A Deep-Learning-Driven Light-Weight Phishing Detection Sensor

This paper designs an accurate and low-cost phishing detection sensor by exploring deep learning techniques. Phishing is a very common social engineering technique. The attackers try to deceive online users by mimicking a uniform resource locator (URL) and a webpage. Traditionally, phishing detectio...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 19; no. 19; p. 4258
Main Authors Wei, Bo, Hamad, Rebeen Ali, Yang, Longzhi, He, Xuan, Wang, Hao, Gao, Bin, Woo, Wai Lok
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 30.09.2019
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper designs an accurate and low-cost phishing detection sensor by exploring deep learning techniques. Phishing is a very common social engineering technique. The attackers try to deceive online users by mimicking a uniform resource locator (URL) and a webpage. Traditionally, phishing detection is largely based on manual reports from users. Machine learning techniques have recently been introduced for phishing detection. With the recent rapid development of deep learning techniques, many deep-learning-based recognition methods have also been explored to improve classification performance. This paper proposes a light-weight deep learning algorithm to detect the malicious URLs and enable a real-time and energy-saving phishing detection sensor. Experimental tests and comparisons have been conducted to verify the efficacy of the proposed method. According to the experiments, the true detection rate has been improved. This paper has also verified that the proposed method can run in an energy-saving embedded single board computer in real-time.
AbstractList This paper designs an accurate and low-cost phishing detection sensor by exploring deep learning techniques. Phishing is a very common social engineering technique. The attackers try to deceive online users by mimicking a uniform resource locator (URL) and a webpage. Traditionally, phishing detection is largely based on manual reports from users. Machine learning techniques have recently been introduced for phishing detection. With the recent rapid development of deep learning techniques, many deep-learning-based recognition methods have also been explored to improve classification performance. This paper proposes a light-weight deep learning algorithm to detect the malicious URLs and enable a real-time and energy-saving phishing detection sensor. Experimental tests and comparisons have been conducted to verify the efficacy of the proposed method. According to the experiments, the true detection rate has been improved. This paper has also verified that the proposed method can run in an energy-saving embedded single board computer in real-time.
This paper designs an accurate and low-cost phishing detection sensor by exploring deep learning techniques. Phishing is a very common social engineering technique. The attackers try to deceive online users by mimicking a uniform resource locator (URL) and a webpage. Traditionally, phishing detection is largely based on manual reports from users. Machine learning techniques have recently been introduced for phishing detection. With the recent rapid development of deep learning techniques, many deep-learning-based recognition methods have also been explored to improve classification performance. This paper proposes a light-weight deep learning algorithm to detect the malicious URLs and enable a real-time and energy-saving phishing detection sensor. Experimental tests and comparisons have been conducted to verify the efficacy of the proposed method. According to the experiments, the true detection rate has been improved. This paper has also verified that the proposed method can run in an energy-saving embedded single board computer in real-time.This paper designs an accurate and low-cost phishing detection sensor by exploring deep learning techniques. Phishing is a very common social engineering technique. The attackers try to deceive online users by mimicking a uniform resource locator (URL) and a webpage. Traditionally, phishing detection is largely based on manual reports from users. Machine learning techniques have recently been introduced for phishing detection. With the recent rapid development of deep learning techniques, many deep-learning-based recognition methods have also been explored to improve classification performance. This paper proposes a light-weight deep learning algorithm to detect the malicious URLs and enable a real-time and energy-saving phishing detection sensor. Experimental tests and comparisons have been conducted to verify the efficacy of the proposed method. According to the experiments, the true detection rate has been improved. This paper has also verified that the proposed method can run in an energy-saving embedded single board computer in real-time.
Author He, Xuan
Yang, Longzhi
Woo, Wai Lok
Gao, Bin
Hamad, Rebeen Ali
Wei, Bo
Wang, Hao
AuthorAffiliation 2 School of Sino-Dutch Biomedical & Information Engineering, Northeastern University, Shenyang 110169, China; hexuan@bmie.neu.edu.cn
3 Neusoft Research of Intelligent Healthcare Technology, Co. Ltd., Shenyang 110169, China
4 Automation College, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; wanghao@cqupt.edu.cn
5 School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China; bin_gao@uestc.edu.cn
1 Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; rebeen.hamad@northumbria.ac.uk (R.A.H.); longzhi.yang@northumbria.ac.uk (L.Y.); wai.l.woo@northumbria.ac.uk (W.L.W.)
AuthorAffiliation_xml – name: 3 Neusoft Research of Intelligent Healthcare Technology, Co. Ltd., Shenyang 110169, China
– name: 4 Automation College, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; wanghao@cqupt.edu.cn
– name: 2 School of Sino-Dutch Biomedical & Information Engineering, Northeastern University, Shenyang 110169, China; hexuan@bmie.neu.edu.cn
– name: 1 Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; rebeen.hamad@northumbria.ac.uk (R.A.H.); longzhi.yang@northumbria.ac.uk (L.Y.); wai.l.woo@northumbria.ac.uk (W.L.W.)
– name: 5 School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China; bin_gao@uestc.edu.cn
Author_xml – sequence: 1
  givenname: Bo
  orcidid: 0000-0002-0781-9655
  surname: Wei
  fullname: Wei, Bo
– sequence: 2
  givenname: Rebeen Ali
  surname: Hamad
  fullname: Hamad, Rebeen Ali
– sequence: 3
  givenname: Longzhi
  orcidid: 0000-0003-2115-4909
  surname: Yang
  fullname: Yang, Longzhi
– sequence: 4
  givenname: Xuan
  surname: He
  fullname: He, Xuan
– sequence: 5
  givenname: Hao
  surname: Wang
  fullname: Wang, Hao
– sequence: 6
  givenname: Bin
  orcidid: 0000-0001-9993-1013
  surname: Gao
  fullname: Gao, Bin
– sequence: 7
  givenname: Wai Lok
  orcidid: 0000-0002-8698-7605
  surname: Woo
  fullname: Woo, Wai Lok
BookMark eNptkd9rFDEQx4NU7A998D848MU-rE0ySTZ5UDhaWwsHCio-hmx29i7HXnIme4X-9-a8UmzxacLMZz4M-Z6So5giEvKW0Q8Ahl4UZpgRXOoX5IQJLhrNOT36531MTktZU8oBQL8ix8BkKynoE_JxPrtC3DYLdDmGuGyucrjDOFuE5WpqfuG-zL6tQlnVYUUn9FNIcfYdY0n5NXk5uLHgm4d6Rn5ef_5x-aVZfL25vZwvGi-EmpqeMdU5pXvlGDCttNG667jHnivoQDM9IEejgSmPTrWIlGoUrVfcgO8Azsjtwdsnt7bbHDYu39vkgv3bSHlpXZ6CH9Ea6aBKJB-cFh1D3XojoeN9y6gcBKuuTwfXdtdtsPcYp-zGJ9KnkxhWdpnurNJUUcOr4P2DIKffOyyT3YTicRxdxLQrlgOlTItKVvTdM3SddjnWr7JcgpTGKKYqdX6gfE6lZBwej2HU7gO2jwFX9uIZ68Pk9pHUW8P4n40_n92l4g
CitedBy_id crossref_primary_10_3390_s20143989
crossref_primary_10_1007_s10664_023_10302_1
crossref_primary_10_1007_s00500_023_07962_y
crossref_primary_10_1007_s11042_024_19722_7
crossref_primary_10_1007_s13369_020_04802_1
crossref_primary_10_1109_TDSC_2021_3119323
crossref_primary_10_1109_JIOT_2021_3098051
crossref_primary_10_1016_j_heliyon_2021_e07437
crossref_primary_10_1016_j_asoc_2024_112540
crossref_primary_10_1007_s42979_024_03282_6
crossref_primary_10_1016_j_comnet_2022_109407
crossref_primary_10_2339_politeknik_1098037
crossref_primary_10_1016_j_eswa_2022_118305
crossref_primary_10_1007_s13369_020_04839_2
crossref_primary_10_1051_bioconf_20249700059
crossref_primary_10_1088_1757_899X_734_1_012130
crossref_primary_10_3390_s20133751
crossref_primary_10_1109_ACCESS_2020_3013699
crossref_primary_10_1007_s10922_023_09784_7
crossref_primary_10_1016_j_eswa_2023_121183
crossref_primary_10_32604_csse_2022_020414
crossref_primary_10_3390_electronics12214545
crossref_primary_10_1016_j_compeleceng_2025_110087
crossref_primary_10_3390_math9212799
crossref_primary_10_1016_j_cose_2020_101793
crossref_primary_10_1155_2022_9328712
crossref_primary_10_1016_j_cose_2024_104188
crossref_primary_10_3390_electronics10111285
crossref_primary_10_3390_s21020603
crossref_primary_10_1016_j_cose_2021_102421
crossref_primary_10_1007_s00521_021_06401_z
crossref_primary_10_1016_j_compeleceng_2022_107868
crossref_primary_10_1016_j_matpr_2021_07_178
crossref_primary_10_32604_cmc_2022_031625
crossref_primary_10_3390_s20154349
crossref_primary_10_1007_s10115_022_01672_x
crossref_primary_10_3390_app12073524
crossref_primary_10_1109_ACCESS_2023_3247135
crossref_primary_10_17798_bitlisfen_988001
crossref_primary_10_1038_s41598_023_37552_9
crossref_primary_10_3390_electronics9091514
Cites_doi 10.1109/ACCESS.2019.2892066
10.1145/1242572.1242659
10.1145/1390156.1390177
10.1186/s13635-016-0034-3
10.1145/2019599.2019606
10.1016/j.eswa.2016.01.028
10.1145/1456424.1456434
10.1109/CVPR.2016.308
10.1109/MSP.2012.2205597
10.1007/978-3-319-78813-5_22
10.1109/AICCSA.2008.4493625
10.1016/j.eswa.2018.09.029
10.1109/ACCESS.2019.2913705
10.1109/TMC.2016.2575828
ContentType Journal Article
Copyright 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2019 by the authors. 2019
Copyright_xml – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2019 by the authors. 2019
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s19194258
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_95a3cea52fa84b1e87c953b2d7105f41
PMC6806092
10_3390_s19194258
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c446t-d116ba68d6a131868988bb2ced263b3818fe2e98316cea67ee008e47c6293cb33
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:21:14 EDT 2025
Thu Aug 21 14:12:13 EDT 2025
Fri Jul 11 04:54:36 EDT 2025
Fri Jul 25 20:17:58 EDT 2025
Tue Jul 01 00:42:07 EDT 2025
Thu Apr 24 22:52:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-d116ba68d6a131868988bb2ced263b3818fe2e98316cea67ee008e47c6293cb33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2115-4909
0000-0002-0781-9655
0000-0001-9993-1013
0000-0002-8698-7605
OpenAccessLink https://www.proquest.com/docview/2535599616?pq-origsite=%requestingapplication%
PMID 31575038
PQID 2535599616
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_95a3cea52fa84b1e87c953b2d7105f41
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6806092
proquest_miscellaneous_2300184923
proquest_journals_2535599616
crossref_primary_10_3390_s19194258
crossref_citationtrail_10_3390_s19194258
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190930
PublicationDateYYYYMMDD 2019-09-30
PublicationDate_xml – month: 9
  year: 2019
  text: 20190930
  day: 30
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2019
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_13
ref_11
ref_10
Amrutkar (ref_7) 2016; 16
ref_17
Jain (ref_12) 2016; 2016
Sahingoz (ref_15) 2019; 117
ref_16
Fang (ref_19) 2019; 7
Srivastava (ref_24) 2014; 15
Moghimi (ref_14) 2016; 53
Yang (ref_18) 2019; 7
ref_25
ref_23
ref_21
Xiang (ref_8) 2011; 14
ref_20
ref_1
ref_3
ref_2
ref_26
ref_9
Hinton (ref_22) 2012; 29
ref_5
ref_4
ref_6
References_xml – volume: 7
  start-page: 15196
  year: 2019
  ident: ref_18
  article-title: Phishing Website Detection Based on Multidimensional Features Driven by Deep Learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2892066
– ident: ref_16
  doi: 10.1145/1242572.1242659
– ident: ref_9
– ident: ref_23
  doi: 10.1145/1390156.1390177
– volume: 15
  start-page: 1929
  year: 2014
  ident: ref_24
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– ident: ref_5
– ident: ref_3
– ident: ref_26
– volume: 2016
  start-page: 9
  year: 2016
  ident: ref_12
  article-title: A novel approach to protect against phishing attacks at client side using auto-updated white-list
  publication-title: EURASIP J. Inf. Secur.
  doi: 10.1186/s13635-016-0034-3
– volume: 14
  start-page: 21
  year: 2011
  ident: ref_8
  article-title: Cantina+: A feature-rich machine learning framework for detecting phishing web sites
  publication-title: ACM Trans. Inf. Syst. Secur. (TISSEC)
  doi: 10.1145/2019599.2019606
– volume: 53
  start-page: 231
  year: 2016
  ident: ref_14
  article-title: New rule-based phishing detection method
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.01.028
– ident: ref_1
– ident: ref_11
  doi: 10.1145/1456424.1456434
– ident: ref_21
  doi: 10.1109/CVPR.2016.308
– volume: 29
  start-page: 82
  year: 2012
  ident: ref_22
  article-title: Deep neural networks for acoustic modeling in speech recognition
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2012.2205597
– ident: ref_6
– ident: ref_17
  doi: 10.1007/978-3-319-78813-5_22
– ident: ref_25
– ident: ref_4
– ident: ref_2
– ident: ref_10
– ident: ref_13
  doi: 10.1109/AICCSA.2008.4493625
– volume: 117
  start-page: 345
  year: 2019
  ident: ref_15
  article-title: Machine learning based phishing detection from URLs
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.09.029
– volume: 7
  start-page: 56329
  year: 2019
  ident: ref_19
  article-title: Phishing Email Detection Using Improved RCNN Model With Multilevel Vectors and Attention Mechanism
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2913705
– ident: ref_20
– volume: 16
  start-page: 2184
  year: 2016
  ident: ref_7
  article-title: Detecting mobile malicious webpages in real time
  publication-title: IEEE Trans. Mob. Comput.
  doi: 10.1109/TMC.2016.2575828
SSID ssj0023338
Score 2.5135796
Snippet This paper designs an accurate and low-cost phishing detection sensor by exploring deep learning techniques. Phishing is a very common social engineering...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 4258
SubjectTerms Algorithms
Blacklisting
cyber security
Cybersecurity
Deep learning
Feature selection
Machine learning
Malware
Methods
Neural networks
phishing detection
Sensors
URLs
Websites
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA6ykx7En1idUsWDl7A2SdP04GE6xxAVQYe7lb40dYJ0Y-v-f1_arqwgePHavEPyvaTvfe3L9wi5BluJkGmgoIWgggtFIUs0TVliADNkALAXnJ9f5GgsHifBZKPVl60Jq-SBK-B6UZBwbZKAZYkS4BsV6ijgwFIMjUFWXllnGPPWZKqmWhyZV6UjxJHU95bISiLcnaoVfUqR_lZm2a6L3Ag0wz2yW2eIbr-a2T7ZMvkB2dnQDTwkt313YMyc1uKon3SwsC8t96lUBfkov3a6r9Pq8xKaFmW9Ve6-IWedLY7IePjwfj-idR8EivjJgqa-LyGRKpWJz628faQQQ6ZNyiQHG3Izw0ykuC8RKRkag4HdiFBLjOUaOD8mnXyWmxPiBloElpNIL8M8KFXgpYBnGpcMmmeZcMjNGp9Y1yLhtlfFd4xkwUIZN1A65KoxnVfKGL8Z3VmQGwMrZl0-QBfHtYvjv1zskO7aRXF9wpYxC7gVS5O-dMhlM4xnw_7wSHIzW6ENtz0HrQSdQ8KWa1sTao_kX9NSZVsqT3oRO_2PFZyRbUy0oqrOpEs6xWJlzjGZKeCi3Lc_bWX01Q
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT9wwDLYYe2EPCDamFQ5Upj3wEnFt0jR9QOj4JYQGQgK0e6vqNIVJU3vcHf8_dps7qDTx2lhq6sSxP8f9DPALuRKhsijQKiWUVEZgVVhRxoVDipARkX9wvr7Rlw_qapyMfcJt5ssqF2die1CXjeUc-WGcSCbH0pE-njwL7hrFt6u-hcYn-MzUZVzSlY7fAJck_NWxCUmC9oczwiYZ7VHT80EtVX8vvuxXR75zNxcbsO7jxHDULewmrLj6K3x5xx74DY5G4ZlzE-EpUh_F2ZSPrvB3yw3yp815hrdPXZKJROdt1VUd3hFybaZb8HBxfn96KXw3BEFa1HNRRpHGQptSF5FkkvvMkCZj68pYS2THW7nYZUZG2rpCp86Re3cqtZo8ukUpv8Nq3dTuB4SJVQkjEz2sKBoqDQ5LJMumT0Yrq0oFcLDQT249VTh3rPiXE2RgVeZLVQbwcyk66fgx_id0wkpeCjCldfugmT7m3kLyLCkkTTyJq8IojJxJbZZIjEuKgZJKRQEMFkuUezub5W-7IoD95TBZCF97FLVrXkhGcudBJqILIO0tbW9C_ZH671PLta3NUA-zePvjl-_AGgVSWVdHMoDV-fTF7VKwMse9dke-AhEF7FY
  priority: 102
  providerName: ProQuest
Title A Deep-Learning-Driven Light-Weight Phishing Detection Sensor
URI https://www.proquest.com/docview/2535599616
https://www.proquest.com/docview/2300184923
https://pubmed.ncbi.nlm.nih.gov/PMC6806092
https://doaj.org/article/95a3cea52fa84b1e87c953b2d7105f41
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7xuNBDxatqCqwC4tCL28R2HOeAEBQWVBWE2q66tyh2HKiEsjQsUvvvmXGyEZE49JJDPJHssScznz3-BuDQUCZCZQ0zVkomhdTMVIVlJS-cwQjZGEMXnK-u1eVEfp0m0yVY1NjsFPj4KrSjelKT5v7T3z__jtHgjwhxImT__IiYI8O1p5dhFR1SSvZ5JfvDBC6EL2hNd7oY-sOoJRgafjpwS569fxByDhMmX3ig8Tq87ULH8KSd6w1YcvUmvHlBKLgFRyfhmXMPrGNNvWVnDf3Nwm-eLuSX3wYNb-7afScUnftErDr8gWB21mzDZHz-88sl6wokMFSsmrMyjpUplC5VEQvivc80KpdbV3IlDPniynGXaREr6wqVOoce38nUKnTy1gjxDlbqWe3eQ5hYmRBYUVGFAVKpTVQaNHYcsrGiqmQAHxf6yW3HHk5FLO5zRBGkyrxXZQAHvehDS5nxmtApKbkXIJZr_2LW3Oad0eRZUgjseMKrQksTO53aLBGGlxgWJZWMA9hdTFG-WDk5TwSxqKlYBbDfN6PR0ElIUbvZE8oIKkZI3HQBpIOpHXRo2FL_vvP020pHKsr4h_8Z5g6sYYSVtQkmu7Ayb57cHkYxczOC5XSa4lOPL0awenp-ffN95HcERn71PgMZ9PVh
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ8QfEAfjKLGCkgxmviyod3dbrcPxKAHOeQgJkK8t9rdboGEtMfdEcI_xd_oTD8OmhjeeG0n6XR2PndnfwPw2VAnQmENM1ZKJoXUzBSZZTnPnMEM2RhDF5yPjtXwVP4cR-MluOvuwlBbZecTa0edV5b2yLd5JAgcS4Xq2-SK0dQoOl3tRmg0anHobm-wZJvtHAxwfb9wvr938mPI2qkCDLlRc5aHoTKZ0rnKQkFg8YlGjrh1OVfCUAArHHeJFqGyLlOxcxgmnYytwshoDW2Aost_hoE3IIuKx_cFnsB6r0EvEiIJtmdYCyVoE7oX8-rRAL18tt-N-SC87b-Cl21e6u82ivQally5Ci8eoBW-gZ1df-DchLWQrGdsMCVX6Y9qLJI_9R6r_-u82dRC0nnd5VX6v7FSrqZv4fRJ5PQOlsuqdO_Bj6yMqBJSQYHZV65NkBv0JPjLxoqikB587eST2haanCZkXKZYopAo04UoPfi0IJ00eBz_I_pOQl4QEIR2_aCanqWtRaZJlAlkPOJFpqUJnY5tEgnDc8y5okKGHqx3S5S2dj1L77XQg63Fa7RIOmbJSlddI42gSYcEfOdB3FvaHkP9N-XFeY3trXSggoR_ePzjm7AyPDkapaOD48M1eI5JXNL0sKzD8nx67TYwUZqbj7V2-vD3qc3hH56wKMQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB9KBdEHqV-YttYoCr4sl-xXkodSqufR2loKWry3mN3stkJJrndXxH_Nv86ZfFwbEN_6mgxkMjufu7O_AXhrqBPBW8OMlZJJIVNmfGFZyQtnMEM2xtAF5y8n-uBMfp6q6Rr86e_CUFtl7xMbR13WlvbIR1wJAsfSsR75ri3idDzZm10xmiBFJ639OI1WRY7c719Yvi12D8e41u84n3z69vGAdRMGGHKml6yMY20KnZa6iAUBx2cpcsetK7kWhoKZd9xlqYi1dYVOnMOQ6WRiNUZJa2gzFN3_vUSomGwsmd4UewJrvxbJSIgsGi2wLsrQPtJB_GvGBAxy22Fn5q1QN9mAR12OGu63SvUY1lz1BB7eQi58Crv74di5GevgWc_ZeE5uMzxucEm-N_ut4elFu8GFpMum46sKv2LVXM-fwdmdyOk5rFd15V5AqKxUVBXpyGMmVqYmKg16FfxlY4X3MoD3vXxy28GU07SMyxzLFRJlvhJlAG9WpLMWm-NfRB9IyCsCgtNuHtTz87yzzjxThUDGFfdFKk3s0sRmShheYv6lvIwD2O6XKO9sfJHfaGQAr1ev0TrpyKWoXH2NNIKmHhIIXgDJYGkHDA3fVD8vGpxvnUY6yvjm_z_-Cu6jIeTHhydHW_AA87msbWfZhvXl_Nq9xJxpaXYa5Qzhx11bw182ISz6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep-Learning-Driven+Light-Weight+Phishing+Detection+Sensor&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Wei%2C+Bo&rft.au=Hamad%2C+Rebeen+Ali&rft.au=Yang%2C+Longzhi&rft.au=He%2C+Xuan&rft.date=2019-09-30&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=19&rft.issue=19&rft.spage=4258&rft_id=info:doi/10.3390%2Fs19194258&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s19194258
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon