An empirical analysis of data preprocessing for machine learning-based software cost estimation

Due to the complex nature of software development process, traditional parametric models and statistical methods often appear to be inadequate to model the increasingly complicated relationship between project development cost and the project features (or cost drivers). Machine learning (ML) methods...

Full description

Saved in:
Bibliographic Details
Published inInformation and software technology Vol. 67; pp. 108 - 127
Main Authors Huang, Jianglin, Li, Yan-Fu, Xie, Min
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.11.2015
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0950-5849
1873-6025
DOI10.1016/j.infsof.2015.07.004

Cover

Loading…
Abstract Due to the complex nature of software development process, traditional parametric models and statistical methods often appear to be inadequate to model the increasingly complicated relationship between project development cost and the project features (or cost drivers). Machine learning (ML) methods, with several reported successful applications, have gained popularity for software cost estimation in recent years. Data preprocessing has been claimed by many researchers as a fundamental stage of ML methods; however, very few works have been focused on the effects of data preprocessing techniques. This study aims for an empirical assessment of the effectiveness of data preprocessing techniques on ML methods in the context of software cost estimation. In this work, we first conduct a literature survey of the recent publications using data preprocessing techniques, followed by a systematic empirical study to analyze the strengths and weaknesses of individual data preprocessing techniques as well as their combinations. Our results indicate that data preprocessing techniques may significantly influence the final prediction. They sometimes might have negative impacts on prediction performance of ML methods. In order to reduce prediction errors and improve efficiency, a careful selection is necessary according to the characteristics of machine learning methods, as well as the datasets used for software cost estimation.
AbstractList Due to the complex nature of software development process, traditional parametric models and statistical methods often appear to be inadequate to model the increasingly complicated relationship between project development cost and the project features (or cost drivers). Machine learning (ML) methods, with several reported successful applications, have gained popularity for software cost estimation in recent years. Data preprocessing has been claimed by many researchers as a fundamental stage of ML methods; however, very few works have been focused on the effects of data preprocessing techniques. This study aims for an empirical assessment of the effectiveness of data preprocessing techniques on ML methods in the context of software cost estimation. In this work, the authors first conduct a literature survey of the recent publications using data preprocessing techniques, followed by a systematic empirical study to analyze the strengths and weaknesses of individual data preprocessing techniques as well as their combinations. The results indicate that data preprocessing techniques may significantly influence the final prediction. They sometimes might have negative impacts on prediction performance of ML methods. In order to reduce prediction errors and improve efficiency, a careful selection is necessary according to the characteristics of machine learning methods, as well as the datasets used for software cost estimation.
Due to the complex nature of software development process, traditional parametric models and statistical methods often appear to be inadequate to model the increasingly complicated relationship between project development cost and the project features (or cost drivers). Machine learning (ML) methods, with several reported successful applications, have gained popularity for software cost estimation in recent years. Data preprocessing has been claimed by many researchers as a fundamental stage of ML methods; however, very few works have been focused on the effects of data preprocessing techniques. This study aims for an empirical assessment of the effectiveness of data preprocessing techniques on ML methods in the context of software cost estimation. In this work, we first conduct a literature survey of the recent publications using data preprocessing techniques, followed by a systematic empirical study to analyze the strengths and weaknesses of individual data preprocessing techniques as well as their combinations. Our results indicate that data preprocessing techniques may significantly influence the final prediction. They sometimes might have negative impacts on prediction performance of ML methods. In order to reduce prediction errors and improve efficiency, a careful selection is necessary according to the characteristics of machine learning methods, as well as the datasets used for software cost estimation.
Author Xie, Min
Li, Yan-Fu
Huang, Jianglin
Author_xml – sequence: 1
  givenname: Jianglin
  surname: Huang
  fullname: Huang, Jianglin
  email: jianhuang7-c@my.cityu.edu.hk
  organization: Department of Systems Engineering and Engineering Management, City University of Hong Kong, Hong Kong
– sequence: 2
  givenname: Yan-Fu
  surname: Li
  fullname: Li, Yan-Fu
  email: yanfu.li@centralesupelec.fr
  organization: Department of Industrial Engineering, CentraleSupelec, Paris, France
– sequence: 3
  givenname: Min
  surname: Xie
  fullname: Xie, Min
  email: minxie@cityu.edu.hk
  organization: Department of Systems Engineering and Engineering Management, City University of Hong Kong, Hong Kong
BookMark eNqFUEtrGzEQFsWBOo9_kIOg592OrJXW20PBmKYpBHJJzkI7O0pl1pIrKS3-91HqnnJoTgPD9z5nixADMXYtoBUg9Odd64PL0bUrEKqFvgXoPrClWPey0bBSC7aEQUGj1t3wkZ3nvAMQPUhYMrMJnPYHnzzamdtg52P2mUfHJ1ssPyQ6pIiUsw9P3MXE9xZ_-kB8JptCfTajzTTx6l7-2EQcYy6ccvF7W3wMl-zM2TnT1b97wR5vvj1sb5u7--8_tpu7BrtOlwbJTWqlNFpHk-4lwATYdzgqJ3WPKOSoRyQpNKwHvV6hlsOAE3VWVrAc5QX7dNKtcX89V3-zi8-p1slG9EIPnVZqqKgvJxSmmHMiZ9CXvzlLsn42AszroGZnToOa10EN9KYOWsndG_Ih1Zbp-B7t64lGtf5vT8lk9BSQJp8Ii5mi_7_ACw2blcU
CitedBy_id crossref_primary_10_1371_journal_pone_0187204
crossref_primary_10_1016_j_cmpb_2018_05_007
crossref_primary_10_1002_smr_2117
crossref_primary_10_3390_s21020656
crossref_primary_10_1016_j_health_2022_100125
crossref_primary_10_1016_j_jenvman_2024_122903
crossref_primary_10_1109_ACCESS_2024_3504399
crossref_primary_10_17341_gazimmfd_1023147
crossref_primary_10_4316_AECE_2021_03005
crossref_primary_10_1007_s42979_024_03517_6
crossref_primary_10_3389_fdgth_2023_1187578
crossref_primary_10_1016_j_infsof_2024_107413
crossref_primary_10_1016_j_jss_2017_11_066
crossref_primary_10_3233_HIS_160233
crossref_primary_10_5194_hess_26_221_2022
crossref_primary_10_1038_s41598_023_44449_0
crossref_primary_10_1016_j_infsof_2017_09_010
crossref_primary_10_1016_j_engappai_2022_105670
crossref_primary_10_3390_su15032772
crossref_primary_10_1016_j_est_2022_105359
crossref_primary_10_1107_S2053273324000950
crossref_primary_10_1109_TSE_2019_2939303
crossref_primary_10_1016_j_health_2022_100060
crossref_primary_10_1108_ECAM_11_2020_0958
crossref_primary_10_1002_smr_2258
crossref_primary_10_1007_s13369_019_04125_w
crossref_primary_10_1002_smr_2497
crossref_primary_10_3389_fimmu_2023_1137850
crossref_primary_10_3390_sym13112192
crossref_primary_10_5194_nhess_21_2379_2021
crossref_primary_10_1007_s42044_024_00178_9
crossref_primary_10_1093_jas_skac293
crossref_primary_10_1109_ACCESS_2024_3457771
crossref_primary_10_1145_3511805
crossref_primary_10_1002_smr_2488
crossref_primary_10_1080_08874417_2023_2220294
crossref_primary_10_1016_j_forsciint_2023_111884
crossref_primary_10_3389_feart_2021_596860
crossref_primary_10_1007_s10270_025_01273_6
crossref_primary_10_1109_ACCESS_2024_3488904
crossref_primary_10_3390_a17020064
crossref_primary_10_1109_ACCESS_2020_3036037
crossref_primary_10_1108_ECAM_04_2020_0261
crossref_primary_10_1002_smr_1983
crossref_primary_10_1109_ACCESS_2023_3307310
crossref_primary_10_54404_JTS_2024_192V_08
crossref_primary_10_1002_smr_2271
crossref_primary_10_1007_s11219_017_9391_5
crossref_primary_10_1016_j_eswa_2024_125396
crossref_primary_10_1088_2632_2153_ad1349
crossref_primary_10_3390_computers12100200
crossref_primary_10_32604_cmc_2024_057979
crossref_primary_10_3390_life11070638
crossref_primary_10_1016_j_jnca_2024_104034
crossref_primary_10_1007_s10916_018_1134_z
crossref_primary_10_1108_IJQRM_07_2019_0235
crossref_primary_10_1002_smr_2665
crossref_primary_10_1016_j_jksuci_2022_08_026
crossref_primary_10_3389_fonc_2022_924245
crossref_primary_10_29050_harranziraat_1464601
crossref_primary_10_1016_j_telpol_2024_102816
crossref_primary_10_1080_0954898X_2024_2376703
crossref_primary_10_3390_s19224822
crossref_primary_10_1016_j_jss_2017_07_012
crossref_primary_10_1007_s44217_024_00220_9
crossref_primary_10_32604_cmc_2023_030818
crossref_primary_10_3390_s23198191
crossref_primary_10_1108_ECAM_02_2020_0128
crossref_primary_10_3390_pharmaceutics16020260
crossref_primary_10_1061_JHYEFF_HEENG_6206
crossref_primary_10_3390_ijerph17196997
crossref_primary_10_1007_s10586_024_04858_w
crossref_primary_10_1007_s10586_024_04418_2
crossref_primary_10_3390_biomedinformatics4030099
crossref_primary_10_1186_s40411_017_0037_x
crossref_primary_10_1007_s41870_023_01369_6
crossref_primary_10_1109_ACCESS_2021_3119746
crossref_primary_10_1016_j_eij_2023_05_011
crossref_primary_10_1016_j_compbiomed_2024_108126
crossref_primary_10_12720_jait_16_3_342_356
crossref_primary_10_1007_s11334_020_00379_y
crossref_primary_10_1007_s12652_020_02277_4
crossref_primary_10_1109_ACCESS_2020_2977887
crossref_primary_10_1017_S0022377823000454
crossref_primary_10_1016_j_scs_2017_08_009
crossref_primary_10_1080_13467581_2023_2294871
crossref_primary_10_1002_we_2687
crossref_primary_10_2339_politeknik_444380
crossref_primary_10_3389_fgene_2021_724785
crossref_primary_10_1109_ACCESS_2022_3200149
crossref_primary_10_31571_saintek_v13i2_7696
crossref_primary_10_1109_ACCESS_2023_3312716
crossref_primary_10_1145_3673897
crossref_primary_10_2139_ssrn_4105836
crossref_primary_10_3390_s24113509
crossref_primary_10_1016_j_imu_2025_101632
crossref_primary_10_1007_s00521_015_2004_y
crossref_primary_10_1587_transinf_2020MPP0005
crossref_primary_10_1016_j_apenergy_2023_122413
crossref_primary_10_1109_TR_2018_2839718
crossref_primary_10_35784_acs_2023_18
crossref_primary_10_3390_buildings14113515
crossref_primary_10_1016_j_addma_2022_103357
crossref_primary_10_1016_j_jmsy_2018_01_006
Cites_doi 10.1109/ESEM.2009.5315991
10.1109/TSE.2005.75
10.1016/S0164-1212(00)00005-4
10.1145/2365324.2365336
10.3233/IDA-2010-0423
10.1049/ic:20040398
10.1007/s10664-011-9177-5
10.1016/S0950-5849(96)00006-7
10.1016/j.infsof.2007.04.001
10.1145/1083165.1083171
10.1109/32.965341
10.1007/s10664-012-9207-y
10.1145/1868328.1868333
10.1016/j.jss.2007.07.044
10.1023/A:1023062629183
10.1023/A:1009897800559
10.1016/j.jss.2011.09.009
10.1016/j.jss.2007.05.011
10.1007/s10664-009-9113-0
10.1016/j.jss.2012.07.050
10.1016/j.jss.2006.06.006
10.1016/j.eswa.2008.07.062
10.1145/2020390.2020396
10.1109/32.965340
10.1016/j.infsof.2012.09.012
10.1016/j.jss.2008.06.001
10.1007/s10515-012-0108-5
10.1145/337180.337223
10.1016/j.jss.2005.02.026
10.1016/j.jss.2007.12.793
10.1109/PROMISE.2007.5
10.1016/j.jss.2010.09.028
10.1109/TSE.2008.34
10.1145/2365324.2365328
10.1007/s11219-010-9112-9
10.1109/TSE.2005.58
10.1145/2020390.2020407
10.1007/s10664-011-9176-6
10.1109/TSE.2011.27
10.1007/s11219-007-9041-4
10.1023/A:1009872202035
10.1145/1414004.1414057
10.1016/j.infsof.2011.12.008
10.1016/j.infsof.2005.12.020
10.1109/ESEM.2011.34
10.1016/j.ins.2010.12.017
10.1109/TSE.2007.256943
10.1145/1868328.1868335
10.1109/32.345828
10.1007/s10664-011-9189-1
10.1007/s10664-010-9128-6
10.1007/s10664-010-9138-4
10.1109/ESEM.2007.20
10.1016/S0164-1212(97)00055-1
10.1145/2365324.2365333
10.1016/S0950-5849(02)00128-3
10.1016/j.infsof.2012.08.001
10.1016/j.jss.2010.07.032
10.1145/2365324.2365330
10.1007/s11219-009-9081-z
10.1109/TSE.2011.111
10.1007/s11219-012-9183-x
10.1109/TSE.2012.45
10.1109/ICSE.2012.6227203
10.1016/j.infsof.2010.05.009
10.1016/j.jss.2007.07.043
10.1145/1363686.1364116
10.1007/s10664-008-9104-6
10.1007/s10664-007-9054-4
10.1109/ESEM.2007.14
10.1080/713827180
10.1007/s10664-006-7552-4
10.1109/TSE.1984.5010193
10.1109/TSE.2012.83
10.1016/j.infsof.2014.01.003
10.1109/ESEM.2007.10
10.1007/s10664-011-9187-3
10.1007/s11219-010-9110-y
10.1109/TPAMI.2005.159
10.1109/TSE.2012.88
10.1109/TSE.2006.1599418
10.1016/j.infsof.2011.09.002
10.1007/s10664-011-9192-6
10.1109/32.962560
10.1109/TSE.2003.1245300
10.1145/2020390.2020399
ContentType Journal Article
Copyright 2015 Elsevier B.V.
Copyright Elsevier Science Ltd. Nov 2015
Copyright_xml – notice: 2015 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Nov 2015
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.infsof.2015.07.004
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Business
EISSN 1873-6025
EndPage 127
ExternalDocumentID 3819875041
10_1016_j_infsof_2015_07_004
S0950584915001275
Genre Feature
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
77K
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
AAYOK
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACGOD
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSV
SSZ
T5K
TWZ
UHS
UNMZH
WH7
WUQ
XFK
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SC
8FD
EFKBS
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c446t-cefd5256cafed67300d0c74cb5f367cc13b6bce316089682c6399cde4a37303b3
IEDL.DBID .~1
ISSN 0950-5849
IngestDate Fri Jul 25 07:04:12 EDT 2025
Thu Apr 24 23:12:50 EDT 2025
Tue Jul 01 02:22:01 EDT 2025
Fri Feb 23 02:23:56 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Software cost estimation
Scaling
Feature selection
Case selection
Data preprocessing
Missing-data treatments
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-cefd5256cafed67300d0c74cb5f367cc13b6bce316089682c6399cde4a37303b3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
OpenAccessLink https://hal.science/hal-01340341v1/file/IST_hal_submission.pdf
PQID 1716946559
PQPubID 41979
PageCount 20
ParticipantIDs proquest_journals_1716946559
crossref_citationtrail_10_1016_j_infsof_2015_07_004
crossref_primary_10_1016_j_infsof_2015_07_004
elsevier_sciencedirect_doi_10_1016_j_infsof_2015_07_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2015
2015-11-00
20151101
PublicationDateYYYYMMDD 2015-11-01
PublicationDate_xml – month: 11
  year: 2015
  text: November 2015
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Information and software technology
PublicationYear 2015
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Desharnais (b0425) 1989
de Barcelos Tronto, da Silva, Sant’Anna (b0040) 2008; 81
Finnie, Wittig, Desharnais (b0045) 1997; 39
Angelis, Stamelos (b0180) 2000; 5
Mittas, Angelis (b0170) 2010; 15
Kirsopp, Shepperd (b0410) 2003
Kocaguneli, Menzies, Keung, Cok, Madachy (b0325) 2013; 39
Shepperd, Kadoda (b0110) 2001; 27
Auer, Trendowicz, Graser, Haunschmid, Biffl (b0255) 2006; 32
Azzeh (b0315) 2012; 17
Shepperd, MacDonell (b0475) 2012; 54
Chiu, Huang (b0070) 2007; 80
A. Brady, T. Menzies, Case-based reasoning vs parametric models for software quality optimization, in: The 6th International Conference on Predictive Models in Software Engineering (PROMISE’10), Timisoara, Romania, 2010, pp. 1–10.
Strike, Emam, Madhavji (b0130) 2001; 27
Li, Xie, Goh (b0445) 2010; 83
Kocaguneli, Member, Menzies (b0210) 2012; 38
Keung, Kocaguneli, Menzies (b0160) 2013; 20
M.V. Kosti, N. Mittas, L. Angelis, Alternative methods using similarities in software effort estimation, in: The 8th International Conference on Predictive Models in Software Engineering (PROMISE’12), Lund, Sweden, 2012, pp. 59–68.
Oliveira, Braga, Lima, Cornélio (b0085) 2010; 52
Kocaguneli, Member, Menzies (b0055) 2012; 38
Costagliola, Di Martino, Ferrucci, Gravino, Tortora, Vitiello (b0200) 2006
N. Ramasubbu, R.K. Balan, Overcoming the challenges in cost estimation for distributed software projects, in: The 34th International Conference on Software Engineering (ICSE’12), Zurich, Switzerland, 2012, pp. 91–101.
Rodríguez, Sicilia, García, Harrison (b0360) 2012; 85
B.A. Kitchenham, E. Mendes, A comparison of cross-company and within-company effort estimation models for web applications, in: The 8th International Conference on Empirical Assessment in Software Engineering (EASE’04), Edinburgh, Scotland, UK, 2004, pp. 47–55.
Mittas, Angelis (b0420) 2011; 17
Fernández-Diego, González-Ladrón-de-Guevara (b0415) 2014; 56
Li, Xie, Goh (b0050) 2009; 36
A. Corazza, S. Di Martino, F. Ferrucci, C. Gravino, E. Mendes, Applying support vector regression for Web effort estimation using a cross-company dataset, in: The 3rd International Symposium on Empirical Software Engineering and Measurement (ESEM’09), Lake Buena Vista, Florida, USA, 2009, pp. 191–202.
Mittas, Angelis (b0330) 2013; 39
Srinivasan, Fisher (b0025) 1995; 21
L.C. Briand, T. Langley, I. Wieczorek, A replicated assessment and comparison of common software cost modeling techniques, in: The 22nd International Conference on Software Engineering (ICSE’00), Limerick, Ireland, 2000, pp. 377–386.
Lopez-Martin, Isaza, Chavoya (b0335) 2011; 17
Pendharkar, Subramanian, Rodger (b0250) 2005; 31
Azzeh, Neagu, Cowling (b0165) 2009; 15
Corazza, Di Martino, Ferrucci, Gravino, Mendes (b0185) 2011; 16
Seo, Bae (b0150) 2013; 18
S. Di Martino, F. Ferrucci, C. Gravino, E. Mendes, Comparing size measures for predicting web application development effort: a case study, in: The 1st International Symposium on Empirical Software Engineering and Measurement (ESEM’07), IEEE, Madrid, Spain, 2007, pp. 324–333.
ISBSG, The ISBSG Development & Enhancement Project Data in: ISBSG (Ed.), 2013.
.
Guyon, Elisseeff (b0390) 2003; 3
Khatibi Bardsiri, Jawawi, Hashim, Khatibi (b0295) 2013; 21
Twala, Cartwright (b0095) 2010; 14
Kitchenham, Mendes (b0465) 2009
Heiat (b0030) 2002; 44
Azzeh, Neagu, Cowling (b0060) 2011; 84
E. Kocaguneli, T. Menzies, How to find relevant data for effort estimation? in: The 5th International Symposium on Empirical Software Engineering and Measurement (ESEM’11), Banff, Canada, 2011, pp. 255–264.
Corazza, Di Martino, Ferrucci, Gravino, Sarro, Mendes (b0300) 2013; 18
Hsu, Huang (b0320) 2010; 19
S. Das, Filters, wrappers and a boosting-based hybrid for feature selection, in: The 18th International Conference on Machine Learning (ICML’01), Williamstown, MA, USA, 2001, pp. 74–81.
Li, Xie, Goh (b0125) 2009; 82
R. Borges, T. Menzies, Learning to change projects, in: The 8th International Conference on Predictive Models in Software Engineering (PROMISE’12), Lund, Sweden, 2012, pp. 11–18.
Li, Xie, Goh (b0275) 2009; 14
Foss, Stensrud, Kitchenham, Myrtveit (b0450) 2003; 29
Bakir, Turhan, Bener (b0345) 2011; 19
Ferrucci, Harman, Sarro (b0405) 2014
L.L. Minku, X. Yao, A principled evaluation of ensembles of learning machines for software effort estimation, in: the 7th International Conference on Predictive Models in Software Engineering (PROMISE’11), Banff, Canada, 2011, pp. 1–10.
Peng, Long, Ding (b0395) 2005; 27
A. Corazza, S. Di Martino, F. Ferrucci, C. Gravino, F. Sarro, E. Mendes, How effective is Tabu search to configure support vector regression for effort estimation? in: The 6th International Conference on Predictive Models in Software Engineering (PROMISE’10), Timisoara, Romania, 2010, pp. 1–10.
Ahmed, Ahmad, AlGhamdi (b0460) 2013; 55
Sentas, Angelis (b0145) 2006; 79
Jørgensen, Shepperd (b0430) 2007; 33
Gray, MacDonell (b0440) 1997; 39
M. Tsunoda, T. Kakimoto, A. Monden, K.I. Matsumoto, An empirical evaluation of outlier deletion methods for analogy-based cost estimation, in: The 7th International Conference on Predictive Models in Software Engineering (PROMISE ‘11), Banff, Canada, 2011, pp. 1–10.
Li, Ruhe, Al-Emran, Richter (b0175) 2007; 12
Menzies, Butcher, Cok, Marcus, Layman, Shull, Turhan, Zimmermann (b0260) 2013; 39
E. Kocaguneli, T. Menzies, J. Hihn, B.H. Kang, Size doesn’t matter? On the value of software size features for effort estimation, in: The 8th International Conference on Predictive Models in Software Engineering (PROMISE’12), Lund, Sweden, 2012, pp. 89–98.
J. Li, A. Al-Emran, G. Ruhe, Impact analysis of missing values on the prediction accuracy of analogy-based software effort estimation method AQUA, in: The 1st International Symposium on Empirical Software Engineering and Measurement (ESEM’07), Madrid, Spain, 2007, pp. 126–135.
Minku, Yao (b0310) 2013; 55
Walkerden, Jeffery (b0435) 1999; 4
P.L. Braga, A.L.I. Oliveira, S.R.L. Meira, A GA-based feature selection and parameters optimization for support vector regression applied to software effort estimation, in: The 23rd Annual ACM Symposium on Applied Computing (SAC’08), Fortaleza, Ceara, Brazil, 2008, pp. 1788–1792.
J. Keung, Empirical evaluation of analogy-X for software cost estimation, in: The 2nd ACM-IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM’08), Kaiserslautern, Germany, 2008, pp. 294–296.
E. Mendes, A comparison of techniques for web effort estimation, in: The 1st International Symposium on Empirical Software Engineering and Measurement (ESEM’07), Madrid, Spain, 2007, pp. 334–343.
Liu, Qin, Mintram, Ross (b0290) 2008; 16
Zhang, Zhang, Yang (b0090) 2003; 17
Mendes, Watson, Triggs, Mosley, Counsell (b0380) 2003; 8
Wen, Li, Lin, Hu, Huang (b0005) 2012; 54
Myrtveit, Stensrud, Shepperd (b0455) 2005; 31
Li, Ruhe (b0080) 2008; 13
Kocaguneli, Menzies, Keung (b0065) 2013; 18
Bakir, Turhan, Bener (b0340) 2009; 18
Van Hulse, Khoshgoftaar (b0365) 2014; 259
Putnam, Myers (b0015) 1991
Huang, Chiu (b0075) 2006; 48
M. Azzeh, Software effort estimation based on optimized model tree, in: the 7th International Conference on Predictive Models in Software Engineering (PROMISE’11), Banff, Canada, 2011.
Van Hulse, Khoshgoftaar (b0135) 2008; 81
J. Li, G. Ruhe, Decision support analysis for software effort estimation by analogy, in: The 3rd International Conference on Predictor Models in Software Engineering (PROMISE’07), Minneapolis, MN, USA, 2007, pp. 6–16.
Keung, Kitchenham, Jeffery (b0115) 2008; 34
Mittas, Athanasiades, Angelis (b0225) 2008; 50
Mair, Kadoda, Lefley, Phalp, Schofield, Shepperd, Webster (b0035) 2000; 53
Vinay Kumar, Ravi, Carr, Raj Kiran (b0120) 2008; 81
F. Ferrucci, E. Mendes, F. Sarro, Web effort estimation: the value of cross-company data set compared to single-company data set, in: The 8th International Conference on Predictive Models in Software Engineering (PROMISE’12), Lund, Sweden, 2012, pp. 29–38.
Bou, Ho, Fernando (b0020) 2013; 86
Boehm (b0010) 1984; SE-10
Mendes, Di Martino, Ferrucci, Gravino (b0470) 2008; 81
Myrtveit, Stensrud, Olsson (b0140) 2001; 27
Z. Chen, T. Menzies, D. Port, B. Boehm, Feature subset selection can improve software cost estimation accuracy, in: The 2005 International Conference on Predictor Models in Software Engineering (PROMISE’05), St. Louis, MO, USA, 2005, pp. 1–6.
Azzeh (10.1016/j.infsof.2015.07.004_b0315) 2012; 17
10.1016/j.infsof.2015.07.004_b0270
10.1016/j.infsof.2015.07.004_b0350
10.1016/j.infsof.2015.07.004_b0195
Azzeh (10.1016/j.infsof.2015.07.004_b0060) 2011; 84
10.1016/j.infsof.2015.07.004_b0230
Li (10.1016/j.infsof.2015.07.004_b0125) 2009; 82
10.1016/j.infsof.2015.07.004_b0155
10.1016/j.infsof.2015.07.004_b0235
Zhang (10.1016/j.infsof.2015.07.004_b0090) 2003; 17
10.1016/j.infsof.2015.07.004_b0355
Seo (10.1016/j.infsof.2015.07.004_b0150) 2013; 18
de Barcelos Tronto (10.1016/j.infsof.2015.07.004_b0040) 2008; 81
Li (10.1016/j.infsof.2015.07.004_b0080) 2008; 13
Wen (10.1016/j.infsof.2015.07.004_b0005) 2012; 54
Auer (10.1016/j.infsof.2015.07.004_b0255) 2006; 32
Walkerden (10.1016/j.infsof.2015.07.004_b0435) 1999; 4
Mittas (10.1016/j.infsof.2015.07.004_b0420) 2011; 17
Mittas (10.1016/j.infsof.2015.07.004_b0225) 2008; 50
Menzies (10.1016/j.infsof.2015.07.004_b0260) 2013; 39
Kocaguneli (10.1016/j.infsof.2015.07.004_b0065) 2013; 18
Ahmed (10.1016/j.infsof.2015.07.004_b0460) 2013; 55
Mittas (10.1016/j.infsof.2015.07.004_b0170) 2010; 15
10.1016/j.infsof.2015.07.004_b0190
Kocaguneli (10.1016/j.infsof.2015.07.004_b0325) 2013; 39
Azzeh (10.1016/j.infsof.2015.07.004_b0165) 2009; 15
10.1016/j.infsof.2015.07.004_b0280
10.1016/j.infsof.2015.07.004_b0240
Myrtveit (10.1016/j.infsof.2015.07.004_b0140) 2001; 27
Oliveira (10.1016/j.infsof.2015.07.004_b0085) 2010; 52
10.1016/j.infsof.2015.07.004_b0285
Costagliola (10.1016/j.infsof.2015.07.004_b0200) 2006
10.1016/j.infsof.2015.07.004_b0400
Desharnais (10.1016/j.infsof.2015.07.004_b0425) 1989
10.1016/j.infsof.2015.07.004_b0245
Li (10.1016/j.infsof.2015.07.004_b0175) 2007; 12
10.1016/j.infsof.2015.07.004_b0205
Heiat (10.1016/j.infsof.2015.07.004_b0030) 2002; 44
Chiu (10.1016/j.infsof.2015.07.004_b0070) 2007; 80
Li (10.1016/j.infsof.2015.07.004_b0050) 2009; 36
Corazza (10.1016/j.infsof.2015.07.004_b0185) 2011; 16
Guyon (10.1016/j.infsof.2015.07.004_b0390) 2003; 3
Kitchenham (10.1016/j.infsof.2015.07.004_b0465) 2009
Mair (10.1016/j.infsof.2015.07.004_b0035) 2000; 53
Khatibi Bardsiri (10.1016/j.infsof.2015.07.004_b0295) 2013; 21
Kirsopp (10.1016/j.infsof.2015.07.004_b0410) 2003
Rodríguez (10.1016/j.infsof.2015.07.004_b0360) 2012; 85
Gray (10.1016/j.infsof.2015.07.004_b0440) 1997; 39
Fernández-Diego (10.1016/j.infsof.2015.07.004_b0415) 2014; 56
Van Hulse (10.1016/j.infsof.2015.07.004_b0135) 2008; 81
Liu (10.1016/j.infsof.2015.07.004_b0290) 2008; 16
Sentas (10.1016/j.infsof.2015.07.004_b0145) 2006; 79
10.1016/j.infsof.2015.07.004_b0370
Li (10.1016/j.infsof.2015.07.004_b0445) 2010; 83
Myrtveit (10.1016/j.infsof.2015.07.004_b0455) 2005; 31
Keung (10.1016/j.infsof.2015.07.004_b0160) 2013; 20
Corazza (10.1016/j.infsof.2015.07.004_b0300) 2013; 18
Mittas (10.1016/j.infsof.2015.07.004_b0330) 2013; 39
10.1016/j.infsof.2015.07.004_b0375
Huang (10.1016/j.infsof.2015.07.004_b0075) 2006; 48
10.1016/j.infsof.2015.07.004_b0215
Pendharkar (10.1016/j.infsof.2015.07.004_b0250) 2005; 31
Hsu (10.1016/j.infsof.2015.07.004_b0320) 2010; 19
Strike (10.1016/j.infsof.2015.07.004_b0130) 2001; 27
Bakir (10.1016/j.infsof.2015.07.004_b0340) 2009; 18
Shepperd (10.1016/j.infsof.2015.07.004_b0475) 2012; 54
Srinivasan (10.1016/j.infsof.2015.07.004_b0025) 1995; 21
Van Hulse (10.1016/j.infsof.2015.07.004_b0365) 2014; 259
Minku (10.1016/j.infsof.2015.07.004_b0310) 2013; 55
Jørgensen (10.1016/j.infsof.2015.07.004_b0430) 2007; 33
Bou (10.1016/j.infsof.2015.07.004_b0020) 2013; 86
Finnie (10.1016/j.infsof.2015.07.004_b0045) 1997; 39
Mendes (10.1016/j.infsof.2015.07.004_b0380) 2003; 8
Shepperd (10.1016/j.infsof.2015.07.004_b0110) 2001; 27
Keung (10.1016/j.infsof.2015.07.004_b0115) 2008; 34
Twala (10.1016/j.infsof.2015.07.004_b0095) 2010; 14
10.1016/j.infsof.2015.07.004_b0220
10.1016/j.infsof.2015.07.004_b0385
10.1016/j.infsof.2015.07.004_b0100
10.1016/j.infsof.2015.07.004_b0265
10.1016/j.infsof.2015.07.004_b0105
10.1016/j.infsof.2015.07.004_b0305
Putnam (10.1016/j.infsof.2015.07.004_b0015) 1991
Bakir (10.1016/j.infsof.2015.07.004_b0345) 2011; 19
Peng (10.1016/j.infsof.2015.07.004_b0395) 2005; 27
Kocaguneli (10.1016/j.infsof.2015.07.004_b0055) 2012; 38
Angelis (10.1016/j.infsof.2015.07.004_b0180) 2000; 5
Li (10.1016/j.infsof.2015.07.004_b0275) 2009; 14
Foss (10.1016/j.infsof.2015.07.004_b0450) 2003; 29
Ferrucci (10.1016/j.infsof.2015.07.004_b0405) 2014
Vinay Kumar (10.1016/j.infsof.2015.07.004_b0120) 2008; 81
Lopez-Martin (10.1016/j.infsof.2015.07.004_b0335) 2011; 17
Boehm (10.1016/j.infsof.2015.07.004_b0010) 1984; SE-10
Mendes (10.1016/j.infsof.2015.07.004_b0470) 2008; 81
Kocaguneli (10.1016/j.infsof.2015.07.004_b0210) 2012; 38
References_xml – volume: 86
  start-page: 144
  year: 2013
  end-page: 160
  ident: b0020
  article-title: Towards an early software estimation using log-linear regression and a multilayer perceptron model
  publication-title: J. Syst. Softw.
– volume: 19
  start-page: 165
  year: 2010
  end-page: 200
  ident: b0320
  article-title: Comparison of weighted grey relational analysis for software effort estimation
  publication-title: Softw. Qual. J.
– volume: 39
  start-page: 425
  year: 1997
  end-page: 437
  ident: b0440
  article-title: A comparison of techniques for developing predictive models of software metrics
  publication-title: Inform. Softw. Technol.
– volume: 5
  start-page: 35
  year: 2000
  end-page: 68
  ident: b0180
  article-title: A simulation tool for efficient analogy based cost estimation
  publication-title: Empirical Softw. Eng.
– volume: 8
  start-page: 163
  year: 2003
  end-page: 196
  ident: b0380
  article-title: A comparative study of cost estimation models for web hypermedia applications
  publication-title: Empirical Softw. Eng.
– volume: 81
  start-page: 1853
  year: 2008
  end-page: 1867
  ident: b0120
  article-title: Software development cost estimation using wavelet neural networks
  publication-title: J. Syst. Softw.
– reference: A. Corazza, S. Di Martino, F. Ferrucci, C. Gravino, F. Sarro, E. Mendes, How effective is Tabu search to configure support vector regression for effort estimation? in: The 6th International Conference on Predictive Models in Software Engineering (PROMISE’10), Timisoara, Romania, 2010, pp. 1–10.
– volume: 48
  start-page: 1034
  year: 2006
  end-page: 1045
  ident: b0075
  article-title: Optimization of analogy weights by genetic algorithm for software effort estimation
  publication-title: Inform. Softw. Technol.
– volume: 32
  start-page: 83
  year: 2006
  end-page: 92
  ident: b0255
  article-title: Optimal project feature weights in analogy-based cost estimation: improvement and limitations
  publication-title: IEEE Trans. Softw. Eng.
– reference: N. Ramasubbu, R.K. Balan, Overcoming the challenges in cost estimation for distributed software projects, in: The 34th International Conference on Software Engineering (ICSE’12), Zurich, Switzerland, 2012, pp. 91–101.
– volume: 85
  start-page: 562
  year: 2012
  end-page: 570
  ident: b0360
  article-title: Empirical findings on team size and productivity in software development
  publication-title: J. Syst. Softw.
– reference: L.L. Minku, X. Yao, A principled evaluation of ensembles of learning machines for software effort estimation, in: the 7th International Conference on Predictive Models in Software Engineering (PROMISE’11), Banff, Canada, 2011, pp. 1–10.
– volume: 29
  start-page: 985
  year: 2003
  end-page: 995
  ident: b0450
  article-title: A simulation study of the model evaluation criterion MMRE
  publication-title: IEEE Trans. Softw. Eng.
– volume: 14
  start-page: 299
  year: 2010
  end-page: 331
  ident: b0095
  article-title: Ensemble missing data techniques for software effort prediction
  publication-title: Intell. Data Anal.
– start-page: 61
  year: 2003
  end-page: 74
  ident: b0410
  article-title: Case and feature subset selection in case-based software project effort prediction
  publication-title: Research and Development in Intelligent Systems XIX
– reference: A. Brady, T. Menzies, Case-based reasoning vs parametric models for software quality optimization, in: The 6th International Conference on Predictive Models in Software Engineering (PROMISE’10), Timisoara, Romania, 2010, pp. 1–10.
– reference: E. Kocaguneli, T. Menzies, J. Hihn, B.H. Kang, Size doesn’t matter? On the value of software size features for effort estimation, in: The 8th International Conference on Predictive Models in Software Engineering (PROMISE’12), Lund, Sweden, 2012, pp. 89–98.
– volume: 18
  start-page: 659
  year: 2013
  end-page: 698
  ident: b0150
  article-title: On the value of outlier elimination on software effort estimation research
  publication-title: Empirical Softw. Eng.
– reference: M.V. Kosti, N. Mittas, L. Angelis, Alternative methods using similarities in software effort estimation, in: The 8th International Conference on Predictive Models in Software Engineering (PROMISE’12), Lund, Sweden, 2012, pp. 59–68.
– volume: 27
  start-page: 999
  year: 2001
  end-page: 1013
  ident: b0140
  article-title: Analyzing data sets with missing data: an empirical evaluation of imputation methods and likelihood-based methods
  publication-title: IEEE Trans. Softw. Eng.
– volume: 19
  start-page: 537
  year: 2011
  end-page: 552
  ident: b0345
  article-title: A comparative study for estimating software development effort intervals
  publication-title: Softw. Qual. J.
– volume: 80
  start-page: 628
  year: 2007
  end-page: 640
  ident: b0070
  article-title: The adjusted analogy-based software effort estimation based on similarity distances
  publication-title: J. Syst. Softw.
– volume: 18
  start-page: 506
  year: 2013
  end-page: 546
  ident: b0300
  article-title: Using tabu search to configure support vector regression for effort estimation
  publication-title: Empirical Softw. Eng.
– start-page: 373
  year: 2014
  end-page: 399
  ident: b0405
  article-title: Search-based software project management
  publication-title: Software Project Management in a Changing World
– reference: M. Azzeh, Software effort estimation based on optimized model tree, in: the 7th International Conference on Predictive Models in Software Engineering (PROMISE’11), Banff, Canada, 2011.
– reference: J. Li, A. Al-Emran, G. Ruhe, Impact analysis of missing values on the prediction accuracy of analogy-based software effort estimation method AQUA, in: The 1st International Symposium on Empirical Software Engineering and Measurement (ESEM’07), Madrid, Spain, 2007, pp. 126–135.
– reference: L.C. Briand, T. Langley, I. Wieczorek, A replicated assessment and comparison of common software cost modeling techniques, in: The 22nd International Conference on Software Engineering (ICSE’00), Limerick, Ireland, 2000, pp. 377–386.
– reference: J. Li, G. Ruhe, Decision support analysis for software effort estimation by analogy, in: The 3rd International Conference on Predictor Models in Software Engineering (PROMISE’07), Minneapolis, MN, USA, 2007, pp. 6–16.
– volume: 83
  start-page: 2332
  year: 2010
  end-page: 2343
  ident: b0445
  article-title: Adaptive ridge regression system for software cost estimating on multi-collinear datasets
  publication-title: J. Syst. Softw.
– volume: 17
  start-page: 90
  year: 2012
  end-page: 127
  ident: b0315
  article-title: A replicated assessment and comparison of adaptation techniques for analogy-based effort estimation
  publication-title: Empirical Softw. Eng.
– start-page: 4
  year: 2009
  ident: b0465
  article-title: Why comparative effort prediction studies may be invalid
  publication-title: The 5th International Conference on Predictor Models in Software Engineering (PROMISE’09)
– volume: 15
  start-page: 60
  year: 2009
  end-page: 90
  ident: b0165
  article-title: Fuzzy grey relational analysis for software effort estimation
  publication-title: Empirical Softw. Eng.
– volume: 44
  start-page: 911
  year: 2002
  end-page: 922
  ident: b0030
  article-title: Comparison of artificial neural network and regression models for estimating software development effort
  publication-title: Inform. Softw. Technol.
– volume: 33
  start-page: 33
  year: 2007
  end-page: 53
  ident: b0430
  article-title: A systematic review of software development cost estimation studies
  publication-title: IEEE Trans. Softw. Eng.
– reference: P.L. Braga, A.L.I. Oliveira, S.R.L. Meira, A GA-based feature selection and parameters optimization for support vector regression applied to software effort estimation, in: The 23rd Annual ACM Symposium on Applied Computing (SAC’08), Fortaleza, Ceara, Brazil, 2008, pp. 1788–1792.
– volume: 31
  start-page: 615
  year: 2005
  end-page: 624
  ident: b0250
  article-title: A probabilistic model for predicting software development effort
  publication-title: IEEE Trans. Softw. Eng.
– year: 1991
  ident: b0015
  article-title: Measures for Excellence: Reliable Software on Time, within Budget
– volume: 16
  start-page: 411
  year: 2008
  end-page: 458
  ident: b0290
  article-title: Evaluation of preliminary data analysis framework in software cost estimation based on ISBSG R9 data
  publication-title: Softw. Qual. J.
– volume: 82
  start-page: 241
  year: 2009
  end-page: 252
  ident: b0125
  article-title: A study of project selection and feature weighting for analogy based software cost estimation
  publication-title: J. Syst. Softw.
– reference: R. Borges, T. Menzies, Learning to change projects, in: The 8th International Conference on Predictive Models in Software Engineering (PROMISE’12), Lund, Sweden, 2012, pp. 11–18.
– reference: A. Corazza, S. Di Martino, F. Ferrucci, C. Gravino, E. Mendes, Applying support vector regression for Web effort estimation using a cross-company dataset, in: The 3rd International Symposium on Empirical Software Engineering and Measurement (ESEM’09), Lake Buena Vista, Florida, USA, 2009, pp. 191–202.
– volume: 20
  start-page: 543
  year: 2013
  end-page: 567
  ident: b0160
  article-title: Finding conclusion stability for selecting the best effort predictor in software effort estimation
  publication-title: Autom. Softw. Eng.
– reference: S. Di Martino, F. Ferrucci, C. Gravino, E. Mendes, Comparing size measures for predicting web application development effort: a case study, in: The 1st International Symposium on Empirical Software Engineering and Measurement (ESEM’07), IEEE, Madrid, Spain, 2007, pp. 324–333.
– volume: 39
  start-page: 1040
  year: 2013
  end-page: 1053
  ident: b0325
  article-title: Active learning and effort estimation: finding the essential content of software effort estimation data
  publication-title: IEEE Trans. Softw. Eng.
– volume: 259
  start-page: 596
  year: 2014
  end-page: 610
  ident: b0365
  article-title: Incomplete-case nearest neighbor imputation in software measurement data
  publication-title: Inform. Sci.
– volume: 39
  start-page: 281
  year: 1997
  end-page: 289
  ident: b0045
  article-title: A comparison of software effort estimation techniques: using function points with neural networks, case-based reasoning and regression models
  publication-title: J. Syst. Softw.
– volume: 84
  start-page: 270
  year: 2011
  end-page: 284
  ident: b0060
  article-title: Analogy-based software effort estimation using fuzzy numbers
  publication-title: J. Syst. Softw.
– volume: 81
  start-page: 673
  year: 2008
  end-page: 690
  ident: b0470
  article-title: Cross-company vs. single-company web effort models using the Tukutuku database: an extended study
  publication-title: J. Syst. Softw.
– volume: 34
  start-page: 471
  year: 2008
  end-page: 484
  ident: b0115
  article-title: Analogy-X: providing statistical inference to analogy-based software cost estimation
  publication-title: IEEE Trans. Softw. Eng.
– volume: 38
  start-page: 425
  year: 2012
  end-page: 439
  ident: b0055
  article-title: Exploiting the essential assumptions of analogy-based effort estimation
  publication-title: IEEE Trans. Softw. Eng.
– volume: 81
  start-page: 691
  year: 2008
  end-page: 708
  ident: b0135
  article-title: A comprehensive empirical evaluation of missing value imputation in noisy software measurement data
  publication-title: J. Syst. Softw.
– volume: 12
  start-page: 65
  year: 2007
  end-page: 106
  ident: b0175
  article-title: A flexible method for software effort estimation by analogy
  publication-title: Empirical Softw. Eng.
– volume: 14
  start-page: 603
  year: 2009
  end-page: 643
  ident: b0275
  article-title: A study of the non-linear adjustment for analogy based software cost estimation
  publication-title: Empirical Softw. Eng.
– start-page: 9
  year: 2006
  end-page: 16
  ident: b0200
  article-title: Effort estimation modeling techniques: a case study for web applications
  publication-title: The 6th International Conference on Web Engineering (ICWE’06)
– reference: F. Ferrucci, E. Mendes, F. Sarro, Web effort estimation: the value of cross-company data set compared to single-company data set, in: The 8th International Conference on Predictive Models in Software Engineering (PROMISE’12), Lund, Sweden, 2012, pp. 29–38.
– volume: 27
  start-page: 890
  year: 2001
  end-page: 908
  ident: b0130
  article-title: Software cost estimation with incomplete data
  publication-title: IEEE Trans. Softw. Eng.
– volume: 17
  start-page: 738
  year: 2011
  end-page: 756
  ident: b0335
  article-title: Software development effort prediction of industrial projects applying a general regression neural network
  publication-title: Empirical Softw. Eng.
– volume: 55
  start-page: 241
  year: 2013
  end-page: 251
  ident: b0460
  article-title: Probabilistic size proxy for software effort prediction: a framework
  publication-title: Inform. Softw. Technol.
– volume: 79
  start-page: 404
  year: 2006
  end-page: 414
  ident: b0145
  article-title: Categorical missing data imputation for software cost estimation by multinomial logistic regression
  publication-title: J. Syst. Softw.
– volume: 4
  start-page: 135
  year: 1999
  end-page: 158
  ident: b0435
  article-title: Empirical study of analogy-based software effort estimation
  publication-title: Empirical Softw. Eng.
– volume: 36
  start-page: 5921
  year: 2009
  end-page: 5931
  ident: b0050
  article-title: A study of mutual information based feature selection for case based reasoning in software cost estimation
  publication-title: Expert Syst. Appl.
– volume: 18
  start-page: 1
  year: 2013
  end-page: 24
  ident: b0065
  article-title: Kernel methods for software effort estimation: effects of different kernel functions and bandwidths on estimation accuracy
  publication-title: Empirical Softw. Eng.
– reference: E. Kocaguneli, T. Menzies, How to find relevant data for effort estimation? in: The 5th International Symposium on Empirical Software Engineering and Measurement (ESEM’11), Banff, Canada, 2011, pp. 255–264.
– volume: 38
  start-page: 1403
  year: 2012
  end-page: 1416
  ident: b0210
  article-title: On the value of ensemble effort estimation
  publication-title: IEEE Trans. Softw. Eng.
– volume: 53
  start-page: 23
  year: 2000
  end-page: 29
  ident: b0035
  article-title: Investigation of machine learning based prediction systems
  publication-title: J. Syst. Softw.
– volume: 18
  start-page: 57
  year: 2009
  end-page: 80
  ident: b0340
  article-title: A new perspective on data homogeneity in software cost estimation: a study in the embedded systems domain
  publication-title: Softw. Qual. J.
– reference: S. Das, Filters, wrappers and a boosting-based hybrid for feature selection, in: The 18th International Conference on Machine Learning (ICML’01), Williamstown, MA, USA, 2001, pp. 74–81.
– year: 1989
  ident: b0425
  article-title: Analyse statistique de la productivitie des projets informatique a partie de la technique des point des fonction
– volume: SE-10
  start-page: 4
  year: 1984
  end-page: 21
  ident: b0010
  article-title: Software engineering economics
  publication-title: IEEE Trans. Softw. Eng.
– volume: 31
  start-page: 380
  year: 2005
  end-page: 391
  ident: b0455
  article-title: Reliability and validity in comparative studies software prediction models
  publication-title: IEEE Trans. Softw. Eng.
– volume: 52
  start-page: 1155
  year: 2010
  end-page: 1166
  ident: b0085
  article-title: GA-based method for feature selection and parameters optimization for machine learning regression applied to software effort estimation
  publication-title: Inform. Softw. Technol.
– volume: 27
  start-page: 1226
  year: 2005
  end-page: 1238
  ident: b0395
  article-title: Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: E. Mendes, A comparison of techniques for web effort estimation, in: The 1st International Symposium on Empirical Software Engineering and Measurement (ESEM’07), Madrid, Spain, 2007, pp. 334–343.
– volume: 3
  start-page: 1157
  year: 2003
  end-page: 1182
  ident: b0390
  article-title: An introduction to variable and feature selection
  publication-title: J. Mach. Learn. Res.
– volume: 21
  start-page: 501
  year: 2013
  end-page: 526
  ident: b0295
  article-title: A PSO-based model to increase the accuracy of software development effort estimation
  publication-title: Softw. Qual. J.
– reference: >.
– volume: 16
  start-page: 211
  year: 2011
  end-page: 243
  ident: b0185
  article-title: Investigating the use of support vector regression for web effort estimation
  publication-title: Empirical Softw. Eng.
– volume: 21
  start-page: 126
  year: 1995
  end-page: 137
  ident: b0025
  article-title: Machine learning approaches to estimating software development effort
  publication-title: IEEE Trans. Softw. Eng.
– reference: B.A. Kitchenham, E. Mendes, A comparison of cross-company and within-company effort estimation models for web applications, in: The 8th International Conference on Empirical Assessment in Software Engineering (EASE’04), Edinburgh, Scotland, UK, 2004, pp. 47–55.
– volume: 39
  start-page: 537
  year: 2013
  end-page: 551
  ident: b0330
  article-title: Ranking and clustering software cost estimation models through a multiple comparisons algorithm
  publication-title: IEEE Trans. Softw. Eng.
– volume: 54
  start-page: 41
  year: 2012
  end-page: 59
  ident: b0005
  article-title: Systematic literature review of machine learning based software development effort estimation models
  publication-title: Inform. Softw. Technol.
– volume: 13
  start-page: 63
  year: 2008
  end-page: 96
  ident: b0080
  article-title: Analysis of attribute weighting heuristics for analogy-based software effort estimation method AQUA+
  publication-title: Empirical Softw. Eng.
– reference: M. Tsunoda, T. Kakimoto, A. Monden, K.I. Matsumoto, An empirical evaluation of outlier deletion methods for analogy-based cost estimation, in: The 7th International Conference on Predictive Models in Software Engineering (PROMISE ‘11), Banff, Canada, 2011, pp. 1–10.
– volume: 39
  start-page: 822
  year: 2013
  end-page: 834
  ident: b0260
  article-title: Local versus global lessons for defect prediction and effort estimation
  publication-title: IEEE Trans. Softw. Eng.
– volume: 17
  start-page: 34
  year: 2011
  end-page: 61
  ident: b0420
  article-title: A permutation test based on regression error characteristic curves for software cost estimation models
  publication-title: Empirical Softw. Eng.
– volume: 81
  start-page: 356
  year: 2008
  end-page: 367
  ident: b0040
  article-title: An investigation of artificial neural networks based prediction systems in software project management
  publication-title: J. Syst. Softw.
– volume: 55
  start-page: 1512
  year: 2013
  end-page: 1528
  ident: b0310
  article-title: Ensembles and locality: insight on improving software effort estimation
  publication-title: Inform. Softw. Technol.
– reference: J. Keung, Empirical evaluation of analogy-X for software cost estimation, in: The 2nd ACM-IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM’08), Kaiserslautern, Germany, 2008, pp. 294–296.
– reference: ISBSG, The ISBSG Development & Enhancement Project Data in: ISBSG (Ed.), 2013. <
– volume: 15
  start-page: 523
  year: 2010
  end-page: 555
  ident: b0170
  article-title: LSEbA: least squares regression and estimation by analogy in a semi-parametric model for software cost estimation
  publication-title: Empirical Softw. Eng.
– volume: 27
  start-page: 1014
  year: 2001
  end-page: 1022
  ident: b0110
  article-title: Comparing software prediction techniques using simulation
  publication-title: IEEE Trans. Softw. Eng.
– reference: Z. Chen, T. Menzies, D. Port, B. Boehm, Feature subset selection can improve software cost estimation accuracy, in: The 2005 International Conference on Predictor Models in Software Engineering (PROMISE’05), St. Louis, MO, USA, 2005, pp. 1–6.
– volume: 17
  start-page: 375
  year: 2003
  end-page: 381
  ident: b0090
  article-title: Data preparation for data mining
  publication-title: Appl. Artif. Intell.
– volume: 56
  start-page: 527
  year: 2014
  end-page: 544
  ident: b0415
  article-title: Potential and limitations of the ISBSG dataset in enhancing software engineering research: a mapping review
  publication-title: Inform. Softw. Technol.
– volume: 54
  start-page: 820
  year: 2012
  end-page: 827
  ident: b0475
  article-title: Evaluating prediction systems in software project estimation
  publication-title: Inform. Softw. Technol.
– volume: 50
  start-page: 221
  year: 2008
  end-page: 230
  ident: b0225
  article-title: Improving analogy-based software cost estimation by a resampling method
  publication-title: Inform. Softw. Technol.
– ident: 10.1016/j.infsof.2015.07.004_b0220
  doi: 10.1109/ESEM.2009.5315991
– volume: 31
  start-page: 615
  year: 2005
  ident: 10.1016/j.infsof.2015.07.004_b0250
  article-title: A probabilistic model for predicting software development effort
  publication-title: IEEE Trans. Softw. Eng.
  doi: 10.1109/TSE.2005.75
– volume: 53
  start-page: 23
  year: 2000
  ident: 10.1016/j.infsof.2015.07.004_b0035
  article-title: Investigation of machine learning based prediction systems
  publication-title: J. Syst. Softw.
  doi: 10.1016/S0164-1212(00)00005-4
– ident: 10.1016/j.infsof.2015.07.004_b0285
  doi: 10.1145/2365324.2365336
– volume: 14
  start-page: 299
  year: 2010
  ident: 10.1016/j.infsof.2015.07.004_b0095
  article-title: Ensemble missing data techniques for software effort prediction
  publication-title: Intell. Data Anal.
  doi: 10.3233/IDA-2010-0423
– year: 1989
  ident: 10.1016/j.infsof.2015.07.004_b0425
– ident: 10.1016/j.infsof.2015.07.004_b0190
  doi: 10.1049/ic:20040398
– volume: 17
  start-page: 34
  year: 2011
  ident: 10.1016/j.infsof.2015.07.004_b0420
  article-title: A permutation test based on regression error characteristic curves for software cost estimation models
  publication-title: Empirical Softw. Eng.
  doi: 10.1007/s10664-011-9177-5
– volume: 39
  start-page: 425
  year: 1997
  ident: 10.1016/j.infsof.2015.07.004_b0440
  article-title: A comparison of techniques for developing predictive models of software metrics
  publication-title: Inform. Softw. Technol.
  doi: 10.1016/S0950-5849(96)00006-7
– volume: 50
  start-page: 221
  year: 2008
  ident: 10.1016/j.infsof.2015.07.004_b0225
  article-title: Improving analogy-based software cost estimation by a resampling method
  publication-title: Inform. Softw. Technol.
  doi: 10.1016/j.infsof.2007.04.001
– ident: 10.1016/j.infsof.2015.07.004_b0370
  doi: 10.1145/1083165.1083171
– volume: 27
  start-page: 1014
  year: 2001
  ident: 10.1016/j.infsof.2015.07.004_b0110
  article-title: Comparing software prediction techniques using simulation
  publication-title: IEEE Trans. Softw. Eng.
  doi: 10.1109/32.965341
– volume: 18
  start-page: 659
  year: 2013
  ident: 10.1016/j.infsof.2015.07.004_b0150
  article-title: On the value of outlier elimination on software effort estimation research
  publication-title: Empirical Softw. Eng.
  doi: 10.1007/s10664-012-9207-y
– ident: 10.1016/j.infsof.2015.07.004_b0265
  doi: 10.1145/1868328.1868333
– volume: 81
  start-page: 673
  year: 2008
  ident: 10.1016/j.infsof.2015.07.004_b0470
  article-title: Cross-company vs. single-company web effort models using the Tukutuku database: an extended study
  publication-title: J. Syst. Softw.
  doi: 10.1016/j.jss.2007.07.044
– volume: 8
  start-page: 163
  year: 2003
  ident: 10.1016/j.infsof.2015.07.004_b0380
  article-title: A comparative study of cost estimation models for web hypermedia applications
  publication-title: Empirical Softw. Eng.
  doi: 10.1023/A:1023062629183
– volume: 5
  start-page: 35
  year: 2000
  ident: 10.1016/j.infsof.2015.07.004_b0180
  article-title: A simulation tool for efficient analogy based cost estimation
  publication-title: Empirical Softw. Eng.
  doi: 10.1023/A:1009897800559
– volume: 85
  start-page: 562
  year: 2012
  ident: 10.1016/j.infsof.2015.07.004_b0360
  article-title: Empirical findings on team size and productivity in software development
  publication-title: J. Syst. Softw.
  doi: 10.1016/j.jss.2011.09.009
– volume: 81
  start-page: 356
  year: 2008
  ident: 10.1016/j.infsof.2015.07.004_b0040
  article-title: An investigation of artificial neural networks based prediction systems in software project management
  publication-title: J. Syst. Softw.
  doi: 10.1016/j.jss.2007.05.011
– volume: 15
  start-page: 60
  year: 2009
  ident: 10.1016/j.infsof.2015.07.004_b0165
  article-title: Fuzzy grey relational analysis for software effort estimation
  publication-title: Empirical Softw. Eng.
  doi: 10.1007/s10664-009-9113-0
– volume: 86
  start-page: 144
  year: 2013
  ident: 10.1016/j.infsof.2015.07.004_b0020
  article-title: Towards an early software estimation using log-linear regression and a multilayer perceptron model
  publication-title: J. Syst. Softw.
  doi: 10.1016/j.jss.2012.07.050
– volume: 80
  start-page: 628
  year: 2007
  ident: 10.1016/j.infsof.2015.07.004_b0070
  article-title: The adjusted analogy-based software effort estimation based on similarity distances
  publication-title: J. Syst. Softw.
  doi: 10.1016/j.jss.2006.06.006
– volume: 36
  start-page: 5921
  year: 2009
  ident: 10.1016/j.infsof.2015.07.004_b0050
  article-title: A study of mutual information based feature selection for case based reasoning in software cost estimation
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2008.07.062
– ident: 10.1016/j.infsof.2015.07.004_b0105
  doi: 10.1145/2020390.2020396
– volume: 3
  start-page: 1157
  year: 2003
  ident: 10.1016/j.infsof.2015.07.004_b0390
  article-title: An introduction to variable and feature selection
  publication-title: J. Mach. Learn. Res.
– ident: 10.1016/j.infsof.2015.07.004_b0385
– volume: 27
  start-page: 999
  year: 2001
  ident: 10.1016/j.infsof.2015.07.004_b0140
  article-title: Analyzing data sets with missing data: an empirical evaluation of imputation methods and likelihood-based methods
  publication-title: IEEE Trans. Softw. Eng.
  doi: 10.1109/32.965340
– volume: 55
  start-page: 1512
  year: 2013
  ident: 10.1016/j.infsof.2015.07.004_b0310
  article-title: Ensembles and locality: insight on improving software effort estimation
  publication-title: Inform. Softw. Technol.
  doi: 10.1016/j.infsof.2012.09.012
– volume: 82
  start-page: 241
  year: 2009
  ident: 10.1016/j.infsof.2015.07.004_b0125
  article-title: A study of project selection and feature weighting for analogy based software cost estimation
  publication-title: J. Syst. Softw.
  doi: 10.1016/j.jss.2008.06.001
– start-page: 373
  year: 2014
  ident: 10.1016/j.infsof.2015.07.004_b0405
  article-title: Search-based software project management
– volume: 20
  start-page: 543
  year: 2013
  ident: 10.1016/j.infsof.2015.07.004_b0160
  article-title: Finding conclusion stability for selecting the best effort predictor in software effort estimation
  publication-title: Autom. Softw. Eng.
  doi: 10.1007/s10515-012-0108-5
– ident: 10.1016/j.infsof.2015.07.004_b0205
  doi: 10.1145/337180.337223
– volume: 79
  start-page: 404
  year: 2006
  ident: 10.1016/j.infsof.2015.07.004_b0145
  article-title: Categorical missing data imputation for software cost estimation by multinomial logistic regression
  publication-title: J. Syst. Softw.
  doi: 10.1016/j.jss.2005.02.026
– volume: 81
  start-page: 1853
  year: 2008
  ident: 10.1016/j.infsof.2015.07.004_b0120
  article-title: Software development cost estimation using wavelet neural networks
  publication-title: J. Syst. Softw.
  doi: 10.1016/j.jss.2007.12.793
– ident: 10.1016/j.infsof.2015.07.004_b0305
  doi: 10.1109/PROMISE.2007.5
– volume: 84
  start-page: 270
  year: 2011
  ident: 10.1016/j.infsof.2015.07.004_b0060
  article-title: Analogy-based software effort estimation using fuzzy numbers
  publication-title: J. Syst. Softw.
  doi: 10.1016/j.jss.2010.09.028
– volume: 34
  start-page: 471
  year: 2008
  ident: 10.1016/j.infsof.2015.07.004_b0115
  article-title: Analogy-X: providing statistical inference to analogy-based software cost estimation
  publication-title: IEEE Trans. Softw. Eng.
  doi: 10.1109/TSE.2008.34
– ident: 10.1016/j.infsof.2015.07.004_b0280
  doi: 10.1145/2365324.2365328
– volume: 19
  start-page: 537
  year: 2011
  ident: 10.1016/j.infsof.2015.07.004_b0345
  article-title: A comparative study for estimating software development effort intervals
  publication-title: Softw. Qual. J.
  doi: 10.1007/s11219-010-9112-9
– volume: 31
  start-page: 380
  year: 2005
  ident: 10.1016/j.infsof.2015.07.004_b0455
  article-title: Reliability and validity in comparative studies software prediction models
  publication-title: IEEE Trans. Softw. Eng.
  doi: 10.1109/TSE.2005.58
– ident: 10.1016/j.infsof.2015.07.004_b0155
  doi: 10.1145/2020390.2020407
– volume: 17
  start-page: 90
  year: 2012
  ident: 10.1016/j.infsof.2015.07.004_b0315
  article-title: A replicated assessment and comparison of adaptation techniques for analogy-based effort estimation
  publication-title: Empirical Softw. Eng.
  doi: 10.1007/s10664-011-9176-6
– volume: 38
  start-page: 425
  year: 2012
  ident: 10.1016/j.infsof.2015.07.004_b0055
  article-title: Exploiting the essential assumptions of analogy-based effort estimation
  publication-title: IEEE Trans. Softw. Eng.
  doi: 10.1109/TSE.2011.27
– volume: 16
  start-page: 411
  year: 2008
  ident: 10.1016/j.infsof.2015.07.004_b0290
  article-title: Evaluation of preliminary data analysis framework in software cost estimation based on ISBSG R9 data
  publication-title: Softw. Qual. J.
  doi: 10.1007/s11219-007-9041-4
– volume: 4
  start-page: 135
  year: 1999
  ident: 10.1016/j.infsof.2015.07.004_b0435
  article-title: Empirical study of analogy-based software effort estimation
  publication-title: Empirical Softw. Eng.
  doi: 10.1023/A:1009872202035
– ident: 10.1016/j.infsof.2015.07.004_b0240
  doi: 10.1145/1414004.1414057
– start-page: 4
  year: 2009
  ident: 10.1016/j.infsof.2015.07.004_b0465
  article-title: Why comparative effort prediction studies may be invalid
– volume: 54
  start-page: 820
  year: 2012
  ident: 10.1016/j.infsof.2015.07.004_b0475
  article-title: Evaluating prediction systems in software project estimation
  publication-title: Inform. Softw. Technol.
  doi: 10.1016/j.infsof.2011.12.008
– volume: 48
  start-page: 1034
  year: 2006
  ident: 10.1016/j.infsof.2015.07.004_b0075
  article-title: Optimization of analogy weights by genetic algorithm for software effort estimation
  publication-title: Inform. Softw. Technol.
  doi: 10.1016/j.infsof.2005.12.020
– ident: 10.1016/j.infsof.2015.07.004_b0270
  doi: 10.1109/ESEM.2011.34
– volume: 259
  start-page: 596
  year: 2014
  ident: 10.1016/j.infsof.2015.07.004_b0365
  article-title: Incomplete-case nearest neighbor imputation in software measurement data
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2010.12.017
– volume: 33
  start-page: 33
  year: 2007
  ident: 10.1016/j.infsof.2015.07.004_b0430
  article-title: A systematic review of software development cost estimation studies
  publication-title: IEEE Trans. Softw. Eng.
  doi: 10.1109/TSE.2007.256943
– ident: 10.1016/j.infsof.2015.07.004_b0215
  doi: 10.1145/1868328.1868335
– volume: 21
  start-page: 126
  year: 1995
  ident: 10.1016/j.infsof.2015.07.004_b0025
  article-title: Machine learning approaches to estimating software development effort
  publication-title: IEEE Trans. Softw. Eng.
  doi: 10.1109/32.345828
– volume: 18
  start-page: 1
  year: 2013
  ident: 10.1016/j.infsof.2015.07.004_b0065
  article-title: Kernel methods for software effort estimation: effects of different kernel functions and bandwidths on estimation accuracy
  publication-title: Empirical Softw. Eng.
  doi: 10.1007/s10664-011-9189-1
– volume: 15
  start-page: 523
  year: 2010
  ident: 10.1016/j.infsof.2015.07.004_b0170
  article-title: LSEbA: least squares regression and estimation by analogy in a semi-parametric model for software cost estimation
  publication-title: Empirical Softw. Eng.
  doi: 10.1007/s10664-010-9128-6
– volume: 16
  start-page: 211
  year: 2011
  ident: 10.1016/j.infsof.2015.07.004_b0185
  article-title: Investigating the use of support vector regression for web effort estimation
  publication-title: Empirical Softw. Eng.
  doi: 10.1007/s10664-010-9138-4
– ident: 10.1016/j.infsof.2015.07.004_b0195
  doi: 10.1109/ESEM.2007.20
– volume: 39
  start-page: 281
  year: 1997
  ident: 10.1016/j.infsof.2015.07.004_b0045
  article-title: A comparison of software effort estimation techniques: using function points with neural networks, case-based reasoning and regression models
  publication-title: J. Syst. Softw.
  doi: 10.1016/S0164-1212(97)00055-1
– ident: 10.1016/j.infsof.2015.07.004_b0355
  doi: 10.1145/2365324.2365333
– volume: 44
  start-page: 911
  year: 2002
  ident: 10.1016/j.infsof.2015.07.004_b0030
  article-title: Comparison of artificial neural network and regression models for estimating software development effort
  publication-title: Inform. Softw. Technol.
  doi: 10.1016/S0950-5849(02)00128-3
– volume: 55
  start-page: 241
  year: 2013
  ident: 10.1016/j.infsof.2015.07.004_b0460
  article-title: Probabilistic size proxy for software effort prediction: a framework
  publication-title: Inform. Softw. Technol.
  doi: 10.1016/j.infsof.2012.08.001
– volume: 83
  start-page: 2332
  year: 2010
  ident: 10.1016/j.infsof.2015.07.004_b0445
  article-title: Adaptive ridge regression system for software cost estimating on multi-collinear datasets
  publication-title: J. Syst. Softw.
  doi: 10.1016/j.jss.2010.07.032
– ident: 10.1016/j.infsof.2015.07.004_b0245
  doi: 10.1145/2365324.2365330
– volume: 18
  start-page: 57
  year: 2009
  ident: 10.1016/j.infsof.2015.07.004_b0340
  article-title: A new perspective on data homogeneity in software cost estimation: a study in the embedded systems domain
  publication-title: Softw. Qual. J.
  doi: 10.1007/s11219-009-9081-z
– volume: 38
  start-page: 1403
  year: 2012
  ident: 10.1016/j.infsof.2015.07.004_b0210
  article-title: On the value of ensemble effort estimation
  publication-title: IEEE Trans. Softw. Eng.
  doi: 10.1109/TSE.2011.111
– volume: 21
  start-page: 501
  year: 2013
  ident: 10.1016/j.infsof.2015.07.004_b0295
  article-title: A PSO-based model to increase the accuracy of software development effort estimation
  publication-title: Softw. Qual. J.
  doi: 10.1007/s11219-012-9183-x
– volume: 39
  start-page: 537
  year: 2013
  ident: 10.1016/j.infsof.2015.07.004_b0330
  article-title: Ranking and clustering software cost estimation models through a multiple comparisons algorithm
  publication-title: IEEE Trans. Softw. Eng.
  doi: 10.1109/TSE.2012.45
– start-page: 9
  year: 2006
  ident: 10.1016/j.infsof.2015.07.004_b0200
  article-title: Effort estimation modeling techniques: a case study for web applications
– ident: 10.1016/j.infsof.2015.07.004_b0350
  doi: 10.1109/ICSE.2012.6227203
– volume: 52
  start-page: 1155
  year: 2010
  ident: 10.1016/j.infsof.2015.07.004_b0085
  article-title: GA-based method for feature selection and parameters optimization for machine learning regression applied to software effort estimation
  publication-title: Inform. Softw. Technol.
  doi: 10.1016/j.infsof.2010.05.009
– volume: 81
  start-page: 691
  year: 2008
  ident: 10.1016/j.infsof.2015.07.004_b0135
  article-title: A comprehensive empirical evaluation of missing value imputation in noisy software measurement data
  publication-title: J. Syst. Softw.
  doi: 10.1016/j.jss.2007.07.043
– ident: 10.1016/j.infsof.2015.07.004_b0400
  doi: 10.1145/1363686.1364116
– volume: 14
  start-page: 603
  year: 2009
  ident: 10.1016/j.infsof.2015.07.004_b0275
  article-title: A study of the non-linear adjustment for analogy based software cost estimation
  publication-title: Empirical Softw. Eng.
  doi: 10.1007/s10664-008-9104-6
– volume: 13
  start-page: 63
  year: 2008
  ident: 10.1016/j.infsof.2015.07.004_b0080
  article-title: Analysis of attribute weighting heuristics for analogy-based software effort estimation method AQUA+
  publication-title: Empirical Softw. Eng.
  doi: 10.1007/s10664-007-9054-4
– ident: 10.1016/j.infsof.2015.07.004_b0235
  doi: 10.1109/ESEM.2007.14
– volume: 17
  start-page: 375
  year: 2003
  ident: 10.1016/j.infsof.2015.07.004_b0090
  article-title: Data preparation for data mining
  publication-title: Appl. Artif. Intell.
  doi: 10.1080/713827180
– volume: 12
  start-page: 65
  year: 2007
  ident: 10.1016/j.infsof.2015.07.004_b0175
  article-title: A flexible method for software effort estimation by analogy
  publication-title: Empirical Softw. Eng.
  doi: 10.1007/s10664-006-7552-4
– volume: SE-10
  start-page: 4
  year: 1984
  ident: 10.1016/j.infsof.2015.07.004_b0010
  article-title: Software engineering economics
  publication-title: IEEE Trans. Softw. Eng.
  doi: 10.1109/TSE.1984.5010193
– ident: 10.1016/j.infsof.2015.07.004_b0375
– volume: 39
  start-page: 822
  year: 2013
  ident: 10.1016/j.infsof.2015.07.004_b0260
  article-title: Local versus global lessons for defect prediction and effort estimation
  publication-title: IEEE Trans. Softw. Eng.
  doi: 10.1109/TSE.2012.83
– volume: 56
  start-page: 527
  year: 2014
  ident: 10.1016/j.infsof.2015.07.004_b0415
  article-title: Potential and limitations of the ISBSG dataset in enhancing software engineering research: a mapping review
  publication-title: Inform. Softw. Technol.
  doi: 10.1016/j.infsof.2014.01.003
– ident: 10.1016/j.infsof.2015.07.004_b0230
  doi: 10.1109/ESEM.2007.10
– volume: 18
  start-page: 506
  year: 2013
  ident: 10.1016/j.infsof.2015.07.004_b0300
  article-title: Using tabu search to configure support vector regression for effort estimation
  publication-title: Empirical Softw. Eng.
  doi: 10.1007/s10664-011-9187-3
– volume: 19
  start-page: 165
  year: 2010
  ident: 10.1016/j.infsof.2015.07.004_b0320
  article-title: Comparison of weighted grey relational analysis for software effort estimation
  publication-title: Softw. Qual. J.
  doi: 10.1007/s11219-010-9110-y
– volume: 27
  start-page: 1226
  year: 2005
  ident: 10.1016/j.infsof.2015.07.004_b0395
  article-title: Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2005.159
– volume: 39
  start-page: 1040
  year: 2013
  ident: 10.1016/j.infsof.2015.07.004_b0325
  article-title: Active learning and effort estimation: finding the essential content of software effort estimation data
  publication-title: IEEE Trans. Softw. Eng.
  doi: 10.1109/TSE.2012.88
– volume: 32
  start-page: 83
  year: 2006
  ident: 10.1016/j.infsof.2015.07.004_b0255
  article-title: Optimal project feature weights in analogy-based cost estimation: improvement and limitations
  publication-title: IEEE Trans. Softw. Eng.
  doi: 10.1109/TSE.2006.1599418
– volume: 54
  start-page: 41
  year: 2012
  ident: 10.1016/j.infsof.2015.07.004_b0005
  article-title: Systematic literature review of machine learning based software development effort estimation models
  publication-title: Inform. Softw. Technol.
  doi: 10.1016/j.infsof.2011.09.002
– volume: 17
  start-page: 738
  year: 2011
  ident: 10.1016/j.infsof.2015.07.004_b0335
  article-title: Software development effort prediction of industrial projects applying a general regression neural network
  publication-title: Empirical Softw. Eng.
  doi: 10.1007/s10664-011-9192-6
– year: 1991
  ident: 10.1016/j.infsof.2015.07.004_b0015
– volume: 27
  start-page: 890
  year: 2001
  ident: 10.1016/j.infsof.2015.07.004_b0130
  article-title: Software cost estimation with incomplete data
  publication-title: IEEE Trans. Softw. Eng.
  doi: 10.1109/32.962560
– start-page: 61
  year: 2003
  ident: 10.1016/j.infsof.2015.07.004_b0410
  article-title: Case and feature subset selection in case-based software project effort prediction
– volume: 29
  start-page: 985
  year: 2003
  ident: 10.1016/j.infsof.2015.07.004_b0450
  article-title: A simulation study of the model evaluation criterion MMRE
  publication-title: IEEE Trans. Softw. Eng.
  doi: 10.1109/TSE.2003.1245300
– ident: 10.1016/j.infsof.2015.07.004_b0100
  doi: 10.1145/2020390.2020399
SSID ssj0017030
Score 2.4894786
Snippet Due to the complex nature of software development process, traditional parametric models and statistical methods often appear to be inadequate to model the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 108
SubjectTerms Artificial intelligence
Case selection
Cost estimates
Data preprocessing
Feature selection
Machine learning
Missing-data treatments
Scaling
Software
Software cost estimation
Software engineering
Studies
Title An empirical analysis of data preprocessing for machine learning-based software cost estimation
URI https://dx.doi.org/10.1016/j.infsof.2015.07.004
https://www.proquest.com/docview/1716946559
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwEA5jgvgi_sTpHHnwNa5tum59HMMxFfeig72F5prKxHVlq_jm3-5dmg4UYeBjS1LC3eXua3L3HWM3AMbztcmEIT7EMM1ioXHBwg8yGYW-kYmmA_2naTSZhQ_z3rzBRnUtDKVVOt9f-XTrrd2brpNmt1gsus8IDjwMnzFCGro_pUJzYq9Dm7792qZ5-GTRFd-eJ2h0XT5nc7xQiZuVJfLsWQpP167tj_D0y1Hb6DM-YocONvJhtbJj1jD5Cduvs9ZPmRrm3CyLhSX84IljGuGrjFMKKC-Iu9JWBGCk4ohT-dImURruuka8CgpnKcd1lp_J2nBYbUpODBxVaeMZm43vXkYT4XonCMAfvFKAydIewhlIMpNGREqfetAPQfdQB30AX-pIg5F-5A3iaBAAIRVITZhIHCy1PGfNfJWbC8b7aQwDAz516QizVOo4wJ0c0PEp4DzdYrIWmQJHLE79Ld5VnUH2pipBKxK08ujGO2wxsZ1VVMQaO8b3a22oHwai0PfvmNmulafcBt0oyxJE3HHx5b8_fMUO6KmqTGyzZrn-MNcIUUrdsTbYYXvD-8fJ9BsbT-gn
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED_mBuqL-InTqXnwNaxd2m59HEPZ3MeLG-wtNNdUJroNV_HfN5emA0UY-NrmSrhL7n5N7n4HcI-oPV_pjGviQwzSLObKTJj7rUxEga9FouhAfzyJ-rPgaR7OK9Ara2EordL5_sKnW2_tnjSdNpvrxaL5bMCBZ8JnbCAN3Z-Ge1AjdqqgCrXuYNifbC8TaFEXlHseJ4Gygs6meRk7blaWyzO0LJ6uY9sfEeqXr7YB6PEYjhxyZN1icidQ0ctT2C8T189AdpdMv68XlvODJY5shK0yRlmgbE30lbYowAQrZqAqe7d5lJq5xhEvnCJaysw886_kQzNcbXJGJBxFdeM5zB4fpr0-d-0TOJp_vJyjztLQIBpMMp1GxEufetgOUIXGDG1EX6hIoRZ-5HXiqNNCAiuY6iARZrBQ4gKqy9VSXwJrpzF2NPrUqCPIUqHiltnMLTpBRSOn6iBKlUl03OLU4uJNlklkr7JQtCRFS48uvYM68K3UuuDW2DG-XVpD_lgj0rj_HZKN0njS7dGNtERBRB8XX_37w3dw0J-OR3I0mAyv4ZDeFIWKDajmH5_6xiCWXN26FfkNEyDq2A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+empirical+analysis+of+data+preprocessing+for+machine+learning-based+software+cost+estimation&rft.jtitle=Information+and+software+technology&rft.au=Huang%2C+Jianglin&rft.au=Li%2C+Yan-Fu&rft.au=Xie%2C+Min&rft.date=2015-11-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0950-5849&rft.eissn=1873-6025&rft.volume=67&rft.spage=108&rft_id=info:doi/10.1016%2Fj.infsof.2015.07.004&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3819875041
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-5849&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-5849&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-5849&client=summon