No trace of phase: Corticomotor excitability is not tuned by phase of pericentral mu-rhythm

The motor potentials evoked by transcranial magnetic stimulation (TMS) over the motor hand area (M1-HAND) show substantial inter-trial variability. Pericentral mu-rhythm oscillations, might contribute to inter-trial variability. Recent studies targeting mu-activity based on real-time electroencephal...

Full description

Saved in:
Bibliographic Details
Published inBrain stimulation Vol. 12; no. 5; pp. 1261 - 1270
Main Authors Madsen, Kristoffer Hougaard, Karabanov, Anke Ninija, Krohne, Lærke Gebser, Safeldt, Mads Gylling, Tomasevic, Leo, Siebner, Hartwig Roman
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.09.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The motor potentials evoked by transcranial magnetic stimulation (TMS) over the motor hand area (M1-HAND) show substantial inter-trial variability. Pericentral mu-rhythm oscillations, might contribute to inter-trial variability. Recent studies targeting mu-activity based on real-time electroencephalography (EEG) reported an influence of mu-power and mu-phase on the amplitude of motor evoked potentials (MEPs) in a preselected group with strong pericentral mu-activity. Other studies that determined mu-power or mu-phase based on post-hoc trial sorting according in non-preselected individuals were largely negative. To reassess if cortico-spinal activity is modulated by the mu-rhythm, we applied single-pulse TMS to the M1-HAND conditional on the phase of the intrinsically expressed pericentral mu-rhythm in 14 non-preselected healthy young participants. TMS was given at 0, 90, 180, and 270° of the mu-phase. Based on the absence of effects of mu-phase or mu-power when analyzing the mean MEP amplitudes, we also computed a linear mixed effects model, which included mu-phase, mu-power, inter-stimulus interval (ISIs) as fixed effects, treating the subject factor as a random effect. Mixed model analysis revealed a significant effect of mu-power and ISI, but no effect of mu-phase and no interactions. MEP amplitude scaled linearly with lower mu-power or longer ISIs, but these modulatory effects were very small relative to inter-trial MEP variability. Our largely negative results are in agreement with previous offline TMS-EEG studies and point to a possible influence of ISI. Future research needs to clarify under which circumstances the responsiveness of human the M1-HAND to TMS depends on the synchronicity with mu-power and mu-phase. •Phase-triggered TMS at four phases of ongoing mu-oscillations is technically feasible in non-preselected young volunteers.•Targeting ongoing mu-activity did not reveal modulatory effects of mu-phase on corticospinal excitability.•Mixed-effects analysis reveal a weak but significant effect of pre-stimulus mu-power and ISI on corticospinal excitability.
AbstractList The motor potentials evoked by transcranial magnetic stimulation (TMS) over the motor hand area (M1-HAND) show substantial inter-trial variability. Pericentral mu-rhythm oscillations, might contribute to inter-trial variability. Recent studies targeting mu-activity based on real-time electroencephalography (EEG) reported an influence of mu-power and mu-phase on the amplitude of motor evoked potentials (MEPs) in a preselected group with strong pericentral mu-activity. Other studies that determined mu-power or mu-phase based on post-hoc trial sorting according in non-preselected individuals were largely negative. To reassess if cortico-spinal activity is modulated by the mu-rhythm, we applied single-pulse TMS to the M1-HAND conditional on the phase of the intrinsically expressed pericentral mu-rhythm in 14 non-preselected healthy young participants. TMS was given at 0, 90, 180, and 270° of the mu-phase. Based on the absence of effects of mu-phase or mu-power when analyzing the mean MEP amplitudes, we also computed a linear mixed effects model, which included mu-phase, mu-power, inter-stimulus interval (ISIs) as fixed effects, treating the subject factor as a random effect. Mixed model analysis revealed a significant effect of mu-power and ISI, but no effect of mu-phase and no interactions. MEP amplitude scaled linearly with lower mu-power or longer ISIs, but these modulatory effects were very small relative to inter-trial MEP variability. Our largely negative results are in agreement with previous offline TMS-EEG studies and point to a possible influence of ISI. Future research needs to clarify under which circumstances the responsiveness of human the M1-HAND to TMS depends on the synchronicity with mu-power and mu-phase. •Phase-triggered TMS at four phases of ongoing mu-oscillations is technically feasible in non-preselected young volunteers.•Targeting ongoing mu-activity did not reveal modulatory effects of mu-phase on corticospinal excitability.•Mixed-effects analysis reveal a weak but significant effect of pre-stimulus mu-power and ISI on corticospinal excitability.
The motor potentials evoked by transcranial magnetic stimulation (TMS) over the motor hand area (M1-HAND) show substantial inter-trial variability. Pericentral mu-rhythm oscillations, might contribute to inter-trial variability. Recent studies targeting mu-activity based on real-time electroencephalography (EEG) reported an influence of mu-power and mu-phase on the amplitude of motor evoked potentials (MEPs) in a preselected group with strong pericentral mu-activity. Other studies that determined mu-power or mu-phase based on post-hoc trial sorting according in non-preselected individuals were largely negative. To reassess if cortico-spinal activity is modulated by the mu-rhythm, we applied single-pulse TMS to the M1-HAND conditional on the phase of the intrinsically expressed pericentral mu-rhythm in 14 non-preselected healthy young participants. TMS was given at 0, 90, 180, and 270° of the mu-phase. Based on the absence of effects of mu-phase or mu-power when analyzing the mean MEP amplitudes, we also computed a linear mixed effects model, which included mu-phase, mu-power, inter-stimulus interval (ISIs) as fixed effects, treating the subject factor as a random effect. Mixed model analysis revealed a significant effect of mu-power and ISI, but no effect of mu-phase and no interactions. MEP amplitude scaled linearly with lower mu-power or longer ISIs, but these modulatory effects were very small relative to inter-trial MEP variability. Our largely negative results are in agreement with previous offline TMS-EEG studies and point to a possible influence of ISI. Future research needs to clarify under which circumstances the responsiveness of human the M1-HAND to TMS depends on the synchronicity with mu-power and mu-phase.
The motor potentials evoked by transcranial magnetic stimulation (TMS) over the motor hand area (M1-HAND) show substantial inter-trial variability. Pericentral mu-rhythm oscillations, might contribute to inter-trial variability. Recent studies targeting mu-activity based on real-time electroencephalography (EEG) reported an influence of mu-power and mu-phase on the amplitude of motor evoked potentials (MEPs) in a preselected group with strong pericentral mu-activity. Other studies that determined mu-power or mu-phase based on post-hoc trial sorting according in non-preselected individuals were largely negative.BACKGROUNDThe motor potentials evoked by transcranial magnetic stimulation (TMS) over the motor hand area (M1-HAND) show substantial inter-trial variability. Pericentral mu-rhythm oscillations, might contribute to inter-trial variability. Recent studies targeting mu-activity based on real-time electroencephalography (EEG) reported an influence of mu-power and mu-phase on the amplitude of motor evoked potentials (MEPs) in a preselected group with strong pericentral mu-activity. Other studies that determined mu-power or mu-phase based on post-hoc trial sorting according in non-preselected individuals were largely negative.To reassess if cortico-spinal activity is modulated by the mu-rhythm, we applied single-pulse TMS to the M1-HAND conditional on the phase of the intrinsically expressed pericentral mu-rhythm in 14 non-preselected healthy young participants.OBJECTIVESTo reassess if cortico-spinal activity is modulated by the mu-rhythm, we applied single-pulse TMS to the M1-HAND conditional on the phase of the intrinsically expressed pericentral mu-rhythm in 14 non-preselected healthy young participants.TMS was given at 0, 90, 180, and 270° of the mu-phase. Based on the absence of effects of mu-phase or mu-power when analyzing the mean MEP amplitudes, we also computed a linear mixed effects model, which included mu-phase, mu-power, inter-stimulus interval (ISIs) as fixed effects, treating the subject factor as a random effect.METHODSTMS was given at 0, 90, 180, and 270° of the mu-phase. Based on the absence of effects of mu-phase or mu-power when analyzing the mean MEP amplitudes, we also computed a linear mixed effects model, which included mu-phase, mu-power, inter-stimulus interval (ISIs) as fixed effects, treating the subject factor as a random effect.Mixed model analysis revealed a significant effect of mu-power and ISI, but no effect of mu-phase and no interactions. MEP amplitude scaled linearly with lower mu-power or longer ISIs, but these modulatory effects were very small relative to inter-trial MEP variability.RESULTSMixed model analysis revealed a significant effect of mu-power and ISI, but no effect of mu-phase and no interactions. MEP amplitude scaled linearly with lower mu-power or longer ISIs, but these modulatory effects were very small relative to inter-trial MEP variability.Our largely negative results are in agreement with previous offline TMS-EEG studies and point to a possible influence of ISI. Future research needs to clarify under which circumstances the responsiveness of human the M1-HAND to TMS depends on the synchronicity with mu-power and mu-phase.CONCLUSIONOur largely negative results are in agreement with previous offline TMS-EEG studies and point to a possible influence of ISI. Future research needs to clarify under which circumstances the responsiveness of human the M1-HAND to TMS depends on the synchronicity with mu-power and mu-phase.
Author Tomasevic, Leo
Siebner, Hartwig Roman
Safeldt, Mads Gylling
Karabanov, Anke Ninija
Madsen, Kristoffer Hougaard
Krohne, Lærke Gebser
Author_xml – sequence: 1
  givenname: Kristoffer Hougaard
  orcidid: 0000-0001-8606-7641
  surname: Madsen
  fullname: Madsen, Kristoffer Hougaard
  email: kristofferm@drcmr.dk
  organization: Danish Research Center for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
– sequence: 2
  givenname: Anke Ninija
  orcidid: 0000-0003-1874-393X
  surname: Karabanov
  fullname: Karabanov, Anke Ninija
  organization: Danish Research Center for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
– sequence: 3
  givenname: Lærke Gebser
  surname: Krohne
  fullname: Krohne, Lærke Gebser
  organization: Danish Research Center for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
– sequence: 4
  givenname: Mads Gylling
  surname: Safeldt
  fullname: Safeldt, Mads Gylling
  organization: Danish Research Center for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
– sequence: 5
  givenname: Leo
  surname: Tomasevic
  fullname: Tomasevic, Leo
  organization: Danish Research Center for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
– sequence: 6
  givenname: Hartwig Roman
  surname: Siebner
  fullname: Siebner, Hartwig Roman
  email: h.siebner@drcmr.dk
  organization: Danish Research Center for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31133479$$D View this record in MEDLINE/PubMed
BookMark eNqFkM1u1DAURi1URH_oA7BBXrJJsOMktmGFRoVWqmADElIXlnNzo_GQxIPtIPL29TDtpouyshfnfNI95-Rk9jMS8oazkjPevt-VXYhlxbguWVMy1rwgZ1zJtqhlU5_kvxZNoVr-85Scx7jLgNZKviKngnMhaqnPyN1XT1OwgNQPdL-1ET_QjQ_JgZ988oHiX3DJdm50aaUu0tknmpYZe9qtR-GficEBznlppNNShO2attNr8nKwY8TLh_eC_Ph89X1zXdx--3Kz-XRbQF23qei7QQmuOfCOtUxI7LBmIIVVmulG2Y73lWaCAQjG2kqhaKCFSjUSUbdDJS7Iu-PuPvjfC8ZkJhcBx9HO6JdoqkpUTCsmdUbfPqBLN2Fv9sFNNqzmMUgG5BGA4GMMOJjD-cn5w21uNJyZQ3qzMzm9OaQ3rDG5bDb5E_Nx_Dnn49HBnOePw2AiOJwBexcQkum9e9bWT2wY3ezAjr9w_Y97D2i1rpk
CitedBy_id crossref_primary_10_1016_j_brs_2021_01_018
crossref_primary_10_1016_j_brs_2022_08_005
crossref_primary_10_1088_1741_2552_ad8a8e
crossref_primary_10_3390_bios13020220
crossref_primary_10_7554_eLife_76411
crossref_primary_10_1038_s42003_020_0764_0
crossref_primary_10_2139_ssrn_3984078
crossref_primary_10_1152_jn_00227_2022
crossref_primary_10_1016_j_neuroimage_2025_121082
crossref_primary_10_1016_j_neuroimage_2022_119805
crossref_primary_10_1088_1741_2552_ab8683
crossref_primary_10_1016_j_neures_2023_12_003
crossref_primary_10_1016_j_neuroimage_2020_117305
crossref_primary_10_1016_j_brs_2022_02_014
crossref_primary_10_1016_j_neuropsychologia_2021_107952
crossref_primary_10_3389_fnsys_2024_1489949
crossref_primary_10_1088_1741_2552_acb1d8
crossref_primary_10_1016_j_neuroimage_2023_120427
crossref_primary_10_1016_j_brs_2023_05_022
crossref_primary_10_1113_JP281885
crossref_primary_10_1016_j_biopsycho_2021_108081
crossref_primary_10_1371_journal_pone_0293546
crossref_primary_10_1523_JNEUROSCI_1730_19_2019
crossref_primary_10_1111_ejn_70042
crossref_primary_10_1038_s41598_022_10239_3
crossref_primary_10_1007_s00221_021_06183_9
crossref_primary_10_1016_j_neuroimage_2025_121050
crossref_primary_10_1111_ejn_15124
crossref_primary_10_1016_j_cortex_2022_04_019
crossref_primary_10_3389_fnins_2023_1004763
crossref_primary_10_1016_j_brs_2023_02_009
crossref_primary_10_1016_j_brs_2020_07_005
crossref_primary_10_1016_j_brs_2024_12_1193
crossref_primary_10_1016_j_ynirp_2022_100132
crossref_primary_10_1113_JP284273
crossref_primary_10_1016_j_neuroimage_2020_116761
crossref_primary_10_1016_j_neuroscience_2021_12_004
crossref_primary_10_1523_ENEURO_0450_24_2024
crossref_primary_10_1523_JNEUROSCI_1953_19_2019
crossref_primary_10_1088_1741_2552_acf7f3
crossref_primary_10_3390_biomedicines12050955
crossref_primary_10_1016_j_clinph_2023_09_005
crossref_primary_10_1113_JP280966
crossref_primary_10_1016_j_jneumeth_2022_109662
crossref_primary_10_1088_1741_2552_ad5404
crossref_primary_10_1016_j_brs_2021_05_009
crossref_primary_10_1038_s41583_022_00598_1
crossref_primary_10_1109_TNSRE_2024_3516393
crossref_primary_10_12688_openreseurope_14634_1
crossref_primary_10_12688_openreseurope_14634_2
crossref_primary_10_1016_j_biopsych_2023_09_014
crossref_primary_10_1186_s12984_022_01062_y
crossref_primary_10_1007_s12264_024_01321_z
crossref_primary_10_1088_1741_2552_ab9dba
crossref_primary_10_1016_j_neuroimage_2019_116175
crossref_primary_10_1523_ENEURO_0244_21_2022
crossref_primary_10_3389_fneur_2021_669690
crossref_primary_10_1016_j_brs_2021_03_017
crossref_primary_10_1111_ejn_14931
crossref_primary_10_3389_fnhum_2021_691821
crossref_primary_10_1088_1741_2552_ad1dc2
crossref_primary_10_1088_1741_2552_ad7f87
crossref_primary_10_1016_j_neuroimage_2023_120259
crossref_primary_10_1113_JP282393
crossref_primary_10_3389_fneur_2024_1427198
Cites_doi 10.1016/j.brs.2011.07.006
10.1016/j.cortex.2011.04.028
10.1016/j.neuroimage.2018.10.052
10.1523/JNEUROSCI.1470-18.2018
10.1523/JNEUROSCI.2584-04.2004
10.1371/journal.pcbi.1002655
10.1073/pnas.1117190108
10.1523/JNEUROSCI.0160-10.2010
10.1523/JNEUROSCI.2794-09.2010
10.1016/j.neuroimage.2016.03.074
10.1152/jn.01092.2012
10.1016/j.clinph.2012.01.010
10.1371/journal.pbio.1001965
10.1016/S0167-8760(97)00760-5
10.1111/ejn.14192
10.1016/S1388-2457(03)00157-3
10.1523/JNEUROSCI.1833-15.2015
10.1093/cercor/bht024
10.1155/2014/936096
10.1016/j.neuropsychologia.2016.12.030
10.1016/j.neuroscience.2011.02.004
10.1177/155005940603700316
10.1016/S1388-2457(03)00181-0
10.1109/JPROC.2004.840301
10.1016/j.neuroimage.2013.04.044
10.1016/j.neuron.2007.06.026
10.1016/j.brs.2017.11.016
10.3389/fpsyg.2011.00099
10.1523/JNEUROSCI.2582-16.2017
10.1093/cercor/bhm229
10.1016/0013-4694(75)90056-5
10.1016/j.brs.2018.06.006
10.3389/fnins.2018.00279
10.1523/JNEUROSCI.4792-11.2012
10.1093/cercor/bhy016
10.3389/fnhum.2010.00186
10.1152/jn.00125.2013
10.1016/j.clinph.2009.11.078
10.1371/journal.pone.0208747
10.1097/WNR.0b013e3282f454c4
10.1523/ENEURO.0153-16.2017
10.1016/j.tins.2015.12.004
10.1016/j.neuropsychologia.2008.07.021
10.1152/jn.00387.2013
10.1371/journal.pone.0038754
10.3389/fnhum.2016.00504
10.1016/j.tins.2014.04.001
10.1111/ejn.13318
ContentType Journal Article
Copyright 2019 The Authors
Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2019 The Authors
– notice: Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.brs.2019.05.005
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1876-4754
EndPage 1270
ExternalDocumentID 31133479
10_1016_j_brs_2019_05_005
S1935861X19302128
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
1B1
1P~
1~.
1~5
23N
4.4
457
4G.
4H-
53G
5GY
5VS
7-5
71M
8P~
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABIVO
ABJNI
ABMAC
ABMZM
ABTEW
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGUBO
AGWIK
AGYEJ
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EFKBS
EJD
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
GROUPED_DOAJ
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OP~
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SEL
SES
SSH
SSN
SSZ
T5K
Z5R
~G-
0SF
6I.
AACTN
AAFTH
AFCTW
AFKWA
AJOXV
AMFUW
NCXOZ
RIG
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c446t-dbf83191c1b06037ebe40c73a890958ab1d29030cc300628e35c6c2857ee96f23
IEDL.DBID .~1
ISSN 1935-861X
1876-4754
IngestDate Mon Jul 21 09:47:20 EDT 2025
Thu Apr 03 06:59:39 EDT 2025
Tue Jul 01 02:09:48 EDT 2025
Thu Apr 24 22:55:16 EDT 2025
Tue Oct 08 04:54:19 EDT 2024
Tue Aug 26 16:35:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords EEG-Triggered phase targeting
Pericentral oscillation
Electroencephalography
Transcranial magnetic stimulation
Temporal and spatial neuronavigation
Mu rhythm
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-dbf83191c1b06037ebe40c73a890958ab1d29030cc300628e35c6c2857ee96f23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1874-393X
0000-0001-8606-7641
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1935861X19302128
PMID 31133479
PQID 2232098079
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2232098079
pubmed_primary_31133479
crossref_citationtrail_10_1016_j_brs_2019_05_005
crossref_primary_10_1016_j_brs_2019_05_005
elsevier_sciencedirect_doi_10_1016_j_brs_2019_05_005
elsevier_clinicalkey_doi_10_1016_j_brs_2019_05_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September-October 2019
2019-09-00
2019 Sep - Oct
20190901
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: September-October 2019
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Brain stimulation
PublicationTitleAlternate Brain Stimul
PublicationYear 2019
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Romei, Gross, Thut (bib48) 2010; 30
Craddock, Poliakoff, El-Deredy, Klepousniotou, Lloyd (bib50) 2017; 96
Haegens, Nacher, Luna, Romo, Jensen (bib19) 2011; 108
Desideri, Zrenner, Gordon, Ziemann, Belardinelli (bib47) 2018; 13
van Elswijk, Maij, Schoffelen, Overeem, Stegeman, Fries (bib25) 2010; 30
Bergmann, Molle, Schmidt, Lindner, Marshall, Born (bib32) 2012; 32
Maki, Ilmoniemi (bib24) 2010; 121
Vaseghi, Zoghi, Jaberzadeh (bib41) 2015; 6
Maris, Fries, van Ede (bib1) 2016; 39
Safeldt, Tomasevic, Karabanov, Siebner, K (bib37) 2017
Romei, Brodbeck, Michel, Amedi, Pascual-Leone, Thut (bib11) 2008; 18
Stefanou, Desideri, Belardinelli, Zrenner, Ziemann (bib35) 2018; 38
Thies, Zrenner, Ziemann, Bergmann (bib36) 2018
Romei, Rihs, Brodbeck, Thut (bib10) 2008; 19
Hallett (bib20) 2007; 55
Conde, Tomasevic, Akopian, Stanek, Saturnino, Thielscher (bib46) 2019; 185
Zumer, Scheeringa, Schoffelen, Norris, Jensen (bib5) 2014; 12
Pfurtscheller, Neuper, Andrew, Edlinger (bib14) 1997; 26
Hussain, Claudino, Bonstrup, Norato, Cruciani, Thompson (bib31) 2018
Sauseng, Klimesch, Gerloff, Hummel (bib23) 2009; 47
Schulz, Ubelacker, Keil, Muller, Weisz (bib29) 2014; 24
Schaworonkow, Triesch, Ziemann, Zrenner (bib33) 2018
Groppe, Bickel, Keller, Jain, Hwang, Harden (bib54) 2013; 79
Herring, Thut, Jensen, Bergmann (bib6) 2015; 35
Anderson, Ding (bib16) 2011; 180
Khademi, Royter, Gharabaghi (bib53) 2018; 28
Thomson, Maller, Daskalakis, Fitzgerald (bib42) 2012; 48
Klimesch (bib3) 2018; 48
Bonnefond, Kastner, Jensen (bib2) 2017; 4
Kraus, Naros, Bauer, Khademi, Leao, Ziemann (bib52) 2016
Zarkowski, Shin, Dang, Russo, Avery (bib22) 2006; 37
Ai, Ro (bib17) 2014; 111
Groppa, Oliviero, Eisen, Quartarone, Cohen, Mall (bib21) 2012; 123
Berger, Minarik, Liuzzi, Hummel, Sauseng (bib27) 2014; 2014
Bruers, VanRullen (bib13) 2018; 12
Gips, van der Eerden, Jensen (bib9) 2016; 44
Mathewson, Lleras, Beck, Fabiani, Ro, Gratton (bib12) 2011; 2
Jensen, Gips, Bergmann, Bonnefond (bib8) 2014; 37
Zrenner, Desideri, Belardinelli, Ziemann (bib34) 2018; 11
Lepage, Morin-Moncet, Beaule, de Beaumont, Champoux, Theoret (bib51) 2012; 7
Cincotta, Borgheresi, Gambetti, Balestrieri, Rossi, Zaccara (bib44) 2003; 114
Takemi, Masakado, Liu, Ushiba (bib26) 2013; 110
Gorsler, Baumer, Weiller, Munchau, Liepert (bib43) 2003; 114
Keil, Timm, Sanmiguel, Schulz, Obleser, Schonwiesner (bib28) 2014; 111
de Pesters, Coon, Brunner, Gunduz, Ritaccio, Brunet (bib7) 2016; 134
Miller, Hermes, Honey, Hebb, Ramsey, Knight (bib40) 2012; 8
Forschack, Nierhaus, Muller, Villringer (bib18) 2017; 37
Jensen, Mazaheri (bib4) 2010; 4
Frigo, Johnson (bib38) 2005; 93
Strauss, Wostmann, Obleser (bib49) 2014; 8
Linkenkaer-Hansen, Nikulin, Palva, Ilmoniemi, Palva (bib15) 2004; 24
Julkunen, Saisanen, Hukkanen, Danner, Kononen (bib45) 2012; 5
Hjorth (bib39) 1975; 39
Iscan, Nazarova, Fedele, Blagovechtchenski, Nikulin (bib30) 2016; 10
Romei (10.1016/j.brs.2019.05.005_bib11) 2008; 18
Jensen (10.1016/j.brs.2019.05.005_bib4) 2010; 4
Linkenkaer-Hansen (10.1016/j.brs.2019.05.005_bib15) 2004; 24
Iscan (10.1016/j.brs.2019.05.005_bib30) 2016; 10
Zumer (10.1016/j.brs.2019.05.005_bib5) 2014; 12
Forschack (10.1016/j.brs.2019.05.005_bib18) 2017; 37
Thies (10.1016/j.brs.2019.05.005_bib36) 2018
Bonnefond (10.1016/j.brs.2019.05.005_bib2) 2017; 4
van Elswijk (10.1016/j.brs.2019.05.005_bib25) 2010; 30
Hussain (10.1016/j.brs.2019.05.005_bib31) 2018
Mathewson (10.1016/j.brs.2019.05.005_bib12) 2011; 2
Conde (10.1016/j.brs.2019.05.005_bib46) 2019; 185
Julkunen (10.1016/j.brs.2019.05.005_bib45) 2012; 5
Zarkowski (10.1016/j.brs.2019.05.005_bib22) 2006; 37
Thomson (10.1016/j.brs.2019.05.005_bib42) 2012; 48
Pfurtscheller (10.1016/j.brs.2019.05.005_bib14) 1997; 26
Romei (10.1016/j.brs.2019.05.005_bib48) 2010; 30
Hjorth (10.1016/j.brs.2019.05.005_bib39) 1975; 39
Maris (10.1016/j.brs.2019.05.005_bib1) 2016; 39
de Pesters (10.1016/j.brs.2019.05.005_bib7) 2016; 134
Hallett (10.1016/j.brs.2019.05.005_bib20) 2007; 55
Khademi (10.1016/j.brs.2019.05.005_bib53) 2018; 28
Jensen (10.1016/j.brs.2019.05.005_bib8) 2014; 37
Romei (10.1016/j.brs.2019.05.005_bib10) 2008; 19
Sauseng (10.1016/j.brs.2019.05.005_bib23) 2009; 47
Maki (10.1016/j.brs.2019.05.005_bib24) 2010; 121
Cincotta (10.1016/j.brs.2019.05.005_bib44) 2003; 114
Frigo (10.1016/j.brs.2019.05.005_bib38) 2005; 93
Bruers (10.1016/j.brs.2019.05.005_bib13) 2018; 12
Schaworonkow (10.1016/j.brs.2019.05.005_bib33) 2018
Safeldt (10.1016/j.brs.2019.05.005_bib37) 2017
Miller (10.1016/j.brs.2019.05.005_bib40) 2012; 8
Craddock (10.1016/j.brs.2019.05.005_bib50) 2017; 96
Strauss (10.1016/j.brs.2019.05.005_bib49) 2014; 8
Stefanou (10.1016/j.brs.2019.05.005_bib35) 2018; 38
Kraus (10.1016/j.brs.2019.05.005_bib52) 2016
Gips (10.1016/j.brs.2019.05.005_bib9) 2016; 44
Lepage (10.1016/j.brs.2019.05.005_bib51) 2012; 7
Berger (10.1016/j.brs.2019.05.005_bib27) 2014; 2014
Klimesch (10.1016/j.brs.2019.05.005_bib3) 2018; 48
Gorsler (10.1016/j.brs.2019.05.005_bib43) 2003; 114
Desideri (10.1016/j.brs.2019.05.005_bib47) 2018; 13
Zrenner (10.1016/j.brs.2019.05.005_bib34) 2018; 11
Takemi (10.1016/j.brs.2019.05.005_bib26) 2013; 110
Groppe (10.1016/j.brs.2019.05.005_bib54) 2013; 79
Bergmann (10.1016/j.brs.2019.05.005_bib32) 2012; 32
Schulz (10.1016/j.brs.2019.05.005_bib29) 2014; 24
Haegens (10.1016/j.brs.2019.05.005_bib19) 2011; 108
Keil (10.1016/j.brs.2019.05.005_bib28) 2014; 111
Herring (10.1016/j.brs.2019.05.005_bib6) 2015; 35
Anderson (10.1016/j.brs.2019.05.005_bib16) 2011; 180
Groppa (10.1016/j.brs.2019.05.005_bib21) 2012; 123
Vaseghi (10.1016/j.brs.2019.05.005_bib41) 2015; 6
Ai (10.1016/j.brs.2019.05.005_bib17) 2014; 111
References_xml – volume: 2
  start-page: 99
  year: 2011
  ident: bib12
  article-title: Pulsed out of awareness: EEG alpha oscillations represent a pulsed-inhibition of ongoing cortical processing
  publication-title: Front Psychol
– year: 2018
  ident: bib33
  article-title: EEG-triggered TMS reveals stronger brain state-dependent modulation of motor evoked potentials at weaker stimulation intensities
  publication-title: Brain Stimul
– volume: 30
  start-page: 8692
  year: 2010
  end-page: 8697
  ident: bib48
  article-title: On the role of prestimulus alpha rhythms over occipito-parietal areas in visual input regulation: correlation or causation?
  publication-title: J Neurosci
– year: 2016
  ident: bib52
  article-title: Brain state-dependent transcranial magnetic closed-loop stimulation controlled by sensorimotor desynchronization induces robust increase of corticospinal excitability
  publication-title: Brainstimulation
– volume: 114
  start-page: 1827
  year: 2003
  end-page: 1833
  ident: bib44
  article-title: Suprathreshold 0.3 Hz repetitive TMS prolongs the cortical silent period: potential implications for therapeutic trials in epilepsy
  publication-title: Clin Neurophysiol
– year: 2018
  ident: bib36
  article-title: Sensorimotor mu-alpha power is positively related to corticospinal excitability
  publication-title: Brain Stimul
– volume: 19
  start-page: 203
  year: 2008
  end-page: 208
  ident: bib10
  article-title: Resting electroencephalogram alpha-power over posterior sites indexes baseline visual cortex excitability
  publication-title: Neuroreport
– volume: 18
  start-page: 2010
  year: 2008
  end-page: 2018
  ident: bib11
  article-title: Spontaneous fluctuations in posterior alpha-band EEG activity reflect variability in excitability of human visual areas
  publication-title: Cerebr Cortex
– volume: 35
  start-page: 14435
  year: 2015
  end-page: 14447
  ident: bib6
  article-title: Attention modulates TMS-locked alpha oscillations in the visual cortex
  publication-title: J Neurosci
– volume: 44
  start-page: 2147
  year: 2016
  end-page: 2161
  ident: bib9
  article-title: A biologically plausible mechanism for neuronal coding organized by the phase of alpha oscillations
  publication-title: Eur J Neurosci
– volume: 134
  start-page: 122
  year: 2016
  end-page: 131
  ident: bib7
  article-title: Alpha power indexes task-related networks on large and small scales: a multimodal ECoG study in humans and a non-human primate
  publication-title: Neuroimage
– volume: 37
  start-page: 357
  year: 2014
  end-page: 369
  ident: bib8
  article-title: Temporal coding organized by coupled alpha and gamma oscillations prioritize visual processing
  publication-title: Trends Neurosci
– volume: 111
  start-page: 513
  year: 2014
  end-page: 519
  ident: bib28
  article-title: Cortical brain states and corticospinal synchronization influence TMS-evoked motor potentials
  publication-title: J Neurophysiol
– volume: 7
  start-page: e38754
  year: 2012
  ident: bib51
  article-title: Occlusion of LTP-like plasticity in human primary motor cortex by action observation
  publication-title: PLoS One
– volume: 48
  start-page: 2431
  year: 2018
  end-page: 2453
  ident: bib3
  article-title: The frequency architecture of brain and brain body oscillations: an analysis
  publication-title: Eur J Neurosci
– volume: 10
  start-page: 504
  year: 2016
  ident: bib30
  article-title: Pre-stimulus alpha oscillations and inter-subject variability of motor evoked potentials in single- and paired-pulse TMS paradigms
  publication-title: Front Hum Neurosci
– volume: 32
  start-page: 243
  year: 2012
  end-page: 253
  ident: bib32
  article-title: EEG-guided transcranial magnetic stimulation reveals rapid shifts in motor cortical excitability during the human sleep slow oscillation
  publication-title: J Neurosci
– volume: 6
  start-page: 44
  year: 2015
  end-page: 51
  ident: bib41
  article-title: Inter-pulse interval affects the size of single-pulse TMS-induced motor evoked potentials: a reliability study
  publication-title: Basic Clin Neurosci
– volume: 2014
  start-page: 936096
  year: 2014
  ident: bib27
  article-title: EEG oscillatory phase-dependent markers of corticospinal excitability in the resting brain
  publication-title: BioMed Res Int
– volume: 8
  start-page: e1002655
  year: 2012
  ident: bib40
  article-title: Human motor cortical activity is selectively phase-entrained on underlying rhythms
  publication-title: PLoS Comput Biol
– volume: 12
  start-page: e1001965
  year: 2014
  ident: bib5
  article-title: Occipital alpha activity during stimulus processing gates the information flow to object-selective cortex
  publication-title: PLoS Biol
– volume: 111
  start-page: 1300
  year: 2014
  end-page: 1307
  ident: bib17
  article-title: The phase of prestimulus alpha oscillations affects tactile perception
  publication-title: J Neurophysiol
– volume: 47
  start-page: 284
  year: 2009
  end-page: 288
  ident: bib23
  article-title: Spontaneous locally restricted EEG alpha activity determines cortical excitability in the motor cortex
  publication-title: Neuropsychologia
– volume: 12
  start-page: 279
  year: 2018
  ident: bib13
  article-title: Alpha power modulates perception independently of endogenous factors
  publication-title: Front Neurosci
– volume: 13
  start-page: e0208747
  year: 2018
  ident: bib47
  article-title: Nil effects of mu-rhythm phase-dependent burst-rTMS on cortical excitability in humans: a resting-state EEG and TMS-EEG study
  publication-title: PLoS One
– volume: 28
  start-page: 1502
  year: 2018
  end-page: 1515
  ident: bib53
  article-title: Distinct beta-band oscillatory circuits underlie corticospinal gain modulation
  publication-title: Cerebr Cortex
– volume: 180
  start-page: 165
  year: 2011
  end-page: 180
  ident: bib16
  article-title: Attentional modulation of the somatosensory mu rhythm
  publication-title: Neuroscience
– volume: 37
  start-page: 6983
  year: 2017
  end-page: 6994
  ident: bib18
  article-title: Alpha-band brain oscillations shape the processing of perceptible as well as imperceptible somatosensory stimuli during selective attention
  publication-title: J Neurosci
– year: 2018
  ident: bib31
  article-title: Sensorimotor oscillatory phase-power interaction gates resting human corticospinal output
  publication-title: Cerebr Cortex
– volume: 11
  start-page: 374
  year: 2018
  end-page: 389
  ident: bib34
  article-title: Real-time EEG-defined excitability states determine efficacy of TMS-induced plasticity in human motor cortex
  publication-title: Brain Stimul
– volume: 8
  start-page: 350
  year: 2014
  ident: bib49
  article-title: Cortical alpha oscillations as a tool for auditory selective inhibition
  publication-title: Front Hum Neurosci
– volume: 5
  start-page: 526
  year: 2012
  end-page: 532
  ident: bib45
  article-title: Does second-scale intertrial interval affect motor evoked potentials induced by single-pulse transcranial magnetic stimulation?
  publication-title: Brain Stimul
– volume: 185
  start-page: 300
  year: 2019
  end-page: 312
  ident: bib46
  article-title: The non-transcranial TMS-evoked potential is an inherent source of ambiguity in TMS-EEG studies
  publication-title: Neuroimage
– volume: 30
  start-page: 4481
  year: 2010
  end-page: 4488
  ident: bib25
  article-title: Corticospinal beta-band synchronization entails rhythmic gain modulation
  publication-title: J Neurosci
– volume: 37
  start-page: 247
  year: 2006
  end-page: 251
  ident: bib22
  article-title: EEG and the variance of motor evoked potential amplitude
  publication-title: Clin EEG Neurosci
– volume: 39
  start-page: 86
  year: 2016
  end-page: 99
  ident: bib1
  article-title: Diverse phase relations among neuronal rhythms and their potential function
  publication-title: Trends Neurosci
– volume: 24
  start-page: 10186
  year: 2004
  end-page: 10190
  ident: bib15
  article-title: Prestimulus oscillations enhance psychophysical performance in humans
  publication-title: J Neurosci
– volume: 121
  start-page: 492
  year: 2010
  end-page: 501
  ident: bib24
  article-title: EEG oscillations and magnetically evoked motor potentials reflect motor system excitability in overlapping neuronal populations
  publication-title: Clin Neurophysiol
– volume: 110
  start-page: 1158
  year: 2013
  end-page: 1166
  ident: bib26
  article-title: Event-related desynchronization reflects downregulation of intracortical inhibition in human primary motor cortex
  publication-title: J Neurophysiol
– volume: 38
  start-page: 10525
  year: 2018
  end-page: 10534
  ident: bib35
  article-title: Phase synchronicity of mu-rhythm determines efficacy of interhemispheric communication between human motor cortices
  publication-title: J Neurosci
– volume: 26
  start-page: 121
  year: 1997
  end-page: 135
  ident: bib14
  article-title: Foot and hand area mu rhythms
  publication-title: Int J Psychophysiol
– volume: 108
  start-page: 19377
  year: 2011
  end-page: 19382
  ident: bib19
  article-title: alpha-Oscillations in the monkey sensorimotor network influence discrimination performance by rhythmical inhibition of neuronal spiking
  publication-title: Proc Natl Acad Sci U S A
– volume: 114
  start-page: 1800
  year: 2003
  end-page: 1807
  ident: bib43
  article-title: Interhemispheric effects of high and low frequency rTMS in healthy humans
  publication-title: Clin Neurophysiol
– volume: 123
  start-page: 858
  year: 2012
  end-page: 882
  ident: bib21
  article-title: A practical guide to diagnostic transcranial magnetic stimulation: report of an IFCN committee
  publication-title: Clin Neurophysiol
– volume: 79
  start-page: 223
  year: 2013
  end-page: 233
  ident: bib54
  article-title: Dominant frequencies of resting human brain activity as measured by the electrocorticogram
  publication-title: Neuroimage
– volume: 24
  start-page: 1708
  year: 2014
  end-page: 1719
  ident: bib29
  article-title: Now I am ready-now i am not: the influence of pre-TMS oscillations and corticomuscular coherence on motor-evoked potentials
  publication-title: Cerebr Cortex
– year: 2017
  ident: bib37
  article-title: Towards brain-state dependent transcranial magnetic stimulation: targeting the phase of oscillatory neocortical activity with singe-pulse TMS
  publication-title: Brainstimulation
– volume: 4
  year: 2017
  ident: bib2
  article-title: Communication between brain areas based on nested oscillations
  publication-title: eNeuro
– volume: 93
  start-page: 216
  year: 2005
  end-page: 231
  ident: bib38
  article-title: The design and implementation of FFTW3
  publication-title: Proc IEEE
– volume: 96
  start-page: 9
  year: 2017
  end-page: 18
  ident: bib50
  article-title: Pre-stimulus alpha oscillations over somatosensory cortex predict tactile misperceptions
  publication-title: Neuropsychologia
– volume: 4
  start-page: 186
  year: 2010
  ident: bib4
  article-title: Shaping functional architecture by oscillatory alpha activity: gating by inhibition
  publication-title: Front Hum Neurosci
– volume: 55
  start-page: 187
  year: 2007
  end-page: 199
  ident: bib20
  article-title: Transcranial magnetic stimulation: a primer
  publication-title: Neuron
– volume: 39
  start-page: 526
  year: 1975
  end-page: 530
  ident: bib39
  article-title: An on-line transformation of EEG scalp potentials into orthogonal source derivations
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 48
  start-page: 487
  year: 2012
  end-page: 491
  ident: bib42
  article-title: Blood oxygenation changes resulting from trains of low frequency transcranial magnetic stimulation
  publication-title: Cortex
– volume: 5
  start-page: 526
  issue: 4
  year: 2012
  ident: 10.1016/j.brs.2019.05.005_bib45
  article-title: Does second-scale intertrial interval affect motor evoked potentials induced by single-pulse transcranial magnetic stimulation?
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2011.07.006
– volume: 48
  start-page: 487
  issue: 4
  year: 2012
  ident: 10.1016/j.brs.2019.05.005_bib42
  article-title: Blood oxygenation changes resulting from trains of low frequency transcranial magnetic stimulation
  publication-title: Cortex
  doi: 10.1016/j.cortex.2011.04.028
– volume: 185
  start-page: 300
  year: 2019
  ident: 10.1016/j.brs.2019.05.005_bib46
  article-title: The non-transcranial TMS-evoked potential is an inherent source of ambiguity in TMS-EEG studies
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.10.052
– volume: 38
  start-page: 10525
  issue: 49
  year: 2018
  ident: 10.1016/j.brs.2019.05.005_bib35
  article-title: Phase synchronicity of mu-rhythm determines efficacy of interhemispheric communication between human motor cortices
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.1470-18.2018
– volume: 24
  start-page: 10186
  issue: 45
  year: 2004
  ident: 10.1016/j.brs.2019.05.005_bib15
  article-title: Prestimulus oscillations enhance psychophysical performance in humans
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.2584-04.2004
– volume: 8
  start-page: e1002655
  issue: 9
  year: 2012
  ident: 10.1016/j.brs.2019.05.005_bib40
  article-title: Human motor cortical activity is selectively phase-entrained on underlying rhythms
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1002655
– volume: 108
  start-page: 19377
  issue: 48
  year: 2011
  ident: 10.1016/j.brs.2019.05.005_bib19
  article-title: alpha-Oscillations in the monkey sensorimotor network influence discrimination performance by rhythmical inhibition of neuronal spiking
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1117190108
– volume: 30
  start-page: 8692
  issue: 25
  year: 2010
  ident: 10.1016/j.brs.2019.05.005_bib48
  article-title: On the role of prestimulus alpha rhythms over occipito-parietal areas in visual input regulation: correlation or causation?
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.0160-10.2010
– volume: 30
  start-page: 4481
  issue: 12
  year: 2010
  ident: 10.1016/j.brs.2019.05.005_bib25
  article-title: Corticospinal beta-band synchronization entails rhythmic gain modulation
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.2794-09.2010
– volume: 134
  start-page: 122
  year: 2016
  ident: 10.1016/j.brs.2019.05.005_bib7
  article-title: Alpha power indexes task-related networks on large and small scales: a multimodal ECoG study in humans and a non-human primate
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.03.074
– volume: 110
  start-page: 1158
  issue: 5
  year: 2013
  ident: 10.1016/j.brs.2019.05.005_bib26
  article-title: Event-related desynchronization reflects downregulation of intracortical inhibition in human primary motor cortex
  publication-title: J Neurophysiol
  doi: 10.1152/jn.01092.2012
– volume: 123
  start-page: 858
  issue: 5
  year: 2012
  ident: 10.1016/j.brs.2019.05.005_bib21
  article-title: A practical guide to diagnostic transcranial magnetic stimulation: report of an IFCN committee
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2012.01.010
– volume: 12
  start-page: e1001965
  issue: 10
  year: 2014
  ident: 10.1016/j.brs.2019.05.005_bib5
  article-title: Occipital alpha activity during stimulus processing gates the information flow to object-selective cortex
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.1001965
– volume: 26
  start-page: 121
  issue: 1–3
  year: 1997
  ident: 10.1016/j.brs.2019.05.005_bib14
  article-title: Foot and hand area mu rhythms
  publication-title: Int J Psychophysiol
  doi: 10.1016/S0167-8760(97)00760-5
– volume: 8
  start-page: 350
  year: 2014
  ident: 10.1016/j.brs.2019.05.005_bib49
  article-title: Cortical alpha oscillations as a tool for auditory selective inhibition
  publication-title: Front Hum Neurosci
– volume: 48
  start-page: 2431
  issue: 7
  year: 2018
  ident: 10.1016/j.brs.2019.05.005_bib3
  article-title: The frequency architecture of brain and brain body oscillations: an analysis
  publication-title: Eur J Neurosci
  doi: 10.1111/ejn.14192
– year: 2018
  ident: 10.1016/j.brs.2019.05.005_bib33
  article-title: EEG-triggered TMS reveals stronger brain state-dependent modulation of motor evoked potentials at weaker stimulation intensities
  publication-title: Brain Stimul
– volume: 6
  start-page: 44
  issue: 1
  year: 2015
  ident: 10.1016/j.brs.2019.05.005_bib41
  article-title: Inter-pulse interval affects the size of single-pulse TMS-induced motor evoked potentials: a reliability study
  publication-title: Basic Clin Neurosci
– year: 2018
  ident: 10.1016/j.brs.2019.05.005_bib31
  article-title: Sensorimotor oscillatory phase-power interaction gates resting human corticospinal output
  publication-title: Cerebr Cortex
– volume: 114
  start-page: 1800
  issue: 10
  year: 2003
  ident: 10.1016/j.brs.2019.05.005_bib43
  article-title: Interhemispheric effects of high and low frequency rTMS in healthy humans
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(03)00157-3
– volume: 35
  start-page: 14435
  issue: 43
  year: 2015
  ident: 10.1016/j.brs.2019.05.005_bib6
  article-title: Attention modulates TMS-locked alpha oscillations in the visual cortex
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.1833-15.2015
– volume: 24
  start-page: 1708
  issue: 7
  year: 2014
  ident: 10.1016/j.brs.2019.05.005_bib29
  article-title: Now I am ready-now i am not: the influence of pre-TMS oscillations and corticomuscular coherence on motor-evoked potentials
  publication-title: Cerebr Cortex
  doi: 10.1093/cercor/bht024
– volume: 2014
  start-page: 936096
  year: 2014
  ident: 10.1016/j.brs.2019.05.005_bib27
  article-title: EEG oscillatory phase-dependent markers of corticospinal excitability in the resting brain
  publication-title: BioMed Res Int
  doi: 10.1155/2014/936096
– volume: 96
  start-page: 9
  year: 2017
  ident: 10.1016/j.brs.2019.05.005_bib50
  article-title: Pre-stimulus alpha oscillations over somatosensory cortex predict tactile misperceptions
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2016.12.030
– volume: 180
  start-page: 165
  year: 2011
  ident: 10.1016/j.brs.2019.05.005_bib16
  article-title: Attentional modulation of the somatosensory mu rhythm
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2011.02.004
– volume: 37
  start-page: 247
  issue: 3
  year: 2006
  ident: 10.1016/j.brs.2019.05.005_bib22
  article-title: EEG and the variance of motor evoked potential amplitude
  publication-title: Clin EEG Neurosci
  doi: 10.1177/155005940603700316
– volume: 114
  start-page: 1827
  issue: 10
  year: 2003
  ident: 10.1016/j.brs.2019.05.005_bib44
  article-title: Suprathreshold 0.3 Hz repetitive TMS prolongs the cortical silent period: potential implications for therapeutic trials in epilepsy
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(03)00181-0
– volume: 93
  start-page: 216
  issue: 2
  year: 2005
  ident: 10.1016/j.brs.2019.05.005_bib38
  article-title: The design and implementation of FFTW3
  publication-title: Proc IEEE
  doi: 10.1109/JPROC.2004.840301
– volume: 79
  start-page: 223
  year: 2013
  ident: 10.1016/j.brs.2019.05.005_bib54
  article-title: Dominant frequencies of resting human brain activity as measured by the electrocorticogram
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.04.044
– volume: 55
  start-page: 187
  issue: 2
  year: 2007
  ident: 10.1016/j.brs.2019.05.005_bib20
  article-title: Transcranial magnetic stimulation: a primer
  publication-title: Neuron
  doi: 10.1016/j.neuron.2007.06.026
– volume: 11
  start-page: 374
  issue: 2
  year: 2018
  ident: 10.1016/j.brs.2019.05.005_bib34
  article-title: Real-time EEG-defined excitability states determine efficacy of TMS-induced plasticity in human motor cortex
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2017.11.016
– volume: 2
  start-page: 99
  year: 2011
  ident: 10.1016/j.brs.2019.05.005_bib12
  article-title: Pulsed out of awareness: EEG alpha oscillations represent a pulsed-inhibition of ongoing cortical processing
  publication-title: Front Psychol
  doi: 10.3389/fpsyg.2011.00099
– volume: 37
  start-page: 6983
  issue: 29
  year: 2017
  ident: 10.1016/j.brs.2019.05.005_bib18
  article-title: Alpha-band brain oscillations shape the processing of perceptible as well as imperceptible somatosensory stimuli during selective attention
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.2582-16.2017
– volume: 18
  start-page: 2010
  issue: 9
  year: 2008
  ident: 10.1016/j.brs.2019.05.005_bib11
  article-title: Spontaneous fluctuations in posterior alpha-band EEG activity reflect variability in excitability of human visual areas
  publication-title: Cerebr Cortex
  doi: 10.1093/cercor/bhm229
– volume: 39
  start-page: 526
  issue: 5
  year: 1975
  ident: 10.1016/j.brs.2019.05.005_bib39
  article-title: An on-line transformation of EEG scalp potentials into orthogonal source derivations
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0013-4694(75)90056-5
– year: 2018
  ident: 10.1016/j.brs.2019.05.005_bib36
  article-title: Sensorimotor mu-alpha power is positively related to corticospinal excitability
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2018.06.006
– volume: 12
  start-page: 279
  year: 2018
  ident: 10.1016/j.brs.2019.05.005_bib13
  article-title: Alpha power modulates perception independently of endogenous factors
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2018.00279
– volume: 32
  start-page: 243
  issue: 1
  year: 2012
  ident: 10.1016/j.brs.2019.05.005_bib32
  article-title: EEG-guided transcranial magnetic stimulation reveals rapid shifts in motor cortical excitability during the human sleep slow oscillation
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.4792-11.2012
– volume: 28
  start-page: 1502
  issue: 4
  year: 2018
  ident: 10.1016/j.brs.2019.05.005_bib53
  article-title: Distinct beta-band oscillatory circuits underlie corticospinal gain modulation
  publication-title: Cerebr Cortex
  doi: 10.1093/cercor/bhy016
– volume: 4
  start-page: 186
  year: 2010
  ident: 10.1016/j.brs.2019.05.005_bib4
  article-title: Shaping functional architecture by oscillatory alpha activity: gating by inhibition
  publication-title: Front Hum Neurosci
  doi: 10.3389/fnhum.2010.00186
– volume: 111
  start-page: 1300
  year: 2014
  ident: 10.1016/j.brs.2019.05.005_bib17
  article-title: The phase of prestimulus alpha oscillations affects tactile perception
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00125.2013
– volume: 121
  start-page: 492
  issue: 4
  year: 2010
  ident: 10.1016/j.brs.2019.05.005_bib24
  article-title: EEG oscillations and magnetically evoked motor potentials reflect motor system excitability in overlapping neuronal populations
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2009.11.078
– volume: 13
  start-page: e0208747
  issue: 12
  year: 2018
  ident: 10.1016/j.brs.2019.05.005_bib47
  article-title: Nil effects of mu-rhythm phase-dependent burst-rTMS on cortical excitability in humans: a resting-state EEG and TMS-EEG study
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0208747
– volume: 19
  start-page: 203
  issue: 2
  year: 2008
  ident: 10.1016/j.brs.2019.05.005_bib10
  article-title: Resting electroencephalogram alpha-power over posterior sites indexes baseline visual cortex excitability
  publication-title: Neuroreport
  doi: 10.1097/WNR.0b013e3282f454c4
– volume: 4
  issue: 2
  year: 2017
  ident: 10.1016/j.brs.2019.05.005_bib2
  article-title: Communication between brain areas based on nested oscillations
  publication-title: eNeuro
  doi: 10.1523/ENEURO.0153-16.2017
– volume: 39
  start-page: 86
  issue: 2
  year: 2016
  ident: 10.1016/j.brs.2019.05.005_bib1
  article-title: Diverse phase relations among neuronal rhythms and their potential function
  publication-title: Trends Neurosci
  doi: 10.1016/j.tins.2015.12.004
– volume: 47
  start-page: 284
  issue: 1
  year: 2009
  ident: 10.1016/j.brs.2019.05.005_bib23
  article-title: Spontaneous locally restricted EEG alpha activity determines cortical excitability in the motor cortex
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2008.07.021
– year: 2016
  ident: 10.1016/j.brs.2019.05.005_bib52
  article-title: Brain state-dependent transcranial magnetic closed-loop stimulation controlled by sensorimotor desynchronization induces robust increase of corticospinal excitability
  publication-title: Brainstimulation
– volume: 111
  start-page: 513
  issue: 3
  year: 2014
  ident: 10.1016/j.brs.2019.05.005_bib28
  article-title: Cortical brain states and corticospinal synchronization influence TMS-evoked motor potentials
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00387.2013
– volume: 7
  start-page: e38754
  issue: 6
  year: 2012
  ident: 10.1016/j.brs.2019.05.005_bib51
  article-title: Occlusion of LTP-like plasticity in human primary motor cortex by action observation
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0038754
– volume: 10
  start-page: 504
  year: 2016
  ident: 10.1016/j.brs.2019.05.005_bib30
  article-title: Pre-stimulus alpha oscillations and inter-subject variability of motor evoked potentials in single- and paired-pulse TMS paradigms
  publication-title: Front Hum Neurosci
  doi: 10.3389/fnhum.2016.00504
– volume: 37
  start-page: 357
  issue: 7
  year: 2014
  ident: 10.1016/j.brs.2019.05.005_bib8
  article-title: Temporal coding organized by coupled alpha and gamma oscillations prioritize visual processing
  publication-title: Trends Neurosci
  doi: 10.1016/j.tins.2014.04.001
– year: 2017
  ident: 10.1016/j.brs.2019.05.005_bib37
  article-title: Towards brain-state dependent transcranial magnetic stimulation: targeting the phase of oscillatory neocortical activity with singe-pulse TMS
  publication-title: Brainstimulation
– volume: 44
  start-page: 2147
  issue: 4
  year: 2016
  ident: 10.1016/j.brs.2019.05.005_bib9
  article-title: A biologically plausible mechanism for neuronal coding organized by the phase of alpha oscillations
  publication-title: Eur J Neurosci
  doi: 10.1111/ejn.13318
SSID ssj0059987
Score 2.454345
Snippet The motor potentials evoked by transcranial magnetic stimulation (TMS) over the motor hand area (M1-HAND) show substantial inter-trial variability. Pericentral...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1261
SubjectTerms Adult
Brain Waves - physiology
EEG-Triggered phase targeting
Electroencephalography
Electroencephalography - methods
Electromyography - methods
Evoked Potentials, Motor - physiology
Female
Humans
Male
Motor Cortex - physiology
Mu rhythm
Pericentral oscillation
Temporal and spatial neuronavigation
Transcranial magnetic stimulation
Transcranial Magnetic Stimulation - methods
Young Adult
Title No trace of phase: Corticomotor excitability is not tuned by phase of pericentral mu-rhythm
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1935861X19302128
https://dx.doi.org/10.1016/j.brs.2019.05.005
https://www.ncbi.nlm.nih.gov/pubmed/31133479
https://www.proquest.com/docview/2232098079
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBele-nLWNduyz6KBqUPAy3-kmX1LYSVdKV52QqBPQhJVkjKYgfPgeZlf3vvJDsw6AfsydjobHN3utPp7n4i5FQj7FeZ5iwRtmCZjCTTKS9ZKREbXVhr5rjfcT3NJzfZ9xmf7ZFx3wuDZZWd7Q823Vvr7smw4-ZwvVwOf8SYwsvjGVwRpxwbfrNMoJZ__bsr8-AQToiQWeYMR_eZTV_jZRpE7I6lB-_EE-we9k2PrT29D7p4RV52i0c6Cv93SPZc9ZocjSoInFdbekZ9OaffJz8iv6Y1bRttHa3ndL0AZ3VOxzVSYv1d3VB3Z5dtQOne0uUfWtUtbTdgdanZBgJPiQmdsANMVxvWLLbtYnVMbi6-_RxPWHeSArMQ7rWsNPMC5lpsYxPlUSpAcllkRaoLEA4vtInLRMJ0tzb1TZUu5Ta3ScGFczKfJ-kbsl_VlXtHKLzEFBaCEgGBocuc5jo3vLDaSZBtkg9I1PNQ2Q5mHE-7-K36erJbBWxXyHYVcQVsH5AvO5J1wNh4anDSC0b1zaNg7hR4gKeIsh3RP9r1HNnnXvIKZh2mUnTl6g0MgoVoJItIyAF5G1Ri9-tpDHF_JuT7__voB3KAd6GO7SPZb5uN-wQLn9aceM0-IS9Gl1eT6T2NPQBm
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED-69GF7Kdu6j3TdpsHYw0DEX7KkvoWwkq5tXtZCYA9CkhWS0djBdWD573ey7MBg62BPBts_W9xJdzrd6SeAj9rTfhVpThNuBc1kJKlOWUEL6bnRubVm4dc7rmf59Db7OmfzA5j0e2F8WWVn-4NNb611d2fUSXO0Wa1G32KfwsvjOV49T7l4BIeenYoN4HB8cTmd9QaZYUTBQ3KZUQ_ok5ttmZepPWl3LFv-Tn-I3Z_d09-mn60bOn8KR938kYxDE5_BgSufw_G4xNh5vSOfSFvR2S6VH8P3WUWaWltHqgXZLNFfnZFJ5ZG-BK-qiftpV00g6t6R1T0pq4Y0WzS8xOwCoEX6nE5YBCbrLa2Xu2a5fgG3519uJlPaHaZALUZ8DS3MQuBwi21sojxKOSoviyxPtUD9MKFNXCQSR7y1abuv0qXM5jYRjDsn80WSvoRBWZXuNRD8iBEW4xKOsaHLnGY6N0xY7SSqN8mHEPUyVLZjGvcHXtypvqTsh0KxKy92FTGFYh_C5z1kE2g2Hno56RWj-v2jaPEUOoGHQNke9FsH-xfsQ695hQPPZ1N06aotvoRz0UiKiMshvApdYt_0NMbQP-Py5P9--h4eT2-ur9TVxezyDTzxT0JZ2ykMmnrr3uI8qDHvun7-C1S_Axc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=No+trace+of+phase%3A+Corticomotor+excitability+is+not+tuned+by+phase+of+pericentral+mu-rhythm&rft.jtitle=Brain+stimulation&rft.au=Madsen%2C+Kristoffer+Hougaard&rft.au=Karabanov%2C+Anke+Ninija&rft.au=Krohne%2C+L%C3%A6rke+Gebser&rft.au=Safeldt%2C+Mads+Gylling&rft.date=2019-09-01&rft.pub=Elsevier+Inc&rft.issn=1935-861X&rft.volume=12&rft.issue=5&rft.spage=1261&rft.epage=1270&rft_id=info:doi/10.1016%2Fj.brs.2019.05.005&rft.externalDocID=S1935861X19302128
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1935-861X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1935-861X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1935-861X&client=summon