Efficient Up-Conversion ZnO Co-Doped (Er, Yb) Nanopowders Synthesized via the Sol-Gel Process for Photovoltaic Applications

In this study, undoped and (Erbium, Ytterbium) co-doped ZnO nanopowders were prepared using the sol-gel method and the supercritical drying of ethyl alcohol. Doping ZnO nanopowders were elaborated with 5 mol% of Er (5 Er: ZnO), 5 mol% of Er and 5 mol% of Yb (5 Er, 5 Yb: ZnO), and 5 mol% of Er and 10...

Full description

Saved in:
Bibliographic Details
Published inMaterials Vol. 15; no. 21; p. 7828
Main Authors Derouiche, Marwa, Salhi, Rached, Baklouti, Samir
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.11.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this study, undoped and (Erbium, Ytterbium) co-doped ZnO nanopowders were prepared using the sol-gel method and the supercritical drying of ethyl alcohol. Doping ZnO nanopowders were elaborated with 5 mol% of Er (5 Er: ZnO), 5 mol% of Er and 5 mol% of Yb (5 Er, 5 Yb: ZnO), and 5 mol% of Er and 10 mol% of Yb (5 Er, 10 Yb: ZnO) concentrations. The effects of the Yb concentration on the structural, morphological, photoluminescent, and electrical properties of the ZnO nanopowders were investigated. The main findings of this work were the crystallinization of all of the nanopowders in a hexagonal Wurtzite structure with a spheroidal morphology and a size of 60 nm. Hence, the doping concentration would affect the crystallinity and the morphology of the ZnO nanopowder. The UC (Up-Conversion) emissions were investigated under a 980 nm excitation. It was observed that (Er, Yb: ZnO) exhibited green, ranging between 525 nm and 550 nm and red up-converted emissions of 655 nm, due to the efficient energy transfer process between Er3+ and Yb3+. The absolute quantum yield percentage (QY %) of the doped nanopowders was measured as a function of power density at each up-converted emission. This would prove that (5 Er, 5 Yb: ZnO) had the highest QY percentage value of 6.31 ± 0.2% at a power density of 15.7 W/cm2. Additionally, it had the highest excited state lifetime for green and red emissions. Moreover, the Hall effect measures showed that the resistivity decreased while the electron mobility increased after doping, suggesting that most of rare earth ions were located in the interstitial positions. The carrier concentration increased after doping until (5 Er, 5 Yb: ZnO), suggesting that the Zn2+ ions substituted the RE3+ ions. Then, the carrier concentration decreased, suggesting that doping with higher concentrations would cause grain boundary defects. These findings would suggest that (5 Er, 5 Yb: ZnO) would have the best electrical properties and the lowest band gap energy (3.24 eV). Therefore, the presented preparation of the (Er, Yb: ZnO) nanopowders elaborated, using the sol-gel process would be a potential interesting material for UC applications.
AbstractList In this study, undoped and (Erbium, Ytterbium) co-doped ZnO nanopowders were prepared using the sol-gel method and the supercritical drying of ethyl alcohol. Doping ZnO nanopowders were elaborated with 5 mol% of Er (5 Er: ZnO), 5 mol% of Er and 5 mol% of Yb (5 Er, 5 Yb: ZnO), and 5 mol% of Er and 10 mol% of Yb (5 Er, 10 Yb: ZnO) concentrations. The effects of the Yb concentration on the structural, morphological, photoluminescent, and electrical properties of the ZnO nanopowders were investigated. The main findings of this work were the crystallinization of all of the nanopowders in a hexagonal Wurtzite structure with a spheroidal morphology and a size of 60 nm. Hence, the doping concentration would affect the crystallinity and the morphology of the ZnO nanopowder. The UC (Up-Conversion) emissions were investigated under a 980 nm excitation. It was observed that (Er, Yb: ZnO) exhibited green, ranging between 525 nm and 550 nm and red up-converted emissions of 655 nm, due to the efficient energy transfer process between Er3+ and Yb3+. The absolute quantum yield percentage (QY %) of the doped nanopowders was measured as a function of power density at each up-converted emission. This would prove that (5 Er, 5 Yb: ZnO) had the highest QY percentage value of 6.31 ± 0.2% at a power density of 15.7 W/cm2. Additionally, it had the highest excited state lifetime for green and red emissions. Moreover, the Hall effect measures showed that the resistivity decreased while the electron mobility increased after doping, suggesting that most of rare earth ions were located in the interstitial positions. The carrier concentration increased after doping until (5 Er, 5 Yb: ZnO), suggesting that the Zn2+ ions substituted the RE3+ ions. Then, the carrier concentration decreased, suggesting that doping with higher concentrations would cause grain boundary defects. These findings would suggest that (5 Er, 5 Yb: ZnO) would have the best electrical properties and the lowest band gap energy (3.24 eV). Therefore, the presented preparation of the (Er, Yb: ZnO) nanopowders elaborated, using the sol-gel process would be a potential interesting material for UC applications.
In this study, undoped and (Erbium, Ytterbium) co-doped ZnO nanopowders were prepared using the sol-gel method and the supercritical drying of ethyl alcohol. Doping ZnO nanopowders were elaborated with 5 mol% of Er (5 Er: ZnO), 5 mol% of Er and 5 mol% of Yb (5 Er, 5 Yb: ZnO), and 5 mol% of Er and 10 mol% of Yb (5 Er, 10 Yb: ZnO) concentrations. The effects of the Yb concentration on the structural, morphological, photoluminescent, and electrical properties of the ZnO nanopowders were investigated. The main findings of this work were the crystallinization of all of the nanopowders in a hexagonal Wurtzite structure with a spheroidal morphology and a size of 60 nm. Hence, the doping concentration would affect the crystallinity and the morphology of the ZnO nanopowder. The UC (Up-Conversion) emissions were investigated under a 980 nm excitation. It was observed that (Er, Yb: ZnO) exhibited green, ranging between 525 nm and 550 nm and red up-converted emissions of 655 nm, due to the efficient energy transfer process between Er[sup.3+] and Yb[sup.3+]. The absolute quantum yield percentage (QY %) of the doped nanopowders was measured as a function of power density at each up-converted emission. This would prove that (5 Er, 5 Yb: ZnO) had the highest QY percentage value of 6.31 ± 0.2% at a power density of 15.7 W/cm[sup.2]. Additionally, it had the highest excited state lifetime for green and red emissions. Moreover, the Hall effect measures showed that the resistivity decreased while the electron mobility increased after doping, suggesting that most of rare earth ions were located in the interstitial positions. The carrier concentration increased after doping until (5 Er, 5 Yb: ZnO), suggesting that the Zn[sup.2+] ions substituted the RE[sup.3+] ions. Then, the carrier concentration decreased, suggesting that doping with higher concentrations would cause grain boundary defects. These findings would suggest that (5 Er, 5 Yb: ZnO) would have the best electrical properties and the lowest band gap energy (3.24 eV). Therefore, the presented preparation of the (Er, Yb: ZnO) nanopowders elaborated, using the sol-gel process would be a potential interesting material for UC applications.
In this study, undoped and (Erbium, Ytterbium) co-doped ZnO nanopowders were prepared using the sol-gel method and the supercritical drying of ethyl alcohol. Doping ZnO nanopowders were elaborated with 5 mol% of Er (5 Er: ZnO), 5 mol% of Er and 5 mol% of Yb (5 Er, 5 Yb: ZnO), and 5 mol% of Er and 10 mol% of Yb (5 Er, 10 Yb: ZnO) concentrations. The effects of the Yb concentration on the structural, morphological, photoluminescent, and electrical properties of the ZnO nanopowders were investigated. The main findings of this work were the crystallinization of all of the nanopowders in a hexagonal Wurtzite structure with a spheroidal morphology and a size of 60 nm. Hence, the doping concentration would affect the crystallinity and the morphology of the ZnO nanopowder. The UC (Up-Conversion) emissions were investigated under a 980 nm excitation. It was observed that (Er, Yb: ZnO) exhibited green, ranging between 525 nm and 550 nm and red up-converted emissions of 655 nm, due to the efficient energy transfer process between Er 3+ and Yb 3+ . The absolute quantum yield percentage (QY %) of the doped nanopowders was measured as a function of power density at each up-converted emission. This would prove that (5 Er, 5 Yb: ZnO) had the highest QY percentage value of 6.31 ± 0.2% at a power density of 15.7 W/cm 2 . Additionally, it had the highest excited state lifetime for green and red emissions. Moreover, the Hall effect measures showed that the resistivity decreased while the electron mobility increased after doping, suggesting that most of rare earth ions were located in the interstitial positions. The carrier concentration increased after doping until (5 Er, 5 Yb: ZnO), suggesting that the Zn 2+ ions substituted the RE 3+ ions. Then, the carrier concentration decreased, suggesting that doping with higher concentrations would cause grain boundary defects. These findings would suggest that (5 Er, 5 Yb: ZnO) would have the best electrical properties and the lowest band gap energy (3.24 eV). Therefore, the presented preparation of the (Er, Yb: ZnO) nanopowders elaborated, using the sol-gel process would be a potential interesting material for UC applications.
Audience Academic
Author Salhi, Rached
Baklouti, Samir
Derouiche, Marwa
AuthorAffiliation 1 Laboratory of Advanced Materials, National Engineering School of Sfax, University of Sfax, Sfax 3038, Tunisia
2 Laboratory of Electrochemistry and Physicochemistry of Materials and Interfaces, University of Grenoble Alpes-Savoie Mont Blanc, Grenoble INP, 38000 Grenoble, France
AuthorAffiliation_xml – name: 2 Laboratory of Electrochemistry and Physicochemistry of Materials and Interfaces, University of Grenoble Alpes-Savoie Mont Blanc, Grenoble INP, 38000 Grenoble, France
– name: 1 Laboratory of Advanced Materials, National Engineering School of Sfax, University of Sfax, Sfax 3038, Tunisia
Author_xml – sequence: 1
  fullname: Derouiche, Marwa
– sequence: 2
  fullname: Salhi, Rached
– sequence: 3
  fullname: Baklouti, Samir
BookMark eNptksFuEzEQhleoiJbQC09giUtBbLHXXq99qRSFUCpVtFLpAS6W1ztOXG3sxd4EFV4eh1SUIDwHj8f_fKMZzfPiwAcPRfGS4FNKJX630qSuSCMq8aQ4IlLykkjGDv7yD4vjlO5wPpQSUclnxSHl2VhFj4qfc2udceBHdDuUs-A3EJMLHn31V2gWyvdhgA6dzONb9KV9jT5pH4bwvcsidHPvxyUk9yMLNk6j_EA3oS_PoUfXMRhICdkQ0fUyjGET-lE7g6bD0Dujx1wivSieWt0nOH64J8Xth_nn2cfy8ur8Yja9LA1jfCw7yrmshRSsw6xucUU1E7zhjTRdaynroO5aBoY3raEEU2YFcCNtQ6gFChWdFBc7bhf0nRqiW-l4r4J26ncgxIXScXSmBwUVWE4wlsS2jLQgBGaZAQ3uamuhyayzHWtYtyvoTB5c1P0edP_Hu6VahI2SvG5knvqkOHkAxPBtDWlUK5cM9L32ENZJVQ2tRYOJFFn66h_pXVhHn0e1VTEueEXqR9VC5wactyHXNVuomjasbhip5Lbs6X9U2TpYOZNXyroc30t4s0swMaQUwf7pkWC13Tz1uHn0FwLfyeM
CitedBy_id crossref_primary_10_1007_s10854_024_12726_x
crossref_primary_10_1016_j_jallcom_2023_171678
Cites_doi 10.1109/TNB.2017.2771302
10.1016/j.matpr.2020.05.264
10.1039/C7NR02449E
10.1039/C6DT02378A
10.1016/j.mssp.2020.105485
10.1016/j.ceramint.2020.10.218
10.1016/j.ceramint.2013.06.034
10.1039/c2ee21136j
10.3390/ma7042833
10.1063/1.3544307
10.1063/1.1992666
10.1021/la902142b
10.1016/j.egypro.2017.07.080
10.1016/S1004-9541(08)60203-7
10.1016/j.ceramint.2017.05.124
10.1016/j.ceramint.2022.05.367
10.1021/jz401050u
10.1021/jp309636m
10.1021/cm0107326
10.1016/j.egypro.2017.12.359
10.1016/j.jpcs.2018.11.009
10.1016/j.jallcom.2010.02.028
10.1007/s10854-017-7291-x
10.1002/pssb.200743072
10.1016/j.saa.2015.02.056
10.1117/12.841907
10.1016/j.matchemphys.2020.123235
10.1515/ntrev-2018-0067
10.1002/adma.200802603
10.1021/jp048107m
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
7SR
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/ma15217828
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Materials Research Database
https://resources.nclive.org/materials
Materials Science Collection
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Materials Science Collection
Materials Research Database
Technology Collection
Technology Research Database
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Engineered Materials Abstracts
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest One Academic
MEDLINE - Academic
DatabaseTitleList CrossRef


Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1944
ExternalDocumentID oai_doaj_org_article_e2ef610091fb41be8804e3ee70d5ffe7
A745741296
10_3390_ma15217828
GroupedDBID 29M
2WC
2XV
53G
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABJCF
ADBBV
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CZ9
D1I
E3Z
EBS
ESX
FRP
GROUPED_DOAJ
GX1
HCIFZ
HH5
HYE
I-F
IAO
ITC
KB.
KC.
KQ8
MK~
MODMG
M~E
OK1
P2P
PDBOC
PGMZT
PIMPY
PROAC
RIG
RPM
TR2
TUS
7SR
8FD
ABUWG
AZQEC
DWQXO
JG9
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c446t-d366958984d045b023a4867679cdbf34de5db4ec67bc31034f8e6c9f713fe3e23
IEDL.DBID RPM
ISSN 1996-1944
IngestDate Tue Oct 22 15:13:25 EDT 2024
Tue Sep 17 21:34:57 EDT 2024
Fri Oct 25 01:52:07 EDT 2024
Thu Oct 10 17:23:02 EDT 2024
Thu Feb 22 23:51:55 EST 2024
Fri Feb 02 04:34:38 EST 2024
Thu Sep 26 20:42:53 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-d366958984d045b023a4867679cdbf34de5db4ec67bc31034f8e6c9f713fe3e23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0181-1836
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9657936/
PMID 36363423
PQID 2734686215
PQPubID 2032366
ParticipantIDs doaj_primary_oai_doaj_org_article_e2ef610091fb41be8804e3ee70d5ffe7
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9657936
proquest_miscellaneous_2735870198
proquest_journals_2734686215
gale_infotracmisc_A745741296
gale_infotracacademiconefile_A745741296
crossref_primary_10_3390_ma15217828
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Materials
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Alivov (ref_8) 2005; 98
Azam (ref_25) 2010; 496
Hafdallah (ref_11) 2016; 12
Sangeetha (ref_24) 2015; 144
Kaiser (ref_29) 2017; 9
Valderrama (ref_18) 2009; 17
Vijayalakshmi (ref_9) 2017; 43
Schulze (ref_1) 2012; 116
Chen (ref_23) 2004; 108
Munawar (ref_30) 2021; 122
Ali (ref_7) 2018; 7
Messaoud (ref_16) 2020; 252
Benammar (ref_20) 2017; 16
Hu (ref_17) 2010; 26
Chen (ref_12) 2009; 21
Sanusi (ref_19) 2017; 142
Shukla (ref_5) 2020; 34
Najafi (ref_13) 2020; 47
Lim (ref_28) 2016; 45
Yao (ref_22) 2019; 126
Klingshirn (ref_6) 2007; 244
Soumahoro (ref_31) 2011; 109
Nattestad (ref_2) 2013; 4
Awad (ref_14) 2017; 119
Asikuzun (ref_32) 2017; 28
Jesionowski (ref_10) 2014; 7
Cheng (ref_3) 2012; 5
Zamiri (ref_26) 2013; 40
Najafi (ref_15) 2022; 48
ref_4
Hu (ref_21) 2002; 14
Benhebal (ref_27) 2013; 52
References_xml – volume: 16
  start-page: 718
  year: 2017
  ident: ref_20
  article-title: The Effect of Solvents and Rare-Earth Element (Er, Yb) Doping on Suspension Stability of Sol-Gel Titania Nanoparticles
  publication-title: IEEE Trans. NanoBioscience
  doi: 10.1109/TNB.2017.2771302
  contributor:
    fullname: Benammar
– volume: 34
  start-page: 793
  year: 2020
  ident: ref_5
  article-title: A review on rare earths (Ce and Er)-doped zinc oxide nanostructures
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2020.05.264
  contributor:
    fullname: Shukla
– volume: 9
  start-page: 10051
  year: 2017
  ident: ref_29
  article-title: Power-dependent upconversion quantum yield of NaYF4:Yb3+,Er3+ nano- and micrometer-sized particles—Measurements and simulations
  publication-title: Nanoscale
  doi: 10.1039/C7NR02449E
  contributor:
    fullname: Kaiser
– volume: 45
  start-page: 15541
  year: 2016
  ident: ref_28
  article-title: Triple molybdate scheelite-type upconversion phosphor NaCaLa(MoO4)3:Er3+/Yb3+: Structural and spectroscopic properties
  publication-title: Dalton Trans.
  doi: 10.1039/C6DT02378A
  contributor:
    fullname: Lim
– volume: 122
  start-page: 105485
  year: 2021
  ident: ref_30
  article-title: Rare earth metal co-doped Zn0·9La0.05M0.05O (M = Yb, Sm, Nd) nanocrystals; energy gap tailoring, structural, photocatalytic and antibacterial studies
  publication-title: Mater. Sci. Semicond. Process.
  doi: 10.1016/j.mssp.2020.105485
  contributor:
    fullname: Munawar
– volume: 47
  start-page: 6376
  year: 2020
  ident: ref_13
  article-title: Sol-Gel synthesis and characterization of SiC–B4C nano powder
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.10.218
  contributor:
    fullname: Najafi
– volume: 12
  start-page: 26
  year: 2016
  ident: ref_11
  article-title: Effet de la solution précurseur sur les propriétés structurales et otiques des couches minces de ZnO préparées par spray pyrolyse
  publication-title: Afr. Sci.
  contributor:
    fullname: Hafdallah
– volume: 40
  start-page: 523
  year: 2013
  ident: ref_26
  article-title: Effects of rare-earth (Er, La and Yb) doping on morphology and structure properties of ZnO nanostructures prepared by wet chemical method
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2013.06.034
  contributor:
    fullname: Zamiri
– volume: 5
  start-page: 6953
  year: 2012
  ident: ref_3
  article-title: Improving the light-harvesting of amorphous silicon solar cells with photochemical upconversion
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee21136j
  contributor:
    fullname: Cheng
– volume: 7
  start-page: 2833
  year: 2014
  ident: ref_10
  article-title: Zinc Oxide—From Synthesis to Application: A Review
  publication-title: Materials
  doi: 10.3390/ma7042833
  contributor:
    fullname: Jesionowski
– volume: 109
  start-page: 033708
  year: 2011
  ident: ref_31
  article-title: Structural, optical, and electrical properties of Yb-doped ZnO thin films prepared by spray pyrolysis method
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3544307
  contributor:
    fullname: Soumahoro
– volume: 98
  start-page: 041301
  year: 2005
  ident: ref_8
  article-title: A comprehensive review of ZnO materials and devices
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1992666
  contributor:
    fullname: Alivov
– volume: 26
  start-page: 3031
  year: 2010
  ident: ref_17
  article-title: Design, Fabrication, and Modification of Nanostructured Semiconductor Materials for Environmental and Energy Applications
  publication-title: Langmuir
  doi: 10.1021/la902142b
  contributor:
    fullname: Hu
– volume: 119
  start-page: 565
  year: 2017
  ident: ref_14
  article-title: Synthesis of ZnO Nanopowders by Using Sol-Gel and Studying Their Structural and Electrical Properties at Different Temperature
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.07.080
  contributor:
    fullname: Awad
– volume: 52
  start-page: 517
  year: 2013
  ident: ref_27
  article-title: Photodegradation of phenol and benzoic acid by sol-gel-synthesized alkali metal-doped ZnO
  publication-title: Mater. Sci. Semicond. Process.
  contributor:
    fullname: Benhebal
– volume: 17
  start-page: 259
  year: 2009
  ident: ref_18
  article-title: Activity Coefficient Models to Describe Vapor-Liquid Equilibrium in Ternary Hydro-Alcoholic Solutions
  publication-title: Chin. J. Chem. Eng.
  doi: 10.1016/S1004-9541(08)60203-7
  contributor:
    fullname: Valderrama
– volume: 43
  start-page: 10881
  year: 2017
  ident: ref_9
  article-title: Enhancement of up-conversion emission and emerging cool white light emission in co-doped Yb3+/Er3+: Li2O-LiF-B2O3-ZnO glasses for photonic applications
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2017.05.124
  contributor:
    fullname: Vijayalakshmi
– volume: 48
  start-page: 26725
  year: 2022
  ident: ref_15
  article-title: Influence of pH and temperature parameters on the sol-gel synthesis process of meso porous ZrC nanopowder
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2022.05.367
  contributor:
    fullname: Najafi
– volume: 4
  start-page: 2073
  year: 2013
  ident: ref_2
  article-title: Dye-Sensitized Solar Cell with Integrated Triplet–Triplet Annihilation Upconversion System
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz401050u
  contributor:
    fullname: Nattestad
– volume: 116
  start-page: 22794
  year: 2012
  ident: ref_1
  article-title: Efficiency Enhancement of Organic and Thin-Film Silicon Solar Cells with Photochemical Upconversion
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp309636m
  contributor:
    fullname: Schulze
– volume: 14
  start-page: 1216
  year: 2002
  ident: ref_21
  article-title: Synthesis of Uniform Hexagonal Prismatic ZnO Whiskers
  publication-title: Chem. Mater.
  doi: 10.1021/cm0107326
  contributor:
    fullname: Hu
– volume: 142
  start-page: 1077
  year: 2017
  ident: ref_19
  article-title: A numerical investigation of hydrogen production in an integrated membrane reformer-combustor
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.12.359
  contributor:
    fullname: Sanusi
– volume: 126
  start-page: 11934
  year: 2019
  ident: ref_22
  article-title: Effect of Li co-doping with Er on up-conversion luminescence property and its temperature dependence of NaY(WO4)2
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/j.jpcs.2018.11.009
  contributor:
    fullname: Yao
– volume: 496
  start-page: 399
  year: 2010
  ident: ref_25
  article-title: Formation and characterization of ZnO nanopowder synthesized by sol-gel method
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2010.02.028
  contributor:
    fullname: Azam
– volume: 28
  start-page: 14314
  year: 2017
  ident: ref_32
  article-title: Microstructural and electrical characterizations of transparent Er-doped ZnO nano thin films prepared by sol-gel process
  publication-title: J. Mater. Sci. Mater. Electron.
  doi: 10.1007/s10854-017-7291-x
  contributor:
    fullname: Asikuzun
– volume: 244
  start-page: 3027
  year: 2007
  ident: ref_6
  article-title: ZnO: From basics towards applications
  publication-title: Phys. Status Solidi
  doi: 10.1002/pssb.200743072
  contributor:
    fullname: Klingshirn
– volume: 144
  start-page: 1
  year: 2015
  ident: ref_24
  article-title: Structural, optical, dielectric and antibacterial studies of Mn doped Zn0.96Cu0.04O nanoparticles
  publication-title: Spectrochim. Acta Part A Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2015.02.056
  contributor:
    fullname: Sangeetha
– ident: ref_4
  doi: 10.1117/12.841907
– volume: 252
  start-page: 123235
  year: 2020
  ident: ref_16
  article-title: Recrystallization and coalescence kinetics of TiO2 and ZnO nano-catalysts towards enhanced photocatalytic activity and colloidal stability within slurry reactors
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2020.123235
  contributor:
    fullname: Messaoud
– volume: 7
  start-page: 413
  year: 2018
  ident: ref_7
  article-title: Elemental zinc to zinc nanoparticles: Is ZnO NPs crucial for life? Synthesis, toxicological, and environmental concerns
  publication-title: Nanotechnol. Rev.
  doi: 10.1515/ntrev-2018-0067
  contributor:
    fullname: Ali
– volume: 21
  start-page: 2206
  year: 2009
  ident: ref_12
  article-title: Mesoporous Anatase TiO2Beads with High Surface Areas and Controllable Pore Sizes: A Superior Candidate for High-Performance Dye-Sensitized Solar Cells
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200802603
  contributor:
    fullname: Chen
– volume: 108
  start-page: 11927
  year: 2004
  ident: ref_23
  article-title: Full-Color Emission from In2S3 and In2S3:Eu3+ Nanoparticles
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp048107m
  contributor:
    fullname: Chen
SSID ssj0000331829
Score 2.3847046
Snippet In this study, undoped and (Erbium, Ytterbium) co-doped ZnO nanopowders were prepared using the sol-gel method and the supercritical drying of ethyl alcohol....
SourceID doaj
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
StartPage 7828
SubjectTerms Carrier density
Crystal defects
Doping
Electric properties
Electrical properties
Electron mobility
Energy
Energy gap
Energy transfer
Erbium
Ethanol
Grain boundaries
Hall effect
Metal ions
Morphology
Nanoparticles
Nitrates
Photoluminescence
Photovoltaic cells
Radiation
rare earth materials
Sol-gel processes
Solar energy industry
up-conversion luminescence
Upconversion
Wurtzite
Ytterbium
Zinc oxide
Zinc oxides
ZnO
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9UwFA-yJ30QdYp1UzIUVLCsa5M0ebxe7xyCHzAvTF9Ck5ywC7O5bJ2i--d3knaz1QdffGubBJrzfdpzfiHkmTAOGetQv50scsZB5Oh3GrxStmhAWp_Ant9_EAdL9u6IH42O-oo1YT08cE-4XSjBo4tHt-YN2zOA8sagAqgLx72Hvo-8UKNkKtngCmW1VD0eaYV5_e63Jnoq9Idy4oESUP_f5vjPEsmRz9m_Q24PwSKd9S95l9yA9h65NYIQ3CQXi4QBgevpcp3PYw15-gBGv7Yf6Tzkb8IaHH2xOH1Fv5iXFI1pWIcfsXqZHv5sMfo7W_3CCd9XDcUbehhO8rdwQof-AYohLf10HLqAVqxrVpbORj-875Pl_uLz_CAfDlTILWZ9Xe4qIRSXSjKHkZxBd91EwD1RK-uMr5gD7gwDK2pj4_ljzEsQVnlMZD3SvKwekI02tPCQUC7rWsUWH1lZ5hg0ygplCmuNEs5Lm5GnV0TW6x43Q2O-EVmhf7MiI68j_a9nRKzr9AAlQA8SoP8lARl5Hrmno0Yir2wzNBbgi0ZsKz2rGce4qVQiI9uTmahJdjp8xX89aPKZjvA_sYtmj2dk53o4rozVaS2E8zQH6YHBMm6onsjNZGfTkXZ1nNC8leBoI8Wj_0GKLXKzjO0ZqVdym2x0p-fwGIOmzjxJ-nEJaKIXUw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgvMADGl8iMJARSIBEtDRx_PGESmk3IfEhjUqDlyj-2iqNuGszEPDPc-emXQMSb0lsK7HPd_ezc_czIc-4tiBYC_ptZZay0vEU_E4NV8pktZPGR7Ln9x_44ZS9Oy6Puw23ZRdWubaJ0VDbYHCPfB9pWDCbYVC-np-neGoU_l3tjtC4Sq4NciEwpEtODjZ7LFkBMzZXK1bSAlb3-99q9FfgFWXPD0W6_n-N8t-BklueZ7JLbnaQkQ5XMr5FrrjmNrmxRSR4h_weRyYIaE-n83SEkeRxG4x-bT7SUUjfhrmz9MV48Yp-0S8pmNQwDz8whpke_WwAAy5nv6DC91lN4YYehbP0wJ3RLouAArCln05DG8CWtfXM0OHWb--7ZDoZfx4dpt2xCqmBtV-b2oJzVUolmQU8p8Fp10i7x4UyVvuCWVdazZzhQhs8hYx56bhRHpaz3hUuL-6RnSY07j6hpRRCYaKPLAyzzNXKcKUzY7Ti1kuTkKfrQa7mK_aMClYdKIrqUhQJeYPjv6mBjNfxQVicVJ0CVS53HqAewBuv2UA7sDsMvsaJzJbeO5GQ5yi9CvUSZGXqLr0APhQZrqqhYCWgp1zxhOz1aoI-mX7xWv5Vp8_L6nL2JeTJphhbYoxa48JFrAPjAZAZOiR686bXs35JMzuNnN6Kl2Ap-YP_v_whuZ5j-kXMhdwjO-3iwj0CUNTqx3Hm_wF8OA37
  priority: 102
  providerName: ProQuest
Title Efficient Up-Conversion ZnO Co-Doped (Er, Yb) Nanopowders Synthesized via the Sol-Gel Process for Photovoltaic Applications
URI https://www.proquest.com/docview/2734686215
https://search.proquest.com/docview/2735870198
https://pubmed.ncbi.nlm.nih.gov/PMC9657936
https://doaj.org/article/e2ef610091fb41be8804e3ee70d5ffe7
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbW8QIPiKsIjMoIJEAia5vYTvzYlbYT0kbFqFR4ieLbFqmNoy7bBPx5jt10NPCGIkVJbEuOzz055zNCb5hQQFgF8q3SfkioZiHYnRyuuOznOpXGgz2fnLLjOfm0oIs9RLe1MD5pX4risFyuDsviwudWVivZ2-aJ9WYnI84osBXrdVAHGHQnRPfqNwY2jfgGijSGkL63yp2RAlPoNueLGRwkilt2yMP1_6uU_06U3LE8kwfofuMy4uFmag_Rni4foXs7QIKP0a-xR4KA8XhehSOXSe4_g-Hv5Wc8suFHW2mF343XH_A38R6DSrWVvXE5zPjsRwk-4GXxEzpcFzmGG3xml-FUL3FTRYDBscWzC1tb0GV1Xkg83Pnt_QTNJ-Ovo-Ow2VYhlBD71aGKGeM05SlR4M8JMNq5g91jCZdKmJgoTZUgWrJESLcLGTGpZpIbCGeNjnUUP0X7pS31M4RpmiTcFfqksSSK6JxLxkVfSsGZMqkM0OvtImfVBj0jg6jDUSX7Q5UAHbn1v-3hEK_9A7s-zxq6ZzrSBlw9cG-MIAOhQe8QmI1O-ooao5MAvXXUy5xcAq1k3pQXwEQdwlU2TAgF7yniLEAHrZ4gT7LdvKV_1sjzZeZAgFwtzYAG6NVtsxvpctRKba98H1gPcJnhhZIW37TerN0CLO4xvRuWfv7fI1-gu5GrzPBlkgdov15f6ZfgL9WiizrpZNpFd47Gp7MvXf_VAc7TxaDrJec3R5cbZA
link.rule.ids 230,315,730,783,787,867,888,2109,12778,21401,27937,27938,33386,33387,33757,33758,43613,43818,53805,53807,74370,74637
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELegewAeEJ8iMMAIJEAiWpY4TvyEutJRYCsTW6WNFyv-CKs04tBmIOCf5y51uwYk3pLYVmKf7-5n5-5nQp5xZUCwBvTb5FHIUstD8DsFXAkdFTbXZUv2vD_mowl7f5we-w23uQ-rXNrE1lAbp3GPfAtpWDCbYTt9XX8L8dQo_Lvqj9C4TDaQqirvkY2d4fjg02qXJUpgzsZiwUuawPp-62uBHgv8Yt7xRC1h_79m-e9QyTXfs3uDXPegkfYXUr5JLtnqFrm2RiV4m_wetlwQ0J5O6nCAseTtRhj9XH2kAxe-cbU19MVw9oqeqJcUjKqr3Q-MYqaHPytAgfPpL6jwfVpQuKGH7ix8a8-ozyOgAG3pwalrHFizpphq2l_78X2HTHaHR4NR6A9WCDWs_prQJJyLNBc5M4DoFLjtAon3eCa0UWXCjE2NYlbzTGk8h4yVueValLCgLW1i4-Qu6VWusvcITfMsE5jqkyeaGWYLoblQkdZKcFPmOiBPl4Ms6wV_hoR1B4pCXogiIDs4_qsayHndPnCzL9KrkLSxLQHsAcApFdtWFiwPg6-xWWTSsrRZQJ6j9CRqJshKFz7BAD4UOa5kP2Mp4KdY8IBsdmqCRulu8VL-0mv0XF7Mv4A8WRVjS4xSq6w7b-vAeABohg5lnXnT6Vm3pJqetqzegqdgK_n9_7_8MbkyOtrfk3vvxh8ekKsxJmO0mZGbpNfMzu1DgEiNeuT14A_SlRJM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgkxA8ID5FYIARSIBE1CxxnPgJdV3L-CoVo9LGSxR_sUojDm0GAv557lK3a0DiLYkdJfH57n7n3P1MyBMuNQhWg37rPApZangIfqeEI6Gi0uTKtmTP78f8YMreHKVHPv9p4dMqVzaxNdTaKVwj7yENC1Yz7KY969MiJvujl_W3EHeQwj-tfjuNi2Q7YzyBQGx7bziefFyvuEQJzN9YLDlKE4j1e19L9F7gI_OOV2rJ-_810X-nTW74odE1ctUDSNpfSvw6uWCqG-TKBq3gTfJ72PJCwP10WocDzCtvF8Xo5-oDHbhw39VG02fD-Qt6LJ9TMLCudj8wo5ke_qwAES5mv6DD91lJ4YQeutPwlTmlvqaAAsylkxPXOLBsTTlTtL_xE_wWmY6GnwYHod9kIVQQCTahTjgXaS5ypgHdSXDhJZLw8UwoLW3CtEm1ZEbxTCrck4zZ3HAlLAS31iQmTm6TrcpV5g6haZ5lAst-8kQxzUwpFBcyUkoKrm2uAvJ4NchFveTSKCAGQVEU56IIyB6O_7oH8l-3F9z8S-HVqTCxsQD8AOxYyXalASvE4G1MFunUWpMF5ClKr0AtBVmp0hcbwIsi31XRz1gKWCoWPCA7nZ6gXarbvJJ_4bV7UZzPxYA8WjfjnZixVhl31vaB8QAADR-UdeZN58u6LdXspGX4FjwFu8nv_v_hD8klUIHi3evx23vkcox1GW2R5A7ZauZn5j6gpUY-8GrwB5IXFoA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Up-Conversion+ZnO+Co-Doped+Nanopowders+Synthesized+via+the+Sol-Gel+Process+for+Photovoltaic+Applications&rft.jtitle=Materials&rft.au=Derouiche%2C+Marwa&rft.au=Salhi%2C+Rached&rft.au=Baklouti%2C+Samir&rft.date=2022-11-01&rft.pub=MDPI+AG&rft.issn=1996-1944&rft.eissn=1996-1944&rft.volume=15&rft.issue=21&rft_id=info:doi/10.3390%2Fma15217828&rft.externalDocID=A745741296
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon