No trace of phase: Corticomotor excitability is not tuned by phase of pericentral mu-rhythm
The motor potentials evoked by transcranial magnetic stimulation (TMS) over the motor hand area (M1-HAND) show substantial inter-trial variability. Pericentral mu-rhythm oscillations, might contribute to inter-trial variability. Recent studies targeting mu-activity based on real-time electroencephal...
Saved in:
Published in | Brain stimulation Vol. 12; no. 5; pp. 1261 - 1270 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.09.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The motor potentials evoked by transcranial magnetic stimulation (TMS) over the motor hand area (M1-HAND) show substantial inter-trial variability. Pericentral mu-rhythm oscillations, might contribute to inter-trial variability. Recent studies targeting mu-activity based on real-time electroencephalography (EEG) reported an influence of mu-power and mu-phase on the amplitude of motor evoked potentials (MEPs) in a preselected group with strong pericentral mu-activity. Other studies that determined mu-power or mu-phase based on post-hoc trial sorting according in non-preselected individuals were largely negative.
To reassess if cortico-spinal activity is modulated by the mu-rhythm, we applied single-pulse TMS to the M1-HAND conditional on the phase of the intrinsically expressed pericentral mu-rhythm in 14 non-preselected healthy young participants.
TMS was given at 0, 90, 180, and 270° of the mu-phase. Based on the absence of effects of mu-phase or mu-power when analyzing the mean MEP amplitudes, we also computed a linear mixed effects model, which included mu-phase, mu-power, inter-stimulus interval (ISIs) as fixed effects, treating the subject factor as a random effect.
Mixed model analysis revealed a significant effect of mu-power and ISI, but no effect of mu-phase and no interactions. MEP amplitude scaled linearly with lower mu-power or longer ISIs, but these modulatory effects were very small relative to inter-trial MEP variability.
Our largely negative results are in agreement with previous offline TMS-EEG studies and point to a possible influence of ISI. Future research needs to clarify under which circumstances the responsiveness of human the M1-HAND to TMS depends on the synchronicity with mu-power and mu-phase.
•Phase-triggered TMS at four phases of ongoing mu-oscillations is technically feasible in non-preselected young volunteers.•Targeting ongoing mu-activity did not reveal modulatory effects of mu-phase on corticospinal excitability.•Mixed-effects analysis reveal a weak but significant effect of pre-stimulus mu-power and ISI on corticospinal excitability. |
---|---|
AbstractList | The motor potentials evoked by transcranial magnetic stimulation (TMS) over the motor hand area (M1-HAND) show substantial inter-trial variability. Pericentral mu-rhythm oscillations, might contribute to inter-trial variability. Recent studies targeting mu-activity based on real-time electroencephalography (EEG) reported an influence of mu-power and mu-phase on the amplitude of motor evoked potentials (MEPs) in a preselected group with strong pericentral mu-activity. Other studies that determined mu-power or mu-phase based on post-hoc trial sorting according in non-preselected individuals were largely negative.
To reassess if cortico-spinal activity is modulated by the mu-rhythm, we applied single-pulse TMS to the M1-HAND conditional on the phase of the intrinsically expressed pericentral mu-rhythm in 14 non-preselected healthy young participants.
TMS was given at 0, 90, 180, and 270° of the mu-phase. Based on the absence of effects of mu-phase or mu-power when analyzing the mean MEP amplitudes, we also computed a linear mixed effects model, which included mu-phase, mu-power, inter-stimulus interval (ISIs) as fixed effects, treating the subject factor as a random effect.
Mixed model analysis revealed a significant effect of mu-power and ISI, but no effect of mu-phase and no interactions. MEP amplitude scaled linearly with lower mu-power or longer ISIs, but these modulatory effects were very small relative to inter-trial MEP variability.
Our largely negative results are in agreement with previous offline TMS-EEG studies and point to a possible influence of ISI. Future research needs to clarify under which circumstances the responsiveness of human the M1-HAND to TMS depends on the synchronicity with mu-power and mu-phase.
•Phase-triggered TMS at four phases of ongoing mu-oscillations is technically feasible in non-preselected young volunteers.•Targeting ongoing mu-activity did not reveal modulatory effects of mu-phase on corticospinal excitability.•Mixed-effects analysis reveal a weak but significant effect of pre-stimulus mu-power and ISI on corticospinal excitability. The motor potentials evoked by transcranial magnetic stimulation (TMS) over the motor hand area (M1-HAND) show substantial inter-trial variability. Pericentral mu-rhythm oscillations, might contribute to inter-trial variability. Recent studies targeting mu-activity based on real-time electroencephalography (EEG) reported an influence of mu-power and mu-phase on the amplitude of motor evoked potentials (MEPs) in a preselected group with strong pericentral mu-activity. Other studies that determined mu-power or mu-phase based on post-hoc trial sorting according in non-preselected individuals were largely negative. To reassess if cortico-spinal activity is modulated by the mu-rhythm, we applied single-pulse TMS to the M1-HAND conditional on the phase of the intrinsically expressed pericentral mu-rhythm in 14 non-preselected healthy young participants. TMS was given at 0, 90, 180, and 270° of the mu-phase. Based on the absence of effects of mu-phase or mu-power when analyzing the mean MEP amplitudes, we also computed a linear mixed effects model, which included mu-phase, mu-power, inter-stimulus interval (ISIs) as fixed effects, treating the subject factor as a random effect. Mixed model analysis revealed a significant effect of mu-power and ISI, but no effect of mu-phase and no interactions. MEP amplitude scaled linearly with lower mu-power or longer ISIs, but these modulatory effects were very small relative to inter-trial MEP variability. Our largely negative results are in agreement with previous offline TMS-EEG studies and point to a possible influence of ISI. Future research needs to clarify under which circumstances the responsiveness of human the M1-HAND to TMS depends on the synchronicity with mu-power and mu-phase. The motor potentials evoked by transcranial magnetic stimulation (TMS) over the motor hand area (M1-HAND) show substantial inter-trial variability. Pericentral mu-rhythm oscillations, might contribute to inter-trial variability. Recent studies targeting mu-activity based on real-time electroencephalography (EEG) reported an influence of mu-power and mu-phase on the amplitude of motor evoked potentials (MEPs) in a preselected group with strong pericentral mu-activity. Other studies that determined mu-power or mu-phase based on post-hoc trial sorting according in non-preselected individuals were largely negative.BACKGROUNDThe motor potentials evoked by transcranial magnetic stimulation (TMS) over the motor hand area (M1-HAND) show substantial inter-trial variability. Pericentral mu-rhythm oscillations, might contribute to inter-trial variability. Recent studies targeting mu-activity based on real-time electroencephalography (EEG) reported an influence of mu-power and mu-phase on the amplitude of motor evoked potentials (MEPs) in a preselected group with strong pericentral mu-activity. Other studies that determined mu-power or mu-phase based on post-hoc trial sorting according in non-preselected individuals were largely negative.To reassess if cortico-spinal activity is modulated by the mu-rhythm, we applied single-pulse TMS to the M1-HAND conditional on the phase of the intrinsically expressed pericentral mu-rhythm in 14 non-preselected healthy young participants.OBJECTIVESTo reassess if cortico-spinal activity is modulated by the mu-rhythm, we applied single-pulse TMS to the M1-HAND conditional on the phase of the intrinsically expressed pericentral mu-rhythm in 14 non-preselected healthy young participants.TMS was given at 0, 90, 180, and 270° of the mu-phase. Based on the absence of effects of mu-phase or mu-power when analyzing the mean MEP amplitudes, we also computed a linear mixed effects model, which included mu-phase, mu-power, inter-stimulus interval (ISIs) as fixed effects, treating the subject factor as a random effect.METHODSTMS was given at 0, 90, 180, and 270° of the mu-phase. Based on the absence of effects of mu-phase or mu-power when analyzing the mean MEP amplitudes, we also computed a linear mixed effects model, which included mu-phase, mu-power, inter-stimulus interval (ISIs) as fixed effects, treating the subject factor as a random effect.Mixed model analysis revealed a significant effect of mu-power and ISI, but no effect of mu-phase and no interactions. MEP amplitude scaled linearly with lower mu-power or longer ISIs, but these modulatory effects were very small relative to inter-trial MEP variability.RESULTSMixed model analysis revealed a significant effect of mu-power and ISI, but no effect of mu-phase and no interactions. MEP amplitude scaled linearly with lower mu-power or longer ISIs, but these modulatory effects were very small relative to inter-trial MEP variability.Our largely negative results are in agreement with previous offline TMS-EEG studies and point to a possible influence of ISI. Future research needs to clarify under which circumstances the responsiveness of human the M1-HAND to TMS depends on the synchronicity with mu-power and mu-phase.CONCLUSIONOur largely negative results are in agreement with previous offline TMS-EEG studies and point to a possible influence of ISI. Future research needs to clarify under which circumstances the responsiveness of human the M1-HAND to TMS depends on the synchronicity with mu-power and mu-phase. |
Author | Tomasevic, Leo Siebner, Hartwig Roman Safeldt, Mads Gylling Karabanov, Anke Ninija Madsen, Kristoffer Hougaard Krohne, Lærke Gebser |
Author_xml | – sequence: 1 givenname: Kristoffer Hougaard orcidid: 0000-0001-8606-7641 surname: Madsen fullname: Madsen, Kristoffer Hougaard email: kristofferm@drcmr.dk organization: Danish Research Center for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark – sequence: 2 givenname: Anke Ninija orcidid: 0000-0003-1874-393X surname: Karabanov fullname: Karabanov, Anke Ninija organization: Danish Research Center for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark – sequence: 3 givenname: Lærke Gebser surname: Krohne fullname: Krohne, Lærke Gebser organization: Danish Research Center for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark – sequence: 4 givenname: Mads Gylling surname: Safeldt fullname: Safeldt, Mads Gylling organization: Danish Research Center for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark – sequence: 5 givenname: Leo surname: Tomasevic fullname: Tomasevic, Leo organization: Danish Research Center for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark – sequence: 6 givenname: Hartwig Roman surname: Siebner fullname: Siebner, Hartwig Roman email: h.siebner@drcmr.dk organization: Danish Research Center for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31133479$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkM1u1DAURi1URH_oA7BBXrJJsOMktmGFRoVWqmADElIXlnNzo_GQxIPtIPL29TDtpouyshfnfNI95-Rk9jMS8oazkjPevt-VXYhlxbguWVMy1rwgZ1zJtqhlU5_kvxZNoVr-85Scx7jLgNZKviKngnMhaqnPyN1XT1OwgNQPdL-1ET_QjQ_JgZ988oHiX3DJdm50aaUu0tknmpYZe9qtR-GficEBznlppNNShO2attNr8nKwY8TLh_eC_Ph89X1zXdx--3Kz-XRbQF23qei7QQmuOfCOtUxI7LBmIIVVmulG2Y73lWaCAQjG2kqhaKCFSjUSUbdDJS7Iu-PuPvjfC8ZkJhcBx9HO6JdoqkpUTCsmdUbfPqBLN2Fv9sFNNqzmMUgG5BGA4GMMOJjD-cn5w21uNJyZQ3qzMzm9OaQ3rDG5bDb5E_Nx_Dnn49HBnOePw2AiOJwBexcQkum9e9bWT2wY3ezAjr9w_Y97D2i1rpk |
CitedBy_id | crossref_primary_10_1016_j_brs_2021_01_018 crossref_primary_10_1016_j_brs_2022_08_005 crossref_primary_10_1088_1741_2552_ad8a8e crossref_primary_10_3390_bios13020220 crossref_primary_10_7554_eLife_76411 crossref_primary_10_1038_s42003_020_0764_0 crossref_primary_10_2139_ssrn_3984078 crossref_primary_10_1152_jn_00227_2022 crossref_primary_10_1016_j_neuroimage_2025_121082 crossref_primary_10_1016_j_neuroimage_2022_119805 crossref_primary_10_1088_1741_2552_ab8683 crossref_primary_10_1016_j_neures_2023_12_003 crossref_primary_10_1016_j_neuroimage_2020_117305 crossref_primary_10_1016_j_brs_2022_02_014 crossref_primary_10_1016_j_neuropsychologia_2021_107952 crossref_primary_10_3389_fnsys_2024_1489949 crossref_primary_10_1088_1741_2552_acb1d8 crossref_primary_10_1016_j_neuroimage_2023_120427 crossref_primary_10_1016_j_brs_2023_05_022 crossref_primary_10_1113_JP281885 crossref_primary_10_1016_j_biopsycho_2021_108081 crossref_primary_10_1371_journal_pone_0293546 crossref_primary_10_1523_JNEUROSCI_1730_19_2019 crossref_primary_10_1111_ejn_70042 crossref_primary_10_1038_s41598_022_10239_3 crossref_primary_10_1007_s00221_021_06183_9 crossref_primary_10_1016_j_neuroimage_2025_121050 crossref_primary_10_1111_ejn_15124 crossref_primary_10_1016_j_cortex_2022_04_019 crossref_primary_10_3389_fnins_2023_1004763 crossref_primary_10_1016_j_brs_2023_02_009 crossref_primary_10_1016_j_brs_2020_07_005 crossref_primary_10_1016_j_brs_2024_12_1193 crossref_primary_10_1016_j_ynirp_2022_100132 crossref_primary_10_1113_JP284273 crossref_primary_10_1016_j_neuroimage_2020_116761 crossref_primary_10_1016_j_neuroscience_2021_12_004 crossref_primary_10_1523_ENEURO_0450_24_2024 crossref_primary_10_1523_JNEUROSCI_1953_19_2019 crossref_primary_10_1088_1741_2552_acf7f3 crossref_primary_10_3390_biomedicines12050955 crossref_primary_10_1016_j_clinph_2023_09_005 crossref_primary_10_1113_JP280966 crossref_primary_10_1016_j_jneumeth_2022_109662 crossref_primary_10_1088_1741_2552_ad5404 crossref_primary_10_1016_j_brs_2021_05_009 crossref_primary_10_1038_s41583_022_00598_1 crossref_primary_10_1109_TNSRE_2024_3516393 crossref_primary_10_12688_openreseurope_14634_1 crossref_primary_10_12688_openreseurope_14634_2 crossref_primary_10_1016_j_biopsych_2023_09_014 crossref_primary_10_1186_s12984_022_01062_y crossref_primary_10_1007_s12264_024_01321_z crossref_primary_10_1088_1741_2552_ab9dba crossref_primary_10_1016_j_neuroimage_2019_116175 crossref_primary_10_1523_ENEURO_0244_21_2022 crossref_primary_10_3389_fneur_2021_669690 crossref_primary_10_1016_j_brs_2021_03_017 crossref_primary_10_1111_ejn_14931 crossref_primary_10_3389_fnhum_2021_691821 crossref_primary_10_1088_1741_2552_ad1dc2 crossref_primary_10_1088_1741_2552_ad7f87 crossref_primary_10_1016_j_neuroimage_2023_120259 crossref_primary_10_1113_JP282393 crossref_primary_10_3389_fneur_2024_1427198 |
Cites_doi | 10.1016/j.brs.2011.07.006 10.1016/j.cortex.2011.04.028 10.1016/j.neuroimage.2018.10.052 10.1523/JNEUROSCI.1470-18.2018 10.1523/JNEUROSCI.2584-04.2004 10.1371/journal.pcbi.1002655 10.1073/pnas.1117190108 10.1523/JNEUROSCI.0160-10.2010 10.1523/JNEUROSCI.2794-09.2010 10.1016/j.neuroimage.2016.03.074 10.1152/jn.01092.2012 10.1016/j.clinph.2012.01.010 10.1371/journal.pbio.1001965 10.1016/S0167-8760(97)00760-5 10.1111/ejn.14192 10.1016/S1388-2457(03)00157-3 10.1523/JNEUROSCI.1833-15.2015 10.1093/cercor/bht024 10.1155/2014/936096 10.1016/j.neuropsychologia.2016.12.030 10.1016/j.neuroscience.2011.02.004 10.1177/155005940603700316 10.1016/S1388-2457(03)00181-0 10.1109/JPROC.2004.840301 10.1016/j.neuroimage.2013.04.044 10.1016/j.neuron.2007.06.026 10.1016/j.brs.2017.11.016 10.3389/fpsyg.2011.00099 10.1523/JNEUROSCI.2582-16.2017 10.1093/cercor/bhm229 10.1016/0013-4694(75)90056-5 10.1016/j.brs.2018.06.006 10.3389/fnins.2018.00279 10.1523/JNEUROSCI.4792-11.2012 10.1093/cercor/bhy016 10.3389/fnhum.2010.00186 10.1152/jn.00125.2013 10.1016/j.clinph.2009.11.078 10.1371/journal.pone.0208747 10.1097/WNR.0b013e3282f454c4 10.1523/ENEURO.0153-16.2017 10.1016/j.tins.2015.12.004 10.1016/j.neuropsychologia.2008.07.021 10.1152/jn.00387.2013 10.1371/journal.pone.0038754 10.3389/fnhum.2016.00504 10.1016/j.tins.2014.04.001 10.1111/ejn.13318 |
ContentType | Journal Article |
Copyright | 2019 The Authors Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2019 The Authors – notice: Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.brs.2019.05.005 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1876-4754 |
EndPage | 1270 |
ExternalDocumentID | 31133479 10_1016_j_brs_2019_05_005 S1935861X19302128 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 1B1 1P~ 1~. 1~5 23N 4.4 457 4G. 4H- 53G 5GY 5VS 7-5 71M 8P~ AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABIVO ABJNI ABMAC ABMZM ABTEW ABWVN ABXDB ACDAQ ACGFS ACIEU ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADVLN AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPKN AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGUBO AGWIK AGYEJ AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR BKOJK BLXMC BNPGV CS3 EBS EFJIC EFKBS EJD EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN GBLVA GROUPED_DOAJ HVGLF HZ~ IHE J1W KOM M41 MO0 MOBAO N9A O-L O9- OAUVE OK1 OP~ OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SEL SES SSH SSN SSZ T5K Z5R ~G- 0SF 6I. AACTN AAFTH AFCTW AFKWA AJOXV AMFUW NCXOZ RIG AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c446t-dbf83191c1b06037ebe40c73a890958ab1d29030cc300628e35c6c2857ee96f23 |
IEDL.DBID | .~1 |
ISSN | 1935-861X 1876-4754 |
IngestDate | Mon Jul 21 09:47:20 EDT 2025 Thu Apr 03 06:59:39 EDT 2025 Tue Jul 01 02:09:48 EDT 2025 Thu Apr 24 22:55:16 EDT 2025 Tue Oct 08 04:54:19 EDT 2024 Tue Aug 26 16:35:45 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | EEG-Triggered phase targeting Pericentral oscillation Electroencephalography Transcranial magnetic stimulation Temporal and spatial neuronavigation Mu rhythm |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c446t-dbf83191c1b06037ebe40c73a890958ab1d29030cc300628e35c6c2857ee96f23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1874-393X 0000-0001-8606-7641 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1935861X19302128 |
PMID | 31133479 |
PQID | 2232098079 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2232098079 pubmed_primary_31133479 crossref_citationtrail_10_1016_j_brs_2019_05_005 crossref_primary_10_1016_j_brs_2019_05_005 elsevier_sciencedirect_doi_10_1016_j_brs_2019_05_005 elsevier_clinicalkey_doi_10_1016_j_brs_2019_05_005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September-October 2019 2019-09-00 2019 Sep - Oct 20190901 |
PublicationDateYYYYMMDD | 2019-09-01 |
PublicationDate_xml | – month: 09 year: 2019 text: September-October 2019 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Brain stimulation |
PublicationTitleAlternate | Brain Stimul |
PublicationYear | 2019 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Romei, Gross, Thut (bib48) 2010; 30 Craddock, Poliakoff, El-Deredy, Klepousniotou, Lloyd (bib50) 2017; 96 Haegens, Nacher, Luna, Romo, Jensen (bib19) 2011; 108 Desideri, Zrenner, Gordon, Ziemann, Belardinelli (bib47) 2018; 13 van Elswijk, Maij, Schoffelen, Overeem, Stegeman, Fries (bib25) 2010; 30 Bergmann, Molle, Schmidt, Lindner, Marshall, Born (bib32) 2012; 32 Maki, Ilmoniemi (bib24) 2010; 121 Vaseghi, Zoghi, Jaberzadeh (bib41) 2015; 6 Maris, Fries, van Ede (bib1) 2016; 39 Safeldt, Tomasevic, Karabanov, Siebner, K (bib37) 2017 Romei, Brodbeck, Michel, Amedi, Pascual-Leone, Thut (bib11) 2008; 18 Stefanou, Desideri, Belardinelli, Zrenner, Ziemann (bib35) 2018; 38 Thies, Zrenner, Ziemann, Bergmann (bib36) 2018 Romei, Rihs, Brodbeck, Thut (bib10) 2008; 19 Hallett (bib20) 2007; 55 Conde, Tomasevic, Akopian, Stanek, Saturnino, Thielscher (bib46) 2019; 185 Zumer, Scheeringa, Schoffelen, Norris, Jensen (bib5) 2014; 12 Pfurtscheller, Neuper, Andrew, Edlinger (bib14) 1997; 26 Hussain, Claudino, Bonstrup, Norato, Cruciani, Thompson (bib31) 2018 Sauseng, Klimesch, Gerloff, Hummel (bib23) 2009; 47 Schulz, Ubelacker, Keil, Muller, Weisz (bib29) 2014; 24 Schaworonkow, Triesch, Ziemann, Zrenner (bib33) 2018 Groppe, Bickel, Keller, Jain, Hwang, Harden (bib54) 2013; 79 Herring, Thut, Jensen, Bergmann (bib6) 2015; 35 Anderson, Ding (bib16) 2011; 180 Khademi, Royter, Gharabaghi (bib53) 2018; 28 Thomson, Maller, Daskalakis, Fitzgerald (bib42) 2012; 48 Klimesch (bib3) 2018; 48 Bonnefond, Kastner, Jensen (bib2) 2017; 4 Kraus, Naros, Bauer, Khademi, Leao, Ziemann (bib52) 2016 Zarkowski, Shin, Dang, Russo, Avery (bib22) 2006; 37 Ai, Ro (bib17) 2014; 111 Groppa, Oliviero, Eisen, Quartarone, Cohen, Mall (bib21) 2012; 123 Berger, Minarik, Liuzzi, Hummel, Sauseng (bib27) 2014; 2014 Bruers, VanRullen (bib13) 2018; 12 Gips, van der Eerden, Jensen (bib9) 2016; 44 Mathewson, Lleras, Beck, Fabiani, Ro, Gratton (bib12) 2011; 2 Jensen, Gips, Bergmann, Bonnefond (bib8) 2014; 37 Zrenner, Desideri, Belardinelli, Ziemann (bib34) 2018; 11 Lepage, Morin-Moncet, Beaule, de Beaumont, Champoux, Theoret (bib51) 2012; 7 Cincotta, Borgheresi, Gambetti, Balestrieri, Rossi, Zaccara (bib44) 2003; 114 Takemi, Masakado, Liu, Ushiba (bib26) 2013; 110 Gorsler, Baumer, Weiller, Munchau, Liepert (bib43) 2003; 114 Keil, Timm, Sanmiguel, Schulz, Obleser, Schonwiesner (bib28) 2014; 111 de Pesters, Coon, Brunner, Gunduz, Ritaccio, Brunet (bib7) 2016; 134 Miller, Hermes, Honey, Hebb, Ramsey, Knight (bib40) 2012; 8 Forschack, Nierhaus, Muller, Villringer (bib18) 2017; 37 Jensen, Mazaheri (bib4) 2010; 4 Frigo, Johnson (bib38) 2005; 93 Strauss, Wostmann, Obleser (bib49) 2014; 8 Linkenkaer-Hansen, Nikulin, Palva, Ilmoniemi, Palva (bib15) 2004; 24 Julkunen, Saisanen, Hukkanen, Danner, Kononen (bib45) 2012; 5 Hjorth (bib39) 1975; 39 Iscan, Nazarova, Fedele, Blagovechtchenski, Nikulin (bib30) 2016; 10 Romei (10.1016/j.brs.2019.05.005_bib11) 2008; 18 Jensen (10.1016/j.brs.2019.05.005_bib4) 2010; 4 Linkenkaer-Hansen (10.1016/j.brs.2019.05.005_bib15) 2004; 24 Iscan (10.1016/j.brs.2019.05.005_bib30) 2016; 10 Zumer (10.1016/j.brs.2019.05.005_bib5) 2014; 12 Forschack (10.1016/j.brs.2019.05.005_bib18) 2017; 37 Thies (10.1016/j.brs.2019.05.005_bib36) 2018 Bonnefond (10.1016/j.brs.2019.05.005_bib2) 2017; 4 van Elswijk (10.1016/j.brs.2019.05.005_bib25) 2010; 30 Hussain (10.1016/j.brs.2019.05.005_bib31) 2018 Mathewson (10.1016/j.brs.2019.05.005_bib12) 2011; 2 Conde (10.1016/j.brs.2019.05.005_bib46) 2019; 185 Julkunen (10.1016/j.brs.2019.05.005_bib45) 2012; 5 Zarkowski (10.1016/j.brs.2019.05.005_bib22) 2006; 37 Thomson (10.1016/j.brs.2019.05.005_bib42) 2012; 48 Pfurtscheller (10.1016/j.brs.2019.05.005_bib14) 1997; 26 Romei (10.1016/j.brs.2019.05.005_bib48) 2010; 30 Hjorth (10.1016/j.brs.2019.05.005_bib39) 1975; 39 Maris (10.1016/j.brs.2019.05.005_bib1) 2016; 39 de Pesters (10.1016/j.brs.2019.05.005_bib7) 2016; 134 Hallett (10.1016/j.brs.2019.05.005_bib20) 2007; 55 Khademi (10.1016/j.brs.2019.05.005_bib53) 2018; 28 Jensen (10.1016/j.brs.2019.05.005_bib8) 2014; 37 Romei (10.1016/j.brs.2019.05.005_bib10) 2008; 19 Sauseng (10.1016/j.brs.2019.05.005_bib23) 2009; 47 Maki (10.1016/j.brs.2019.05.005_bib24) 2010; 121 Cincotta (10.1016/j.brs.2019.05.005_bib44) 2003; 114 Frigo (10.1016/j.brs.2019.05.005_bib38) 2005; 93 Bruers (10.1016/j.brs.2019.05.005_bib13) 2018; 12 Schaworonkow (10.1016/j.brs.2019.05.005_bib33) 2018 Safeldt (10.1016/j.brs.2019.05.005_bib37) 2017 Miller (10.1016/j.brs.2019.05.005_bib40) 2012; 8 Craddock (10.1016/j.brs.2019.05.005_bib50) 2017; 96 Strauss (10.1016/j.brs.2019.05.005_bib49) 2014; 8 Stefanou (10.1016/j.brs.2019.05.005_bib35) 2018; 38 Kraus (10.1016/j.brs.2019.05.005_bib52) 2016 Gips (10.1016/j.brs.2019.05.005_bib9) 2016; 44 Lepage (10.1016/j.brs.2019.05.005_bib51) 2012; 7 Berger (10.1016/j.brs.2019.05.005_bib27) 2014; 2014 Klimesch (10.1016/j.brs.2019.05.005_bib3) 2018; 48 Gorsler (10.1016/j.brs.2019.05.005_bib43) 2003; 114 Desideri (10.1016/j.brs.2019.05.005_bib47) 2018; 13 Zrenner (10.1016/j.brs.2019.05.005_bib34) 2018; 11 Takemi (10.1016/j.brs.2019.05.005_bib26) 2013; 110 Groppe (10.1016/j.brs.2019.05.005_bib54) 2013; 79 Bergmann (10.1016/j.brs.2019.05.005_bib32) 2012; 32 Schulz (10.1016/j.brs.2019.05.005_bib29) 2014; 24 Haegens (10.1016/j.brs.2019.05.005_bib19) 2011; 108 Keil (10.1016/j.brs.2019.05.005_bib28) 2014; 111 Herring (10.1016/j.brs.2019.05.005_bib6) 2015; 35 Anderson (10.1016/j.brs.2019.05.005_bib16) 2011; 180 Groppa (10.1016/j.brs.2019.05.005_bib21) 2012; 123 Vaseghi (10.1016/j.brs.2019.05.005_bib41) 2015; 6 Ai (10.1016/j.brs.2019.05.005_bib17) 2014; 111 |
References_xml | – volume: 2 start-page: 99 year: 2011 ident: bib12 article-title: Pulsed out of awareness: EEG alpha oscillations represent a pulsed-inhibition of ongoing cortical processing publication-title: Front Psychol – year: 2018 ident: bib33 article-title: EEG-triggered TMS reveals stronger brain state-dependent modulation of motor evoked potentials at weaker stimulation intensities publication-title: Brain Stimul – volume: 30 start-page: 8692 year: 2010 end-page: 8697 ident: bib48 article-title: On the role of prestimulus alpha rhythms over occipito-parietal areas in visual input regulation: correlation or causation? publication-title: J Neurosci – year: 2016 ident: bib52 article-title: Brain state-dependent transcranial magnetic closed-loop stimulation controlled by sensorimotor desynchronization induces robust increase of corticospinal excitability publication-title: Brainstimulation – volume: 114 start-page: 1827 year: 2003 end-page: 1833 ident: bib44 article-title: Suprathreshold 0.3 Hz repetitive TMS prolongs the cortical silent period: potential implications for therapeutic trials in epilepsy publication-title: Clin Neurophysiol – year: 2018 ident: bib36 article-title: Sensorimotor mu-alpha power is positively related to corticospinal excitability publication-title: Brain Stimul – volume: 19 start-page: 203 year: 2008 end-page: 208 ident: bib10 article-title: Resting electroencephalogram alpha-power over posterior sites indexes baseline visual cortex excitability publication-title: Neuroreport – volume: 18 start-page: 2010 year: 2008 end-page: 2018 ident: bib11 article-title: Spontaneous fluctuations in posterior alpha-band EEG activity reflect variability in excitability of human visual areas publication-title: Cerebr Cortex – volume: 35 start-page: 14435 year: 2015 end-page: 14447 ident: bib6 article-title: Attention modulates TMS-locked alpha oscillations in the visual cortex publication-title: J Neurosci – volume: 44 start-page: 2147 year: 2016 end-page: 2161 ident: bib9 article-title: A biologically plausible mechanism for neuronal coding organized by the phase of alpha oscillations publication-title: Eur J Neurosci – volume: 134 start-page: 122 year: 2016 end-page: 131 ident: bib7 article-title: Alpha power indexes task-related networks on large and small scales: a multimodal ECoG study in humans and a non-human primate publication-title: Neuroimage – volume: 37 start-page: 357 year: 2014 end-page: 369 ident: bib8 article-title: Temporal coding organized by coupled alpha and gamma oscillations prioritize visual processing publication-title: Trends Neurosci – volume: 111 start-page: 513 year: 2014 end-page: 519 ident: bib28 article-title: Cortical brain states and corticospinal synchronization influence TMS-evoked motor potentials publication-title: J Neurophysiol – volume: 7 start-page: e38754 year: 2012 ident: bib51 article-title: Occlusion of LTP-like plasticity in human primary motor cortex by action observation publication-title: PLoS One – volume: 48 start-page: 2431 year: 2018 end-page: 2453 ident: bib3 article-title: The frequency architecture of brain and brain body oscillations: an analysis publication-title: Eur J Neurosci – volume: 10 start-page: 504 year: 2016 ident: bib30 article-title: Pre-stimulus alpha oscillations and inter-subject variability of motor evoked potentials in single- and paired-pulse TMS paradigms publication-title: Front Hum Neurosci – volume: 32 start-page: 243 year: 2012 end-page: 253 ident: bib32 article-title: EEG-guided transcranial magnetic stimulation reveals rapid shifts in motor cortical excitability during the human sleep slow oscillation publication-title: J Neurosci – volume: 6 start-page: 44 year: 2015 end-page: 51 ident: bib41 article-title: Inter-pulse interval affects the size of single-pulse TMS-induced motor evoked potentials: a reliability study publication-title: Basic Clin Neurosci – volume: 2014 start-page: 936096 year: 2014 ident: bib27 article-title: EEG oscillatory phase-dependent markers of corticospinal excitability in the resting brain publication-title: BioMed Res Int – volume: 8 start-page: e1002655 year: 2012 ident: bib40 article-title: Human motor cortical activity is selectively phase-entrained on underlying rhythms publication-title: PLoS Comput Biol – volume: 12 start-page: e1001965 year: 2014 ident: bib5 article-title: Occipital alpha activity during stimulus processing gates the information flow to object-selective cortex publication-title: PLoS Biol – volume: 111 start-page: 1300 year: 2014 end-page: 1307 ident: bib17 article-title: The phase of prestimulus alpha oscillations affects tactile perception publication-title: J Neurophysiol – volume: 47 start-page: 284 year: 2009 end-page: 288 ident: bib23 article-title: Spontaneous locally restricted EEG alpha activity determines cortical excitability in the motor cortex publication-title: Neuropsychologia – volume: 12 start-page: 279 year: 2018 ident: bib13 article-title: Alpha power modulates perception independently of endogenous factors publication-title: Front Neurosci – volume: 13 start-page: e0208747 year: 2018 ident: bib47 article-title: Nil effects of mu-rhythm phase-dependent burst-rTMS on cortical excitability in humans: a resting-state EEG and TMS-EEG study publication-title: PLoS One – volume: 28 start-page: 1502 year: 2018 end-page: 1515 ident: bib53 article-title: Distinct beta-band oscillatory circuits underlie corticospinal gain modulation publication-title: Cerebr Cortex – volume: 180 start-page: 165 year: 2011 end-page: 180 ident: bib16 article-title: Attentional modulation of the somatosensory mu rhythm publication-title: Neuroscience – volume: 37 start-page: 6983 year: 2017 end-page: 6994 ident: bib18 article-title: Alpha-band brain oscillations shape the processing of perceptible as well as imperceptible somatosensory stimuli during selective attention publication-title: J Neurosci – year: 2018 ident: bib31 article-title: Sensorimotor oscillatory phase-power interaction gates resting human corticospinal output publication-title: Cerebr Cortex – volume: 11 start-page: 374 year: 2018 end-page: 389 ident: bib34 article-title: Real-time EEG-defined excitability states determine efficacy of TMS-induced plasticity in human motor cortex publication-title: Brain Stimul – volume: 8 start-page: 350 year: 2014 ident: bib49 article-title: Cortical alpha oscillations as a tool for auditory selective inhibition publication-title: Front Hum Neurosci – volume: 5 start-page: 526 year: 2012 end-page: 532 ident: bib45 article-title: Does second-scale intertrial interval affect motor evoked potentials induced by single-pulse transcranial magnetic stimulation? publication-title: Brain Stimul – volume: 185 start-page: 300 year: 2019 end-page: 312 ident: bib46 article-title: The non-transcranial TMS-evoked potential is an inherent source of ambiguity in TMS-EEG studies publication-title: Neuroimage – volume: 30 start-page: 4481 year: 2010 end-page: 4488 ident: bib25 article-title: Corticospinal beta-band synchronization entails rhythmic gain modulation publication-title: J Neurosci – volume: 37 start-page: 247 year: 2006 end-page: 251 ident: bib22 article-title: EEG and the variance of motor evoked potential amplitude publication-title: Clin EEG Neurosci – volume: 39 start-page: 86 year: 2016 end-page: 99 ident: bib1 article-title: Diverse phase relations among neuronal rhythms and their potential function publication-title: Trends Neurosci – volume: 24 start-page: 10186 year: 2004 end-page: 10190 ident: bib15 article-title: Prestimulus oscillations enhance psychophysical performance in humans publication-title: J Neurosci – volume: 121 start-page: 492 year: 2010 end-page: 501 ident: bib24 article-title: EEG oscillations and magnetically evoked motor potentials reflect motor system excitability in overlapping neuronal populations publication-title: Clin Neurophysiol – volume: 110 start-page: 1158 year: 2013 end-page: 1166 ident: bib26 article-title: Event-related desynchronization reflects downregulation of intracortical inhibition in human primary motor cortex publication-title: J Neurophysiol – volume: 38 start-page: 10525 year: 2018 end-page: 10534 ident: bib35 article-title: Phase synchronicity of mu-rhythm determines efficacy of interhemispheric communication between human motor cortices publication-title: J Neurosci – volume: 26 start-page: 121 year: 1997 end-page: 135 ident: bib14 article-title: Foot and hand area mu rhythms publication-title: Int J Psychophysiol – volume: 108 start-page: 19377 year: 2011 end-page: 19382 ident: bib19 article-title: alpha-Oscillations in the monkey sensorimotor network influence discrimination performance by rhythmical inhibition of neuronal spiking publication-title: Proc Natl Acad Sci U S A – volume: 114 start-page: 1800 year: 2003 end-page: 1807 ident: bib43 article-title: Interhemispheric effects of high and low frequency rTMS in healthy humans publication-title: Clin Neurophysiol – volume: 123 start-page: 858 year: 2012 end-page: 882 ident: bib21 article-title: A practical guide to diagnostic transcranial magnetic stimulation: report of an IFCN committee publication-title: Clin Neurophysiol – volume: 79 start-page: 223 year: 2013 end-page: 233 ident: bib54 article-title: Dominant frequencies of resting human brain activity as measured by the electrocorticogram publication-title: Neuroimage – volume: 24 start-page: 1708 year: 2014 end-page: 1719 ident: bib29 article-title: Now I am ready-now i am not: the influence of pre-TMS oscillations and corticomuscular coherence on motor-evoked potentials publication-title: Cerebr Cortex – year: 2017 ident: bib37 article-title: Towards brain-state dependent transcranial magnetic stimulation: targeting the phase of oscillatory neocortical activity with singe-pulse TMS publication-title: Brainstimulation – volume: 4 year: 2017 ident: bib2 article-title: Communication between brain areas based on nested oscillations publication-title: eNeuro – volume: 93 start-page: 216 year: 2005 end-page: 231 ident: bib38 article-title: The design and implementation of FFTW3 publication-title: Proc IEEE – volume: 96 start-page: 9 year: 2017 end-page: 18 ident: bib50 article-title: Pre-stimulus alpha oscillations over somatosensory cortex predict tactile misperceptions publication-title: Neuropsychologia – volume: 4 start-page: 186 year: 2010 ident: bib4 article-title: Shaping functional architecture by oscillatory alpha activity: gating by inhibition publication-title: Front Hum Neurosci – volume: 55 start-page: 187 year: 2007 end-page: 199 ident: bib20 article-title: Transcranial magnetic stimulation: a primer publication-title: Neuron – volume: 39 start-page: 526 year: 1975 end-page: 530 ident: bib39 article-title: An on-line transformation of EEG scalp potentials into orthogonal source derivations publication-title: Electroencephalogr Clin Neurophysiol – volume: 48 start-page: 487 year: 2012 end-page: 491 ident: bib42 article-title: Blood oxygenation changes resulting from trains of low frequency transcranial magnetic stimulation publication-title: Cortex – volume: 5 start-page: 526 issue: 4 year: 2012 ident: 10.1016/j.brs.2019.05.005_bib45 article-title: Does second-scale intertrial interval affect motor evoked potentials induced by single-pulse transcranial magnetic stimulation? publication-title: Brain Stimul doi: 10.1016/j.brs.2011.07.006 – volume: 48 start-page: 487 issue: 4 year: 2012 ident: 10.1016/j.brs.2019.05.005_bib42 article-title: Blood oxygenation changes resulting from trains of low frequency transcranial magnetic stimulation publication-title: Cortex doi: 10.1016/j.cortex.2011.04.028 – volume: 185 start-page: 300 year: 2019 ident: 10.1016/j.brs.2019.05.005_bib46 article-title: The non-transcranial TMS-evoked potential is an inherent source of ambiguity in TMS-EEG studies publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.10.052 – volume: 38 start-page: 10525 issue: 49 year: 2018 ident: 10.1016/j.brs.2019.05.005_bib35 article-title: Phase synchronicity of mu-rhythm determines efficacy of interhemispheric communication between human motor cortices publication-title: J Neurosci doi: 10.1523/JNEUROSCI.1470-18.2018 – volume: 24 start-page: 10186 issue: 45 year: 2004 ident: 10.1016/j.brs.2019.05.005_bib15 article-title: Prestimulus oscillations enhance psychophysical performance in humans publication-title: J Neurosci doi: 10.1523/JNEUROSCI.2584-04.2004 – volume: 8 start-page: e1002655 issue: 9 year: 2012 ident: 10.1016/j.brs.2019.05.005_bib40 article-title: Human motor cortical activity is selectively phase-entrained on underlying rhythms publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1002655 – volume: 108 start-page: 19377 issue: 48 year: 2011 ident: 10.1016/j.brs.2019.05.005_bib19 article-title: alpha-Oscillations in the monkey sensorimotor network influence discrimination performance by rhythmical inhibition of neuronal spiking publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1117190108 – volume: 30 start-page: 8692 issue: 25 year: 2010 ident: 10.1016/j.brs.2019.05.005_bib48 article-title: On the role of prestimulus alpha rhythms over occipito-parietal areas in visual input regulation: correlation or causation? publication-title: J Neurosci doi: 10.1523/JNEUROSCI.0160-10.2010 – volume: 30 start-page: 4481 issue: 12 year: 2010 ident: 10.1016/j.brs.2019.05.005_bib25 article-title: Corticospinal beta-band synchronization entails rhythmic gain modulation publication-title: J Neurosci doi: 10.1523/JNEUROSCI.2794-09.2010 – volume: 134 start-page: 122 year: 2016 ident: 10.1016/j.brs.2019.05.005_bib7 article-title: Alpha power indexes task-related networks on large and small scales: a multimodal ECoG study in humans and a non-human primate publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.03.074 – volume: 110 start-page: 1158 issue: 5 year: 2013 ident: 10.1016/j.brs.2019.05.005_bib26 article-title: Event-related desynchronization reflects downregulation of intracortical inhibition in human primary motor cortex publication-title: J Neurophysiol doi: 10.1152/jn.01092.2012 – volume: 123 start-page: 858 issue: 5 year: 2012 ident: 10.1016/j.brs.2019.05.005_bib21 article-title: A practical guide to diagnostic transcranial magnetic stimulation: report of an IFCN committee publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2012.01.010 – volume: 12 start-page: e1001965 issue: 10 year: 2014 ident: 10.1016/j.brs.2019.05.005_bib5 article-title: Occipital alpha activity during stimulus processing gates the information flow to object-selective cortex publication-title: PLoS Biol doi: 10.1371/journal.pbio.1001965 – volume: 26 start-page: 121 issue: 1–3 year: 1997 ident: 10.1016/j.brs.2019.05.005_bib14 article-title: Foot and hand area mu rhythms publication-title: Int J Psychophysiol doi: 10.1016/S0167-8760(97)00760-5 – volume: 8 start-page: 350 year: 2014 ident: 10.1016/j.brs.2019.05.005_bib49 article-title: Cortical alpha oscillations as a tool for auditory selective inhibition publication-title: Front Hum Neurosci – volume: 48 start-page: 2431 issue: 7 year: 2018 ident: 10.1016/j.brs.2019.05.005_bib3 article-title: The frequency architecture of brain and brain body oscillations: an analysis publication-title: Eur J Neurosci doi: 10.1111/ejn.14192 – year: 2018 ident: 10.1016/j.brs.2019.05.005_bib33 article-title: EEG-triggered TMS reveals stronger brain state-dependent modulation of motor evoked potentials at weaker stimulation intensities publication-title: Brain Stimul – volume: 6 start-page: 44 issue: 1 year: 2015 ident: 10.1016/j.brs.2019.05.005_bib41 article-title: Inter-pulse interval affects the size of single-pulse TMS-induced motor evoked potentials: a reliability study publication-title: Basic Clin Neurosci – year: 2018 ident: 10.1016/j.brs.2019.05.005_bib31 article-title: Sensorimotor oscillatory phase-power interaction gates resting human corticospinal output publication-title: Cerebr Cortex – volume: 114 start-page: 1800 issue: 10 year: 2003 ident: 10.1016/j.brs.2019.05.005_bib43 article-title: Interhemispheric effects of high and low frequency rTMS in healthy humans publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(03)00157-3 – volume: 35 start-page: 14435 issue: 43 year: 2015 ident: 10.1016/j.brs.2019.05.005_bib6 article-title: Attention modulates TMS-locked alpha oscillations in the visual cortex publication-title: J Neurosci doi: 10.1523/JNEUROSCI.1833-15.2015 – volume: 24 start-page: 1708 issue: 7 year: 2014 ident: 10.1016/j.brs.2019.05.005_bib29 article-title: Now I am ready-now i am not: the influence of pre-TMS oscillations and corticomuscular coherence on motor-evoked potentials publication-title: Cerebr Cortex doi: 10.1093/cercor/bht024 – volume: 2014 start-page: 936096 year: 2014 ident: 10.1016/j.brs.2019.05.005_bib27 article-title: EEG oscillatory phase-dependent markers of corticospinal excitability in the resting brain publication-title: BioMed Res Int doi: 10.1155/2014/936096 – volume: 96 start-page: 9 year: 2017 ident: 10.1016/j.brs.2019.05.005_bib50 article-title: Pre-stimulus alpha oscillations over somatosensory cortex predict tactile misperceptions publication-title: Neuropsychologia doi: 10.1016/j.neuropsychologia.2016.12.030 – volume: 180 start-page: 165 year: 2011 ident: 10.1016/j.brs.2019.05.005_bib16 article-title: Attentional modulation of the somatosensory mu rhythm publication-title: Neuroscience doi: 10.1016/j.neuroscience.2011.02.004 – volume: 37 start-page: 247 issue: 3 year: 2006 ident: 10.1016/j.brs.2019.05.005_bib22 article-title: EEG and the variance of motor evoked potential amplitude publication-title: Clin EEG Neurosci doi: 10.1177/155005940603700316 – volume: 114 start-page: 1827 issue: 10 year: 2003 ident: 10.1016/j.brs.2019.05.005_bib44 article-title: Suprathreshold 0.3 Hz repetitive TMS prolongs the cortical silent period: potential implications for therapeutic trials in epilepsy publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(03)00181-0 – volume: 93 start-page: 216 issue: 2 year: 2005 ident: 10.1016/j.brs.2019.05.005_bib38 article-title: The design and implementation of FFTW3 publication-title: Proc IEEE doi: 10.1109/JPROC.2004.840301 – volume: 79 start-page: 223 year: 2013 ident: 10.1016/j.brs.2019.05.005_bib54 article-title: Dominant frequencies of resting human brain activity as measured by the electrocorticogram publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.04.044 – volume: 55 start-page: 187 issue: 2 year: 2007 ident: 10.1016/j.brs.2019.05.005_bib20 article-title: Transcranial magnetic stimulation: a primer publication-title: Neuron doi: 10.1016/j.neuron.2007.06.026 – volume: 11 start-page: 374 issue: 2 year: 2018 ident: 10.1016/j.brs.2019.05.005_bib34 article-title: Real-time EEG-defined excitability states determine efficacy of TMS-induced plasticity in human motor cortex publication-title: Brain Stimul doi: 10.1016/j.brs.2017.11.016 – volume: 2 start-page: 99 year: 2011 ident: 10.1016/j.brs.2019.05.005_bib12 article-title: Pulsed out of awareness: EEG alpha oscillations represent a pulsed-inhibition of ongoing cortical processing publication-title: Front Psychol doi: 10.3389/fpsyg.2011.00099 – volume: 37 start-page: 6983 issue: 29 year: 2017 ident: 10.1016/j.brs.2019.05.005_bib18 article-title: Alpha-band brain oscillations shape the processing of perceptible as well as imperceptible somatosensory stimuli during selective attention publication-title: J Neurosci doi: 10.1523/JNEUROSCI.2582-16.2017 – volume: 18 start-page: 2010 issue: 9 year: 2008 ident: 10.1016/j.brs.2019.05.005_bib11 article-title: Spontaneous fluctuations in posterior alpha-band EEG activity reflect variability in excitability of human visual areas publication-title: Cerebr Cortex doi: 10.1093/cercor/bhm229 – volume: 39 start-page: 526 issue: 5 year: 1975 ident: 10.1016/j.brs.2019.05.005_bib39 article-title: An on-line transformation of EEG scalp potentials into orthogonal source derivations publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0013-4694(75)90056-5 – year: 2018 ident: 10.1016/j.brs.2019.05.005_bib36 article-title: Sensorimotor mu-alpha power is positively related to corticospinal excitability publication-title: Brain Stimul doi: 10.1016/j.brs.2018.06.006 – volume: 12 start-page: 279 year: 2018 ident: 10.1016/j.brs.2019.05.005_bib13 article-title: Alpha power modulates perception independently of endogenous factors publication-title: Front Neurosci doi: 10.3389/fnins.2018.00279 – volume: 32 start-page: 243 issue: 1 year: 2012 ident: 10.1016/j.brs.2019.05.005_bib32 article-title: EEG-guided transcranial magnetic stimulation reveals rapid shifts in motor cortical excitability during the human sleep slow oscillation publication-title: J Neurosci doi: 10.1523/JNEUROSCI.4792-11.2012 – volume: 28 start-page: 1502 issue: 4 year: 2018 ident: 10.1016/j.brs.2019.05.005_bib53 article-title: Distinct beta-band oscillatory circuits underlie corticospinal gain modulation publication-title: Cerebr Cortex doi: 10.1093/cercor/bhy016 – volume: 4 start-page: 186 year: 2010 ident: 10.1016/j.brs.2019.05.005_bib4 article-title: Shaping functional architecture by oscillatory alpha activity: gating by inhibition publication-title: Front Hum Neurosci doi: 10.3389/fnhum.2010.00186 – volume: 111 start-page: 1300 year: 2014 ident: 10.1016/j.brs.2019.05.005_bib17 article-title: The phase of prestimulus alpha oscillations affects tactile perception publication-title: J Neurophysiol doi: 10.1152/jn.00125.2013 – volume: 121 start-page: 492 issue: 4 year: 2010 ident: 10.1016/j.brs.2019.05.005_bib24 article-title: EEG oscillations and magnetically evoked motor potentials reflect motor system excitability in overlapping neuronal populations publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2009.11.078 – volume: 13 start-page: e0208747 issue: 12 year: 2018 ident: 10.1016/j.brs.2019.05.005_bib47 article-title: Nil effects of mu-rhythm phase-dependent burst-rTMS on cortical excitability in humans: a resting-state EEG and TMS-EEG study publication-title: PLoS One doi: 10.1371/journal.pone.0208747 – volume: 19 start-page: 203 issue: 2 year: 2008 ident: 10.1016/j.brs.2019.05.005_bib10 article-title: Resting electroencephalogram alpha-power over posterior sites indexes baseline visual cortex excitability publication-title: Neuroreport doi: 10.1097/WNR.0b013e3282f454c4 – volume: 4 issue: 2 year: 2017 ident: 10.1016/j.brs.2019.05.005_bib2 article-title: Communication between brain areas based on nested oscillations publication-title: eNeuro doi: 10.1523/ENEURO.0153-16.2017 – volume: 39 start-page: 86 issue: 2 year: 2016 ident: 10.1016/j.brs.2019.05.005_bib1 article-title: Diverse phase relations among neuronal rhythms and their potential function publication-title: Trends Neurosci doi: 10.1016/j.tins.2015.12.004 – volume: 47 start-page: 284 issue: 1 year: 2009 ident: 10.1016/j.brs.2019.05.005_bib23 article-title: Spontaneous locally restricted EEG alpha activity determines cortical excitability in the motor cortex publication-title: Neuropsychologia doi: 10.1016/j.neuropsychologia.2008.07.021 – year: 2016 ident: 10.1016/j.brs.2019.05.005_bib52 article-title: Brain state-dependent transcranial magnetic closed-loop stimulation controlled by sensorimotor desynchronization induces robust increase of corticospinal excitability publication-title: Brainstimulation – volume: 111 start-page: 513 issue: 3 year: 2014 ident: 10.1016/j.brs.2019.05.005_bib28 article-title: Cortical brain states and corticospinal synchronization influence TMS-evoked motor potentials publication-title: J Neurophysiol doi: 10.1152/jn.00387.2013 – volume: 7 start-page: e38754 issue: 6 year: 2012 ident: 10.1016/j.brs.2019.05.005_bib51 article-title: Occlusion of LTP-like plasticity in human primary motor cortex by action observation publication-title: PLoS One doi: 10.1371/journal.pone.0038754 – volume: 10 start-page: 504 year: 2016 ident: 10.1016/j.brs.2019.05.005_bib30 article-title: Pre-stimulus alpha oscillations and inter-subject variability of motor evoked potentials in single- and paired-pulse TMS paradigms publication-title: Front Hum Neurosci doi: 10.3389/fnhum.2016.00504 – volume: 37 start-page: 357 issue: 7 year: 2014 ident: 10.1016/j.brs.2019.05.005_bib8 article-title: Temporal coding organized by coupled alpha and gamma oscillations prioritize visual processing publication-title: Trends Neurosci doi: 10.1016/j.tins.2014.04.001 – year: 2017 ident: 10.1016/j.brs.2019.05.005_bib37 article-title: Towards brain-state dependent transcranial magnetic stimulation: targeting the phase of oscillatory neocortical activity with singe-pulse TMS publication-title: Brainstimulation – volume: 44 start-page: 2147 issue: 4 year: 2016 ident: 10.1016/j.brs.2019.05.005_bib9 article-title: A biologically plausible mechanism for neuronal coding organized by the phase of alpha oscillations publication-title: Eur J Neurosci doi: 10.1111/ejn.13318 |
SSID | ssj0059987 |
Score | 2.454345 |
Snippet | The motor potentials evoked by transcranial magnetic stimulation (TMS) over the motor hand area (M1-HAND) show substantial inter-trial variability. Pericentral... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1261 |
SubjectTerms | Adult Brain Waves - physiology EEG-Triggered phase targeting Electroencephalography Electroencephalography - methods Electromyography - methods Evoked Potentials, Motor - physiology Female Humans Male Motor Cortex - physiology Mu rhythm Pericentral oscillation Temporal and spatial neuronavigation Transcranial magnetic stimulation Transcranial Magnetic Stimulation - methods Young Adult |
Title | No trace of phase: Corticomotor excitability is not tuned by phase of pericentral mu-rhythm |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1935861X19302128 https://dx.doi.org/10.1016/j.brs.2019.05.005 https://www.ncbi.nlm.nih.gov/pubmed/31133479 https://www.proquest.com/docview/2232098079 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBele-nLWNduyz6KBqUPAy3-kmX1LYSVdKV52QqBPQhJVkjKYgfPgeZlf3vvJDsw6AfsydjobHN3utPp7n4i5FQj7FeZ5iwRtmCZjCTTKS9ZKREbXVhr5rjfcT3NJzfZ9xmf7ZFx3wuDZZWd7Q823Vvr7smw4-ZwvVwOf8SYwsvjGVwRpxwbfrNMoJZ__bsr8-AQToiQWeYMR_eZTV_jZRpE7I6lB-_EE-we9k2PrT29D7p4RV52i0c6Cv93SPZc9ZocjSoInFdbekZ9OaffJz8iv6Y1bRttHa3ndL0AZ3VOxzVSYv1d3VB3Z5dtQOne0uUfWtUtbTdgdanZBgJPiQmdsANMVxvWLLbtYnVMbi6-_RxPWHeSArMQ7rWsNPMC5lpsYxPlUSpAcllkRaoLEA4vtInLRMJ0tzb1TZUu5Ta3ScGFczKfJ-kbsl_VlXtHKLzEFBaCEgGBocuc5jo3vLDaSZBtkg9I1PNQ2Q5mHE-7-K36erJbBWxXyHYVcQVsH5AvO5J1wNh4anDSC0b1zaNg7hR4gKeIsh3RP9r1HNnnXvIKZh2mUnTl6g0MgoVoJItIyAF5G1Ri9-tpDHF_JuT7__voB3KAd6GO7SPZb5uN-wQLn9aceM0-IS9Gl1eT6T2NPQBm |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED-69GF7Kdu6j3TdpsHYw0DEX7KkvoWwkq5tXtZCYA9CkhWS0djBdWD573ey7MBg62BPBts_W9xJdzrd6SeAj9rTfhVpThNuBc1kJKlOWUEL6bnRubVm4dc7rmf59Db7OmfzA5j0e2F8WWVn-4NNb611d2fUSXO0Wa1G32KfwsvjOV49T7l4BIeenYoN4HB8cTmd9QaZYUTBQ3KZUQ_ok5ttmZepPWl3LFv-Tn-I3Z_d09-mn60bOn8KR938kYxDE5_BgSufw_G4xNh5vSOfSFvR2S6VH8P3WUWaWltHqgXZLNFfnZFJ5ZG-BK-qiftpV00g6t6R1T0pq4Y0WzS8xOwCoEX6nE5YBCbrLa2Xu2a5fgG3519uJlPaHaZALUZ8DS3MQuBwi21sojxKOSoviyxPtUD9MKFNXCQSR7y1abuv0qXM5jYRjDsn80WSvoRBWZXuNRD8iBEW4xKOsaHLnGY6N0xY7SSqN8mHEPUyVLZjGvcHXtypvqTsh0KxKy92FTGFYh_C5z1kE2g2Hno56RWj-v2jaPEUOoGHQNke9FsH-xfsQ695hQPPZ1N06aotvoRz0UiKiMshvApdYt_0NMbQP-Py5P9--h4eT2-ur9TVxezyDTzxT0JZ2ykMmnrr3uI8qDHvun7-C1S_Axc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=No+trace+of+phase%3A+Corticomotor+excitability+is+not+tuned+by+phase+of+pericentral+mu-rhythm&rft.jtitle=Brain+stimulation&rft.au=Madsen%2C+Kristoffer+Hougaard&rft.au=Karabanov%2C+Anke+Ninija&rft.au=Krohne%2C+L%C3%A6rke+Gebser&rft.au=Safeldt%2C+Mads+Gylling&rft.date=2019-09-01&rft.pub=Elsevier+Inc&rft.issn=1935-861X&rft.volume=12&rft.issue=5&rft.spage=1261&rft.epage=1270&rft_id=info:doi/10.1016%2Fj.brs.2019.05.005&rft.externalDocID=S1935861X19302128 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1935-861X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1935-861X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1935-861X&client=summon |