A Deep-Learning-Driven Light-Weight Phishing Detection Sensor
This paper designs an accurate and low-cost phishing detection sensor by exploring deep learning techniques. Phishing is a very common social engineering technique. The attackers try to deceive online users by mimicking a uniform resource locator (URL) and a webpage. Traditionally, phishing detectio...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 19; no. 19; p. 4258 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
30.09.2019
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper designs an accurate and low-cost phishing detection sensor by exploring deep learning techniques. Phishing is a very common social engineering technique. The attackers try to deceive online users by mimicking a uniform resource locator (URL) and a webpage. Traditionally, phishing detection is largely based on manual reports from users. Machine learning techniques have recently been introduced for phishing detection. With the recent rapid development of deep learning techniques, many deep-learning-based recognition methods have also been explored to improve classification performance. This paper proposes a light-weight deep learning algorithm to detect the malicious URLs and enable a real-time and energy-saving phishing detection sensor. Experimental tests and comparisons have been conducted to verify the efficacy of the proposed method. According to the experiments, the true detection rate has been improved. This paper has also verified that the proposed method can run in an energy-saving embedded single board computer in real-time. |
---|---|
AbstractList | This paper designs an accurate and low-cost phishing detection sensor by exploring deep learning techniques. Phishing is a very common social engineering technique. The attackers try to deceive online users by mimicking a uniform resource locator (URL) and a webpage. Traditionally, phishing detection is largely based on manual reports from users. Machine learning techniques have recently been introduced for phishing detection. With the recent rapid development of deep learning techniques, many deep-learning-based recognition methods have also been explored to improve classification performance. This paper proposes a light-weight deep learning algorithm to detect the malicious URLs and enable a real-time and energy-saving phishing detection sensor. Experimental tests and comparisons have been conducted to verify the efficacy of the proposed method. According to the experiments, the true detection rate has been improved. This paper has also verified that the proposed method can run in an energy-saving embedded single board computer in real-time. This paper designs an accurate and low-cost phishing detection sensor by exploring deep learning techniques. Phishing is a very common social engineering technique. The attackers try to deceive online users by mimicking a uniform resource locator (URL) and a webpage. Traditionally, phishing detection is largely based on manual reports from users. Machine learning techniques have recently been introduced for phishing detection. With the recent rapid development of deep learning techniques, many deep-learning-based recognition methods have also been explored to improve classification performance. This paper proposes a light-weight deep learning algorithm to detect the malicious URLs and enable a real-time and energy-saving phishing detection sensor. Experimental tests and comparisons have been conducted to verify the efficacy of the proposed method. According to the experiments, the true detection rate has been improved. This paper has also verified that the proposed method can run in an energy-saving embedded single board computer in real-time.This paper designs an accurate and low-cost phishing detection sensor by exploring deep learning techniques. Phishing is a very common social engineering technique. The attackers try to deceive online users by mimicking a uniform resource locator (URL) and a webpage. Traditionally, phishing detection is largely based on manual reports from users. Machine learning techniques have recently been introduced for phishing detection. With the recent rapid development of deep learning techniques, many deep-learning-based recognition methods have also been explored to improve classification performance. This paper proposes a light-weight deep learning algorithm to detect the malicious URLs and enable a real-time and energy-saving phishing detection sensor. Experimental tests and comparisons have been conducted to verify the efficacy of the proposed method. According to the experiments, the true detection rate has been improved. This paper has also verified that the proposed method can run in an energy-saving embedded single board computer in real-time. |
Author | He, Xuan Yang, Longzhi Woo, Wai Lok Gao, Bin Hamad, Rebeen Ali Wei, Bo Wang, Hao |
AuthorAffiliation | 2 School of Sino-Dutch Biomedical & Information Engineering, Northeastern University, Shenyang 110169, China; hexuan@bmie.neu.edu.cn 3 Neusoft Research of Intelligent Healthcare Technology, Co. Ltd., Shenyang 110169, China 4 Automation College, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; wanghao@cqupt.edu.cn 5 School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China; bin_gao@uestc.edu.cn 1 Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; rebeen.hamad@northumbria.ac.uk (R.A.H.); longzhi.yang@northumbria.ac.uk (L.Y.); wai.l.woo@northumbria.ac.uk (W.L.W.) |
AuthorAffiliation_xml | – name: 3 Neusoft Research of Intelligent Healthcare Technology, Co. Ltd., Shenyang 110169, China – name: 4 Automation College, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; wanghao@cqupt.edu.cn – name: 2 School of Sino-Dutch Biomedical & Information Engineering, Northeastern University, Shenyang 110169, China; hexuan@bmie.neu.edu.cn – name: 1 Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; rebeen.hamad@northumbria.ac.uk (R.A.H.); longzhi.yang@northumbria.ac.uk (L.Y.); wai.l.woo@northumbria.ac.uk (W.L.W.) – name: 5 School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China; bin_gao@uestc.edu.cn |
Author_xml | – sequence: 1 givenname: Bo orcidid: 0000-0002-0781-9655 surname: Wei fullname: Wei, Bo – sequence: 2 givenname: Rebeen Ali surname: Hamad fullname: Hamad, Rebeen Ali – sequence: 3 givenname: Longzhi orcidid: 0000-0003-2115-4909 surname: Yang fullname: Yang, Longzhi – sequence: 4 givenname: Xuan surname: He fullname: He, Xuan – sequence: 5 givenname: Hao surname: Wang fullname: Wang, Hao – sequence: 6 givenname: Bin orcidid: 0000-0001-9993-1013 surname: Gao fullname: Gao, Bin – sequence: 7 givenname: Wai Lok orcidid: 0000-0002-8698-7605 surname: Woo fullname: Woo, Wai Lok |
BookMark | eNptkd9rFDEQx4NU7A998D848MU-rE0ySTZ5UDhaWwsHCio-hmx29i7HXnIme4X-9-a8UmzxacLMZz4M-Z6So5giEvKW0Q8Ahl4UZpgRXOoX5IQJLhrNOT36531MTktZU8oBQL8ix8BkKynoE_JxPrtC3DYLdDmGuGyucrjDOFuE5WpqfuG-zL6tQlnVYUUn9FNIcfYdY0n5NXk5uLHgm4d6Rn5ef_5x-aVZfL25vZwvGi-EmpqeMdU5pXvlGDCttNG667jHnivoQDM9IEejgSmPTrWIlGoUrVfcgO8Azsjtwdsnt7bbHDYu39vkgv3bSHlpXZ6CH9Ea6aBKJB-cFh1D3XojoeN9y6gcBKuuTwfXdtdtsPcYp-zGJ9KnkxhWdpnurNJUUcOr4P2DIKffOyyT3YTicRxdxLQrlgOlTItKVvTdM3SddjnWr7JcgpTGKKYqdX6gfE6lZBwej2HU7gO2jwFX9uIZ68Pk9pHUW8P4n40_n92l4g |
CitedBy_id | crossref_primary_10_3390_s20143989 crossref_primary_10_1007_s10664_023_10302_1 crossref_primary_10_1007_s00500_023_07962_y crossref_primary_10_1007_s11042_024_19722_7 crossref_primary_10_1007_s13369_020_04802_1 crossref_primary_10_1109_TDSC_2021_3119323 crossref_primary_10_1109_JIOT_2021_3098051 crossref_primary_10_1016_j_heliyon_2021_e07437 crossref_primary_10_1016_j_asoc_2024_112540 crossref_primary_10_1007_s42979_024_03282_6 crossref_primary_10_1016_j_comnet_2022_109407 crossref_primary_10_2339_politeknik_1098037 crossref_primary_10_1016_j_eswa_2022_118305 crossref_primary_10_1007_s13369_020_04839_2 crossref_primary_10_1051_bioconf_20249700059 crossref_primary_10_1088_1757_899X_734_1_012130 crossref_primary_10_3390_s20133751 crossref_primary_10_1109_ACCESS_2020_3013699 crossref_primary_10_1007_s10922_023_09784_7 crossref_primary_10_1016_j_eswa_2023_121183 crossref_primary_10_32604_csse_2022_020414 crossref_primary_10_3390_electronics12214545 crossref_primary_10_1016_j_compeleceng_2025_110087 crossref_primary_10_3390_math9212799 crossref_primary_10_1016_j_cose_2020_101793 crossref_primary_10_1155_2022_9328712 crossref_primary_10_1016_j_cose_2024_104188 crossref_primary_10_3390_electronics10111285 crossref_primary_10_3390_s21020603 crossref_primary_10_1016_j_cose_2021_102421 crossref_primary_10_1007_s00521_021_06401_z crossref_primary_10_1016_j_compeleceng_2022_107868 crossref_primary_10_1016_j_matpr_2021_07_178 crossref_primary_10_32604_cmc_2022_031625 crossref_primary_10_3390_s20154349 crossref_primary_10_1007_s10115_022_01672_x crossref_primary_10_3390_app12073524 crossref_primary_10_1109_ACCESS_2023_3247135 crossref_primary_10_17798_bitlisfen_988001 crossref_primary_10_1038_s41598_023_37552_9 crossref_primary_10_3390_electronics9091514 |
Cites_doi | 10.1109/ACCESS.2019.2892066 10.1145/1242572.1242659 10.1145/1390156.1390177 10.1186/s13635-016-0034-3 10.1145/2019599.2019606 10.1016/j.eswa.2016.01.028 10.1145/1456424.1456434 10.1109/CVPR.2016.308 10.1109/MSP.2012.2205597 10.1007/978-3-319-78813-5_22 10.1109/AICCSA.2008.4493625 10.1016/j.eswa.2018.09.029 10.1109/ACCESS.2019.2913705 10.1109/TMC.2016.2575828 |
ContentType | Journal Article |
Copyright | 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2019 by the authors. 2019 |
Copyright_xml | – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2019 by the authors. 2019 |
DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s19194258 |
DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_95a3cea52fa84b1e87c953b2d7105f41 PMC6806092 10_3390_s19194258 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c446t-d116ba68d6a131868988bb2ced263b3818fe2e98316cea67ee008e47c6293cb33 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:21:14 EDT 2025 Thu Aug 21 14:12:13 EDT 2025 Fri Jul 11 04:54:36 EDT 2025 Fri Jul 25 20:17:58 EDT 2025 Tue Jul 01 00:42:07 EDT 2025 Thu Apr 24 22:52:30 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c446t-d116ba68d6a131868988bb2ced263b3818fe2e98316cea67ee008e47c6293cb33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2115-4909 0000-0002-0781-9655 0000-0001-9993-1013 0000-0002-8698-7605 |
OpenAccessLink | https://www.proquest.com/docview/2535599616?pq-origsite=%requestingapplication% |
PMID | 31575038 |
PQID | 2535599616 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_95a3cea52fa84b1e87c953b2d7105f41 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6806092 proquest_miscellaneous_2300184923 proquest_journals_2535599616 crossref_primary_10_3390_s19194258 crossref_citationtrail_10_3390_s19194258 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190930 |
PublicationDateYYYYMMDD | 2019-09-30 |
PublicationDate_xml | – month: 9 year: 2019 text: 20190930 day: 30 |
PublicationDecade | 2010 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationYear | 2019 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_13 ref_11 ref_10 Amrutkar (ref_7) 2016; 16 ref_17 Jain (ref_12) 2016; 2016 Sahingoz (ref_15) 2019; 117 ref_16 Fang (ref_19) 2019; 7 Srivastava (ref_24) 2014; 15 Moghimi (ref_14) 2016; 53 Yang (ref_18) 2019; 7 ref_25 ref_23 ref_21 Xiang (ref_8) 2011; 14 ref_20 ref_1 ref_3 ref_2 ref_26 ref_9 Hinton (ref_22) 2012; 29 ref_5 ref_4 ref_6 |
References_xml | – volume: 7 start-page: 15196 year: 2019 ident: ref_18 article-title: Phishing Website Detection Based on Multidimensional Features Driven by Deep Learning publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2892066 – ident: ref_16 doi: 10.1145/1242572.1242659 – ident: ref_9 – ident: ref_23 doi: 10.1145/1390156.1390177 – volume: 15 start-page: 1929 year: 2014 ident: ref_24 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – ident: ref_5 – ident: ref_3 – ident: ref_26 – volume: 2016 start-page: 9 year: 2016 ident: ref_12 article-title: A novel approach to protect against phishing attacks at client side using auto-updated white-list publication-title: EURASIP J. Inf. Secur. doi: 10.1186/s13635-016-0034-3 – volume: 14 start-page: 21 year: 2011 ident: ref_8 article-title: Cantina+: A feature-rich machine learning framework for detecting phishing web sites publication-title: ACM Trans. Inf. Syst. Secur. (TISSEC) doi: 10.1145/2019599.2019606 – volume: 53 start-page: 231 year: 2016 ident: ref_14 article-title: New rule-based phishing detection method publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.01.028 – ident: ref_1 – ident: ref_11 doi: 10.1145/1456424.1456434 – ident: ref_21 doi: 10.1109/CVPR.2016.308 – volume: 29 start-page: 82 year: 2012 ident: ref_22 article-title: Deep neural networks for acoustic modeling in speech recognition publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2012.2205597 – ident: ref_6 – ident: ref_17 doi: 10.1007/978-3-319-78813-5_22 – ident: ref_25 – ident: ref_4 – ident: ref_2 – ident: ref_10 – ident: ref_13 doi: 10.1109/AICCSA.2008.4493625 – volume: 117 start-page: 345 year: 2019 ident: ref_15 article-title: Machine learning based phishing detection from URLs publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.09.029 – volume: 7 start-page: 56329 year: 2019 ident: ref_19 article-title: Phishing Email Detection Using Improved RCNN Model With Multilevel Vectors and Attention Mechanism publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2913705 – ident: ref_20 – volume: 16 start-page: 2184 year: 2016 ident: ref_7 article-title: Detecting mobile malicious webpages in real time publication-title: IEEE Trans. Mob. Comput. doi: 10.1109/TMC.2016.2575828 |
SSID | ssj0023338 |
Score | 2.5135796 |
Snippet | This paper designs an accurate and low-cost phishing detection sensor by exploring deep learning techniques. Phishing is a very common social engineering... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 4258 |
SubjectTerms | Algorithms Blacklisting cyber security Cybersecurity Deep learning Feature selection Machine learning Malware Methods Neural networks phishing detection Sensors URLs Websites |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA6ykx7En1idUsWDl7A2SdP04GE6xxAVQYe7lb40dYJ0Y-v-f1_arqwgePHavEPyvaTvfe3L9wi5BluJkGmgoIWgggtFIUs0TVliADNkALAXnJ9f5GgsHifBZKPVl60Jq-SBK-B6UZBwbZKAZYkS4BsV6ijgwFIMjUFWXllnGPPWZKqmWhyZV6UjxJHU95bISiLcnaoVfUqR_lZm2a6L3Ag0wz2yW2eIbr-a2T7ZMvkB2dnQDTwkt313YMyc1uKon3SwsC8t96lUBfkov3a6r9Pq8xKaFmW9Ve6-IWedLY7IePjwfj-idR8EivjJgqa-LyGRKpWJz628faQQQ6ZNyiQHG3Izw0ykuC8RKRkag4HdiFBLjOUaOD8mnXyWmxPiBloElpNIL8M8KFXgpYBnGpcMmmeZcMjNGp9Y1yLhtlfFd4xkwUIZN1A65KoxnVfKGL8Z3VmQGwMrZl0-QBfHtYvjv1zskO7aRXF9wpYxC7gVS5O-dMhlM4xnw_7wSHIzW6ENtz0HrQSdQ8KWa1sTao_kX9NSZVsqT3oRO_2PFZyRbUy0oqrOpEs6xWJlzjGZKeCi3Lc_bWX01Q priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT9wwDLYYe2EPCDamFQ5Upj3wEnFt0jR9QOj4JYQGQgK0e6vqNIVJU3vcHf8_dps7qDTx2lhq6sSxP8f9DPALuRKhsijQKiWUVEZgVVhRxoVDipARkX9wvr7Rlw_qapyMfcJt5ssqF2die1CXjeUc-WGcSCbH0pE-njwL7hrFt6u-hcYn-MzUZVzSlY7fAJck_NWxCUmC9oczwiYZ7VHT80EtVX8vvuxXR75zNxcbsO7jxHDULewmrLj6K3x5xx74DY5G4ZlzE-EpUh_F2ZSPrvB3yw3yp815hrdPXZKJROdt1VUd3hFybaZb8HBxfn96KXw3BEFa1HNRRpHGQptSF5FkkvvMkCZj68pYS2THW7nYZUZG2rpCp86Re3cqtZo8ukUpv8Nq3dTuB4SJVQkjEz2sKBoqDQ5LJMumT0Yrq0oFcLDQT249VTh3rPiXE2RgVeZLVQbwcyk66fgx_id0wkpeCjCldfugmT7m3kLyLCkkTTyJq8IojJxJbZZIjEuKgZJKRQEMFkuUezub5W-7IoD95TBZCF97FLVrXkhGcudBJqILIO0tbW9C_ZH671PLta3NUA-zePvjl-_AGgVSWVdHMoDV-fTF7VKwMse9dke-AhEF7FY priority: 102 providerName: ProQuest |
Title | A Deep-Learning-Driven Light-Weight Phishing Detection Sensor |
URI | https://www.proquest.com/docview/2535599616 https://www.proquest.com/docview/2300184923 https://pubmed.ncbi.nlm.nih.gov/PMC6806092 https://doaj.org/article/95a3cea52fa84b1e87c953b2d7105f41 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7xuNBDxatqCqwC4tCL28R2HOeAEBQWVBWE2q66tyh2HKiEsjQsUvvvmXGyEZE49JJDPJHssScznz3-BuDQUCZCZQ0zVkomhdTMVIVlJS-cwQjZGEMXnK-u1eVEfp0m0yVY1NjsFPj4KrSjelKT5v7T3z__jtHgjwhxImT__IiYI8O1p5dhFR1SSvZ5JfvDBC6EL2hNd7oY-sOoJRgafjpwS569fxByDhMmX3ig8Tq87ULH8KSd6w1YcvUmvHlBKLgFRyfhmXMPrGNNvWVnDf3Nwm-eLuSX3wYNb-7afScUnftErDr8gWB21mzDZHz-88sl6wokMFSsmrMyjpUplC5VEQvivc80KpdbV3IlDPniynGXaREr6wqVOoce38nUKnTy1gjxDlbqWe3eQ5hYmRBYUVGFAVKpTVQaNHYcsrGiqmQAHxf6yW3HHk5FLO5zRBGkyrxXZQAHvehDS5nxmtApKbkXIJZr_2LW3Oad0eRZUgjseMKrQksTO53aLBGGlxgWJZWMA9hdTFG-WDk5TwSxqKlYBbDfN6PR0ElIUbvZE8oIKkZI3HQBpIOpHXRo2FL_vvP020pHKsr4h_8Z5g6sYYSVtQkmu7Ayb57cHkYxczOC5XSa4lOPL0awenp-ffN95HcERn71PgMZ9PVh |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ8QfEAfjKLGCkgxmviyod3dbrcPxKAHOeQgJkK8t9rdboGEtMfdEcI_xd_oTD8OmhjeeG0n6XR2PndnfwPw2VAnQmENM1ZKJoXUzBSZZTnPnMEM2RhDF5yPjtXwVP4cR-MluOvuwlBbZecTa0edV5b2yLd5JAgcS4Xq2-SK0dQoOl3tRmg0anHobm-wZJvtHAxwfb9wvr938mPI2qkCDLlRc5aHoTKZ0rnKQkFg8YlGjrh1OVfCUAArHHeJFqGyLlOxcxgmnYytwshoDW2Aost_hoE3IIuKx_cFnsB6r0EvEiIJtmdYCyVoE7oX8-rRAL18tt-N-SC87b-Cl21e6u82ivQally5Ci8eoBW-gZ1df-DchLWQrGdsMCVX6Y9qLJI_9R6r_-u82dRC0nnd5VX6v7FSrqZv4fRJ5PQOlsuqdO_Bj6yMqBJSQYHZV65NkBv0JPjLxoqikB587eST2haanCZkXKZYopAo04UoPfi0IJ00eBz_I_pOQl4QEIR2_aCanqWtRaZJlAlkPOJFpqUJnY5tEgnDc8y5okKGHqx3S5S2dj1L77XQg63Fa7RIOmbJSlddI42gSYcEfOdB3FvaHkP9N-XFeY3trXSggoR_ePzjm7AyPDkapaOD48M1eI5JXNL0sKzD8nx67TYwUZqbj7V2-vD3qc3hH56wKMQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB9KBdEHqV-YttYoCr4sl-xXkodSqufR2loKWry3mN3stkJJrndXxH_Nv86ZfFwbEN_6mgxkMjufu7O_AXhrqBPBW8OMlZJJIVNmfGFZyQtnMEM2xtAF5y8n-uBMfp6q6Rr86e_CUFtl7xMbR13WlvbIR1wJAsfSsR75ri3idDzZm10xmiBFJ639OI1WRY7c719Yvi12D8e41u84n3z69vGAdRMGGHKml6yMY20KnZa6iAUBx2cpcsetK7kWhoKZd9xlqYi1dYVOnMOQ6WRiNUZJa2gzFN3_vUSomGwsmd4UewJrvxbJSIgsGi2wLsrQPtJB_GvGBAxy22Fn5q1QN9mAR12OGu63SvUY1lz1BB7eQi58Crv74di5GevgWc_ZeE5uMzxucEm-N_ut4elFu8GFpMum46sKv2LVXM-fwdmdyOk5rFd15V5AqKxUVBXpyGMmVqYmKg16FfxlY4X3MoD3vXxy28GU07SMyxzLFRJlvhJlAG9WpLMWm-NfRB9IyCsCgtNuHtTz87yzzjxThUDGFfdFKk3s0sRmShheYv6lvIwD2O6XKO9sfJHfaGQAr1ev0TrpyKWoXH2NNIKmHhIIXgDJYGkHDA3fVD8vGpxvnUY6yvjm_z_-Cu6jIeTHhydHW_AA87msbWfZhvXl_Nq9xJxpaXYa5Qzhx11bw182ISz6 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep-Learning-Driven+Light-Weight+Phishing+Detection+Sensor&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Wei%2C+Bo&rft.au=Hamad%2C+Rebeen+Ali&rft.au=Yang%2C+Longzhi&rft.au=He%2C+Xuan&rft.date=2019-09-30&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=19&rft.issue=19&rft.spage=4258&rft_id=info:doi/10.3390%2Fs19194258&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s19194258 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |