; 5 MT Loffler (764_CR46) 2019; 29 HW Garner (764_CR66) 2017; 208 A Mastmeyer (764_CR28) 2006; 10 A Adela (764_CR22) 2020; 125 E Alacreu (764_CR80) 2017; 28 RM Summers (764_CR31) 2011; 35 AV Petraikin (764_CR48) 2020; 24 YH Lee (764_CR56) 2019; 2019 L Wang (764_CR102) 2020; 11 TJ Ziemlewicz (764_CR43) 2016; 206 A Cohen (764_CR62) 2021; 136 K Engelke (764_CR69) 2022 AS Michalski (764_CR57) 2020; 78 J Huang (764_CR26) 2013; 12 LD Gruenewald (764_CR71) 2022; 32 764_CR42 S Ghosh (764_CR35) 2011 YM Kim (764_CR41) 2012; 23 K Engelke (764_CR1) 2008; 11 764_CR40 CF Buckens (764_CR88) 2013; 8 HK Genant (764_CR3) 1993; 8 PJ Pickhardt (764_CR59) 2013; 158 D Yang (764_CR11) 2017 C Winsor (764_CR54) 2021; 143 EB Yilmaz (764_CR24) 2021 |
References_xml | – volume: 61 start-page: 3269 issue: 8 year: 2022 end-page: 3278 ident: CR89 article-title: Fully automated opportunistic screening of vertebral fractures and osteoporosis on more than 150 000 routine computed tomography scans publication-title: Rheumatology (Oxford) doi: 10.1093/rheumatology/keab878 – volume: 31 start-page: 1025 issue: 6 year: 2020 end-page: 1048 ident: CR98 article-title: Biomechanical Computed Tomography analysis (BCT) for clinical assessment of osteoporosis publication-title: Osteoporos Int doi: 10.1007/s00198-020-05384-2 – year: 2020 ident: CR7 article-title: Combining deep learning and model-based segmentation for labeled spine CT segmentation publication-title: Medical imaging 2020: image processing – volume: 32 start-page: 3076 issue: 5 year: 2022 end-page: 3084 ident: CR71 article-title: Diagnostic accuracy of quantitative dual-energy CT-based volumetric bone mineral density assessment for the prediction of osteoporosis-associated fractures publication-title: Eur Radiol doi: 10.1007/s00330-021-08323-9 – ident: CR97 – volume: 29 start-page: 629 issue: 3 year: 2014 end-page: 638 ident: CR86 article-title: The effect of the cathepsin K inhibitor ONO-5334 on trabecular and cortical bone in postmenopausal osteoporosis: the OCEAN study publication-title: J Bone Miner Res doi: 10.1002/jbmr.2080 – volume: 26 start-page: 77 issue: 1 year: 2020 end-page: 82 ident: CR91 article-title: Automated opportunistic osteoporotic fracture risk assessment using computed tomography scans to aid in FRAX underutilization publication-title: Nat Med doi: 10.1038/s41591-019-0720-z – year: 2017 ident: CR11 article-title: Deep image-to-image recurrent network with shape basis learning for automatic vertebra labeling in large-scale 3D CT volumes publication-title: International conference on medical image computing and computer-assisted intervention – year: 2020 ident: CR23 article-title: Grading loss: a fracture grade-based metric loss for vertebral fracture detection publication-title: International conference on medical image computing and computer-assisted intervention – volume: 291 start-page: 360 issue: 2 year: 2019 end-page: 367 ident: CR58 article-title: Opportunistic osteoporosis screening at routine abdominal and thoracic CT: normative L1 trabecular attenuation values in more than 20 000 adults publication-title: Radiology doi: 10.1148/radiol.2019181648 – volume: 188 start-page: 1294 issue: 5 year: 2007 end-page: 1301 ident: CR45 article-title: Volumetric quantitative CT of the spine and hip derived from contrast-enhanced MDCT: conversion factors publication-title: AJR Am J Roentgenol doi: 10.2214/AJR.06.1006 – volume: 208 start-page: 165 issue: 1 year: 2017 end-page: 170 ident: CR66 article-title: Variation in attenuation in L1 trabecular bone at different tube voltages: caution is warranted when screening for osteoporosis with the use of opportunistic CT publication-title: AJR Am J Roentgenol doi: 10.2214/AJR.16.16744 – volume: 13 start-page: 1927 issue: 3 year: 2022 end-page: 1937 ident: CR101 article-title: Muscle density is an independent risk factor of second hip fracture: a prospective cohort study publication-title: J Cachexia Sarcopenia Muscle doi: 10.1002/jcsm.12996 – volume: 30 start-page: 1275 issue: 6 year: 2019 end-page: 1285 ident: CR30 article-title: Opportunistic osteoporosis screening in multi-detector CT images via local classification of textures publication-title: Osteoporos Int doi: 10.1007/s00198-019-04910-1 – volume: 42 start-page: 798 issue: 5 year: 2018 end-page: 806 ident: CR34 article-title: Opportunistic bone density measurement on abdomen and pelvis computed tomography to predict fracture risk in women aged 50 to 64 years without osteoporosis risk factors publication-title: J Comput Assist Tomogr doi: 10.1097/RCT.0000000000000744 – ident: CR42 – volume: 293 start-page: 405 issue: 2 year: 2019 end-page: 411 ident: CR37 article-title: Identification of vertebral fractures by convolutional neural networks to predict nonvertebral and hip fractures: a Registry-based cohort study of dual x-ray absorptiometry publication-title: Radiology doi: 10.1148/radiol.2019190201 – start-page: 319 year: 2018 end-page: 330 ident: CR4 article-title: Diagnosis and classification of vertebral fracture publication-title: Primer on the metabolic bone diseases and disorders of mineral metabolism doi: 10.1002/9781119266594.ch40 – volume: 13 start-page: 471 issue: 3 year: 2009 end-page: 482 ident: CR27 article-title: Automated model-based vertebra detection, identification, and segmentation in CT images publication-title: Med Image Anal doi: 10.1016/j.media.2009.02.004 – volume: 27 start-page: 147 issue: 1 year: 2016 end-page: 152 ident: CR44 article-title: Effect of IV contrast on lumbar trabecular attenuation at routine abdominal CT: correlation with DXA and implications for opportunistic osteoporosis screening publication-title: Osteoporos Int doi: 10.1007/s00198-015-3224-9 – volume: 13 start-page: 76 issue: 1 year: 2018 ident: CR83 article-title: Opportunistic screening for osteoporosis in abdominal computed tomography for Chinese population publication-title: Arch Osteoporos doi: 10.1007/s11657-018-0492-y – volume: 11 start-page: 123 issue: 1 year: 2008 end-page: 162 ident: CR1 article-title: Clinical use of quantitative computed tomography and peripheral quantitative computed tomography in the management of osteoporosis in adults: the 2007 ISCD Official Positions publication-title: J Clin Densitom doi: 10.1016/j.jocd.2007.12.010 – volume: 29 start-page: 1359 issue: 6 year: 2018 end-page: 1366 ident: CR64 article-title: Opportunistic screening for bone disease using abdominal CT scans obtained for other reasons in newly diagnosed IBD patients publication-title: Osteoporos Int doi: 10.1007/s00198-018-4444-6 – year: 2022 ident: CR69 article-title: Opportunistic screening using routine clinical CT scans to identify subjects at high risk for osteoporotic fracture - clinical promises and technical challenges publication-title: Quantitative Musculoskeletal Imaging (QMSKI) – volume: 29 start-page: 4980 issue: 9 year: 2019 end-page: 4989 ident: CR46 article-title: Improved prediction of incident vertebral fractures using opportunistic QCT compared to DXA publication-title: Eur Radiol doi: 10.1007/s00330-019-06018-w – year: 2022 ident: CR19 article-title: Opportunistic CT screening for degenerative deformities and osteoporotic fractures with 3D DeepLab publication-title: Medical Imaging 2022: Image Processing – volume: 18 start-page: 359 issue: 3 year: 2015 end-page: 392 ident: CR99 article-title: Clinical use of quantitative computed tomography-based finite element analysis of the hip and spine in the management of osteoporosis in adults: the 2015 ISCD Official Positions-Part II publication-title: J Clin Densitom doi: 10.1016/j.jocd.2015.06.011 – year: 2012 ident: CR9 article-title: Automatic localization and identification of vertebrae in arbitrary field-of-view CT scans publication-title: International conference on medical image computing and computer-assisted intervention – volume: 10 start-page: 560 issue: 4 year: 2006 end-page: 577 ident: CR28 article-title: A hierarchical 3D segmentation method and the definition of vertebral body coordinate systems for QCT of the lumbar spine publication-title: Med Image Anal doi: 10.1016/j.media.2006.05.005 – volume: 78 start-page: 55 year: 2020 end-page: 63 ident: CR57 article-title: CT-based internal density calibration for opportunistic skeletal assessment using abdominal CT scans publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2020.01.009 – volume: 13 start-page: 1023 issue: 6 year: 1989 end-page: 1035 ident: CR94 article-title: Impact of marrow fat on accuracy of quantitative CT publication-title: J Comput Assist Tomogr doi: 10.1097/00004728-198911000-00015 – volume: 12 start-page: 48 year: 2013 ident: CR26 article-title: An improved level set method for vertebra CT image segmentation publication-title: Biomed Eng Online doi: 10.1186/1475-925X-12-48 – volume: 17 start-page: e0265524 issue: 3 year: 2022 ident: CR52 article-title: The effect of variations in CT scan protocol on femoral finite element failure load assessment using phantomless calibration publication-title: PLoS ONE doi: 10.1371/journal.pone.0265524 – volume: 302 start-page: 627 issue: 3 year: 2022 end-page: 636 ident: CR90 article-title: Improving radiographic fracture recognition performance and efficiency using artificial intelligence publication-title: Radiology doi: 10.1148/radiol.210937 – volume: 24 start-page: 108 issue: 4 year: 2020 end-page: 118 ident: CR48 article-title: Comparison of two asynchronous QCT methods publication-title: Medical Visualization doi: 10.24835/1607-0763-2020-4-108-118 – volume: 13 start-page: 882163 year: 2022 ident: CR47 article-title: Level-specific volumetric BMD threshold values for the prediction of incident vertebral fractures using opportunistic QCT: a case-control study publication-title: Front Endocrinol (Lausanne) doi: 10.3389/fendo.2022.882163 – volume: 8 start-page: e71204 issue: 8 year: 2013 ident: CR88 article-title: Intra and interobserver reliability and agreement of semiquantitative vertebral fracture assessment on chest computed tomography publication-title: PLoS ONE doi: 10.1371/journal.pone.0071204 – volume: 11 start-page: 22156 issue: 1 year: 2021 ident: CR14 article-title: Automatic vertebrae localization and segmentation in CT with a two-stage Dense-U-Net publication-title: Sci Rep doi: 10.1038/s41598-021-01296-1 – volume: 16 start-page: S153 issue: Suppl 2 year: 2015 end-page: S160 ident: CR50 article-title: Lumbar bone mineral density phantomless computed tomography measurements and correlation with age and fracture incidence publication-title: Traffic Inj Prev doi: 10.1080/15389588.2015.1054029 – volume: 41 start-page: 217 issue: 2 year: 2017 end-page: 223 ident: CR76 article-title: Bone mineral density estimations from routine multidetector computed tomography: a comparative study of contrast and calibration effects publication-title: J Comput Assist Tomogr doi: 10.1097/RCT.0000000000000518 – volume: 35 start-page: 212 issue: 2 year: 2011 end-page: 216 ident: CR31 article-title: Feasibility of simultaneous computed tomographic colonography and fully automated bone mineral densitometry in a single examination publication-title: J Comput Assist Tomogr doi: 10.1097/RCT.0b013e3182032537 – volume: 216 start-page: 447 issue: 2 year: 2021 end-page: 452 ident: CR67 article-title: CT Phantom evaluation of 67,392 American College of Radiology Accreditation examinations: implications for opportunistic screening of osteoporosis using CT publication-title: AJR Am J Roentgenol doi: 10.2214/AJR.20.22943 – volume: 209 start-page: 491 issue: 3 year: 2017 end-page: 496 ident: CR70 article-title: Prevalence of vertebral compression fractures on routine CT scans according to L1 trabecular attenuation: determining relevant thresholds for opportunistic osteoporosis screening publication-title: AJR Am J Roentgenol doi: 10.2214/AJR.17.17853 – volume: 13 start-page: 340 issue: 3 year: 1986 end-page: 3 ident: CR93 article-title: Evaluation of a prototype dual-energy computed tomographic apparatus. II. Determination of vertebral bone mineral content publication-title: Med Phys doi: 10.1118/1.595951 – volume: 18 start-page: 338 issue: 3 year: 2015 end-page: 358 ident: CR2 article-title: Clinical use of quantitative computed tomography (qct) of the hip in the management of osteoporosis in adults: the 2015 ISCD Official Positions-Part I publication-title: J Clin Densitom doi: 10.1016/j.jocd.2015.06.012 – volume: 50 start-page: 2525 issue: 12 year: 2021 end-page: 2535 ident: CR81 article-title: Correlation between Hounsfield unit derived from head, thorax, abdomen, spine and pelvis CT and t-scores from DXA publication-title: Skeletal Radiol doi: 10.1007/s00256-021-03801-z – volume: 5 start-page: 43 issue: 1 year: 2021 ident: CR95 article-title: Accuracy and precision of volumetric bone mineral density assessment using dual-source dual-energy versus quantitative CT: a phantom study publication-title: Eur Radiol Exp doi: 10.1186/s41747-021-00241-1 – volume: 2019 start-page: 4102410 year: 2019 ident: CR56 article-title: Patient-specific phantomless estimation of bone mineral density and its effects on finite element analysis results: a feasibility study publication-title: Comput Math Methods Med doi: 10.1155/2019/4102410 – year: 2019 ident: CR6 article-title: Detection of vertebral fractures in CT using 3D convolutional neural networks publication-title: International workshop and challenge on computational methods and clinical applications for spine imaging – year: 2018 ident: CR12 article-title: Fully automatic segmentation of lumbar vertebrae from CT images using cascaded 3D fully convolutional networks publication-title: 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018) – volume: 23 start-page: 1007 issue: 3 year: 2012 end-page: 1016 ident: CR41 article-title: Identification of prevalent vertebral fractures using CT lateral scout views: a comparison of semi-automated quantitative vertebral morphometry and radiologist semi-quantitative grading publication-title: Osteoporos Int doi: 10.1007/s00198-011-1774-z – year: 2011 ident: CR35 article-title: Automatic lumbar vertebra segmentation from clinical CT for wedge compression fracture diagnosis publication-title: Medical imaging 2011: computer-aided diagnosis – year: 2022 ident: CR18 article-title: EG-Trans3DUNet: a single-staged transformer-based model for accurate vertebrae segmentation from spinal CT images publication-title: 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI) – volume: 31 start-page: 3147 issue: 5 year: 2021 end-page: 3155 ident: CR77 article-title: Opportunistic osteoporosis screening: contrast-enhanced dual-layer spectral CT provides accurate measurements of vertebral bone mineral density publication-title: Eur Radiol doi: 10.1007/s00330-020-07319-1 – volume: 12 start-page: 545 year: 1977 end-page: 551 ident: CR92 article-title: Quantitative bone mineral analysis using dual energy computed tomography publication-title: Invest Radiol doi: 10.1097/00004424-197711000-00015 – volume: 29 start-page: 570 issue: 3 year: 2014 end-page: 580 ident: CR78 article-title: Assessment of incident spine and hip fractures in women and men using finite element analysis of CT scans publication-title: J Bone Miner Res doi: 10.1002/jbmr.2069 – volume: 60 start-page: 2375 issue: 9 year: 2013 end-page: 2383 ident: CR10 article-title: Simultaneous localization of lumbar vertebrae and intervertebral discs with SVM-based MRF publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2013.2256460 – volume: 11 start-page: 1799 issue: 6 year: 2020 end-page: 1812 ident: CR102 article-title: Muscle density discriminates hip fracture better than computed tomography X-ray absorptiometry hip areal bone mineral density publication-title: J Cachexia Sarcopenia Muscle doi: 10.1002/jcsm.12616 – year: 2021 ident: CR24 article-title: Automated deep learning-based detection of osteoporotic fractures in CT images publication-title: International workshop on machine learning in medical imaging – year: 2020 ident: CR25 article-title: 3D convolutional sequence to sequence model for vertebral compression fractures identification in CT publication-title: International conference on medical image computing and computer-assisted intervention – volume: 92 start-page: 20180726 issue: 1094 year: 2019 ident: CR5 article-title: Population-based opportunistic osteoporosis screening: Validation of a fully automated CT tool for assessing longitudinal BMD changes publication-title: Br J Radiol doi: 10.1259/bjr.20180726 – volume: 161 start-page: 116427 year: 2022 ident: CR38 article-title: Development of a manufacturer-independent convolutional neural network for the automated identification of vertebral compression fractures in vertebral fracture assessment images using active learning publication-title: Bone doi: 10.1016/j.bone.2022.116427 – volume: 290 start-page: 426 issue: 2 year: 2019 end-page: 434 ident: CR100 article-title: Three-dimensional distribution of muscle and adipose tissue of the thigh at CT: association with acute hip fracture publication-title: Radiology doi: 10.1148/radiol.2018181112 – volume: 15 start-page: e0240084 issue: 10 year: 2020 ident: CR63 article-title: Opportunistic use of chest CT for screening osteoporosis and predicting the risk of incidental fracture in breast cancer patients: a retrospective longitudinal study publication-title: PLoS ONE doi: 10.1371/journal.pone.0240084 – volume: 99 start-page: 1580 issue: 18 year: 2017 end-page: 1590 ident: CR68 article-title: Opportunistic use of CT imaging for osteoporosis screening and bone density assessment: a qualitative systematic review publication-title: J Bone Joint Surg Am doi: 10.2106/JBJS.16.00749 – volume: 5 start-page: 50 issue: 2 year: 2014 end-page: 55 ident: CR60 article-title: The use of computed tomography attenuation to evaluate osteoporosis following acute fractures of the thoracic and lumbar vertebra publication-title: Geriatr Orthop Surg Rehabil doi: 10.1177/2151458514525042 – volume: 143 start-page: 115759 year: 2021 ident: CR54 article-title: Evaluation of patient tissue selection methods for deriving equivalent density calibration for femoral bone quantitative CT analyses publication-title: Bone doi: 10.1016/j.bone.2020.115759 – volume: 158 start-page: 588 issue: 8 year: 2013 end-page: 595 ident: CR59 article-title: Opportunistic screening for osteoporosis using abdominal computed tomography scans obtained for other indications publication-title: Ann Intern Med doi: 10.7326/0003-4819-158-8-201304160-00003 – volume: 25 start-page: 1958 issue: 9 year: 2010 end-page: 1971 ident: CR79 article-title: Correlates of trabecular and cortical volumetric bone mineral density at the femoral neck and lumbar spine: the osteoporotic fractures in men study (MrOS) publication-title: J Bone Miner Res doi: 10.1002/jbmr.86 – volume: 8 start-page: 1137 issue: 9 year: 1993 end-page: 1148 ident: CR3 article-title: Vertebral fracture assessment using a semiquantitative technique publication-title: JBMR doi: 10.1002/jbmr.5650080915 – volume: 125 start-page: 551 issue: 6 year: 2020 end-page: 560 ident: CR22 article-title: Computational techniques to segment and classify lumbar compression fractures publication-title: Radiol Med doi: 10.1007/s11547-020-01145-7 – volume: 25 start-page: 2074 issue: 7 year: 2015 end-page: 2079 ident: CR72 article-title: Opportunistic screening for osteoporosis on routine computed tomography? An external validation study publication-title: Eur Radiol doi: 10.1007/s00330-014-3584-0 – volume: 32 start-page: 1890 issue: 10 year: 2013 end-page: 1900 ident: CR29 article-title: Lumbar spine segmentation using a statistical multi-vertebrae anatomical shape+pose model publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2013.2268424 – volume: 10 start-page: 20031 issue: 1 year: 2020 ident: CR39 article-title: Artificial intelligence for the detection of vertebral fractures on plain spinal radiography publication-title: Sci Rep doi: 10.1038/s41598-020-76866-w – volume: 278 start-page: 172 issue: 1 year: 2016 end-page: 180 ident: CR84 article-title: Comprehensive assessment of osteoporosis and bone fragility with CT colonography publication-title: Radiology doi: 10.1148/radiol.2015141984 – year: 2020 ident: CR21 article-title: Keypoints localization for joint vertebra detection and fracture severity quantification publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 37 start-page: 1287 year: 2022 end-page: 1296 ident: CR87 article-title: Automated opportunistic osteoporosis screening in routine computed tomography of the spine: comparison with dedicated quantitative CT publication-title: J Bone Miner Res doi: 10.1002/jbmr.4575 – volume: 477 start-page: 850 issue: 4 year: 2019 end-page: 860 ident: CR85 article-title: Proximal femur Hounsfield units on CT colonoscopy correlate with dual-energy X-ray absorptiometry publication-title: Clin Orthop Relat Res doi: 10.1097/CORR.0000000000000480 – year: 2019 ident: CR16 article-title: Metastatic vertebrae segmentation for use in a clinical pipeline publication-title: International workshop and challenge on computational methods and clinical applications for spine imaging – volume: 18 start-page: 5 issue: 1 year: 2015 end-page: 12 ident: CR65 article-title: Comparison of femoral neck BMD evaluation obtained using Lunar DXA and QCT with asynchronous calibration from CT colonography publication-title: J Clin Densitom doi: 10.1016/j.jocd.2014.03.002 – volume: 25 start-page: 283 issue: 2 year: 2015 end-page: 289 ident: CR75 article-title: Intravenous contrast injection significantly affects bone mineral density measured on CT publication-title: Eur Radiol doi: 10.1007/s00330-014-3408-2 – volume: 14 start-page: e0220564 issue: 7 year: 2019 ident: CR51 article-title: Calibration with or without phantom for fracture risk prediction in cancer patients with femoral bone metastases using CT-based finite element models publication-title: PLoS ONE doi: 10.1371/journal.pone.0220564 – volume: 136 start-page: 109568 year: 2021 ident: CR62 article-title: Opportunistic screening for osteoporosis and osteopenia by routine computed tomography scan: a heterogeneous, multiethnic, middle-eastern population validation study publication-title: Eur J Radiol doi: 10.1016/j.ejrad.2021.109568 – volume: 189 start-page: 537 issue: 6 year: 2017 end-page: 543 ident: CR74 article-title: Influence of contrast media on bone mineral density (BMD) measurements from routine contrast-enhanced MDCT datasets using a phantom-less BMD measurement tool publication-title: Rofo doi: 10.1055/s-0043-102941 – ident: CR53 – year: 2012 ident: CR36 article-title: Quantitative vertebral compression fracture evaluation using a height compass publication-title: Medical imaging 2012: computer-aided diagnosis – volume: 24 start-page: 872 issue: 4 year: 2014 end-page: 880 ident: CR32 article-title: Automatic detection of osteoporotic vertebral fractures in routine thoracic and abdominal MDCT publication-title: Eur Radiol doi: 10.1007/s00330-013-3089-2 – volume: 29 start-page: 6355 issue: 11 year: 2019 end-page: 6363 ident: CR96 article-title: Bone mineral density measurements derived from dual-layer spectral CT enable opportunistic screening for osteoporosis publication-title: Eur Radiol doi: 10.1007/s00330-019-06263-z – volume: 103 start-page: 325 year: 2017 end-page: 333 ident: CR49 article-title: Phantomless calibration of CT scans for measurement of BMD and bone strength-Inter-operator reanalysis precision publication-title: Bone doi: 10.1016/j.bone.2017.07.029 – volume: 284 start-page: 788 issue: 3 year: 2017 end-page: 797 ident: CR20 article-title: Vertebral body compression fractures and bone density: automated detection and classification on CT images publication-title: Radiology doi: 10.1148/radiol.2017162100 – ident: CR40 – volume: 2 start-page: e190138 issue: 4 year: 2020 ident: CR15 article-title: A vertebral segmentation dataset with fracture grading publication-title: Radiol Artif Intell doi: 10.1148/ryai.2020190138 – volume: 28 start-page: 983 issue: 3 year: 2017 end-page: 990 ident: CR80 article-title: Opportunistic screening for osteoporosis by routine CT in Southern Europe publication-title: Osteoporos Int doi: 10.1007/s00198-016-3804-3 – volume: 30 start-page: 4107 issue: 7 year: 2020 end-page: 4116 ident: CR17 article-title: Automatic opportunistic osteoporosis screening using low-dose chest computed tomography scans obtained for lung cancer screening publication-title: Eur Radiol doi: 10.1007/s00330-020-06679-y – volume: 38 start-page: 25 year: 2018 end-page: 31 ident: CR82 article-title: Bone mineral density T-scores derived from CT attenuation numbers (Hounsfield units): clinical utility and correlation with dual-energy X-ray absorptiometry publication-title: Iowa Orthop J – year: 2015 ident: CR8 article-title: Automatic localization and identification of vertebrae in spine CT via a joint learning model with deep neural networks publication-title: Medical image computing and computer-assisted intervention – MICCAI 201 – volume: 31 start-page: 9428 issue: 12 year: 2021 end-page: 9435 ident: CR55 article-title: Opportunistic application of phantom-less calibration methods for fracture risk prediction using QCT/FEA publication-title: Eur Radiol doi: 10.1007/s00330-021-08071-w – volume: 209 start-page: 395 issue: 2 year: 2017 end-page: 402 ident: CR73 article-title: Predicting future hip fractures on routine abdominal CT using opportunistic osteoporosis screening measures: a matched case-control study publication-title: AJR Am J Roentgenol doi: 10.2214/AJR.17.17820 – volume: 25 start-page: 2802 year: 2019 end-page: 2810 ident: CR33 article-title: 3D computed tomography mapping of thoracolumbar vertebrae fractures publication-title: Med Sci Monit doi: 10.12659/MSM.915916 – year: 2017 ident: CR13 article-title: Attention-driven deep learning for pathological spine segmentation publication-title: International workshop on computational methods and clinical applications in musculoskeletal imaging – volume: 206 start-page: 694 issue: 4 year: 2016 end-page: 698 ident: CR43 article-title: Direct comparison of unenhanced and contrast-enhanced CT for opportunistic proximal femur bone mineral density measurement: implications for osteoporosis screening publication-title: AJR Am J Roentgenol doi: 10.2214/AJR.15.15128 – volume: 31 start-page: 2189 issue: 11 year: 2020 end-page: 2196 ident: CR61 article-title: Using opportunistic screening with abdominal CT to identify osteoporosis and osteopenia in patients with diabetes publication-title: Osteoporos Int doi: 10.1007/s00198-020-05521-x – volume: 11 start-page: 123 issue: 1 year: 2008 ident: 764_CR1 publication-title: J Clin Densitom doi: 10.1016/j.jocd.2007.12.010 – volume: 302 start-page: 627 issue: 3 year: 2022 ident: 764_CR90 publication-title: Radiology doi: 10.1148/radiol.210937 – volume: 5 start-page: 43 issue: 1 year: 2021 ident: 764_CR95 publication-title: Eur Radiol Exp doi: 10.1186/s41747-021-00241-1 – volume: 5 start-page: 50 issue: 2 year: 2014 ident: 764_CR60 publication-title: Geriatr Orthop Surg Rehabil doi: 10.1177/2151458514525042 – volume-title: International conference on medical image computing and computer-assisted intervention year: 2020 ident: 764_CR23 – volume: 38 start-page: 25 year: 2018 ident: 764_CR82 publication-title: Iowa Orthop J – volume: 13 start-page: 882163 year: 2022 ident: 764_CR47 publication-title: Front Endocrinol (Lausanne) doi: 10.3389/fendo.2022.882163 – volume: 14 start-page: e0220564 issue: 7 year: 2019 ident: 764_CR51 publication-title: PLoS ONE doi: 10.1371/journal.pone.0220564 – volume-title: International workshop and challenge on computational methods and clinical applications for spine imaging year: 2019 ident: 764_CR6 – volume: 78 start-page: 55 year: 2020 ident: 764_CR57 publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2020.01.009 – volume: 209 start-page: 491 issue: 3 year: 2017 ident: 764_CR70 publication-title: AJR Am J Roentgenol doi: 10.2214/AJR.17.17853 – volume: 31 start-page: 9428 issue: 12 year: 2021 ident: 764_CR55 publication-title: Eur Radiol doi: 10.1007/s00330-021-08071-w – volume: 291 start-page: 360 issue: 2 year: 2019 ident: 764_CR58 publication-title: Radiology doi: 10.1148/radiol.2019181648 – volume: 25 start-page: 1958 issue: 9 year: 2010 ident: 764_CR79 publication-title: J Bone Miner Res doi: 10.1002/jbmr.86 – volume: 11 start-page: 22156 issue: 1 year: 2021 ident: 764_CR14 publication-title: Sci Rep doi: 10.1038/s41598-021-01296-1 – volume: 24 start-page: 872 issue: 4 year: 2014 ident: 764_CR32 publication-title: Eur Radiol doi: 10.1007/s00330-013-3089-2 – volume: 23 start-page: 1007 issue: 3 year: 2012 ident: 764_CR41 publication-title: Osteoporos Int doi: 10.1007/s00198-011-1774-z – volume: 2019 start-page: 4102410 year: 2019 ident: 764_CR56 publication-title: Comput Math Methods Med doi: 10.1155/2019/4102410 – volume: 32 start-page: 1890 issue: 10 year: 2013 ident: 764_CR29 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2013.2268424 – volume: 10 start-page: 20031 issue: 1 year: 2020 ident: 764_CR39 publication-title: Sci Rep doi: 10.1038/s41598-020-76866-w – volume-title: International workshop and challenge on computational methods and clinical applications for spine imaging year: 2019 ident: 764_CR16 – volume: 103 start-page: 325 year: 2017 ident: 764_CR49 publication-title: Bone doi: 10.1016/j.bone.2017.07.029 – volume: 17 start-page: e0265524 issue: 3 year: 2022 ident: 764_CR52 publication-title: PLoS ONE doi: 10.1371/journal.pone.0265524 – volume-title: International Conference on Medical Image Computing and Computer-Assisted Intervention year: 2020 ident: 764_CR21 – volume: 29 start-page: 629 issue: 3 year: 2014 ident: 764_CR86 publication-title: J Bone Miner Res doi: 10.1002/jbmr.2080 – volume: 31 start-page: 2189 issue: 11 year: 2020 ident: 764_CR61 publication-title: Osteoporos Int doi: 10.1007/s00198-020-05521-x – volume: 18 start-page: 359 issue: 3 year: 2015 ident: 764_CR99 publication-title: J Clin Densitom doi: 10.1016/j.jocd.2015.06.011 – volume-title: Medical Imaging 2022: Image Processing year: 2022 ident: 764_CR19 – volume: 13 start-page: 471 issue: 3 year: 2009 ident: 764_CR27 publication-title: Med Image Anal doi: 10.1016/j.media.2009.02.004 – volume: 12 start-page: 48 year: 2013 ident: 764_CR26 publication-title: Biomed Eng Online doi: 10.1186/1475-925X-12-48 – start-page: 319 volume-title: Primer on the metabolic bone diseases and disorders of mineral metabolism year: 2018 ident: 764_CR4 doi: 10.1002/9781119266594.ch40 – volume-title: International workshop on machine learning in medical imaging year: 2021 ident: 764_CR24 – volume: 290 start-page: 426 issue: 2 year: 2019 ident: 764_CR100 publication-title: Radiology doi: 10.1148/radiol.2018181112 – volume: 136 start-page: 109568 year: 2021 ident: 764_CR62 publication-title: Eur J Radiol doi: 10.1016/j.ejrad.2021.109568 – volume: 99 start-page: 1580 issue: 18 year: 2017 ident: 764_CR68 publication-title: J Bone Joint Surg Am doi: 10.2106/JBJS.16.00749 – volume-title: Quantitative Musculoskeletal Imaging (QMSKI) year: 2022 ident: 764_CR69 – volume: 209 start-page: 395 issue: 2 year: 2017 ident: 764_CR73 publication-title: AJR Am J Roentgenol doi: 10.2214/AJR.17.17820 – ident: 764_CR42 doi: 10.1016/j.jocd.2015.11.001 – volume: 13 start-page: 76 issue: 1 year: 2018 ident: 764_CR83 publication-title: Arch Osteoporos doi: 10.1007/s11657-018-0492-y – volume: 25 start-page: 2074 issue: 7 year: 2015 ident: 764_CR72 publication-title: Eur Radiol doi: 10.1007/s00330-014-3584-0 – ident: 764_CR97 doi: 10.1016/j.zemedi.2022.04.001 – volume: 189 start-page: 537 issue: 6 year: 2017 ident: 764_CR74 publication-title: Rofo doi: 10.1055/s-0043-102941 – volume: 18 start-page: 5 issue: 1 year: 2015 ident: 764_CR65 publication-title: J Clin Densitom doi: 10.1016/j.jocd.2014.03.002 – volume: 31 start-page: 1025 issue: 6 year: 2020 ident: 764_CR98 publication-title: Osteoporos Int doi: 10.1007/s00198-020-05384-2 – volume: 27 start-page: 147 issue: 1 year: 2016 ident: 764_CR44 publication-title: Osteoporos Int doi: 10.1007/s00198-015-3224-9 – volume: 41 start-page: 217 issue: 2 year: 2017 ident: 764_CR76 publication-title: J Comput Assist Tomogr doi: 10.1097/RCT.0000000000000518 – volume: 30 start-page: 1275 issue: 6 year: 2019 ident: 764_CR30 publication-title: Osteoporos Int doi: 10.1007/s00198-019-04910-1 – volume: 293 start-page: 405 issue: 2 year: 2019 ident: 764_CR37 publication-title: Radiology doi: 10.1148/radiol.2019190201 – volume: 60 start-page: 2375 issue: 9 year: 2013 ident: 764_CR10 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2013.2256460 – volume: 29 start-page: 1359 issue: 6 year: 2018 ident: 764_CR64 publication-title: Osteoporos Int doi: 10.1007/s00198-018-4444-6 – volume: 143 start-page: 115759 year: 2021 ident: 764_CR54 publication-title: Bone doi: 10.1016/j.bone.2020.115759 – volume: 50 start-page: 2525 issue: 12 year: 2021 ident: 764_CR81 publication-title: Skeletal Radiol doi: 10.1007/s00256-021-03801-z – volume: 18 start-page: 338 issue: 3 year: 2015 ident: 764_CR2 publication-title: J Clin Densitom doi: 10.1016/j.jocd.2015.06.012 – volume: 125 start-page: 551 issue: 6 year: 2020 ident: 764_CR22 publication-title: Radiol Med doi: 10.1007/s11547-020-01145-7 – volume: 61 start-page: 3269 issue: 8 year: 2022 ident: 764_CR89 publication-title: Rheumatology (Oxford) doi: 10.1093/rheumatology/keab878 – volume: 11 start-page: 1799 issue: 6 year: 2020 ident: 764_CR102 publication-title: J Cachexia Sarcopenia Muscle doi: 10.1002/jcsm.12616 – volume: 42 start-page: 798 issue: 5 year: 2018 ident: 764_CR34 publication-title: J Comput Assist Tomogr doi: 10.1097/RCT.0000000000000744 – volume: 206 start-page: 694 issue: 4 year: 2016 ident: 764_CR43 publication-title: AJR Am J Roentgenol doi: 10.2214/AJR.15.15128 – volume: 29 start-page: 570 issue: 3 year: 2014 ident: 764_CR78 publication-title: J Bone Miner Res doi: 10.1002/jbmr.2069 – volume: 278 start-page: 172 issue: 1 year: 2016 ident: 764_CR84 publication-title: Radiology doi: 10.1148/radiol.2015141984 – volume: 13 start-page: 1927 issue: 3 year: 2022 ident: 764_CR101 publication-title: J Cachexia Sarcopenia Muscle doi: 10.1002/jcsm.12996 – volume: 29 start-page: 6355 issue: 11 year: 2019 ident: 764_CR96 publication-title: Eur Radiol doi: 10.1007/s00330-019-06263-z – volume: 31 start-page: 3147 issue: 5 year: 2021 ident: 764_CR77 publication-title: Eur Radiol doi: 10.1007/s00330-020-07319-1 – volume: 188 start-page: 1294 issue: 5 year: 2007 ident: 764_CR45 publication-title: AJR Am J Roentgenol doi: 10.2214/AJR.06.1006 – ident: 764_CR53 doi: 10.1016/j.bone.2021.116304 – volume: 2 start-page: e190138 issue: 4 year: 2020 ident: 764_CR15 publication-title: Radiol Artif Intell doi: 10.1148/ryai.2020190138 – volume: 13 start-page: 340 issue: 3 year: 1986 ident: 764_CR93 publication-title: Med Phys doi: 10.1118/1.595951 – volume-title: Medical image computing and computer-assisted intervention – MICCAI 201 year: 2015 ident: 764_CR8 – volume: 477 start-page: 850 issue: 4 year: 2019 ident: 764_CR85 publication-title: Clin Orthop Relat Res doi: 10.1097/CORR.0000000000000480 – volume: 12 start-page: 545 year: 1977 ident: 764_CR92 publication-title: Invest Radiol doi: 10.1097/00004424-197711000-00015 – volume-title: International conference on medical image computing and computer-assisted intervention year: 2012 ident: 764_CR9 – volume-title: Medical imaging 2012: computer-aided diagnosis year: 2012 ident: 764_CR36 – volume: 35 start-page: 212 issue: 2 year: 2011 ident: 764_CR31 publication-title: J Comput Assist Tomogr doi: 10.1097/RCT.0b013e3182032537 – volume: 10 start-page: 560 issue: 4 year: 2006 ident: 764_CR28 publication-title: Med Image Anal doi: 10.1016/j.media.2006.05.005 – volume: 32 start-page: 3076 issue: 5 year: 2022 ident: 764_CR71 publication-title: Eur Radiol doi: 10.1007/s00330-021-08323-9 – volume-title: International conference on medical image computing and computer-assisted intervention year: 2017 ident: 764_CR11 – volume-title: 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018) year: 2018 ident: 764_CR12 – volume: 158 start-page: 588 issue: 8 year: 2013 ident: 764_CR59 publication-title: Ann Intern Med doi: 10.7326/0003-4819-158-8-201304160-00003 – volume: 25 start-page: 283 issue: 2 year: 2015 ident: 764_CR75 publication-title: Eur Radiol doi: 10.1007/s00330-014-3408-2 – volume: 25 start-page: 2802 year: 2019 ident: 764_CR33 publication-title: Med Sci Monit doi: 10.12659/MSM.915916 – volume: 161 start-page: 116427 year: 2022 ident: 764_CR38 publication-title: Bone doi: 10.1016/j.bone.2022.116427 – volume: 8 start-page: 1137 issue: 9 year: 1993 ident: 764_CR3 publication-title: JBMR doi: 10.1002/jbmr.5650080915 – volume: 15 start-page: e0240084 issue: 10 year: 2020 ident: 764_CR63 publication-title: PLoS ONE doi: 10.1371/journal.pone.0240084 – volume: 208 start-page: 165 issue: 1 year: 2017 ident: 764_CR66 publication-title: AJR Am J Roentgenol doi: 10.2214/AJR.16.16744 – volume: 24 start-page: 108 issue: 4 year: 2020 ident: 764_CR48 publication-title: Medical Visualization doi: 10.24835/1607-0763-2020-4-108-118 – volume: 30 start-page: 4107 issue: 7 year: 2020 ident: 764_CR17 publication-title: Eur Radiol doi: 10.1007/s00330-020-06679-y – volume-title: Medical imaging 2020: image processing year: 2020 ident: 764_CR7 – volume-title: International workshop on computational methods and clinical applications in musculoskeletal imaging year: 2017 ident: 764_CR13 – ident: 764_CR40 doi: 10.21037/qims-22-433 – volume-title: International conference on medical image computing and computer-assisted intervention year: 2020 ident: 764_CR25 – volume: 284 start-page: 788 issue: 3 year: 2017 ident: 764_CR20 publication-title: Radiology doi: 10.1148/radiol.2017162100 – volume: 92 start-page: 20180726 issue: 1094 year: 2019 ident: 764_CR5 publication-title: Br J Radiol doi: 10.1259/bjr.20180726 – volume-title: 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI) year: 2022 ident: 764_CR18 – volume: 16 start-page: S153 issue: Suppl 2 year: 2015 ident: 764_CR50 publication-title: Traffic Inj Prev doi: 10.1080/15389588.2015.1054029 – volume: 37 start-page: 1287 year: 2022 ident: 764_CR87 publication-title: J Bone Miner Res doi: 10.1002/jbmr.4575 – volume: 26 start-page: 77 issue: 1 year: 2020 ident: 764_CR91 publication-title: Nat Med doi: 10.1038/s41591-019-0720-z – volume: 216 start-page: 447 issue: 2 year: 2021 ident: 764_CR67 publication-title: AJR Am J Roentgenol doi: 10.2214/AJR.20.22943 – volume: 8 start-page: e71204 issue: 8 year: 2013 ident: 764_CR88 publication-title: PLoS ONE doi: 10.1371/journal.pone.0071204 – volume: 28 start-page: 983 issue: 3 year: 2017 ident: 764_CR80 publication-title: Osteoporos Int doi: 10.1007/s00198-016-3804-3 – volume-title: Medical imaging 2011: computer-aided diagnosis year: 2011 ident: 764_CR35 – volume: 29 start-page: 4980 issue: 9 year: 2019 ident: 764_CR46 publication-title: Eur Radiol doi: 10.1007/s00330-019-06018-w – volume: 13 start-page: 1023 issue: 6 year: 1989 ident: 764_CR94 publication-title: J Comput Assist Tomogr doi: 10.1097/00004728-198911000-00015 |
SSID | ssj0022143 |
Score | 2.4769318 |
SecondaryResourceType | review_article |
Snippet | Purpose of Review
Opportunistic screening is a combination of techniques to identify subjects of high risk for osteoporotic fracture using routine clinical CT... Opportunistic screening is a combination of techniques to identify subjects of high risk for osteoporotic fracture using routine clinical CT scans prescribed... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 65 |
SubjectTerms | Absorptiometry, Photon - methods Artificial Intelligence Bone Density Epidemiology Humans Imaging (H Isaksson and S Boyd Imaging (H Isaksson and S Boyd, Section Editors) Medicine Medicine & Public Health Orthopedics Osteoporosis - diagnostic imaging Osteoporotic Fractures Section Editors Spinal Fractures - diagnostic imaging Tomography, X-Ray Computed Topical Collection on Imaging |
Title | Opportunistic Screening Techniques for Analysis of CT Scans |
URI | https://link.springer.com/article/10.1007/s11914-022-00764-5 https://www.ncbi.nlm.nih.gov/pubmed/36435912 https://www.proquest.com/docview/2740505037 https://pubmed.ncbi.nlm.nih.gov/PMC9925590 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60BfEivo2PEsGbLjSPTbJ4KqG1KOrBFuppSbIbFCQtpv3_zuRVaqXgOZNlM7OT-Yb5dgbgRjs8wrih6cZyzNzESVhkxZqlmo6M8JRKC4Lsizccu48TPqkuheU1270uSRZ_6uVlN2pFxoh9TuUjl_FtaHPM3YnIN7Z7TZplWyWtnrsuswLfqa7K_L3Gajhaw5jrVMlf9dIiDA32Ya_Cj2avNPgBbOnsEHaeqwr5Edy_zghRU5EaJcy3hHg1uJI5qpu15ibiVLNuRmJOUzMcoRyGrGMYD_qjcMiqAQkswSxuzlRCdTvX1qmDuEgQ-EfA5SZcKKW6QeoL9Db0aRFHnh8pH7ObQEeIAPFzCPg5J9DKppk-A9MVdoS6Sj1HccRocUDurKNAqRgRU2obYNV6kknVPZyGWHzJZd9j0q1E3cpCt5IbcNu8Myt7Z2yUvq7VL_GIU90iyvR0kUtMnGneXtfxDTgtzdGs5yCi4sLC_fkrhmoEqH326pPs86Nooy0EpVNdA-5qk8rKf_MN2zz_n_gF7NKA-pLnfQmt-fdCXyGMmccdaPce3p_6HdgOvbBTnOEf3rLo-Q |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgSMCF92M8i8QNMq1tujbihNDGYA8ObNI4RW2TCgTqENsu_HrsPjZtQ5N2rhsldmJ_lp0vANfadnyMG5puLAeMh3bIfDPQLNK0ZURFqShpkG1X6l3-3HN62aWwQd7tnpckE089uexGVGSMus-pfMSZswprHHNwXoC1-8e3RnWcaFlm2ljvcM5Mz7WzyzL_jzIdkOZQ5nyz5EzFNAlEtW3o5ktI-08-S6NhUAp_Z9gdl13jDmxlyNS4T7fSLqzoeA_WW1ntfR_uXr4Jq1P5GyWM15A6dnBwo5PTwA4MRMBGTnNi9CPjoYNyGAwPoFurdh7qLHt6gYWYHw6ZCqkiyC0d2Yi4BKUVCOV46AilVNmLXIHnGL2FCPyK6ysX8yZP-4gtUU0EKe1DKMT9WB-DwYXlow2iiq0cRH-BR45C-55SAWKxyCqCmetfhhkvOT2P8SUnjMqkFYlakYlWpFOEm_E_3ykrx0Lpq9ysEg8PVUT8WPdHA4kpOb3kV7bdIhylZh6PZyNWc4SJ83OnNsBYgIi5p7_EH-8JQbcQlKiVi3CbW1lmnmGwYJony4lfwka902rK5lO7cQqbFoKvtJv8DArDn5E-R7A0DC6ys_EH80AGfA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZT8MwDLZgSIgX7mOcReINwtY2XRvxNA3GfUgMCZ6itEkFAnUT61749dg9BgOEhHium6Z2En-W7S8AO8b1FPoNQx3LIeORGzFlh4bFhpaMaGgdZwWyV42TO352791_6uLPqt3LlGTe00AsTUla6-m49tH4RrRkjCrRKZXEmTcOE5zI2Ssw0Tx-OD8aBl2OnRfZe5wzO_DdonHm51FGndM3xPm9cPJL9jRzSu0ZUOXv5LUoz_uDNNyP3r4wPf7nf2dhukCsVjNfYnMwZpJ5mLwscvILcHDdIwxPaXGUsG4jquTBD1mdkh62byEytkr6E6sbW60OyqGTXIS79lGndcKKKxlYhHFjynREmULumNhFJCYo3ECIxyNPaK3rQewL3N94iohQNXylfYynAqMQc6LKCGq6S1BJuolZAYsLR6E94oarPUSFYUAHiFGB1iFitNipgl3aQkYFXzldm_EiP5iWSSsStSIzrUivCrvDd3o5W8ev0tuliSVuKsqUqMR0B32JoTrd8Fd3_Sos5yYfjucihvOEjfPzRxbDUIAIu0efJE-PGXG3EBTA1auwV1pcFidG_5dprv5NfAsmbw7b8uL06nwNphzEZHmR-TpU0teB2UAMlYabxTZ5B29gD2A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Opportunistic+Screening+Techniques+for+Analysis+of+CT+Scans&rft.jtitle=Current+osteoporosis+reports&rft.au=Engelke%2C+Klaus&rft.au=Chaudry%2C+Oliver&rft.au=Bartenschlager%2C+Stefan&rft.date=2023-02-01&rft.eissn=1544-2241&rft.volume=21&rft.issue=1&rft.spage=65&rft_id=info:doi/10.1007%2Fs11914-022-00764-5&rft_id=info%3Apmid%2F36435912&rft.externalDocID=36435912 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1544-1873&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1544-1873&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1544-1873&client=summon |