Opportunistic Screening Techniques for Analysis of CT Scans

Purpose of Review Opportunistic screening is a combination of techniques to identify subjects of high risk for osteoporotic fracture using routine clinical CT scans prescribed for diagnoses unrelated to osteoporosis. The two main components are automated detection of vertebral fractures and measurem...

Full description

Saved in:
Bibliographic Details
Published inCurrent osteoporosis reports Vol. 21; no. 1; pp. 65 - 76
Main Authors Engelke, Klaus, Chaudry, Oliver, Bartenschlager, Stefan
Format Journal Article
LanguageEnglish
Published New York Springer US 01.02.2023
Subjects
Online AccessGet full text
ISSN1544-1873
1544-2241
1544-2241
DOI10.1007/s11914-022-00764-5

Cover

Loading…
Abstract Purpose of Review Opportunistic screening is a combination of techniques to identify subjects of high risk for osteoporotic fracture using routine clinical CT scans prescribed for diagnoses unrelated to osteoporosis. The two main components are automated detection of vertebral fractures and measurement of bone mineral density (BMD) in CT scans, in which a phantom for calibration of CT to BMD values is not used. This review describes the particular challenges of opportunistic screening and provides an overview and comparison of current techniques used for opportunistic screening. The review further outlines the performance of opportunistic screening. Recent Findings A wide range of technologies for the automatic detection of vertebral fractures have been developed and successfully validated. Most of them are based on artificial intelligence algorithms. The automated differentiation of osteoporotic from traumatic fractures and vertebral deformities unrelated to osteoporosis, the grading of vertebral fracture severity, and the detection of mild vertebral fractures is still problematic. The accuracy of automated fracture detection compared to classical radiological semi-quantitative Genant scoring is about 80%. Accuracy errors of alternative BMD calibration methods compared to simultaneous phantom-based calibration used in standard quantitative CT (QCT) range from below 5% to about 10%. The impact of contrast agents, frequently administered in clinical CT on the determination of BMD and on fracture risk determination is still controversial. Summary Opportunistic screening, the identification of vertebral fracture and the measurement of BMD using clinical routine CT scans, is feasible but corresponding techniques still need to be integrated into the clinical workflow and further validated with respect to the prediction of fracture risk.
AbstractList Opportunistic screening is a combination of techniques to identify subjects of high risk for osteoporotic fracture using routine clinical CT scans prescribed for diagnoses unrelated to osteoporosis. The two main components are automated detection of vertebral fractures and measurement of bone mineral density (BMD) in CT scans, in which a phantom for calibration of CT to BMD values is not used. This review describes the particular challenges of opportunistic screening and provides an overview and comparison of current techniques used for opportunistic screening. The review further outlines the performance of opportunistic screening. A wide range of technologies for the automatic detection of vertebral fractures have been developed and successfully validated. Most of them are based on artificial intelligence algorithms. The automated differentiation of osteoporotic from traumatic fractures and vertebral deformities unrelated to osteoporosis, the grading of vertebral fracture severity, and the detection of mild vertebral fractures is still problematic. The accuracy of automated fracture detection compared to classical radiological semi-quantitative Genant scoring is about 80%. Accuracy errors of alternative BMD calibration methods compared to simultaneous phantom-based calibration used in standard quantitative CT (QCT) range from below 5% to about 10%. The impact of contrast agents, frequently administered in clinical CT on the determination of BMD and on fracture risk determination is still controversial. Opportunistic screening, the identification of vertebral fracture and the measurement of BMD using clinical routine CT scans, is feasible but corresponding techniques still need to be integrated into the clinical workflow and further validated with respect to the prediction of fracture risk.
Purpose of Review Opportunistic screening is a combination of techniques to identify subjects of high risk for osteoporotic fracture using routine clinical CT scans prescribed for diagnoses unrelated to osteoporosis. The two main components are automated detection of vertebral fractures and measurement of bone mineral density (BMD) in CT scans, in which a phantom for calibration of CT to BMD values is not used. This review describes the particular challenges of opportunistic screening and provides an overview and comparison of current techniques used for opportunistic screening. The review further outlines the performance of opportunistic screening. Recent Findings A wide range of technologies for the automatic detection of vertebral fractures have been developed and successfully validated. Most of them are based on artificial intelligence algorithms. The automated differentiation of osteoporotic from traumatic fractures and vertebral deformities unrelated to osteoporosis, the grading of vertebral fracture severity, and the detection of mild vertebral fractures is still problematic. The accuracy of automated fracture detection compared to classical radiological semi-quantitative Genant scoring is about 80%. Accuracy errors of alternative BMD calibration methods compared to simultaneous phantom-based calibration used in standard quantitative CT (QCT) range from below 5% to about 10%. The impact of contrast agents, frequently administered in clinical CT on the determination of BMD and on fracture risk determination is still controversial. Summary Opportunistic screening, the identification of vertebral fracture and the measurement of BMD using clinical routine CT scans, is feasible but corresponding techniques still need to be integrated into the clinical workflow and further validated with respect to the prediction of fracture risk.
Opportunistic screening is a combination of techniques to identify subjects of high risk for osteoporotic fracture using routine clinical CT scans prescribed for diagnoses unrelated to osteoporosis. The two main components are automated detection of vertebral fractures and measurement of bone mineral density (BMD) in CT scans, in which a phantom for calibration of CT to BMD values is not used. This review describes the particular challenges of opportunistic screening and provides an overview and comparison of current techniques used for opportunistic screening. The review further outlines the performance of opportunistic screening.PURPOSE OF REVIEWOpportunistic screening is a combination of techniques to identify subjects of high risk for osteoporotic fracture using routine clinical CT scans prescribed for diagnoses unrelated to osteoporosis. The two main components are automated detection of vertebral fractures and measurement of bone mineral density (BMD) in CT scans, in which a phantom for calibration of CT to BMD values is not used. This review describes the particular challenges of opportunistic screening and provides an overview and comparison of current techniques used for opportunistic screening. The review further outlines the performance of opportunistic screening.A wide range of technologies for the automatic detection of vertebral fractures have been developed and successfully validated. Most of them are based on artificial intelligence algorithms. The automated differentiation of osteoporotic from traumatic fractures and vertebral deformities unrelated to osteoporosis, the grading of vertebral fracture severity, and the detection of mild vertebral fractures is still problematic. The accuracy of automated fracture detection compared to classical radiological semi-quantitative Genant scoring is about 80%. Accuracy errors of alternative BMD calibration methods compared to simultaneous phantom-based calibration used in standard quantitative CT (QCT) range from below 5% to about 10%. The impact of contrast agents, frequently administered in clinical CT on the determination of BMD and on fracture risk determination is still controversial. Opportunistic screening, the identification of vertebral fracture and the measurement of BMD using clinical routine CT scans, is feasible but corresponding techniques still need to be integrated into the clinical workflow and further validated with respect to the prediction of fracture risk.RECENT FINDINGSA wide range of technologies for the automatic detection of vertebral fractures have been developed and successfully validated. Most of them are based on artificial intelligence algorithms. The automated differentiation of osteoporotic from traumatic fractures and vertebral deformities unrelated to osteoporosis, the grading of vertebral fracture severity, and the detection of mild vertebral fractures is still problematic. The accuracy of automated fracture detection compared to classical radiological semi-quantitative Genant scoring is about 80%. Accuracy errors of alternative BMD calibration methods compared to simultaneous phantom-based calibration used in standard quantitative CT (QCT) range from below 5% to about 10%. The impact of contrast agents, frequently administered in clinical CT on the determination of BMD and on fracture risk determination is still controversial. Opportunistic screening, the identification of vertebral fracture and the measurement of BMD using clinical routine CT scans, is feasible but corresponding techniques still need to be integrated into the clinical workflow and further validated with respect to the prediction of fracture risk.
Author Bartenschlager, Stefan
Chaudry, Oliver
Engelke, Klaus
Author_xml – sequence: 1
  givenname: Klaus
  orcidid: 0000-0001-9875-4123
  surname: Engelke
  fullname: Engelke, Klaus
  email: Klaus.Engelke@imp.uni-erlangen.de
  organization: Department of Medicine III, Friedrich-Alexander University of Erlangen-Nürnberg, University Hospital Erlangen, Institute of Medical Physics (IMP), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
– sequence: 2
  givenname: Oliver
  surname: Chaudry
  fullname: Chaudry, Oliver
  organization: Department of Medicine III, Friedrich-Alexander University of Erlangen-Nürnberg, University Hospital Erlangen, Institute of Medical Physics (IMP), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
– sequence: 3
  givenname: Stefan
  surname: Bartenschlager
  fullname: Bartenschlager, Stefan
  organization: Department of Medicine III, Friedrich-Alexander University of Erlangen-Nürnberg, University Hospital Erlangen, Institute of Medical Physics (IMP), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36435912$$D View this record in MEDLINE/PubMed
BookMark eNp9UctKAzEUDaLYh_6AC5mlm9E8Jw2CUIovKHRhXYc0k2lTpklNZoT-vamtRV2ULHJvch7JPT1w6rwzAFwheIsg5HcRIYFoDjHOU1vQnJ2ALmKU5hhTdLqv0YCTDujFuIQJiSg5Bx1SUMIEwl1wP1mvfWhaZ2NjdfamgzHOunk2NXrh7EdrYlb5kA2dqjfRxsxX2WiacMrFC3BWqTqay_3eB-9Pj9PRSz6ePL-OhuNcU1o0eakhFZBiUxGCU1VwVjBINRNlWcJBxQUXFHIoZqrgquRUiIFRDPJSGyI4J33wsNNdt7OVSaeuCaqW62BXKmykV1b-vXF2Ief-UwqBGRMwCdzsBYLf_qiRKxu1qWvljG-jxJxClhbZel3_9jqY_EwsAfAOoIOPMZjqAEFQbmORu1hkGrb8jkWyRBr8I2nbqMb67XttfZxKdtSYfNzcBLn0bUhpxGOsL_dBoFk
CitedBy_id crossref_primary_10_1007_s11914_023_00830_6
crossref_primary_10_1016_j_acra_2024_07_010
crossref_primary_10_1016_j_clinimag_2024_110282
crossref_primary_10_1136_bmjopen_2024_086855
crossref_primary_10_1055_a_2045_7222
crossref_primary_10_3390_diagnostics14161789
crossref_primary_10_1007_s00198_024_07340_w
crossref_primary_10_3390_jcm13195961
crossref_primary_10_1007_s00198_024_07373_1
crossref_primary_10_1007_s00330_024_11046_2
crossref_primary_10_1093_jbmr_zjaf009
crossref_primary_10_1007_s00256_024_04632_4
crossref_primary_10_1055_s_0043_1771037
crossref_primary_10_1136_bmjopen_2023_079417
crossref_primary_10_1002_ajpa_24899
crossref_primary_10_1186_s12891_024_07324_1
crossref_primary_10_1016_j_jor_2023_11_061
crossref_primary_10_1055_s_0044_1788816
crossref_primary_10_1016_j_jacr_2024_12_011
crossref_primary_10_1038_s41598_023_48851_6
crossref_primary_10_1186_s13018_023_03560_8
crossref_primary_10_1016_j_xnsj_2025_100591
crossref_primary_10_3390_diagnostics13122119
crossref_primary_10_1007_s00256_024_04722_3
crossref_primary_10_1007_s00198_024_07047_y
crossref_primary_10_1016_j_jacr_2024_11_010
crossref_primary_10_3390_diagnostics13152572
crossref_primary_10_1016_j_clinimag_2024_110210
crossref_primary_10_1093_bjr_tqae053
crossref_primary_10_1007_s11914_023_00845_z
crossref_primary_10_1007_s00586_025_08697_0
crossref_primary_10_1016_j_banm_2023_07_017
crossref_primary_10_1016_j_ejrad_2023_111283
crossref_primary_10_1186_s41747_024_00483_9
Cites_doi 10.1093/rheumatology/keab878
10.1007/s00198-020-05384-2
10.1007/s00330-021-08323-9
10.1002/jbmr.2080
10.1038/s41591-019-0720-z
10.1148/radiol.2019181648
10.2214/AJR.06.1006
10.2214/AJR.16.16744
10.1002/jcsm.12996
10.1007/s00198-019-04910-1
10.1097/RCT.0000000000000744
10.1148/radiol.2019190201
10.1002/9781119266594.ch40
10.1016/j.media.2009.02.004
10.1007/s00198-015-3224-9
10.1007/s11657-018-0492-y
10.1016/j.jocd.2007.12.010
10.1007/s00198-018-4444-6
10.1007/s00330-019-06018-w
10.1016/j.jocd.2015.06.011
10.1016/j.media.2006.05.005
10.1016/j.medengphy.2020.01.009
10.1097/00004728-198911000-00015
10.1186/1475-925X-12-48
10.1371/journal.pone.0265524
10.1148/radiol.210937
10.24835/1607-0763-2020-4-108-118
10.3389/fendo.2022.882163
10.1371/journal.pone.0071204
10.1038/s41598-021-01296-1
10.1080/15389588.2015.1054029
10.1097/RCT.0000000000000518
10.1097/RCT.0b013e3182032537
10.2214/AJR.20.22943
10.2214/AJR.17.17853
10.1118/1.595951
10.1016/j.jocd.2015.06.012
10.1007/s00256-021-03801-z
10.1186/s41747-021-00241-1
10.1155/2019/4102410
10.1007/s00198-011-1774-z
10.1007/s00330-020-07319-1
10.1097/00004424-197711000-00015
10.1002/jbmr.2069
10.1109/TBME.2013.2256460
10.1002/jcsm.12616
10.1259/bjr.20180726
10.1016/j.bone.2022.116427
10.1148/radiol.2018181112
10.1371/journal.pone.0240084
10.2106/JBJS.16.00749
10.1177/2151458514525042
10.1016/j.bone.2020.115759
10.7326/0003-4819-158-8-201304160-00003
10.1002/jbmr.86
10.1002/jbmr.5650080915
10.1007/s11547-020-01145-7
10.1007/s00330-014-3584-0
10.1109/TMI.2013.2268424
10.1038/s41598-020-76866-w
10.1148/radiol.2015141984
10.1002/jbmr.4575
10.1097/CORR.0000000000000480
10.1016/j.jocd.2014.03.002
10.1007/s00330-014-3408-2
10.1371/journal.pone.0220564
10.1016/j.ejrad.2021.109568
10.1055/s-0043-102941
10.1007/s00330-013-3089-2
10.1007/s00330-019-06263-z
10.1016/j.bone.2017.07.029
10.1148/radiol.2017162100
10.1148/ryai.2020190138
10.1007/s00198-016-3804-3
10.1007/s00330-020-06679-y
10.1007/s00330-021-08071-w
10.2214/AJR.17.17820
10.12659/MSM.915916
10.2214/AJR.15.15128
10.1007/s00198-020-05521-x
10.1016/j.jocd.2015.11.001
10.1016/j.zemedi.2022.04.001
10.1016/j.bone.2021.116304
10.21037/qims-22-433
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1007/s11914-022-00764-5
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1544-2241
EndPage 76
ExternalDocumentID PMC9925590
36435912
10_1007_s11914_022_00764_5
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie
  grantid: 01EC190B
  funderid: http://dx.doi.org/10.13039/501100010571
– fundername: ;
  grantid: 01EC190B
GroupedDBID ---
-5E
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
203
29F
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
53G
5GY
5VS
6NX
875
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTEG
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
B-.
BA0
BDATZ
BGNMA
C6C
CAG
COF
CS3
CSCUP
CUW
DDRTE
DNIVK
DPUIP
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
ESBYG
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG6
HMJXF
HRMNR
HZ~
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
I~Z
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O9J
P9S
PF0
PT4
QOR
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S37
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z7U
Z82
Z87
ZMTXR
ZOVNA
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ABRTQ
5PM
ID FETCH-LOGICAL-c446t-dc049042ef3324906756504c59ddd08f797940709ba67ad74998ea507dce39773
IEDL.DBID U2A
ISSN 1544-1873
1544-2241
IngestDate Thu Aug 21 18:38:09 EDT 2025
Tue Aug 05 09:53:43 EDT 2025
Wed Feb 19 02:24:42 EST 2025
Tue Jul 01 02:26:27 EDT 2025
Thu Apr 24 23:08:28 EDT 2025
Fri Feb 21 02:44:44 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Vertebral fracture assessment
Computed tomography
Fracture risk
Opportunistic screening
Internal BMD calibration
Language English
License 2022. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-dc049042ef3324906756504c59ddd08f797940709ba67ad74998ea507dce39773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0001-9875-4123
OpenAccessLink https://link.springer.com/10.1007/s11914-022-00764-5
PMID 36435912
PQID 2740505037
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9925590
proquest_miscellaneous_2740505037
pubmed_primary_36435912
crossref_primary_10_1007_s11914_022_00764_5
crossref_citationtrail_10_1007_s11914_022_00764_5
springer_journals_10_1007_s11914_022_00764_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Current osteoporosis reports
PublicationTitleAbbrev Curr Osteoporos Rep
PublicationTitleAlternate Curr Osteoporos Rep
PublicationYear 2023
Publisher Springer US
Publisher_xml – name: Springer US
References Keaveny, Clarke, Cosman, Orwoll, Siris, Khosla, Bouxsein (CR98) 2020; 31
Cauley, Blackwell, Zmuda, Fullman, Ensrud, Stone, Barrett-Connor, Orwoll (CR79) 2010; 25
Rebello, Anjelly, Grand, Machan, Beland, Furman, Shapiro, LeLeiko, Sands, Mallette, Bright, Moniz, Merrick, Shah (CR64) 2018; 29
Genant, Boyd (CR92) 1977; 12
Kim, Demissie, Genant, Cheng, Yu, Samelson, Kiel, Bouxsein (CR41) 2012; 23
Monchka, Schousboe, Davidson, Kimelman, Hans, Raina, Leslie (CR38) 2022; 161
Eggermont, Verdonschot, van der Linden, Tanck (CR51) 2019; 14
Kaesmacher, Liebl, Baum, Kirschke (CR76) 2017; 41
Klein, Martel, Sahgal, Whyne, Hardisty (CR16) 2019
Alacreu, Moratal, Arana (CR80) 2017; 28
Chettrit, Meir, Lebel, Orlovsky, Gordon, Akselrod-Ballin, Bar (CR25) 2020
Garner, Paturzo, Gaudier, Pickhardt, Wessell (CR66) 2017; 208
Bauer, Henning, Mueller, Lu, Majumdar, Link (CR45) 2007; 188
Engelke, Nagase, Fuerst, Small, Kuwayama, Deacon, Eastell, Genant (CR86) 2014; 29
CR42
CR40
Fang, Franconeri, Boos, Nimhuircheartaigh, Zhang, Brook, Brook (CR34) 2018; 42
Park, Jeong, Lee, Kim, Kim, Park, Ahn (CR63) 2020; 15
Loffler, Sekuboyina, Jacob, Grau, Scharr, El Husseini, Kallweit, Zimmer, Baum, Kirschke (CR15) 2020; 2
Wang, Yin, Zhao, Su, Sun, Liu, Yang, Yu, Blake, Cheng, Wu, Veldhuis, Engelke (CR102) 2020; 11
Roski, Hammel, Mei, Baum, Kirschke, Laugerette, Kopp, Bodden, Pfeiffer, Pfeiffer, Rummeny, Noel, Gersing, Schwaiger (CR96) 2019; 29
Janssens, Zeng, Zheng (CR12) 2018
Griffith, Genant, Bilezikian (CR4) 2018
Pickhardt, Lauder, Pooler, Del Rio, Rosas, Bruce, Binkley (CR44) 2016; 27
Klinder, Ostermann, Ehm, Franz, Kneser, Lorenz (CR27) 2009; 13
CR53
Boutin, Hernandez, Lenchik, Seibert, Gress, Boone (CR67) 2021; 216
Christensen, Nappo, Wolfe, Wade, Brooks, Potter, Forsberg, Tintle (CR85) 2019; 477
Hendrickson, Pickhardt, Del Rio, Rosas, Anderson (CR82) 2018; 38
Pompe, Willemink, Dijkhuis, Verhaar, Mohamed Hoesein, de Jong (CR75) 2015; 25
Zysset, Qin, Lang, Khosla, Leslie, Shepherd, Schousboe, Engelke (CR99) 2015; 18
Fidler, Murthy, Khosla, Clarke, Bruining, Kopperdahl, Lee, Keaveny (CR84) 2016; 278
Cohen, Foldes, Hiller, Simanovsky, Szalat (CR62) 2021; 136
Jang, Graffy, Ziemlewicz, Lee, Summers, Pickhardt (CR58) 2019; 291
Chen, Shen, Qin, Ni, Shi, Cheng, Heng (CR8) 2015
Engelke, Van Rietbergen, Van Lenthe, Grimal (CR69) 2022
Rasoulian, Rohling, Abolmaesumi (CR29) 2013; 32
Summers, Baecher, Yao, Liu, Pickhardt, Choi, Hill (CR31) 2011; 35
Emohare, Cagan, Morgan, Davis, Asis, Switzer, Polly (CR60) 2014; 5
Buckens, de Jong, Mol, Bakker, Stallman, Mali, van der Graaf, Verkooijen (CR88) 2013; 8
Gluer, Genant (CR94) 1989; 13
Oktay, Akgul (CR10) 2013; 60
Pickhardt, Pooler, Lauder, del Rio, Bruce, Binkley (CR59) 2013; 158
Lee, Kim, Jang (CR56) 2019; 2019
Roski, Hammel, Mei, Haller, Baum, Kirschke, Pfeiffer, Woertler, Pfeiffer, Noël (CR77) 2021; 31
Prado, Khosla, Chaput, Giambini (CR55) 2021; 31
Pickhardt, Lee, Liu, Yao, Lay, Graffy, Summers (CR5) 2019; 92
Murata, Endo, Aihara, Suzuki, Sawaji, Matsuoka, Nishimura, Takamatsu, Konishi, Maekawa, Yamauchi, Kanazawa, Endo, Tsuji, Inoue, Fukushima, Kikuchi, Sato, Yamamoto (CR39) 2020; 10
Huang, Jian, Wu, Li (CR26) 2013; 12
Petraikin, Smorchkova, Kudryavtsev, Sergunova, Artyukova, Abuladze, Iassin, Petraikin, Lobanov, Nikolaev, Khoruzhaya, Semenov, Nisovstova, Vladzymyrskyy, Morozov (CR48) 2020; 24
Jain, Lee, Mathai, Dako, Gogineni, Weiner, Vokes (CR61) 2020; 31
Genant, Wu, Van Kuijk, Nevitt (CR3) 1993; 8
Guermazi, Tannoury, Kompel, Murakami, Ducarouge, Gillibert, Li, Tournier, Lahoud, Jarraya, Lacave, Rahimi, Pourchot, Parisien, Merritt, Comeau, Regnard, Hayashi (CR90) 2022; 302
Glocker, Feulner, Criminisi, Haynor, Konukoglu (CR9) 2012
Wang, Yin, Yang, Ge, Liu, Su, Guo, Yan, Xu, Huang, Geng, Liu, Wang, Blake, Cao, He, Lyu, Cheng, Wu, Jiang, Vlug, Engelke (CR101) 2022; 13
Weaver, Beavers, Hightower, Lynch, Miller, Stitzel (CR50) 2015; 16
Gausden, Nwachukwu, Schreiber, Lorich, Lane (CR68) 2017; 99
Buerger, von Berg, Franz, Klinder, Lorenz, Lenga (CR7) 2020
Muhlberg, Museyko, Bousson, Pottecher, Laredo, Engelke (CR100) 2019; 290
You, Gu, Liu, Lu, Tang, Yang (CR18) 2022
Pisov, Kondratenko, Zakharov, Petraikin, Gombolevskiy, Morozov, Belyaev (CR21) 2020
Pickhardt, Bodeen, Brett, Brown, Binkley (CR65) 2015; 18
Engelke, Adams, Armbrecht, Augat, Bogado, Bouxsein, Felsenberg, Ito, Prevrhal, Hans, Lewiecki (CR1) 2008; 11
Valentinitsch, Trebeschi, Kaesmacher, Lorenz, Loffler, Zimmer, Baum, Kirschke (CR30) 2019; 30
Ghosh, Raja'S, Chaudhary, Dhillon (CR35) 2011
Yao, Burns, Wiese, Summers (CR36) 2012
Nicolaes, Raeymaeckers, Robben, Wilms, Vandermeulen, Libanati, Debois (CR6) 2019
Yilmaz, Buerger, Fricke, Sagar, Peña, Lorenz, Glüer, Meyer (CR24) 2021
Derkatch, Kirby, Kimelman, Jozani, Davidson, Leslie (CR37) 2019; 293
Dagan, Elnekave, Barda, Bregman-Amitai, Bar, Orlovsky, Bachmat, Balicer (CR91) 2020; 26
Loffler, Jacob, Valentinitsch, Rienmuller, Zimmer, Ryang, Baum, Kirschke (CR46) 2019; 29
Cheng, Yang, Yu, He (CR14) 2021; 11
Baum, Bauer, Klinder, Dobritz, Rummeny, Noel, Lorenz (CR32) 2014; 24
Li, Wong, Law, Fang, Lau, Vardhanabuti, Lee, Cheng, Ho, Lam (CR83) 2018; 13
Gruenewald, Koch, Martin, Yel, Eichler, Gruber-Rouh, Lenga, Wichmann, Alizadeh, Albrecht, Mader, Huizinga, D'Angelo, Mazziotti, Wesarg, Vogl, Booz (CR71) 2022; 32
Burns, Yao, Summers (CR20) 2017; 284
Amin, Zakaria, Yahya (CR81) 2021; 50
Engelke, Lang, Khosla, Qin, Zysset, Leslie, Shepherd, Schousboe (CR2) 2015; 18
Ataei, Eikhout, van Leeuwen, Tanck, Eggermont (CR52) 2022; 17
Lee, Hoffmann, Kopperdahl, Keaveny (CR49) 2017; 103
Winsor, Li, Qasim, Henak, Pickhardt, Ploeg, Viceconti (CR54) 2021; 143
Mastmeyer, Engelke, Fuchs, Kalender (CR28) 2006; 10
CR97
Su, Zhang, Liao, Yan, Zhu, Yan, Li, Tan (CR33) 2019; 25
Graffy, Lee, Ziemlewicz, Pickhardt (CR70) 2017; 209
Vetter, Perman, Kalender, Mazess, Holden (CR93) 1986; 13
Hempe, Yilmaz, Meyer, Heinrich (CR19) 2022
Buckens, Dijkhuis, de Keizer, Verhaar, de Jong (CR72) 2015; 25
Sekuboyina, Kukačka, Kirschke, Menze, Valentinitsch (CR13) 2017
Yang, Xiong, Xu, Zhou, Xu, Chen, Park, Grbic, Tran, Chin (CR11) 2017
Toelly, Bardach, Weber, Gong, Lai, Wang, Guo, Kirschke, Baum, Gruber (CR74) 2017; 189
Lee, Anderson, Pickhardt (CR73) 2017; 209
Sollmann, Loffler, El Husseini, Sekuboyina, Dieckmeyer, Ruhling, Zimmer, Menze, Joseph, Baum, Kirschke (CR87) 2022; 37
Husseini, Sekuboyina, Loeffler, Navarro, Menze, Kirschke (CR23) 2020
Kopperdahl, Aspelund, Hoffmann, Sigurdsson, Siggeirsdottir, Harris, Gudnason, Keaveny (CR78) 2014; 29
Koch, Hokamp, Albrecht, Gruenewald, Yel, Borggrefe, Wesarg, Eichler, Burck, Gruber-Rouh, Lenga, Vogl, Martin, Wichmann, Hammerstingl, Alizadeh, Mader, Huizinga, D'Angelo, Ascenti, Mazziotti, Booz (CR95) 2021; 5
Dieckmeyer, Loffler, El Husseini, Sekuboyina, Menze, Sollmann, Wostrack, Zimmer, Baum, Kirschke (CR47) 2022; 13
Roux, Rozes, Reizine, Hajage, Daniel, Maire, Breant, Taright, Gordon, Fechtenbaum, Kolta, Feydy, Briot, Tubach (CR89) 2022; 61
Ziemlewicz, Maciejewski, Binkley, Brett, Brown, Pickhardt (CR43) 2016; 206
Adela, Rangarajan (CR22) 2020; 125
Michalski, Besler, Michalak, Boyd (CR57) 2020; 78
Pan, Shi, Wang, Chen, Cui, Cheng, Lu (CR17) 2020; 30
J Fang (764_CR34) 2018; 42
A Valentinitsch (764_CR30) 2019; 30
M Pisov (764_CR21) 2020
F Roski (764_CR77) 2021; 31
TM Keaveny (764_CR98) 2020; 31
764_CR53
D Chettrit (764_CR25) 2020
N Sollmann (764_CR87) 2022; 37
V Koch (764_CR95) 2021; 5
DL Christensen (764_CR85) 2019; 477
A Muhlberg (764_CR100) 2019; 290
H Chen (764_CR8) 2015
PM Graffy (764_CR70) 2017; 209
R Jain (764_CR61) 2020; 31
P Zysset (764_CR99) 2015; 18
MFM Amin (764_CR81) 2021; 50
Y Pan (764_CR17) 2020; 30
P Cheng (764_CR14) 2021; 11
F Roski (764_CR96) 2019; 29
K Murata (764_CR39) 2020; 10
JR Vetter (764_CR93) 1986; 13
Q Su (764_CR33) 2019; 25
CC Gluer (764_CR94) 1989; 13
YL Li (764_CR83) 2018; 13
K Engelke (764_CR2) 2015; 18
F Eggermont (764_CR51) 2019; 14
JS Bauer (764_CR45) 2007; 188
G Klein (764_CR16) 2019
PJ Pickhardt (764_CR5) 2019; 92
AA Weaver (764_CR50) 2015; 16
D Rebello (764_CR64) 2018; 29
AB Oktay (764_CR10) 2013; 60
R Janssens (764_CR12) 2018
T Baum (764_CR32) 2014; 24
PJ Pickhardt (764_CR44) 2016; 27
JA Cauley (764_CR79) 2010; 25
A Ataei (764_CR52) 2022; 17
T Klinder (764_CR27) 2009; 13
X You (764_CR18) 2022
N Dagan (764_CR91) 2020; 26
B Glocker (764_CR9) 2012
M Prado (764_CR55) 2021; 31
NR Hendrickson (764_CR82) 2018; 38
J Yao (764_CR36) 2012
L Wang (764_CR101) 2022; 13
MT Loffler (764_CR15) 2020; 2
SJ Lee (764_CR73) 2017; 209
S Jang (764_CR58) 2019; 291
A Guermazi (764_CR90) 2022; 302
M Husseini (764_CR23) 2020
DL Kopperdahl (764_CR78) 2014; 29
H Hempe (764_CR19) 2022
J Kaesmacher (764_CR76) 2017; 41
J Griffith (764_CR4) 2018
764_CR97
A Toelly (764_CR74) 2017; 189
K Engelke (764_CR86) 2014; 29
A Rasoulian (764_CR29) 2013; 32
C Roux (764_CR89) 2022; 61
JE Burns (764_CR20) 2017; 284
EB Gausden (764_CR68) 2017; 99
E Pompe (764_CR75) 2015; 25
JL Fidler (764_CR84) 2016; 278
A Sekuboyina (764_CR13) 2017
M Dieckmeyer (764_CR47) 2022; 13
S Derkatch (764_CR37) 2019; 293
DC Lee (764_CR49) 2017; 103
J Nicolaes (764_CR6) 2019
BA Monchka (764_CR38) 2022; 161
C Buerger (764_CR7) 2020
HK Genant (764_CR92) 1977; 12
SH Park (764_CR63) 2020; 15
CF Buckens (764_CR72) 2015; 25
PJ Pickhardt (764_CR65) 2015; 18
RD Boutin (764_CR67) 2021; 216
O Emohare (764_CR60) 2014; 5
MT Loffler (764_CR46) 2019; 29
HW Garner (764_CR66) 2017; 208
A Mastmeyer (764_CR28) 2006; 10
A Adela (764_CR22) 2020; 125
E Alacreu (764_CR80) 2017; 28
RM Summers (764_CR31) 2011; 35
AV Petraikin (764_CR48) 2020; 24
YH Lee (764_CR56) 2019; 2019
L Wang (764_CR102) 2020; 11
TJ Ziemlewicz (764_CR43) 2016; 206
A Cohen (764_CR62) 2021; 136
K Engelke (764_CR69) 2022
AS Michalski (764_CR57) 2020; 78
J Huang (764_CR26) 2013; 12
LD Gruenewald (764_CR71) 2022; 32
764_CR42
S Ghosh (764_CR35) 2011
YM Kim (764_CR41) 2012; 23
K Engelke (764_CR1) 2008; 11
764_CR40
CF Buckens (764_CR88) 2013; 8
HK Genant (764_CR3) 1993; 8
PJ Pickhardt (764_CR59) 2013; 158
D Yang (764_CR11) 2017
C Winsor (764_CR54) 2021; 143
EB Yilmaz (764_CR24) 2021
References_xml – volume: 61
  start-page: 3269
  issue: 8
  year: 2022
  end-page: 3278
  ident: CR89
  article-title: Fully automated opportunistic screening of vertebral fractures and osteoporosis on more than 150 000 routine computed tomography scans
  publication-title: Rheumatology (Oxford)
  doi: 10.1093/rheumatology/keab878
– volume: 31
  start-page: 1025
  issue: 6
  year: 2020
  end-page: 1048
  ident: CR98
  article-title: Biomechanical Computed Tomography analysis (BCT) for clinical assessment of osteoporosis
  publication-title: Osteoporos Int
  doi: 10.1007/s00198-020-05384-2
– year: 2020
  ident: CR7
  article-title: Combining deep learning and model-based segmentation for labeled spine CT segmentation
  publication-title: Medical imaging 2020: image processing
– volume: 32
  start-page: 3076
  issue: 5
  year: 2022
  end-page: 3084
  ident: CR71
  article-title: Diagnostic accuracy of quantitative dual-energy CT-based volumetric bone mineral density assessment for the prediction of osteoporosis-associated fractures
  publication-title: Eur Radiol
  doi: 10.1007/s00330-021-08323-9
– ident: CR97
– volume: 29
  start-page: 629
  issue: 3
  year: 2014
  end-page: 638
  ident: CR86
  article-title: The effect of the cathepsin K inhibitor ONO-5334 on trabecular and cortical bone in postmenopausal osteoporosis: the OCEAN study
  publication-title: J Bone Miner Res
  doi: 10.1002/jbmr.2080
– volume: 26
  start-page: 77
  issue: 1
  year: 2020
  end-page: 82
  ident: CR91
  article-title: Automated opportunistic osteoporotic fracture risk assessment using computed tomography scans to aid in FRAX underutilization
  publication-title: Nat Med
  doi: 10.1038/s41591-019-0720-z
– year: 2017
  ident: CR11
  article-title: Deep image-to-image recurrent network with shape basis learning for automatic vertebra labeling in large-scale 3D CT volumes
  publication-title: International conference on medical image computing and computer-assisted intervention
– year: 2020
  ident: CR23
  article-title: Grading loss: a fracture grade-based metric loss for vertebral fracture detection
  publication-title: International conference on medical image computing and computer-assisted intervention
– volume: 291
  start-page: 360
  issue: 2
  year: 2019
  end-page: 367
  ident: CR58
  article-title: Opportunistic osteoporosis screening at routine abdominal and thoracic CT: normative L1 trabecular attenuation values in more than 20 000 adults
  publication-title: Radiology
  doi: 10.1148/radiol.2019181648
– volume: 188
  start-page: 1294
  issue: 5
  year: 2007
  end-page: 1301
  ident: CR45
  article-title: Volumetric quantitative CT of the spine and hip derived from contrast-enhanced MDCT: conversion factors
  publication-title: AJR Am J Roentgenol
  doi: 10.2214/AJR.06.1006
– volume: 208
  start-page: 165
  issue: 1
  year: 2017
  end-page: 170
  ident: CR66
  article-title: Variation in attenuation in L1 trabecular bone at different tube voltages: caution is warranted when screening for osteoporosis with the use of opportunistic CT
  publication-title: AJR Am J Roentgenol
  doi: 10.2214/AJR.16.16744
– volume: 13
  start-page: 1927
  issue: 3
  year: 2022
  end-page: 1937
  ident: CR101
  article-title: Muscle density is an independent risk factor of second hip fracture: a prospective cohort study
  publication-title: J Cachexia Sarcopenia Muscle
  doi: 10.1002/jcsm.12996
– volume: 30
  start-page: 1275
  issue: 6
  year: 2019
  end-page: 1285
  ident: CR30
  article-title: Opportunistic osteoporosis screening in multi-detector CT images via local classification of textures
  publication-title: Osteoporos Int
  doi: 10.1007/s00198-019-04910-1
– volume: 42
  start-page: 798
  issue: 5
  year: 2018
  end-page: 806
  ident: CR34
  article-title: Opportunistic bone density measurement on abdomen and pelvis computed tomography to predict fracture risk in women aged 50 to 64 years without osteoporosis risk factors
  publication-title: J Comput Assist Tomogr
  doi: 10.1097/RCT.0000000000000744
– ident: CR42
– volume: 293
  start-page: 405
  issue: 2
  year: 2019
  end-page: 411
  ident: CR37
  article-title: Identification of vertebral fractures by convolutional neural networks to predict nonvertebral and hip fractures: a Registry-based cohort study of dual x-ray absorptiometry
  publication-title: Radiology
  doi: 10.1148/radiol.2019190201
– start-page: 319
  year: 2018
  end-page: 330
  ident: CR4
  article-title: Diagnosis and classification of vertebral fracture
  publication-title: Primer on the metabolic bone diseases and disorders of mineral metabolism
  doi: 10.1002/9781119266594.ch40
– volume: 13
  start-page: 471
  issue: 3
  year: 2009
  end-page: 482
  ident: CR27
  article-title: Automated model-based vertebra detection, identification, and segmentation in CT images
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2009.02.004
– volume: 27
  start-page: 147
  issue: 1
  year: 2016
  end-page: 152
  ident: CR44
  article-title: Effect of IV contrast on lumbar trabecular attenuation at routine abdominal CT: correlation with DXA and implications for opportunistic osteoporosis screening
  publication-title: Osteoporos Int
  doi: 10.1007/s00198-015-3224-9
– volume: 13
  start-page: 76
  issue: 1
  year: 2018
  ident: CR83
  article-title: Opportunistic screening for osteoporosis in abdominal computed tomography for Chinese population
  publication-title: Arch Osteoporos
  doi: 10.1007/s11657-018-0492-y
– volume: 11
  start-page: 123
  issue: 1
  year: 2008
  end-page: 162
  ident: CR1
  article-title: Clinical use of quantitative computed tomography and peripheral quantitative computed tomography in the management of osteoporosis in adults: the 2007 ISCD Official Positions
  publication-title: J Clin Densitom
  doi: 10.1016/j.jocd.2007.12.010
– volume: 29
  start-page: 1359
  issue: 6
  year: 2018
  end-page: 1366
  ident: CR64
  article-title: Opportunistic screening for bone disease using abdominal CT scans obtained for other reasons in newly diagnosed IBD patients
  publication-title: Osteoporos Int
  doi: 10.1007/s00198-018-4444-6
– year: 2022
  ident: CR69
  article-title: Opportunistic screening using routine clinical CT scans to identify subjects at high risk for osteoporotic fracture - clinical promises and technical challenges
  publication-title: Quantitative Musculoskeletal Imaging (QMSKI)
– volume: 29
  start-page: 4980
  issue: 9
  year: 2019
  end-page: 4989
  ident: CR46
  article-title: Improved prediction of incident vertebral fractures using opportunistic QCT compared to DXA
  publication-title: Eur Radiol
  doi: 10.1007/s00330-019-06018-w
– year: 2022
  ident: CR19
  article-title: Opportunistic CT screening for degenerative deformities and osteoporotic fractures with 3D DeepLab
  publication-title: Medical Imaging 2022: Image Processing
– volume: 18
  start-page: 359
  issue: 3
  year: 2015
  end-page: 392
  ident: CR99
  article-title: Clinical use of quantitative computed tomography-based finite element analysis of the hip and spine in the management of osteoporosis in adults: the 2015 ISCD Official Positions-Part II
  publication-title: J Clin Densitom
  doi: 10.1016/j.jocd.2015.06.011
– year: 2012
  ident: CR9
  article-title: Automatic localization and identification of vertebrae in arbitrary field-of-view CT scans
  publication-title: International conference on medical image computing and computer-assisted intervention
– volume: 10
  start-page: 560
  issue: 4
  year: 2006
  end-page: 577
  ident: CR28
  article-title: A hierarchical 3D segmentation method and the definition of vertebral body coordinate systems for QCT of the lumbar spine
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2006.05.005
– volume: 78
  start-page: 55
  year: 2020
  end-page: 63
  ident: CR57
  article-title: CT-based internal density calibration for opportunistic skeletal assessment using abdominal CT scans
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2020.01.009
– volume: 13
  start-page: 1023
  issue: 6
  year: 1989
  end-page: 1035
  ident: CR94
  article-title: Impact of marrow fat on accuracy of quantitative CT
  publication-title: J Comput Assist Tomogr
  doi: 10.1097/00004728-198911000-00015
– volume: 12
  start-page: 48
  year: 2013
  ident: CR26
  article-title: An improved level set method for vertebra CT image segmentation
  publication-title: Biomed Eng Online
  doi: 10.1186/1475-925X-12-48
– volume: 17
  start-page: e0265524
  issue: 3
  year: 2022
  ident: CR52
  article-title: The effect of variations in CT scan protocol on femoral finite element failure load assessment using phantomless calibration
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0265524
– volume: 302
  start-page: 627
  issue: 3
  year: 2022
  end-page: 636
  ident: CR90
  article-title: Improving radiographic fracture recognition performance and efficiency using artificial intelligence
  publication-title: Radiology
  doi: 10.1148/radiol.210937
– volume: 24
  start-page: 108
  issue: 4
  year: 2020
  end-page: 118
  ident: CR48
  article-title: Comparison of two asynchronous QCT methods
  publication-title: Medical Visualization
  doi: 10.24835/1607-0763-2020-4-108-118
– volume: 13
  start-page: 882163
  year: 2022
  ident: CR47
  article-title: Level-specific volumetric BMD threshold values for the prediction of incident vertebral fractures using opportunistic QCT: a case-control study
  publication-title: Front Endocrinol (Lausanne)
  doi: 10.3389/fendo.2022.882163
– volume: 8
  start-page: e71204
  issue: 8
  year: 2013
  ident: CR88
  article-title: Intra and interobserver reliability and agreement of semiquantitative vertebral fracture assessment on chest computed tomography
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0071204
– volume: 11
  start-page: 22156
  issue: 1
  year: 2021
  ident: CR14
  article-title: Automatic vertebrae localization and segmentation in CT with a two-stage Dense-U-Net
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-01296-1
– volume: 16
  start-page: S153
  issue: Suppl 2
  year: 2015
  end-page: S160
  ident: CR50
  article-title: Lumbar bone mineral density phantomless computed tomography measurements and correlation with age and fracture incidence
  publication-title: Traffic Inj Prev
  doi: 10.1080/15389588.2015.1054029
– volume: 41
  start-page: 217
  issue: 2
  year: 2017
  end-page: 223
  ident: CR76
  article-title: Bone mineral density estimations from routine multidetector computed tomography: a comparative study of contrast and calibration effects
  publication-title: J Comput Assist Tomogr
  doi: 10.1097/RCT.0000000000000518
– volume: 35
  start-page: 212
  issue: 2
  year: 2011
  end-page: 216
  ident: CR31
  article-title: Feasibility of simultaneous computed tomographic colonography and fully automated bone mineral densitometry in a single examination
  publication-title: J Comput Assist Tomogr
  doi: 10.1097/RCT.0b013e3182032537
– volume: 216
  start-page: 447
  issue: 2
  year: 2021
  end-page: 452
  ident: CR67
  article-title: CT Phantom evaluation of 67,392 American College of Radiology Accreditation examinations: implications for opportunistic screening of osteoporosis using CT
  publication-title: AJR Am J Roentgenol
  doi: 10.2214/AJR.20.22943
– volume: 209
  start-page: 491
  issue: 3
  year: 2017
  end-page: 496
  ident: CR70
  article-title: Prevalence of vertebral compression fractures on routine CT scans according to L1 trabecular attenuation: determining relevant thresholds for opportunistic osteoporosis screening
  publication-title: AJR Am J Roentgenol
  doi: 10.2214/AJR.17.17853
– volume: 13
  start-page: 340
  issue: 3
  year: 1986
  end-page: 3
  ident: CR93
  article-title: Evaluation of a prototype dual-energy computed tomographic apparatus. II. Determination of vertebral bone mineral content
  publication-title: Med Phys
  doi: 10.1118/1.595951
– volume: 18
  start-page: 338
  issue: 3
  year: 2015
  end-page: 358
  ident: CR2
  article-title: Clinical use of quantitative computed tomography (qct) of the hip in the management of osteoporosis in adults: the 2015 ISCD Official Positions-Part I
  publication-title: J Clin Densitom
  doi: 10.1016/j.jocd.2015.06.012
– volume: 50
  start-page: 2525
  issue: 12
  year: 2021
  end-page: 2535
  ident: CR81
  article-title: Correlation between Hounsfield unit derived from head, thorax, abdomen, spine and pelvis CT and t-scores from DXA
  publication-title: Skeletal Radiol
  doi: 10.1007/s00256-021-03801-z
– volume: 5
  start-page: 43
  issue: 1
  year: 2021
  ident: CR95
  article-title: Accuracy and precision of volumetric bone mineral density assessment using dual-source dual-energy versus quantitative CT: a phantom study
  publication-title: Eur Radiol Exp
  doi: 10.1186/s41747-021-00241-1
– volume: 2019
  start-page: 4102410
  year: 2019
  ident: CR56
  article-title: Patient-specific phantomless estimation of bone mineral density and its effects on finite element analysis results: a feasibility study
  publication-title: Comput Math Methods Med
  doi: 10.1155/2019/4102410
– year: 2019
  ident: CR6
  article-title: Detection of vertebral fractures in CT using 3D convolutional neural networks
  publication-title: International workshop and challenge on computational methods and clinical applications for spine imaging
– year: 2018
  ident: CR12
  article-title: Fully automatic segmentation of lumbar vertebrae from CT images using cascaded 3D fully convolutional networks
  publication-title: 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018)
– volume: 23
  start-page: 1007
  issue: 3
  year: 2012
  end-page: 1016
  ident: CR41
  article-title: Identification of prevalent vertebral fractures using CT lateral scout views: a comparison of semi-automated quantitative vertebral morphometry and radiologist semi-quantitative grading
  publication-title: Osteoporos Int
  doi: 10.1007/s00198-011-1774-z
– year: 2011
  ident: CR35
  article-title: Automatic lumbar vertebra segmentation from clinical CT for wedge compression fracture diagnosis
  publication-title: Medical imaging 2011: computer-aided diagnosis
– year: 2022
  ident: CR18
  article-title: EG-Trans3DUNet: a single-staged transformer-based model for accurate vertebrae segmentation from spinal CT images
  publication-title: 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)
– volume: 31
  start-page: 3147
  issue: 5
  year: 2021
  end-page: 3155
  ident: CR77
  article-title: Opportunistic osteoporosis screening: contrast-enhanced dual-layer spectral CT provides accurate measurements of vertebral bone mineral density
  publication-title: Eur Radiol
  doi: 10.1007/s00330-020-07319-1
– volume: 12
  start-page: 545
  year: 1977
  end-page: 551
  ident: CR92
  article-title: Quantitative bone mineral analysis using dual energy computed tomography
  publication-title: Invest Radiol
  doi: 10.1097/00004424-197711000-00015
– volume: 29
  start-page: 570
  issue: 3
  year: 2014
  end-page: 580
  ident: CR78
  article-title: Assessment of incident spine and hip fractures in women and men using finite element analysis of CT scans
  publication-title: J Bone Miner Res
  doi: 10.1002/jbmr.2069
– volume: 60
  start-page: 2375
  issue: 9
  year: 2013
  end-page: 2383
  ident: CR10
  article-title: Simultaneous localization of lumbar vertebrae and intervertebral discs with SVM-based MRF
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2013.2256460
– volume: 11
  start-page: 1799
  issue: 6
  year: 2020
  end-page: 1812
  ident: CR102
  article-title: Muscle density discriminates hip fracture better than computed tomography X-ray absorptiometry hip areal bone mineral density
  publication-title: J Cachexia Sarcopenia Muscle
  doi: 10.1002/jcsm.12616
– year: 2021
  ident: CR24
  article-title: Automated deep learning-based detection of osteoporotic fractures in CT images
  publication-title: International workshop on machine learning in medical imaging
– year: 2020
  ident: CR25
  article-title: 3D convolutional sequence to sequence model for vertebral compression fractures identification in CT
  publication-title: International conference on medical image computing and computer-assisted intervention
– volume: 92
  start-page: 20180726
  issue: 1094
  year: 2019
  ident: CR5
  article-title: Population-based opportunistic osteoporosis screening: Validation of a fully automated CT tool for assessing longitudinal BMD changes
  publication-title: Br J Radiol
  doi: 10.1259/bjr.20180726
– volume: 161
  start-page: 116427
  year: 2022
  ident: CR38
  article-title: Development of a manufacturer-independent convolutional neural network for the automated identification of vertebral compression fractures in vertebral fracture assessment images using active learning
  publication-title: Bone
  doi: 10.1016/j.bone.2022.116427
– volume: 290
  start-page: 426
  issue: 2
  year: 2019
  end-page: 434
  ident: CR100
  article-title: Three-dimensional distribution of muscle and adipose tissue of the thigh at CT: association with acute hip fracture
  publication-title: Radiology
  doi: 10.1148/radiol.2018181112
– volume: 15
  start-page: e0240084
  issue: 10
  year: 2020
  ident: CR63
  article-title: Opportunistic use of chest CT for screening osteoporosis and predicting the risk of incidental fracture in breast cancer patients: a retrospective longitudinal study
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0240084
– volume: 99
  start-page: 1580
  issue: 18
  year: 2017
  end-page: 1590
  ident: CR68
  article-title: Opportunistic use of CT imaging for osteoporosis screening and bone density assessment: a qualitative systematic review
  publication-title: J Bone Joint Surg Am
  doi: 10.2106/JBJS.16.00749
– volume: 5
  start-page: 50
  issue: 2
  year: 2014
  end-page: 55
  ident: CR60
  article-title: The use of computed tomography attenuation to evaluate osteoporosis following acute fractures of the thoracic and lumbar vertebra
  publication-title: Geriatr Orthop Surg Rehabil
  doi: 10.1177/2151458514525042
– volume: 143
  start-page: 115759
  year: 2021
  ident: CR54
  article-title: Evaluation of patient tissue selection methods for deriving equivalent density calibration for femoral bone quantitative CT analyses
  publication-title: Bone
  doi: 10.1016/j.bone.2020.115759
– volume: 158
  start-page: 588
  issue: 8
  year: 2013
  end-page: 595
  ident: CR59
  article-title: Opportunistic screening for osteoporosis using abdominal computed tomography scans obtained for other indications
  publication-title: Ann Intern Med
  doi: 10.7326/0003-4819-158-8-201304160-00003
– volume: 25
  start-page: 1958
  issue: 9
  year: 2010
  end-page: 1971
  ident: CR79
  article-title: Correlates of trabecular and cortical volumetric bone mineral density at the femoral neck and lumbar spine: the osteoporotic fractures in men study (MrOS)
  publication-title: J Bone Miner Res
  doi: 10.1002/jbmr.86
– volume: 8
  start-page: 1137
  issue: 9
  year: 1993
  end-page: 1148
  ident: CR3
  article-title: Vertebral fracture assessment using a semiquantitative technique
  publication-title: JBMR
  doi: 10.1002/jbmr.5650080915
– volume: 125
  start-page: 551
  issue: 6
  year: 2020
  end-page: 560
  ident: CR22
  article-title: Computational techniques to segment and classify lumbar compression fractures
  publication-title: Radiol Med
  doi: 10.1007/s11547-020-01145-7
– volume: 25
  start-page: 2074
  issue: 7
  year: 2015
  end-page: 2079
  ident: CR72
  article-title: Opportunistic screening for osteoporosis on routine computed tomography? An external validation study
  publication-title: Eur Radiol
  doi: 10.1007/s00330-014-3584-0
– volume: 32
  start-page: 1890
  issue: 10
  year: 2013
  end-page: 1900
  ident: CR29
  article-title: Lumbar spine segmentation using a statistical multi-vertebrae anatomical shape+pose model
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2013.2268424
– volume: 10
  start-page: 20031
  issue: 1
  year: 2020
  ident: CR39
  article-title: Artificial intelligence for the detection of vertebral fractures on plain spinal radiography
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-76866-w
– volume: 278
  start-page: 172
  issue: 1
  year: 2016
  end-page: 180
  ident: CR84
  article-title: Comprehensive assessment of osteoporosis and bone fragility with CT colonography
  publication-title: Radiology
  doi: 10.1148/radiol.2015141984
– year: 2020
  ident: CR21
  article-title: Keypoints localization for joint vertebra detection and fracture severity quantification
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 37
  start-page: 1287
  year: 2022
  end-page: 1296
  ident: CR87
  article-title: Automated opportunistic osteoporosis screening in routine computed tomography of the spine: comparison with dedicated quantitative CT
  publication-title: J Bone Miner Res
  doi: 10.1002/jbmr.4575
– volume: 477
  start-page: 850
  issue: 4
  year: 2019
  end-page: 860
  ident: CR85
  article-title: Proximal femur Hounsfield units on CT colonoscopy correlate with dual-energy X-ray absorptiometry
  publication-title: Clin Orthop Relat Res
  doi: 10.1097/CORR.0000000000000480
– year: 2019
  ident: CR16
  article-title: Metastatic vertebrae segmentation for use in a clinical pipeline
  publication-title: International workshop and challenge on computational methods and clinical applications for spine imaging
– volume: 18
  start-page: 5
  issue: 1
  year: 2015
  end-page: 12
  ident: CR65
  article-title: Comparison of femoral neck BMD evaluation obtained using Lunar DXA and QCT with asynchronous calibration from CT colonography
  publication-title: J Clin Densitom
  doi: 10.1016/j.jocd.2014.03.002
– volume: 25
  start-page: 283
  issue: 2
  year: 2015
  end-page: 289
  ident: CR75
  article-title: Intravenous contrast injection significantly affects bone mineral density measured on CT
  publication-title: Eur Radiol
  doi: 10.1007/s00330-014-3408-2
– volume: 14
  start-page: e0220564
  issue: 7
  year: 2019
  ident: CR51
  article-title: Calibration with or without phantom for fracture risk prediction in cancer patients with femoral bone metastases using CT-based finite element models
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0220564
– volume: 136
  start-page: 109568
  year: 2021
  ident: CR62
  article-title: Opportunistic screening for osteoporosis and osteopenia by routine computed tomography scan: a heterogeneous, multiethnic, middle-eastern population validation study
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2021.109568
– volume: 189
  start-page: 537
  issue: 6
  year: 2017
  end-page: 543
  ident: CR74
  article-title: Influence of contrast media on bone mineral density (BMD) measurements from routine contrast-enhanced MDCT datasets using a phantom-less BMD measurement tool
  publication-title: Rofo
  doi: 10.1055/s-0043-102941
– ident: CR53
– year: 2012
  ident: CR36
  article-title: Quantitative vertebral compression fracture evaluation using a height compass
  publication-title: Medical imaging 2012: computer-aided diagnosis
– volume: 24
  start-page: 872
  issue: 4
  year: 2014
  end-page: 880
  ident: CR32
  article-title: Automatic detection of osteoporotic vertebral fractures in routine thoracic and abdominal MDCT
  publication-title: Eur Radiol
  doi: 10.1007/s00330-013-3089-2
– volume: 29
  start-page: 6355
  issue: 11
  year: 2019
  end-page: 6363
  ident: CR96
  article-title: Bone mineral density measurements derived from dual-layer spectral CT enable opportunistic screening for osteoporosis
  publication-title: Eur Radiol
  doi: 10.1007/s00330-019-06263-z
– volume: 103
  start-page: 325
  year: 2017
  end-page: 333
  ident: CR49
  article-title: Phantomless calibration of CT scans for measurement of BMD and bone strength-Inter-operator reanalysis precision
  publication-title: Bone
  doi: 10.1016/j.bone.2017.07.029
– volume: 284
  start-page: 788
  issue: 3
  year: 2017
  end-page: 797
  ident: CR20
  article-title: Vertebral body compression fractures and bone density: automated detection and classification on CT images
  publication-title: Radiology
  doi: 10.1148/radiol.2017162100
– ident: CR40
– volume: 2
  start-page: e190138
  issue: 4
  year: 2020
  ident: CR15
  article-title: A vertebral segmentation dataset with fracture grading
  publication-title: Radiol Artif Intell
  doi: 10.1148/ryai.2020190138
– volume: 28
  start-page: 983
  issue: 3
  year: 2017
  end-page: 990
  ident: CR80
  article-title: Opportunistic screening for osteoporosis by routine CT in Southern Europe
  publication-title: Osteoporos Int
  doi: 10.1007/s00198-016-3804-3
– volume: 30
  start-page: 4107
  issue: 7
  year: 2020
  end-page: 4116
  ident: CR17
  article-title: Automatic opportunistic osteoporosis screening using low-dose chest computed tomography scans obtained for lung cancer screening
  publication-title: Eur Radiol
  doi: 10.1007/s00330-020-06679-y
– volume: 38
  start-page: 25
  year: 2018
  end-page: 31
  ident: CR82
  article-title: Bone mineral density T-scores derived from CT attenuation numbers (Hounsfield units): clinical utility and correlation with dual-energy X-ray absorptiometry
  publication-title: Iowa Orthop J
– year: 2015
  ident: CR8
  article-title: Automatic localization and identification of vertebrae in spine CT via a joint learning model with deep neural networks
  publication-title: Medical image computing and computer-assisted intervention – MICCAI 201
– volume: 31
  start-page: 9428
  issue: 12
  year: 2021
  end-page: 9435
  ident: CR55
  article-title: Opportunistic application of phantom-less calibration methods for fracture risk prediction using QCT/FEA
  publication-title: Eur Radiol
  doi: 10.1007/s00330-021-08071-w
– volume: 209
  start-page: 395
  issue: 2
  year: 2017
  end-page: 402
  ident: CR73
  article-title: Predicting future hip fractures on routine abdominal CT using opportunistic osteoporosis screening measures: a matched case-control study
  publication-title: AJR Am J Roentgenol
  doi: 10.2214/AJR.17.17820
– volume: 25
  start-page: 2802
  year: 2019
  end-page: 2810
  ident: CR33
  article-title: 3D computed tomography mapping of thoracolumbar vertebrae fractures
  publication-title: Med Sci Monit
  doi: 10.12659/MSM.915916
– year: 2017
  ident: CR13
  article-title: Attention-driven deep learning for pathological spine segmentation
  publication-title: International workshop on computational methods and clinical applications in musculoskeletal imaging
– volume: 206
  start-page: 694
  issue: 4
  year: 2016
  end-page: 698
  ident: CR43
  article-title: Direct comparison of unenhanced and contrast-enhanced CT for opportunistic proximal femur bone mineral density measurement: implications for osteoporosis screening
  publication-title: AJR Am J Roentgenol
  doi: 10.2214/AJR.15.15128
– volume: 31
  start-page: 2189
  issue: 11
  year: 2020
  end-page: 2196
  ident: CR61
  article-title: Using opportunistic screening with abdominal CT to identify osteoporosis and osteopenia in patients with diabetes
  publication-title: Osteoporos Int
  doi: 10.1007/s00198-020-05521-x
– volume: 11
  start-page: 123
  issue: 1
  year: 2008
  ident: 764_CR1
  publication-title: J Clin Densitom
  doi: 10.1016/j.jocd.2007.12.010
– volume: 302
  start-page: 627
  issue: 3
  year: 2022
  ident: 764_CR90
  publication-title: Radiology
  doi: 10.1148/radiol.210937
– volume: 5
  start-page: 43
  issue: 1
  year: 2021
  ident: 764_CR95
  publication-title: Eur Radiol Exp
  doi: 10.1186/s41747-021-00241-1
– volume: 5
  start-page: 50
  issue: 2
  year: 2014
  ident: 764_CR60
  publication-title: Geriatr Orthop Surg Rehabil
  doi: 10.1177/2151458514525042
– volume-title: International conference on medical image computing and computer-assisted intervention
  year: 2020
  ident: 764_CR23
– volume: 38
  start-page: 25
  year: 2018
  ident: 764_CR82
  publication-title: Iowa Orthop J
– volume: 13
  start-page: 882163
  year: 2022
  ident: 764_CR47
  publication-title: Front Endocrinol (Lausanne)
  doi: 10.3389/fendo.2022.882163
– volume: 14
  start-page: e0220564
  issue: 7
  year: 2019
  ident: 764_CR51
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0220564
– volume-title: International workshop and challenge on computational methods and clinical applications for spine imaging
  year: 2019
  ident: 764_CR6
– volume: 78
  start-page: 55
  year: 2020
  ident: 764_CR57
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2020.01.009
– volume: 209
  start-page: 491
  issue: 3
  year: 2017
  ident: 764_CR70
  publication-title: AJR Am J Roentgenol
  doi: 10.2214/AJR.17.17853
– volume: 31
  start-page: 9428
  issue: 12
  year: 2021
  ident: 764_CR55
  publication-title: Eur Radiol
  doi: 10.1007/s00330-021-08071-w
– volume: 291
  start-page: 360
  issue: 2
  year: 2019
  ident: 764_CR58
  publication-title: Radiology
  doi: 10.1148/radiol.2019181648
– volume: 25
  start-page: 1958
  issue: 9
  year: 2010
  ident: 764_CR79
  publication-title: J Bone Miner Res
  doi: 10.1002/jbmr.86
– volume: 11
  start-page: 22156
  issue: 1
  year: 2021
  ident: 764_CR14
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-01296-1
– volume: 24
  start-page: 872
  issue: 4
  year: 2014
  ident: 764_CR32
  publication-title: Eur Radiol
  doi: 10.1007/s00330-013-3089-2
– volume: 23
  start-page: 1007
  issue: 3
  year: 2012
  ident: 764_CR41
  publication-title: Osteoporos Int
  doi: 10.1007/s00198-011-1774-z
– volume: 2019
  start-page: 4102410
  year: 2019
  ident: 764_CR56
  publication-title: Comput Math Methods Med
  doi: 10.1155/2019/4102410
– volume: 32
  start-page: 1890
  issue: 10
  year: 2013
  ident: 764_CR29
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2013.2268424
– volume: 10
  start-page: 20031
  issue: 1
  year: 2020
  ident: 764_CR39
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-76866-w
– volume-title: International workshop and challenge on computational methods and clinical applications for spine imaging
  year: 2019
  ident: 764_CR16
– volume: 103
  start-page: 325
  year: 2017
  ident: 764_CR49
  publication-title: Bone
  doi: 10.1016/j.bone.2017.07.029
– volume: 17
  start-page: e0265524
  issue: 3
  year: 2022
  ident: 764_CR52
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0265524
– volume-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
  year: 2020
  ident: 764_CR21
– volume: 29
  start-page: 629
  issue: 3
  year: 2014
  ident: 764_CR86
  publication-title: J Bone Miner Res
  doi: 10.1002/jbmr.2080
– volume: 31
  start-page: 2189
  issue: 11
  year: 2020
  ident: 764_CR61
  publication-title: Osteoporos Int
  doi: 10.1007/s00198-020-05521-x
– volume: 18
  start-page: 359
  issue: 3
  year: 2015
  ident: 764_CR99
  publication-title: J Clin Densitom
  doi: 10.1016/j.jocd.2015.06.011
– volume-title: Medical Imaging 2022: Image Processing
  year: 2022
  ident: 764_CR19
– volume: 13
  start-page: 471
  issue: 3
  year: 2009
  ident: 764_CR27
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2009.02.004
– volume: 12
  start-page: 48
  year: 2013
  ident: 764_CR26
  publication-title: Biomed Eng Online
  doi: 10.1186/1475-925X-12-48
– start-page: 319
  volume-title: Primer on the metabolic bone diseases and disorders of mineral metabolism
  year: 2018
  ident: 764_CR4
  doi: 10.1002/9781119266594.ch40
– volume-title: International workshop on machine learning in medical imaging
  year: 2021
  ident: 764_CR24
– volume: 290
  start-page: 426
  issue: 2
  year: 2019
  ident: 764_CR100
  publication-title: Radiology
  doi: 10.1148/radiol.2018181112
– volume: 136
  start-page: 109568
  year: 2021
  ident: 764_CR62
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2021.109568
– volume: 99
  start-page: 1580
  issue: 18
  year: 2017
  ident: 764_CR68
  publication-title: J Bone Joint Surg Am
  doi: 10.2106/JBJS.16.00749
– volume-title: Quantitative Musculoskeletal Imaging (QMSKI)
  year: 2022
  ident: 764_CR69
– volume: 209
  start-page: 395
  issue: 2
  year: 2017
  ident: 764_CR73
  publication-title: AJR Am J Roentgenol
  doi: 10.2214/AJR.17.17820
– ident: 764_CR42
  doi: 10.1016/j.jocd.2015.11.001
– volume: 13
  start-page: 76
  issue: 1
  year: 2018
  ident: 764_CR83
  publication-title: Arch Osteoporos
  doi: 10.1007/s11657-018-0492-y
– volume: 25
  start-page: 2074
  issue: 7
  year: 2015
  ident: 764_CR72
  publication-title: Eur Radiol
  doi: 10.1007/s00330-014-3584-0
– ident: 764_CR97
  doi: 10.1016/j.zemedi.2022.04.001
– volume: 189
  start-page: 537
  issue: 6
  year: 2017
  ident: 764_CR74
  publication-title: Rofo
  doi: 10.1055/s-0043-102941
– volume: 18
  start-page: 5
  issue: 1
  year: 2015
  ident: 764_CR65
  publication-title: J Clin Densitom
  doi: 10.1016/j.jocd.2014.03.002
– volume: 31
  start-page: 1025
  issue: 6
  year: 2020
  ident: 764_CR98
  publication-title: Osteoporos Int
  doi: 10.1007/s00198-020-05384-2
– volume: 27
  start-page: 147
  issue: 1
  year: 2016
  ident: 764_CR44
  publication-title: Osteoporos Int
  doi: 10.1007/s00198-015-3224-9
– volume: 41
  start-page: 217
  issue: 2
  year: 2017
  ident: 764_CR76
  publication-title: J Comput Assist Tomogr
  doi: 10.1097/RCT.0000000000000518
– volume: 30
  start-page: 1275
  issue: 6
  year: 2019
  ident: 764_CR30
  publication-title: Osteoporos Int
  doi: 10.1007/s00198-019-04910-1
– volume: 293
  start-page: 405
  issue: 2
  year: 2019
  ident: 764_CR37
  publication-title: Radiology
  doi: 10.1148/radiol.2019190201
– volume: 60
  start-page: 2375
  issue: 9
  year: 2013
  ident: 764_CR10
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2013.2256460
– volume: 29
  start-page: 1359
  issue: 6
  year: 2018
  ident: 764_CR64
  publication-title: Osteoporos Int
  doi: 10.1007/s00198-018-4444-6
– volume: 143
  start-page: 115759
  year: 2021
  ident: 764_CR54
  publication-title: Bone
  doi: 10.1016/j.bone.2020.115759
– volume: 50
  start-page: 2525
  issue: 12
  year: 2021
  ident: 764_CR81
  publication-title: Skeletal Radiol
  doi: 10.1007/s00256-021-03801-z
– volume: 18
  start-page: 338
  issue: 3
  year: 2015
  ident: 764_CR2
  publication-title: J Clin Densitom
  doi: 10.1016/j.jocd.2015.06.012
– volume: 125
  start-page: 551
  issue: 6
  year: 2020
  ident: 764_CR22
  publication-title: Radiol Med
  doi: 10.1007/s11547-020-01145-7
– volume: 61
  start-page: 3269
  issue: 8
  year: 2022
  ident: 764_CR89
  publication-title: Rheumatology (Oxford)
  doi: 10.1093/rheumatology/keab878
– volume: 11
  start-page: 1799
  issue: 6
  year: 2020
  ident: 764_CR102
  publication-title: J Cachexia Sarcopenia Muscle
  doi: 10.1002/jcsm.12616
– volume: 42
  start-page: 798
  issue: 5
  year: 2018
  ident: 764_CR34
  publication-title: J Comput Assist Tomogr
  doi: 10.1097/RCT.0000000000000744
– volume: 206
  start-page: 694
  issue: 4
  year: 2016
  ident: 764_CR43
  publication-title: AJR Am J Roentgenol
  doi: 10.2214/AJR.15.15128
– volume: 29
  start-page: 570
  issue: 3
  year: 2014
  ident: 764_CR78
  publication-title: J Bone Miner Res
  doi: 10.1002/jbmr.2069
– volume: 278
  start-page: 172
  issue: 1
  year: 2016
  ident: 764_CR84
  publication-title: Radiology
  doi: 10.1148/radiol.2015141984
– volume: 13
  start-page: 1927
  issue: 3
  year: 2022
  ident: 764_CR101
  publication-title: J Cachexia Sarcopenia Muscle
  doi: 10.1002/jcsm.12996
– volume: 29
  start-page: 6355
  issue: 11
  year: 2019
  ident: 764_CR96
  publication-title: Eur Radiol
  doi: 10.1007/s00330-019-06263-z
– volume: 31
  start-page: 3147
  issue: 5
  year: 2021
  ident: 764_CR77
  publication-title: Eur Radiol
  doi: 10.1007/s00330-020-07319-1
– volume: 188
  start-page: 1294
  issue: 5
  year: 2007
  ident: 764_CR45
  publication-title: AJR Am J Roentgenol
  doi: 10.2214/AJR.06.1006
– ident: 764_CR53
  doi: 10.1016/j.bone.2021.116304
– volume: 2
  start-page: e190138
  issue: 4
  year: 2020
  ident: 764_CR15
  publication-title: Radiol Artif Intell
  doi: 10.1148/ryai.2020190138
– volume: 13
  start-page: 340
  issue: 3
  year: 1986
  ident: 764_CR93
  publication-title: Med Phys
  doi: 10.1118/1.595951
– volume-title: Medical image computing and computer-assisted intervention – MICCAI 201
  year: 2015
  ident: 764_CR8
– volume: 477
  start-page: 850
  issue: 4
  year: 2019
  ident: 764_CR85
  publication-title: Clin Orthop Relat Res
  doi: 10.1097/CORR.0000000000000480
– volume: 12
  start-page: 545
  year: 1977
  ident: 764_CR92
  publication-title: Invest Radiol
  doi: 10.1097/00004424-197711000-00015
– volume-title: International conference on medical image computing and computer-assisted intervention
  year: 2012
  ident: 764_CR9
– volume-title: Medical imaging 2012: computer-aided diagnosis
  year: 2012
  ident: 764_CR36
– volume: 35
  start-page: 212
  issue: 2
  year: 2011
  ident: 764_CR31
  publication-title: J Comput Assist Tomogr
  doi: 10.1097/RCT.0b013e3182032537
– volume: 10
  start-page: 560
  issue: 4
  year: 2006
  ident: 764_CR28
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2006.05.005
– volume: 32
  start-page: 3076
  issue: 5
  year: 2022
  ident: 764_CR71
  publication-title: Eur Radiol
  doi: 10.1007/s00330-021-08323-9
– volume-title: International conference on medical image computing and computer-assisted intervention
  year: 2017
  ident: 764_CR11
– volume-title: 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018)
  year: 2018
  ident: 764_CR12
– volume: 158
  start-page: 588
  issue: 8
  year: 2013
  ident: 764_CR59
  publication-title: Ann Intern Med
  doi: 10.7326/0003-4819-158-8-201304160-00003
– volume: 25
  start-page: 283
  issue: 2
  year: 2015
  ident: 764_CR75
  publication-title: Eur Radiol
  doi: 10.1007/s00330-014-3408-2
– volume: 25
  start-page: 2802
  year: 2019
  ident: 764_CR33
  publication-title: Med Sci Monit
  doi: 10.12659/MSM.915916
– volume: 161
  start-page: 116427
  year: 2022
  ident: 764_CR38
  publication-title: Bone
  doi: 10.1016/j.bone.2022.116427
– volume: 8
  start-page: 1137
  issue: 9
  year: 1993
  ident: 764_CR3
  publication-title: JBMR
  doi: 10.1002/jbmr.5650080915
– volume: 15
  start-page: e0240084
  issue: 10
  year: 2020
  ident: 764_CR63
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0240084
– volume: 208
  start-page: 165
  issue: 1
  year: 2017
  ident: 764_CR66
  publication-title: AJR Am J Roentgenol
  doi: 10.2214/AJR.16.16744
– volume: 24
  start-page: 108
  issue: 4
  year: 2020
  ident: 764_CR48
  publication-title: Medical Visualization
  doi: 10.24835/1607-0763-2020-4-108-118
– volume: 30
  start-page: 4107
  issue: 7
  year: 2020
  ident: 764_CR17
  publication-title: Eur Radiol
  doi: 10.1007/s00330-020-06679-y
– volume-title: Medical imaging 2020: image processing
  year: 2020
  ident: 764_CR7
– volume-title: International workshop on computational methods and clinical applications in musculoskeletal imaging
  year: 2017
  ident: 764_CR13
– ident: 764_CR40
  doi: 10.21037/qims-22-433
– volume-title: International conference on medical image computing and computer-assisted intervention
  year: 2020
  ident: 764_CR25
– volume: 284
  start-page: 788
  issue: 3
  year: 2017
  ident: 764_CR20
  publication-title: Radiology
  doi: 10.1148/radiol.2017162100
– volume: 92
  start-page: 20180726
  issue: 1094
  year: 2019
  ident: 764_CR5
  publication-title: Br J Radiol
  doi: 10.1259/bjr.20180726
– volume-title: 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)
  year: 2022
  ident: 764_CR18
– volume: 16
  start-page: S153
  issue: Suppl 2
  year: 2015
  ident: 764_CR50
  publication-title: Traffic Inj Prev
  doi: 10.1080/15389588.2015.1054029
– volume: 37
  start-page: 1287
  year: 2022
  ident: 764_CR87
  publication-title: J Bone Miner Res
  doi: 10.1002/jbmr.4575
– volume: 26
  start-page: 77
  issue: 1
  year: 2020
  ident: 764_CR91
  publication-title: Nat Med
  doi: 10.1038/s41591-019-0720-z
– volume: 216
  start-page: 447
  issue: 2
  year: 2021
  ident: 764_CR67
  publication-title: AJR Am J Roentgenol
  doi: 10.2214/AJR.20.22943
– volume: 8
  start-page: e71204
  issue: 8
  year: 2013
  ident: 764_CR88
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0071204
– volume: 28
  start-page: 983
  issue: 3
  year: 2017
  ident: 764_CR80
  publication-title: Osteoporos Int
  doi: 10.1007/s00198-016-3804-3
– volume-title: Medical imaging 2011: computer-aided diagnosis
  year: 2011
  ident: 764_CR35
– volume: 29
  start-page: 4980
  issue: 9
  year: 2019
  ident: 764_CR46
  publication-title: Eur Radiol
  doi: 10.1007/s00330-019-06018-w
– volume: 13
  start-page: 1023
  issue: 6
  year: 1989
  ident: 764_CR94
  publication-title: J Comput Assist Tomogr
  doi: 10.1097/00004728-198911000-00015
SSID ssj0022143
Score 2.4769318
SecondaryResourceType review_article
Snippet Purpose of Review Opportunistic screening is a combination of techniques to identify subjects of high risk for osteoporotic fracture using routine clinical CT...
Opportunistic screening is a combination of techniques to identify subjects of high risk for osteoporotic fracture using routine clinical CT scans prescribed...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 65
SubjectTerms Absorptiometry, Photon - methods
Artificial Intelligence
Bone Density
Epidemiology
Humans
Imaging (H Isaksson and S Boyd
Imaging (H Isaksson and S Boyd, Section Editors)
Medicine
Medicine & Public Health
Orthopedics
Osteoporosis - diagnostic imaging
Osteoporotic Fractures
Section Editors
Spinal Fractures - diagnostic imaging
Tomography, X-Ray Computed
Topical Collection on Imaging
Title Opportunistic Screening Techniques for Analysis of CT Scans
URI https://link.springer.com/article/10.1007/s11914-022-00764-5
https://www.ncbi.nlm.nih.gov/pubmed/36435912
https://www.proquest.com/docview/2740505037
https://pubmed.ncbi.nlm.nih.gov/PMC9925590
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60BfEivo2PEsGbLjSPTbJ4KqG1KOrBFuppSbIbFCQtpv3_zuRVaqXgOZNlM7OT-Yb5dgbgRjs8wrih6cZyzNzESVhkxZqlmo6M8JRKC4Lsizccu48TPqkuheU1270uSRZ_6uVlN2pFxoh9TuUjl_FtaHPM3YnIN7Z7TZplWyWtnrsuswLfqa7K_L3Gajhaw5jrVMlf9dIiDA32Ya_Cj2avNPgBbOnsEHaeqwr5Edy_zghRU5EaJcy3hHg1uJI5qpu15ibiVLNuRmJOUzMcoRyGrGMYD_qjcMiqAQkswSxuzlRCdTvX1qmDuEgQ-EfA5SZcKKW6QeoL9Db0aRFHnh8pH7ObQEeIAPFzCPg5J9DKppk-A9MVdoS6Sj1HccRocUDurKNAqRgRU2obYNV6kknVPZyGWHzJZd9j0q1E3cpCt5IbcNu8Myt7Z2yUvq7VL_GIU90iyvR0kUtMnGneXtfxDTgtzdGs5yCi4sLC_fkrhmoEqH326pPs86Nooy0EpVNdA-5qk8rKf_MN2zz_n_gF7NKA-pLnfQmt-fdCXyGMmccdaPce3p_6HdgOvbBTnOEf3rLo-Q
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgSMCF92M8i8QNMq1tujbihNDGYA8ObNI4RW2TCgTqENsu_HrsPjZtQ5N2rhsldmJ_lp0vANfadnyMG5puLAeMh3bIfDPQLNK0ZURFqShpkG1X6l3-3HN62aWwQd7tnpckE089uexGVGSMus-pfMSZswprHHNwXoC1-8e3RnWcaFlm2ljvcM5Mz7WzyzL_jzIdkOZQ5nyz5EzFNAlEtW3o5ktI-08-S6NhUAp_Z9gdl13jDmxlyNS4T7fSLqzoeA_WW1ntfR_uXr4Jq1P5GyWM15A6dnBwo5PTwA4MRMBGTnNi9CPjoYNyGAwPoFurdh7qLHt6gYWYHw6ZCqkiyC0d2Yi4BKUVCOV46AilVNmLXIHnGL2FCPyK6ysX8yZP-4gtUU0EKe1DKMT9WB-DwYXlow2iiq0cRH-BR45C-55SAWKxyCqCmetfhhkvOT2P8SUnjMqkFYlakYlWpFOEm_E_3ykrx0Lpq9ysEg8PVUT8WPdHA4kpOb3kV7bdIhylZh6PZyNWc4SJ83OnNsBYgIi5p7_EH-8JQbcQlKiVi3CbW1lmnmGwYJony4lfwka902rK5lO7cQqbFoKvtJv8DArDn5E-R7A0DC6ys_EH80AGfA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZT8MwDLZgSIgX7mOcReINwtY2XRvxNA3GfUgMCZ6itEkFAnUT61749dg9BgOEhHium6Z2En-W7S8AO8b1FPoNQx3LIeORGzFlh4bFhpaMaGgdZwWyV42TO352791_6uLPqt3LlGTe00AsTUla6-m49tH4RrRkjCrRKZXEmTcOE5zI2Ssw0Tx-OD8aBl2OnRfZe5wzO_DdonHm51FGndM3xPm9cPJL9jRzSu0ZUOXv5LUoz_uDNNyP3r4wPf7nf2dhukCsVjNfYnMwZpJ5mLwscvILcHDdIwxPaXGUsG4jquTBD1mdkh62byEytkr6E6sbW60OyqGTXIS79lGndcKKKxlYhHFjynREmULumNhFJCYo3ECIxyNPaK3rQewL3N94iohQNXylfYynAqMQc6LKCGq6S1BJuolZAYsLR6E94oarPUSFYUAHiFGB1iFitNipgl3aQkYFXzldm_EiP5iWSSsStSIzrUivCrvDd3o5W8ev0tuliSVuKsqUqMR0B32JoTrd8Fd3_Sos5yYfjucihvOEjfPzRxbDUIAIu0efJE-PGXG3EBTA1auwV1pcFidG_5dprv5NfAsmbw7b8uL06nwNphzEZHmR-TpU0teB2UAMlYabxTZ5B29gD2A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Opportunistic+Screening+Techniques+for+Analysis+of+CT+Scans&rft.jtitle=Current+osteoporosis+reports&rft.au=Engelke%2C+Klaus&rft.au=Chaudry%2C+Oliver&rft.au=Bartenschlager%2C+Stefan&rft.date=2023-02-01&rft.eissn=1544-2241&rft.volume=21&rft.issue=1&rft.spage=65&rft_id=info:doi/10.1007%2Fs11914-022-00764-5&rft_id=info%3Apmid%2F36435912&rft.externalDocID=36435912
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1544-1873&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1544-1873&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1544-1873&client=summon