An empirical analysis of data preprocessing for machine learning-based software cost estimation
Due to the complex nature of software development process, traditional parametric models and statistical methods often appear to be inadequate to model the increasingly complicated relationship between project development cost and the project features (or cost drivers). Machine learning (ML) methods...
Saved in:
Published in | Information and software technology Vol. 67; pp. 108 - 127 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.11.2015
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0950-5849 1873-6025 |
DOI | 10.1016/j.infsof.2015.07.004 |
Cover
Loading…
Abstract | Due to the complex nature of software development process, traditional parametric models and statistical methods often appear to be inadequate to model the increasingly complicated relationship between project development cost and the project features (or cost drivers). Machine learning (ML) methods, with several reported successful applications, have gained popularity for software cost estimation in recent years. Data preprocessing has been claimed by many researchers as a fundamental stage of ML methods; however, very few works have been focused on the effects of data preprocessing techniques.
This study aims for an empirical assessment of the effectiveness of data preprocessing techniques on ML methods in the context of software cost estimation.
In this work, we first conduct a literature survey of the recent publications using data preprocessing techniques, followed by a systematic empirical study to analyze the strengths and weaknesses of individual data preprocessing techniques as well as their combinations.
Our results indicate that data preprocessing techniques may significantly influence the final prediction. They sometimes might have negative impacts on prediction performance of ML methods.
In order to reduce prediction errors and improve efficiency, a careful selection is necessary according to the characteristics of machine learning methods, as well as the datasets used for software cost estimation. |
---|---|
AbstractList | Due to the complex nature of software development process, traditional parametric models and statistical methods often appear to be inadequate to model the increasingly complicated relationship between project development cost and the project features (or cost drivers). Machine learning (ML) methods, with several reported successful applications, have gained popularity for software cost estimation in recent years. Data preprocessing has been claimed by many researchers as a fundamental stage of ML methods; however, very few works have been focused on the effects of data preprocessing techniques. This study aims for an empirical assessment of the effectiveness of data preprocessing techniques on ML methods in the context of software cost estimation. In this work, the authors first conduct a literature survey of the recent publications using data preprocessing techniques, followed by a systematic empirical study to analyze the strengths and weaknesses of individual data preprocessing techniques as well as their combinations. The results indicate that data preprocessing techniques may significantly influence the final prediction. They sometimes might have negative impacts on prediction performance of ML methods. In order to reduce prediction errors and improve efficiency, a careful selection is necessary according to the characteristics of machine learning methods, as well as the datasets used for software cost estimation. Due to the complex nature of software development process, traditional parametric models and statistical methods often appear to be inadequate to model the increasingly complicated relationship between project development cost and the project features (or cost drivers). Machine learning (ML) methods, with several reported successful applications, have gained popularity for software cost estimation in recent years. Data preprocessing has been claimed by many researchers as a fundamental stage of ML methods; however, very few works have been focused on the effects of data preprocessing techniques. This study aims for an empirical assessment of the effectiveness of data preprocessing techniques on ML methods in the context of software cost estimation. In this work, we first conduct a literature survey of the recent publications using data preprocessing techniques, followed by a systematic empirical study to analyze the strengths and weaknesses of individual data preprocessing techniques as well as their combinations. Our results indicate that data preprocessing techniques may significantly influence the final prediction. They sometimes might have negative impacts on prediction performance of ML methods. In order to reduce prediction errors and improve efficiency, a careful selection is necessary according to the characteristics of machine learning methods, as well as the datasets used for software cost estimation. |
Author | Xie, Min Li, Yan-Fu Huang, Jianglin |
Author_xml | – sequence: 1 givenname: Jianglin surname: Huang fullname: Huang, Jianglin email: jianhuang7-c@my.cityu.edu.hk organization: Department of Systems Engineering and Engineering Management, City University of Hong Kong, Hong Kong – sequence: 2 givenname: Yan-Fu surname: Li fullname: Li, Yan-Fu email: yanfu.li@centralesupelec.fr organization: Department of Industrial Engineering, CentraleSupelec, Paris, France – sequence: 3 givenname: Min surname: Xie fullname: Xie, Min email: minxie@cityu.edu.hk organization: Department of Systems Engineering and Engineering Management, City University of Hong Kong, Hong Kong |
BookMark | eNqFUEtrGzEQFsWBOo9_kIOg592OrJXW20PBmKYpBHJJzkI7O0pl1pIrKS3-91HqnnJoTgPD9z5nixADMXYtoBUg9Odd64PL0bUrEKqFvgXoPrClWPey0bBSC7aEQUGj1t3wkZ3nvAMQPUhYMrMJnPYHnzzamdtg52P2mUfHJ1ssPyQ6pIiUsw9P3MXE9xZ_-kB8JptCfTajzTTx6l7-2EQcYy6ccvF7W3wMl-zM2TnT1b97wR5vvj1sb5u7--8_tpu7BrtOlwbJTWqlNFpHk-4lwATYdzgqJ3WPKOSoRyQpNKwHvV6hlsOAE3VWVrAc5QX7dNKtcX89V3-zi8-p1slG9EIPnVZqqKgvJxSmmHMiZ9CXvzlLsn42AszroGZnToOa10EN9KYOWsndG_Ih1Zbp-B7t64lGtf5vT8lk9BSQJp8Ii5mi_7_ACw2blcU |
CitedBy_id | crossref_primary_10_1371_journal_pone_0187204 crossref_primary_10_1016_j_cmpb_2018_05_007 crossref_primary_10_1002_smr_2117 crossref_primary_10_3390_s21020656 crossref_primary_10_1016_j_health_2022_100125 crossref_primary_10_1016_j_jenvman_2024_122903 crossref_primary_10_1109_ACCESS_2024_3504399 crossref_primary_10_17341_gazimmfd_1023147 crossref_primary_10_4316_AECE_2021_03005 crossref_primary_10_1007_s42979_024_03517_6 crossref_primary_10_3389_fdgth_2023_1187578 crossref_primary_10_1016_j_infsof_2024_107413 crossref_primary_10_1016_j_jss_2017_11_066 crossref_primary_10_3233_HIS_160233 crossref_primary_10_5194_hess_26_221_2022 crossref_primary_10_1038_s41598_023_44449_0 crossref_primary_10_1016_j_infsof_2017_09_010 crossref_primary_10_1016_j_engappai_2022_105670 crossref_primary_10_3390_su15032772 crossref_primary_10_1016_j_est_2022_105359 crossref_primary_10_1107_S2053273324000950 crossref_primary_10_1109_TSE_2019_2939303 crossref_primary_10_1016_j_health_2022_100060 crossref_primary_10_1108_ECAM_11_2020_0958 crossref_primary_10_1002_smr_2258 crossref_primary_10_1007_s13369_019_04125_w crossref_primary_10_1002_smr_2497 crossref_primary_10_3389_fimmu_2023_1137850 crossref_primary_10_3390_sym13112192 crossref_primary_10_5194_nhess_21_2379_2021 crossref_primary_10_1007_s42044_024_00178_9 crossref_primary_10_1093_jas_skac293 crossref_primary_10_1109_ACCESS_2024_3457771 crossref_primary_10_1145_3511805 crossref_primary_10_1002_smr_2488 crossref_primary_10_1080_08874417_2023_2220294 crossref_primary_10_1016_j_forsciint_2023_111884 crossref_primary_10_3389_feart_2021_596860 crossref_primary_10_1007_s10270_025_01273_6 crossref_primary_10_1109_ACCESS_2024_3488904 crossref_primary_10_3390_a17020064 crossref_primary_10_1109_ACCESS_2020_3036037 crossref_primary_10_1108_ECAM_04_2020_0261 crossref_primary_10_1002_smr_1983 crossref_primary_10_1109_ACCESS_2023_3307310 crossref_primary_10_54404_JTS_2024_192V_08 crossref_primary_10_1002_smr_2271 crossref_primary_10_1007_s11219_017_9391_5 crossref_primary_10_1016_j_eswa_2024_125396 crossref_primary_10_1088_2632_2153_ad1349 crossref_primary_10_3390_computers12100200 crossref_primary_10_32604_cmc_2024_057979 crossref_primary_10_3390_life11070638 crossref_primary_10_1016_j_jnca_2024_104034 crossref_primary_10_1007_s10916_018_1134_z crossref_primary_10_1108_IJQRM_07_2019_0235 crossref_primary_10_1002_smr_2665 crossref_primary_10_1016_j_jksuci_2022_08_026 crossref_primary_10_3389_fonc_2022_924245 crossref_primary_10_29050_harranziraat_1464601 crossref_primary_10_1016_j_telpol_2024_102816 crossref_primary_10_1080_0954898X_2024_2376703 crossref_primary_10_3390_s19224822 crossref_primary_10_1016_j_jss_2017_07_012 crossref_primary_10_1007_s44217_024_00220_9 crossref_primary_10_32604_cmc_2023_030818 crossref_primary_10_3390_s23198191 crossref_primary_10_1108_ECAM_02_2020_0128 crossref_primary_10_3390_pharmaceutics16020260 crossref_primary_10_1061_JHYEFF_HEENG_6206 crossref_primary_10_3390_ijerph17196997 crossref_primary_10_1007_s10586_024_04858_w crossref_primary_10_1007_s10586_024_04418_2 crossref_primary_10_3390_biomedinformatics4030099 crossref_primary_10_1186_s40411_017_0037_x crossref_primary_10_1007_s41870_023_01369_6 crossref_primary_10_1109_ACCESS_2021_3119746 crossref_primary_10_1016_j_eij_2023_05_011 crossref_primary_10_1016_j_compbiomed_2024_108126 crossref_primary_10_12720_jait_16_3_342_356 crossref_primary_10_1007_s11334_020_00379_y crossref_primary_10_1007_s12652_020_02277_4 crossref_primary_10_1109_ACCESS_2020_2977887 crossref_primary_10_1017_S0022377823000454 crossref_primary_10_1016_j_scs_2017_08_009 crossref_primary_10_1080_13467581_2023_2294871 crossref_primary_10_1002_we_2687 crossref_primary_10_2339_politeknik_444380 crossref_primary_10_3389_fgene_2021_724785 crossref_primary_10_1109_ACCESS_2022_3200149 crossref_primary_10_31571_saintek_v13i2_7696 crossref_primary_10_1109_ACCESS_2023_3312716 crossref_primary_10_1145_3673897 crossref_primary_10_2139_ssrn_4105836 crossref_primary_10_3390_s24113509 crossref_primary_10_1016_j_imu_2025_101632 crossref_primary_10_1007_s00521_015_2004_y crossref_primary_10_1587_transinf_2020MPP0005 crossref_primary_10_1016_j_apenergy_2023_122413 crossref_primary_10_1109_TR_2018_2839718 crossref_primary_10_35784_acs_2023_18 crossref_primary_10_3390_buildings14113515 crossref_primary_10_1016_j_addma_2022_103357 crossref_primary_10_1016_j_jmsy_2018_01_006 |
Cites_doi | 10.1109/ESEM.2009.5315991 10.1109/TSE.2005.75 10.1016/S0164-1212(00)00005-4 10.1145/2365324.2365336 10.3233/IDA-2010-0423 10.1049/ic:20040398 10.1007/s10664-011-9177-5 10.1016/S0950-5849(96)00006-7 10.1016/j.infsof.2007.04.001 10.1145/1083165.1083171 10.1109/32.965341 10.1007/s10664-012-9207-y 10.1145/1868328.1868333 10.1016/j.jss.2007.07.044 10.1023/A:1023062629183 10.1023/A:1009897800559 10.1016/j.jss.2011.09.009 10.1016/j.jss.2007.05.011 10.1007/s10664-009-9113-0 10.1016/j.jss.2012.07.050 10.1016/j.jss.2006.06.006 10.1016/j.eswa.2008.07.062 10.1145/2020390.2020396 10.1109/32.965340 10.1016/j.infsof.2012.09.012 10.1016/j.jss.2008.06.001 10.1007/s10515-012-0108-5 10.1145/337180.337223 10.1016/j.jss.2005.02.026 10.1016/j.jss.2007.12.793 10.1109/PROMISE.2007.5 10.1016/j.jss.2010.09.028 10.1109/TSE.2008.34 10.1145/2365324.2365328 10.1007/s11219-010-9112-9 10.1109/TSE.2005.58 10.1145/2020390.2020407 10.1007/s10664-011-9176-6 10.1109/TSE.2011.27 10.1007/s11219-007-9041-4 10.1023/A:1009872202035 10.1145/1414004.1414057 10.1016/j.infsof.2011.12.008 10.1016/j.infsof.2005.12.020 10.1109/ESEM.2011.34 10.1016/j.ins.2010.12.017 10.1109/TSE.2007.256943 10.1145/1868328.1868335 10.1109/32.345828 10.1007/s10664-011-9189-1 10.1007/s10664-010-9128-6 10.1007/s10664-010-9138-4 10.1109/ESEM.2007.20 10.1016/S0164-1212(97)00055-1 10.1145/2365324.2365333 10.1016/S0950-5849(02)00128-3 10.1016/j.infsof.2012.08.001 10.1016/j.jss.2010.07.032 10.1145/2365324.2365330 10.1007/s11219-009-9081-z 10.1109/TSE.2011.111 10.1007/s11219-012-9183-x 10.1109/TSE.2012.45 10.1109/ICSE.2012.6227203 10.1016/j.infsof.2010.05.009 10.1016/j.jss.2007.07.043 10.1145/1363686.1364116 10.1007/s10664-008-9104-6 10.1007/s10664-007-9054-4 10.1109/ESEM.2007.14 10.1080/713827180 10.1007/s10664-006-7552-4 10.1109/TSE.1984.5010193 10.1109/TSE.2012.83 10.1016/j.infsof.2014.01.003 10.1109/ESEM.2007.10 10.1007/s10664-011-9187-3 10.1007/s11219-010-9110-y 10.1109/TPAMI.2005.159 10.1109/TSE.2012.88 10.1109/TSE.2006.1599418 10.1016/j.infsof.2011.09.002 10.1007/s10664-011-9192-6 10.1109/32.962560 10.1109/TSE.2003.1245300 10.1145/2020390.2020399 |
ContentType | Journal Article |
Copyright | 2015 Elsevier B.V. Copyright Elsevier Science Ltd. Nov 2015 |
Copyright_xml | – notice: 2015 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Nov 2015 |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.infsof.2015.07.004 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Business |
EISSN | 1873-6025 |
EndPage | 127 |
ExternalDocumentID | 3819875041 10_1016_j_infsof_2015_07_004 S0950584915001275 |
Genre | Feature |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 77K 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN AAYOK ABBOA ABFNM ABFRF ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFO ACGFS ACGOD ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W KOM LG9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SSV SSZ T5K TWZ UHS UNMZH WH7 WUQ XFK ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SC 8FD EFKBS JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c446t-cefd5256cafed67300d0c74cb5f367cc13b6bce316089682c6399cde4a37303b3 |
IEDL.DBID | .~1 |
ISSN | 0950-5849 |
IngestDate | Fri Jul 25 07:04:12 EDT 2025 Thu Apr 24 23:12:50 EDT 2025 Tue Jul 01 02:22:01 EDT 2025 Fri Feb 23 02:23:56 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Software cost estimation Scaling Feature selection Case selection Data preprocessing Missing-data treatments |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c446t-cefd5256cafed67300d0c74cb5f367cc13b6bce316089682c6399cde4a37303b3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
OpenAccessLink | https://hal.science/hal-01340341v1/file/IST_hal_submission.pdf |
PQID | 1716946559 |
PQPubID | 41979 |
PageCount | 20 |
ParticipantIDs | proquest_journals_1716946559 crossref_citationtrail_10_1016_j_infsof_2015_07_004 crossref_primary_10_1016_j_infsof_2015_07_004 elsevier_sciencedirect_doi_10_1016_j_infsof_2015_07_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2015 2015-11-00 20151101 |
PublicationDateYYYYMMDD | 2015-11-01 |
PublicationDate_xml | – month: 11 year: 2015 text: November 2015 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Information and software technology |
PublicationYear | 2015 |
Publisher | Elsevier B.V Elsevier Science Ltd |
Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
References | Desharnais (b0425) 1989 de Barcelos Tronto, da Silva, Sant’Anna (b0040) 2008; 81 Finnie, Wittig, Desharnais (b0045) 1997; 39 Angelis, Stamelos (b0180) 2000; 5 Mittas, Angelis (b0170) 2010; 15 Kirsopp, Shepperd (b0410) 2003 Kocaguneli, Menzies, Keung, Cok, Madachy (b0325) 2013; 39 Shepperd, Kadoda (b0110) 2001; 27 Auer, Trendowicz, Graser, Haunschmid, Biffl (b0255) 2006; 32 Azzeh (b0315) 2012; 17 Shepperd, MacDonell (b0475) 2012; 54 Chiu, Huang (b0070) 2007; 80 A. Brady, T. Menzies, Case-based reasoning vs parametric models for software quality optimization, in: The 6th International Conference on Predictive Models in Software Engineering (PROMISE’10), Timisoara, Romania, 2010, pp. 1–10. Strike, Emam, Madhavji (b0130) 2001; 27 Li, Xie, Goh (b0445) 2010; 83 Kocaguneli, Member, Menzies (b0210) 2012; 38 Keung, Kocaguneli, Menzies (b0160) 2013; 20 M.V. Kosti, N. Mittas, L. Angelis, Alternative methods using similarities in software effort estimation, in: The 8th International Conference on Predictive Models in Software Engineering (PROMISE’12), Lund, Sweden, 2012, pp. 59–68. Oliveira, Braga, Lima, Cornélio (b0085) 2010; 52 Kocaguneli, Member, Menzies (b0055) 2012; 38 Costagliola, Di Martino, Ferrucci, Gravino, Tortora, Vitiello (b0200) 2006 N. Ramasubbu, R.K. Balan, Overcoming the challenges in cost estimation for distributed software projects, in: The 34th International Conference on Software Engineering (ICSE’12), Zurich, Switzerland, 2012, pp. 91–101. Rodríguez, Sicilia, García, Harrison (b0360) 2012; 85 B.A. Kitchenham, E. Mendes, A comparison of cross-company and within-company effort estimation models for web applications, in: The 8th International Conference on Empirical Assessment in Software Engineering (EASE’04), Edinburgh, Scotland, UK, 2004, pp. 47–55. Mittas, Angelis (b0420) 2011; 17 Fernández-Diego, González-Ladrón-de-Guevara (b0415) 2014; 56 Li, Xie, Goh (b0050) 2009; 36 A. Corazza, S. Di Martino, F. Ferrucci, C. Gravino, E. Mendes, Applying support vector regression for Web effort estimation using a cross-company dataset, in: The 3rd International Symposium on Empirical Software Engineering and Measurement (ESEM’09), Lake Buena Vista, Florida, USA, 2009, pp. 191–202. Mittas, Angelis (b0330) 2013; 39 Srinivasan, Fisher (b0025) 1995; 21 L.C. Briand, T. Langley, I. Wieczorek, A replicated assessment and comparison of common software cost modeling techniques, in: The 22nd International Conference on Software Engineering (ICSE’00), Limerick, Ireland, 2000, pp. 377–386. Lopez-Martin, Isaza, Chavoya (b0335) 2011; 17 Pendharkar, Subramanian, Rodger (b0250) 2005; 31 Azzeh, Neagu, Cowling (b0165) 2009; 15 Corazza, Di Martino, Ferrucci, Gravino, Mendes (b0185) 2011; 16 Seo, Bae (b0150) 2013; 18 S. Di Martino, F. Ferrucci, C. Gravino, E. Mendes, Comparing size measures for predicting web application development effort: a case study, in: The 1st International Symposium on Empirical Software Engineering and Measurement (ESEM’07), IEEE, Madrid, Spain, 2007, pp. 324–333. ISBSG, The ISBSG Development & Enhancement Project Data in: ISBSG (Ed.), 2013. . Guyon, Elisseeff (b0390) 2003; 3 Khatibi Bardsiri, Jawawi, Hashim, Khatibi (b0295) 2013; 21 Twala, Cartwright (b0095) 2010; 14 Kitchenham, Mendes (b0465) 2009 Heiat (b0030) 2002; 44 Azzeh, Neagu, Cowling (b0060) 2011; 84 E. Kocaguneli, T. Menzies, How to find relevant data for effort estimation? in: The 5th International Symposium on Empirical Software Engineering and Measurement (ESEM’11), Banff, Canada, 2011, pp. 255–264. Corazza, Di Martino, Ferrucci, Gravino, Sarro, Mendes (b0300) 2013; 18 Hsu, Huang (b0320) 2010; 19 S. Das, Filters, wrappers and a boosting-based hybrid for feature selection, in: The 18th International Conference on Machine Learning (ICML’01), Williamstown, MA, USA, 2001, pp. 74–81. Li, Xie, Goh (b0125) 2009; 82 R. Borges, T. Menzies, Learning to change projects, in: The 8th International Conference on Predictive Models in Software Engineering (PROMISE’12), Lund, Sweden, 2012, pp. 11–18. Li, Xie, Goh (b0275) 2009; 14 Foss, Stensrud, Kitchenham, Myrtveit (b0450) 2003; 29 Bakir, Turhan, Bener (b0345) 2011; 19 Ferrucci, Harman, Sarro (b0405) 2014 L.L. Minku, X. Yao, A principled evaluation of ensembles of learning machines for software effort estimation, in: the 7th International Conference on Predictive Models in Software Engineering (PROMISE’11), Banff, Canada, 2011, pp. 1–10. Peng, Long, Ding (b0395) 2005; 27 A. Corazza, S. Di Martino, F. Ferrucci, C. Gravino, F. Sarro, E. Mendes, How effective is Tabu search to configure support vector regression for effort estimation? in: The 6th International Conference on Predictive Models in Software Engineering (PROMISE’10), Timisoara, Romania, 2010, pp. 1–10. Ahmed, Ahmad, AlGhamdi (b0460) 2013; 55 Sentas, Angelis (b0145) 2006; 79 Jørgensen, Shepperd (b0430) 2007; 33 Gray, MacDonell (b0440) 1997; 39 M. Tsunoda, T. Kakimoto, A. Monden, K.I. Matsumoto, An empirical evaluation of outlier deletion methods for analogy-based cost estimation, in: The 7th International Conference on Predictive Models in Software Engineering (PROMISE ‘11), Banff, Canada, 2011, pp. 1–10. Li, Ruhe, Al-Emran, Richter (b0175) 2007; 12 Menzies, Butcher, Cok, Marcus, Layman, Shull, Turhan, Zimmermann (b0260) 2013; 39 E. Kocaguneli, T. Menzies, J. Hihn, B.H. Kang, Size doesn’t matter? On the value of software size features for effort estimation, in: The 8th International Conference on Predictive Models in Software Engineering (PROMISE’12), Lund, Sweden, 2012, pp. 89–98. J. Li, A. Al-Emran, G. Ruhe, Impact analysis of missing values on the prediction accuracy of analogy-based software effort estimation method AQUA, in: The 1st International Symposium on Empirical Software Engineering and Measurement (ESEM’07), Madrid, Spain, 2007, pp. 126–135. Minku, Yao (b0310) 2013; 55 Walkerden, Jeffery (b0435) 1999; 4 P.L. Braga, A.L.I. Oliveira, S.R.L. Meira, A GA-based feature selection and parameters optimization for support vector regression applied to software effort estimation, in: The 23rd Annual ACM Symposium on Applied Computing (SAC’08), Fortaleza, Ceara, Brazil, 2008, pp. 1788–1792. J. Keung, Empirical evaluation of analogy-X for software cost estimation, in: The 2nd ACM-IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM’08), Kaiserslautern, Germany, 2008, pp. 294–296. E. Mendes, A comparison of techniques for web effort estimation, in: The 1st International Symposium on Empirical Software Engineering and Measurement (ESEM’07), Madrid, Spain, 2007, pp. 334–343. Liu, Qin, Mintram, Ross (b0290) 2008; 16 Zhang, Zhang, Yang (b0090) 2003; 17 Mendes, Watson, Triggs, Mosley, Counsell (b0380) 2003; 8 Wen, Li, Lin, Hu, Huang (b0005) 2012; 54 Myrtveit, Stensrud, Shepperd (b0455) 2005; 31 Li, Ruhe (b0080) 2008; 13 Kocaguneli, Menzies, Keung (b0065) 2013; 18 Bakir, Turhan, Bener (b0340) 2009; 18 Van Hulse, Khoshgoftaar (b0365) 2014; 259 Putnam, Myers (b0015) 1991 Huang, Chiu (b0075) 2006; 48 M. Azzeh, Software effort estimation based on optimized model tree, in: the 7th International Conference on Predictive Models in Software Engineering (PROMISE’11), Banff, Canada, 2011. Van Hulse, Khoshgoftaar (b0135) 2008; 81 J. Li, G. Ruhe, Decision support analysis for software effort estimation by analogy, in: The 3rd International Conference on Predictor Models in Software Engineering (PROMISE’07), Minneapolis, MN, USA, 2007, pp. 6–16. Keung, Kitchenham, Jeffery (b0115) 2008; 34 Mittas, Athanasiades, Angelis (b0225) 2008; 50 Mair, Kadoda, Lefley, Phalp, Schofield, Shepperd, Webster (b0035) 2000; 53 Vinay Kumar, Ravi, Carr, Raj Kiran (b0120) 2008; 81 F. Ferrucci, E. Mendes, F. Sarro, Web effort estimation: the value of cross-company data set compared to single-company data set, in: The 8th International Conference on Predictive Models in Software Engineering (PROMISE’12), Lund, Sweden, 2012, pp. 29–38. Bou, Ho, Fernando (b0020) 2013; 86 Boehm (b0010) 1984; SE-10 Mendes, Di Martino, Ferrucci, Gravino (b0470) 2008; 81 Myrtveit, Stensrud, Olsson (b0140) 2001; 27 Z. Chen, T. Menzies, D. Port, B. Boehm, Feature subset selection can improve software cost estimation accuracy, in: The 2005 International Conference on Predictor Models in Software Engineering (PROMISE’05), St. Louis, MO, USA, 2005, pp. 1–6. Azzeh (10.1016/j.infsof.2015.07.004_b0315) 2012; 17 10.1016/j.infsof.2015.07.004_b0270 10.1016/j.infsof.2015.07.004_b0350 10.1016/j.infsof.2015.07.004_b0195 Azzeh (10.1016/j.infsof.2015.07.004_b0060) 2011; 84 10.1016/j.infsof.2015.07.004_b0230 Li (10.1016/j.infsof.2015.07.004_b0125) 2009; 82 10.1016/j.infsof.2015.07.004_b0155 10.1016/j.infsof.2015.07.004_b0235 Zhang (10.1016/j.infsof.2015.07.004_b0090) 2003; 17 10.1016/j.infsof.2015.07.004_b0355 Seo (10.1016/j.infsof.2015.07.004_b0150) 2013; 18 de Barcelos Tronto (10.1016/j.infsof.2015.07.004_b0040) 2008; 81 Li (10.1016/j.infsof.2015.07.004_b0080) 2008; 13 Wen (10.1016/j.infsof.2015.07.004_b0005) 2012; 54 Auer (10.1016/j.infsof.2015.07.004_b0255) 2006; 32 Walkerden (10.1016/j.infsof.2015.07.004_b0435) 1999; 4 Mittas (10.1016/j.infsof.2015.07.004_b0420) 2011; 17 Mittas (10.1016/j.infsof.2015.07.004_b0225) 2008; 50 Menzies (10.1016/j.infsof.2015.07.004_b0260) 2013; 39 Kocaguneli (10.1016/j.infsof.2015.07.004_b0065) 2013; 18 Ahmed (10.1016/j.infsof.2015.07.004_b0460) 2013; 55 Mittas (10.1016/j.infsof.2015.07.004_b0170) 2010; 15 10.1016/j.infsof.2015.07.004_b0190 Kocaguneli (10.1016/j.infsof.2015.07.004_b0325) 2013; 39 Azzeh (10.1016/j.infsof.2015.07.004_b0165) 2009; 15 10.1016/j.infsof.2015.07.004_b0280 10.1016/j.infsof.2015.07.004_b0240 Myrtveit (10.1016/j.infsof.2015.07.004_b0140) 2001; 27 Oliveira (10.1016/j.infsof.2015.07.004_b0085) 2010; 52 10.1016/j.infsof.2015.07.004_b0285 Costagliola (10.1016/j.infsof.2015.07.004_b0200) 2006 10.1016/j.infsof.2015.07.004_b0400 Desharnais (10.1016/j.infsof.2015.07.004_b0425) 1989 10.1016/j.infsof.2015.07.004_b0245 Li (10.1016/j.infsof.2015.07.004_b0175) 2007; 12 10.1016/j.infsof.2015.07.004_b0205 Heiat (10.1016/j.infsof.2015.07.004_b0030) 2002; 44 Chiu (10.1016/j.infsof.2015.07.004_b0070) 2007; 80 Li (10.1016/j.infsof.2015.07.004_b0050) 2009; 36 Corazza (10.1016/j.infsof.2015.07.004_b0185) 2011; 16 Guyon (10.1016/j.infsof.2015.07.004_b0390) 2003; 3 Kitchenham (10.1016/j.infsof.2015.07.004_b0465) 2009 Mair (10.1016/j.infsof.2015.07.004_b0035) 2000; 53 Khatibi Bardsiri (10.1016/j.infsof.2015.07.004_b0295) 2013; 21 Kirsopp (10.1016/j.infsof.2015.07.004_b0410) 2003 Rodríguez (10.1016/j.infsof.2015.07.004_b0360) 2012; 85 Gray (10.1016/j.infsof.2015.07.004_b0440) 1997; 39 Fernández-Diego (10.1016/j.infsof.2015.07.004_b0415) 2014; 56 Van Hulse (10.1016/j.infsof.2015.07.004_b0135) 2008; 81 Liu (10.1016/j.infsof.2015.07.004_b0290) 2008; 16 Sentas (10.1016/j.infsof.2015.07.004_b0145) 2006; 79 10.1016/j.infsof.2015.07.004_b0370 Li (10.1016/j.infsof.2015.07.004_b0445) 2010; 83 Myrtveit (10.1016/j.infsof.2015.07.004_b0455) 2005; 31 Keung (10.1016/j.infsof.2015.07.004_b0160) 2013; 20 Corazza (10.1016/j.infsof.2015.07.004_b0300) 2013; 18 Mittas (10.1016/j.infsof.2015.07.004_b0330) 2013; 39 10.1016/j.infsof.2015.07.004_b0375 Huang (10.1016/j.infsof.2015.07.004_b0075) 2006; 48 10.1016/j.infsof.2015.07.004_b0215 Pendharkar (10.1016/j.infsof.2015.07.004_b0250) 2005; 31 Hsu (10.1016/j.infsof.2015.07.004_b0320) 2010; 19 Strike (10.1016/j.infsof.2015.07.004_b0130) 2001; 27 Bakir (10.1016/j.infsof.2015.07.004_b0340) 2009; 18 Shepperd (10.1016/j.infsof.2015.07.004_b0475) 2012; 54 Srinivasan (10.1016/j.infsof.2015.07.004_b0025) 1995; 21 Van Hulse (10.1016/j.infsof.2015.07.004_b0365) 2014; 259 Minku (10.1016/j.infsof.2015.07.004_b0310) 2013; 55 Jørgensen (10.1016/j.infsof.2015.07.004_b0430) 2007; 33 Bou (10.1016/j.infsof.2015.07.004_b0020) 2013; 86 Finnie (10.1016/j.infsof.2015.07.004_b0045) 1997; 39 Mendes (10.1016/j.infsof.2015.07.004_b0380) 2003; 8 Shepperd (10.1016/j.infsof.2015.07.004_b0110) 2001; 27 Keung (10.1016/j.infsof.2015.07.004_b0115) 2008; 34 Twala (10.1016/j.infsof.2015.07.004_b0095) 2010; 14 10.1016/j.infsof.2015.07.004_b0220 10.1016/j.infsof.2015.07.004_b0385 10.1016/j.infsof.2015.07.004_b0100 10.1016/j.infsof.2015.07.004_b0265 10.1016/j.infsof.2015.07.004_b0105 10.1016/j.infsof.2015.07.004_b0305 Putnam (10.1016/j.infsof.2015.07.004_b0015) 1991 Bakir (10.1016/j.infsof.2015.07.004_b0345) 2011; 19 Peng (10.1016/j.infsof.2015.07.004_b0395) 2005; 27 Kocaguneli (10.1016/j.infsof.2015.07.004_b0055) 2012; 38 Angelis (10.1016/j.infsof.2015.07.004_b0180) 2000; 5 Li (10.1016/j.infsof.2015.07.004_b0275) 2009; 14 Foss (10.1016/j.infsof.2015.07.004_b0450) 2003; 29 Ferrucci (10.1016/j.infsof.2015.07.004_b0405) 2014 Vinay Kumar (10.1016/j.infsof.2015.07.004_b0120) 2008; 81 Lopez-Martin (10.1016/j.infsof.2015.07.004_b0335) 2011; 17 Boehm (10.1016/j.infsof.2015.07.004_b0010) 1984; SE-10 Mendes (10.1016/j.infsof.2015.07.004_b0470) 2008; 81 Kocaguneli (10.1016/j.infsof.2015.07.004_b0210) 2012; 38 |
References_xml | – volume: 86 start-page: 144 year: 2013 end-page: 160 ident: b0020 article-title: Towards an early software estimation using log-linear regression and a multilayer perceptron model publication-title: J. Syst. Softw. – volume: 19 start-page: 165 year: 2010 end-page: 200 ident: b0320 article-title: Comparison of weighted grey relational analysis for software effort estimation publication-title: Softw. Qual. J. – volume: 39 start-page: 425 year: 1997 end-page: 437 ident: b0440 article-title: A comparison of techniques for developing predictive models of software metrics publication-title: Inform. Softw. Technol. – volume: 5 start-page: 35 year: 2000 end-page: 68 ident: b0180 article-title: A simulation tool for efficient analogy based cost estimation publication-title: Empirical Softw. Eng. – volume: 8 start-page: 163 year: 2003 end-page: 196 ident: b0380 article-title: A comparative study of cost estimation models for web hypermedia applications publication-title: Empirical Softw. Eng. – volume: 81 start-page: 1853 year: 2008 end-page: 1867 ident: b0120 article-title: Software development cost estimation using wavelet neural networks publication-title: J. Syst. Softw. – reference: A. Corazza, S. Di Martino, F. Ferrucci, C. Gravino, F. Sarro, E. Mendes, How effective is Tabu search to configure support vector regression for effort estimation? in: The 6th International Conference on Predictive Models in Software Engineering (PROMISE’10), Timisoara, Romania, 2010, pp. 1–10. – volume: 48 start-page: 1034 year: 2006 end-page: 1045 ident: b0075 article-title: Optimization of analogy weights by genetic algorithm for software effort estimation publication-title: Inform. Softw. Technol. – volume: 32 start-page: 83 year: 2006 end-page: 92 ident: b0255 article-title: Optimal project feature weights in analogy-based cost estimation: improvement and limitations publication-title: IEEE Trans. Softw. Eng. – reference: N. Ramasubbu, R.K. Balan, Overcoming the challenges in cost estimation for distributed software projects, in: The 34th International Conference on Software Engineering (ICSE’12), Zurich, Switzerland, 2012, pp. 91–101. – volume: 85 start-page: 562 year: 2012 end-page: 570 ident: b0360 article-title: Empirical findings on team size and productivity in software development publication-title: J. Syst. Softw. – reference: L.L. Minku, X. Yao, A principled evaluation of ensembles of learning machines for software effort estimation, in: the 7th International Conference on Predictive Models in Software Engineering (PROMISE’11), Banff, Canada, 2011, pp. 1–10. – volume: 29 start-page: 985 year: 2003 end-page: 995 ident: b0450 article-title: A simulation study of the model evaluation criterion MMRE publication-title: IEEE Trans. Softw. Eng. – volume: 14 start-page: 299 year: 2010 end-page: 331 ident: b0095 article-title: Ensemble missing data techniques for software effort prediction publication-title: Intell. Data Anal. – start-page: 61 year: 2003 end-page: 74 ident: b0410 article-title: Case and feature subset selection in case-based software project effort prediction publication-title: Research and Development in Intelligent Systems XIX – reference: A. Brady, T. Menzies, Case-based reasoning vs parametric models for software quality optimization, in: The 6th International Conference on Predictive Models in Software Engineering (PROMISE’10), Timisoara, Romania, 2010, pp. 1–10. – reference: E. Kocaguneli, T. Menzies, J. Hihn, B.H. Kang, Size doesn’t matter? On the value of software size features for effort estimation, in: The 8th International Conference on Predictive Models in Software Engineering (PROMISE’12), Lund, Sweden, 2012, pp. 89–98. – volume: 18 start-page: 659 year: 2013 end-page: 698 ident: b0150 article-title: On the value of outlier elimination on software effort estimation research publication-title: Empirical Softw. Eng. – reference: M.V. Kosti, N. Mittas, L. Angelis, Alternative methods using similarities in software effort estimation, in: The 8th International Conference on Predictive Models in Software Engineering (PROMISE’12), Lund, Sweden, 2012, pp. 59–68. – volume: 27 start-page: 999 year: 2001 end-page: 1013 ident: b0140 article-title: Analyzing data sets with missing data: an empirical evaluation of imputation methods and likelihood-based methods publication-title: IEEE Trans. Softw. Eng. – volume: 19 start-page: 537 year: 2011 end-page: 552 ident: b0345 article-title: A comparative study for estimating software development effort intervals publication-title: Softw. Qual. J. – volume: 80 start-page: 628 year: 2007 end-page: 640 ident: b0070 article-title: The adjusted analogy-based software effort estimation based on similarity distances publication-title: J. Syst. Softw. – volume: 18 start-page: 506 year: 2013 end-page: 546 ident: b0300 article-title: Using tabu search to configure support vector regression for effort estimation publication-title: Empirical Softw. Eng. – start-page: 373 year: 2014 end-page: 399 ident: b0405 article-title: Search-based software project management publication-title: Software Project Management in a Changing World – reference: M. Azzeh, Software effort estimation based on optimized model tree, in: the 7th International Conference on Predictive Models in Software Engineering (PROMISE’11), Banff, Canada, 2011. – reference: J. Li, A. Al-Emran, G. Ruhe, Impact analysis of missing values on the prediction accuracy of analogy-based software effort estimation method AQUA, in: The 1st International Symposium on Empirical Software Engineering and Measurement (ESEM’07), Madrid, Spain, 2007, pp. 126–135. – reference: L.C. Briand, T. Langley, I. Wieczorek, A replicated assessment and comparison of common software cost modeling techniques, in: The 22nd International Conference on Software Engineering (ICSE’00), Limerick, Ireland, 2000, pp. 377–386. – reference: J. Li, G. Ruhe, Decision support analysis for software effort estimation by analogy, in: The 3rd International Conference on Predictor Models in Software Engineering (PROMISE’07), Minneapolis, MN, USA, 2007, pp. 6–16. – volume: 83 start-page: 2332 year: 2010 end-page: 2343 ident: b0445 article-title: Adaptive ridge regression system for software cost estimating on multi-collinear datasets publication-title: J. Syst. Softw. – volume: 17 start-page: 90 year: 2012 end-page: 127 ident: b0315 article-title: A replicated assessment and comparison of adaptation techniques for analogy-based effort estimation publication-title: Empirical Softw. Eng. – start-page: 4 year: 2009 ident: b0465 article-title: Why comparative effort prediction studies may be invalid publication-title: The 5th International Conference on Predictor Models in Software Engineering (PROMISE’09) – volume: 15 start-page: 60 year: 2009 end-page: 90 ident: b0165 article-title: Fuzzy grey relational analysis for software effort estimation publication-title: Empirical Softw. Eng. – volume: 44 start-page: 911 year: 2002 end-page: 922 ident: b0030 article-title: Comparison of artificial neural network and regression models for estimating software development effort publication-title: Inform. Softw. Technol. – volume: 33 start-page: 33 year: 2007 end-page: 53 ident: b0430 article-title: A systematic review of software development cost estimation studies publication-title: IEEE Trans. Softw. Eng. – reference: P.L. Braga, A.L.I. Oliveira, S.R.L. Meira, A GA-based feature selection and parameters optimization for support vector regression applied to software effort estimation, in: The 23rd Annual ACM Symposium on Applied Computing (SAC’08), Fortaleza, Ceara, Brazil, 2008, pp. 1788–1792. – volume: 31 start-page: 615 year: 2005 end-page: 624 ident: b0250 article-title: A probabilistic model for predicting software development effort publication-title: IEEE Trans. Softw. Eng. – year: 1991 ident: b0015 article-title: Measures for Excellence: Reliable Software on Time, within Budget – volume: 16 start-page: 411 year: 2008 end-page: 458 ident: b0290 article-title: Evaluation of preliminary data analysis framework in software cost estimation based on ISBSG R9 data publication-title: Softw. Qual. J. – volume: 82 start-page: 241 year: 2009 end-page: 252 ident: b0125 article-title: A study of project selection and feature weighting for analogy based software cost estimation publication-title: J. Syst. Softw. – reference: R. Borges, T. Menzies, Learning to change projects, in: The 8th International Conference on Predictive Models in Software Engineering (PROMISE’12), Lund, Sweden, 2012, pp. 11–18. – reference: A. Corazza, S. Di Martino, F. Ferrucci, C. Gravino, E. Mendes, Applying support vector regression for Web effort estimation using a cross-company dataset, in: The 3rd International Symposium on Empirical Software Engineering and Measurement (ESEM’09), Lake Buena Vista, Florida, USA, 2009, pp. 191–202. – volume: 20 start-page: 543 year: 2013 end-page: 567 ident: b0160 article-title: Finding conclusion stability for selecting the best effort predictor in software effort estimation publication-title: Autom. Softw. Eng. – reference: S. Di Martino, F. Ferrucci, C. Gravino, E. Mendes, Comparing size measures for predicting web application development effort: a case study, in: The 1st International Symposium on Empirical Software Engineering and Measurement (ESEM’07), IEEE, Madrid, Spain, 2007, pp. 324–333. – volume: 39 start-page: 1040 year: 2013 end-page: 1053 ident: b0325 article-title: Active learning and effort estimation: finding the essential content of software effort estimation data publication-title: IEEE Trans. Softw. Eng. – volume: 259 start-page: 596 year: 2014 end-page: 610 ident: b0365 article-title: Incomplete-case nearest neighbor imputation in software measurement data publication-title: Inform. Sci. – volume: 39 start-page: 281 year: 1997 end-page: 289 ident: b0045 article-title: A comparison of software effort estimation techniques: using function points with neural networks, case-based reasoning and regression models publication-title: J. Syst. Softw. – volume: 84 start-page: 270 year: 2011 end-page: 284 ident: b0060 article-title: Analogy-based software effort estimation using fuzzy numbers publication-title: J. Syst. Softw. – volume: 81 start-page: 673 year: 2008 end-page: 690 ident: b0470 article-title: Cross-company vs. single-company web effort models using the Tukutuku database: an extended study publication-title: J. Syst. Softw. – volume: 34 start-page: 471 year: 2008 end-page: 484 ident: b0115 article-title: Analogy-X: providing statistical inference to analogy-based software cost estimation publication-title: IEEE Trans. Softw. Eng. – volume: 38 start-page: 425 year: 2012 end-page: 439 ident: b0055 article-title: Exploiting the essential assumptions of analogy-based effort estimation publication-title: IEEE Trans. Softw. Eng. – volume: 81 start-page: 691 year: 2008 end-page: 708 ident: b0135 article-title: A comprehensive empirical evaluation of missing value imputation in noisy software measurement data publication-title: J. Syst. Softw. – volume: 12 start-page: 65 year: 2007 end-page: 106 ident: b0175 article-title: A flexible method for software effort estimation by analogy publication-title: Empirical Softw. Eng. – volume: 14 start-page: 603 year: 2009 end-page: 643 ident: b0275 article-title: A study of the non-linear adjustment for analogy based software cost estimation publication-title: Empirical Softw. Eng. – start-page: 9 year: 2006 end-page: 16 ident: b0200 article-title: Effort estimation modeling techniques: a case study for web applications publication-title: The 6th International Conference on Web Engineering (ICWE’06) – reference: F. Ferrucci, E. Mendes, F. Sarro, Web effort estimation: the value of cross-company data set compared to single-company data set, in: The 8th International Conference on Predictive Models in Software Engineering (PROMISE’12), Lund, Sweden, 2012, pp. 29–38. – volume: 27 start-page: 890 year: 2001 end-page: 908 ident: b0130 article-title: Software cost estimation with incomplete data publication-title: IEEE Trans. Softw. Eng. – volume: 17 start-page: 738 year: 2011 end-page: 756 ident: b0335 article-title: Software development effort prediction of industrial projects applying a general regression neural network publication-title: Empirical Softw. Eng. – volume: 55 start-page: 241 year: 2013 end-page: 251 ident: b0460 article-title: Probabilistic size proxy for software effort prediction: a framework publication-title: Inform. Softw. Technol. – volume: 79 start-page: 404 year: 2006 end-page: 414 ident: b0145 article-title: Categorical missing data imputation for software cost estimation by multinomial logistic regression publication-title: J. Syst. Softw. – volume: 4 start-page: 135 year: 1999 end-page: 158 ident: b0435 article-title: Empirical study of analogy-based software effort estimation publication-title: Empirical Softw. Eng. – volume: 36 start-page: 5921 year: 2009 end-page: 5931 ident: b0050 article-title: A study of mutual information based feature selection for case based reasoning in software cost estimation publication-title: Expert Syst. Appl. – volume: 18 start-page: 1 year: 2013 end-page: 24 ident: b0065 article-title: Kernel methods for software effort estimation: effects of different kernel functions and bandwidths on estimation accuracy publication-title: Empirical Softw. Eng. – reference: E. Kocaguneli, T. Menzies, How to find relevant data for effort estimation? in: The 5th International Symposium on Empirical Software Engineering and Measurement (ESEM’11), Banff, Canada, 2011, pp. 255–264. – volume: 38 start-page: 1403 year: 2012 end-page: 1416 ident: b0210 article-title: On the value of ensemble effort estimation publication-title: IEEE Trans. Softw. Eng. – volume: 53 start-page: 23 year: 2000 end-page: 29 ident: b0035 article-title: Investigation of machine learning based prediction systems publication-title: J. Syst. Softw. – volume: 18 start-page: 57 year: 2009 end-page: 80 ident: b0340 article-title: A new perspective on data homogeneity in software cost estimation: a study in the embedded systems domain publication-title: Softw. Qual. J. – reference: S. Das, Filters, wrappers and a boosting-based hybrid for feature selection, in: The 18th International Conference on Machine Learning (ICML’01), Williamstown, MA, USA, 2001, pp. 74–81. – year: 1989 ident: b0425 article-title: Analyse statistique de la productivitie des projets informatique a partie de la technique des point des fonction – volume: SE-10 start-page: 4 year: 1984 end-page: 21 ident: b0010 article-title: Software engineering economics publication-title: IEEE Trans. Softw. Eng. – volume: 31 start-page: 380 year: 2005 end-page: 391 ident: b0455 article-title: Reliability and validity in comparative studies software prediction models publication-title: IEEE Trans. Softw. Eng. – volume: 52 start-page: 1155 year: 2010 end-page: 1166 ident: b0085 article-title: GA-based method for feature selection and parameters optimization for machine learning regression applied to software effort estimation publication-title: Inform. Softw. Technol. – volume: 27 start-page: 1226 year: 2005 end-page: 1238 ident: b0395 article-title: Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: E. Mendes, A comparison of techniques for web effort estimation, in: The 1st International Symposium on Empirical Software Engineering and Measurement (ESEM’07), Madrid, Spain, 2007, pp. 334–343. – volume: 3 start-page: 1157 year: 2003 end-page: 1182 ident: b0390 article-title: An introduction to variable and feature selection publication-title: J. Mach. Learn. Res. – volume: 21 start-page: 501 year: 2013 end-page: 526 ident: b0295 article-title: A PSO-based model to increase the accuracy of software development effort estimation publication-title: Softw. Qual. J. – reference: >. – volume: 16 start-page: 211 year: 2011 end-page: 243 ident: b0185 article-title: Investigating the use of support vector regression for web effort estimation publication-title: Empirical Softw. Eng. – volume: 21 start-page: 126 year: 1995 end-page: 137 ident: b0025 article-title: Machine learning approaches to estimating software development effort publication-title: IEEE Trans. Softw. Eng. – reference: B.A. Kitchenham, E. Mendes, A comparison of cross-company and within-company effort estimation models for web applications, in: The 8th International Conference on Empirical Assessment in Software Engineering (EASE’04), Edinburgh, Scotland, UK, 2004, pp. 47–55. – volume: 39 start-page: 537 year: 2013 end-page: 551 ident: b0330 article-title: Ranking and clustering software cost estimation models through a multiple comparisons algorithm publication-title: IEEE Trans. Softw. Eng. – volume: 54 start-page: 41 year: 2012 end-page: 59 ident: b0005 article-title: Systematic literature review of machine learning based software development effort estimation models publication-title: Inform. Softw. Technol. – volume: 13 start-page: 63 year: 2008 end-page: 96 ident: b0080 article-title: Analysis of attribute weighting heuristics for analogy-based software effort estimation method AQUA+ publication-title: Empirical Softw. Eng. – reference: M. Tsunoda, T. Kakimoto, A. Monden, K.I. Matsumoto, An empirical evaluation of outlier deletion methods for analogy-based cost estimation, in: The 7th International Conference on Predictive Models in Software Engineering (PROMISE ‘11), Banff, Canada, 2011, pp. 1–10. – volume: 39 start-page: 822 year: 2013 end-page: 834 ident: b0260 article-title: Local versus global lessons for defect prediction and effort estimation publication-title: IEEE Trans. Softw. Eng. – volume: 17 start-page: 34 year: 2011 end-page: 61 ident: b0420 article-title: A permutation test based on regression error characteristic curves for software cost estimation models publication-title: Empirical Softw. Eng. – volume: 81 start-page: 356 year: 2008 end-page: 367 ident: b0040 article-title: An investigation of artificial neural networks based prediction systems in software project management publication-title: J. Syst. Softw. – volume: 55 start-page: 1512 year: 2013 end-page: 1528 ident: b0310 article-title: Ensembles and locality: insight on improving software effort estimation publication-title: Inform. Softw. Technol. – reference: J. Keung, Empirical evaluation of analogy-X for software cost estimation, in: The 2nd ACM-IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM’08), Kaiserslautern, Germany, 2008, pp. 294–296. – reference: ISBSG, The ISBSG Development & Enhancement Project Data in: ISBSG (Ed.), 2013. < – volume: 15 start-page: 523 year: 2010 end-page: 555 ident: b0170 article-title: LSEbA: least squares regression and estimation by analogy in a semi-parametric model for software cost estimation publication-title: Empirical Softw. Eng. – volume: 27 start-page: 1014 year: 2001 end-page: 1022 ident: b0110 article-title: Comparing software prediction techniques using simulation publication-title: IEEE Trans. Softw. Eng. – reference: Z. Chen, T. Menzies, D. Port, B. Boehm, Feature subset selection can improve software cost estimation accuracy, in: The 2005 International Conference on Predictor Models in Software Engineering (PROMISE’05), St. Louis, MO, USA, 2005, pp. 1–6. – volume: 17 start-page: 375 year: 2003 end-page: 381 ident: b0090 article-title: Data preparation for data mining publication-title: Appl. Artif. Intell. – volume: 56 start-page: 527 year: 2014 end-page: 544 ident: b0415 article-title: Potential and limitations of the ISBSG dataset in enhancing software engineering research: a mapping review publication-title: Inform. Softw. Technol. – volume: 54 start-page: 820 year: 2012 end-page: 827 ident: b0475 article-title: Evaluating prediction systems in software project estimation publication-title: Inform. Softw. Technol. – volume: 50 start-page: 221 year: 2008 end-page: 230 ident: b0225 article-title: Improving analogy-based software cost estimation by a resampling method publication-title: Inform. Softw. Technol. – ident: 10.1016/j.infsof.2015.07.004_b0220 doi: 10.1109/ESEM.2009.5315991 – volume: 31 start-page: 615 year: 2005 ident: 10.1016/j.infsof.2015.07.004_b0250 article-title: A probabilistic model for predicting software development effort publication-title: IEEE Trans. Softw. Eng. doi: 10.1109/TSE.2005.75 – volume: 53 start-page: 23 year: 2000 ident: 10.1016/j.infsof.2015.07.004_b0035 article-title: Investigation of machine learning based prediction systems publication-title: J. Syst. Softw. doi: 10.1016/S0164-1212(00)00005-4 – ident: 10.1016/j.infsof.2015.07.004_b0285 doi: 10.1145/2365324.2365336 – volume: 14 start-page: 299 year: 2010 ident: 10.1016/j.infsof.2015.07.004_b0095 article-title: Ensemble missing data techniques for software effort prediction publication-title: Intell. Data Anal. doi: 10.3233/IDA-2010-0423 – year: 1989 ident: 10.1016/j.infsof.2015.07.004_b0425 – ident: 10.1016/j.infsof.2015.07.004_b0190 doi: 10.1049/ic:20040398 – volume: 17 start-page: 34 year: 2011 ident: 10.1016/j.infsof.2015.07.004_b0420 article-title: A permutation test based on regression error characteristic curves for software cost estimation models publication-title: Empirical Softw. Eng. doi: 10.1007/s10664-011-9177-5 – volume: 39 start-page: 425 year: 1997 ident: 10.1016/j.infsof.2015.07.004_b0440 article-title: A comparison of techniques for developing predictive models of software metrics publication-title: Inform. Softw. Technol. doi: 10.1016/S0950-5849(96)00006-7 – volume: 50 start-page: 221 year: 2008 ident: 10.1016/j.infsof.2015.07.004_b0225 article-title: Improving analogy-based software cost estimation by a resampling method publication-title: Inform. Softw. Technol. doi: 10.1016/j.infsof.2007.04.001 – ident: 10.1016/j.infsof.2015.07.004_b0370 doi: 10.1145/1083165.1083171 – volume: 27 start-page: 1014 year: 2001 ident: 10.1016/j.infsof.2015.07.004_b0110 article-title: Comparing software prediction techniques using simulation publication-title: IEEE Trans. Softw. Eng. doi: 10.1109/32.965341 – volume: 18 start-page: 659 year: 2013 ident: 10.1016/j.infsof.2015.07.004_b0150 article-title: On the value of outlier elimination on software effort estimation research publication-title: Empirical Softw. Eng. doi: 10.1007/s10664-012-9207-y – ident: 10.1016/j.infsof.2015.07.004_b0265 doi: 10.1145/1868328.1868333 – volume: 81 start-page: 673 year: 2008 ident: 10.1016/j.infsof.2015.07.004_b0470 article-title: Cross-company vs. single-company web effort models using the Tukutuku database: an extended study publication-title: J. Syst. Softw. doi: 10.1016/j.jss.2007.07.044 – volume: 8 start-page: 163 year: 2003 ident: 10.1016/j.infsof.2015.07.004_b0380 article-title: A comparative study of cost estimation models for web hypermedia applications publication-title: Empirical Softw. Eng. doi: 10.1023/A:1023062629183 – volume: 5 start-page: 35 year: 2000 ident: 10.1016/j.infsof.2015.07.004_b0180 article-title: A simulation tool for efficient analogy based cost estimation publication-title: Empirical Softw. Eng. doi: 10.1023/A:1009897800559 – volume: 85 start-page: 562 year: 2012 ident: 10.1016/j.infsof.2015.07.004_b0360 article-title: Empirical findings on team size and productivity in software development publication-title: J. Syst. Softw. doi: 10.1016/j.jss.2011.09.009 – volume: 81 start-page: 356 year: 2008 ident: 10.1016/j.infsof.2015.07.004_b0040 article-title: An investigation of artificial neural networks based prediction systems in software project management publication-title: J. Syst. Softw. doi: 10.1016/j.jss.2007.05.011 – volume: 15 start-page: 60 year: 2009 ident: 10.1016/j.infsof.2015.07.004_b0165 article-title: Fuzzy grey relational analysis for software effort estimation publication-title: Empirical Softw. Eng. doi: 10.1007/s10664-009-9113-0 – volume: 86 start-page: 144 year: 2013 ident: 10.1016/j.infsof.2015.07.004_b0020 article-title: Towards an early software estimation using log-linear regression and a multilayer perceptron model publication-title: J. Syst. Softw. doi: 10.1016/j.jss.2012.07.050 – volume: 80 start-page: 628 year: 2007 ident: 10.1016/j.infsof.2015.07.004_b0070 article-title: The adjusted analogy-based software effort estimation based on similarity distances publication-title: J. Syst. Softw. doi: 10.1016/j.jss.2006.06.006 – volume: 36 start-page: 5921 year: 2009 ident: 10.1016/j.infsof.2015.07.004_b0050 article-title: A study of mutual information based feature selection for case based reasoning in software cost estimation publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2008.07.062 – ident: 10.1016/j.infsof.2015.07.004_b0105 doi: 10.1145/2020390.2020396 – volume: 3 start-page: 1157 year: 2003 ident: 10.1016/j.infsof.2015.07.004_b0390 article-title: An introduction to variable and feature selection publication-title: J. Mach. Learn. Res. – ident: 10.1016/j.infsof.2015.07.004_b0385 – volume: 27 start-page: 999 year: 2001 ident: 10.1016/j.infsof.2015.07.004_b0140 article-title: Analyzing data sets with missing data: an empirical evaluation of imputation methods and likelihood-based methods publication-title: IEEE Trans. Softw. Eng. doi: 10.1109/32.965340 – volume: 55 start-page: 1512 year: 2013 ident: 10.1016/j.infsof.2015.07.004_b0310 article-title: Ensembles and locality: insight on improving software effort estimation publication-title: Inform. Softw. Technol. doi: 10.1016/j.infsof.2012.09.012 – volume: 82 start-page: 241 year: 2009 ident: 10.1016/j.infsof.2015.07.004_b0125 article-title: A study of project selection and feature weighting for analogy based software cost estimation publication-title: J. Syst. Softw. doi: 10.1016/j.jss.2008.06.001 – start-page: 373 year: 2014 ident: 10.1016/j.infsof.2015.07.004_b0405 article-title: Search-based software project management – volume: 20 start-page: 543 year: 2013 ident: 10.1016/j.infsof.2015.07.004_b0160 article-title: Finding conclusion stability for selecting the best effort predictor in software effort estimation publication-title: Autom. Softw. Eng. doi: 10.1007/s10515-012-0108-5 – ident: 10.1016/j.infsof.2015.07.004_b0205 doi: 10.1145/337180.337223 – volume: 79 start-page: 404 year: 2006 ident: 10.1016/j.infsof.2015.07.004_b0145 article-title: Categorical missing data imputation for software cost estimation by multinomial logistic regression publication-title: J. Syst. Softw. doi: 10.1016/j.jss.2005.02.026 – volume: 81 start-page: 1853 year: 2008 ident: 10.1016/j.infsof.2015.07.004_b0120 article-title: Software development cost estimation using wavelet neural networks publication-title: J. Syst. Softw. doi: 10.1016/j.jss.2007.12.793 – ident: 10.1016/j.infsof.2015.07.004_b0305 doi: 10.1109/PROMISE.2007.5 – volume: 84 start-page: 270 year: 2011 ident: 10.1016/j.infsof.2015.07.004_b0060 article-title: Analogy-based software effort estimation using fuzzy numbers publication-title: J. Syst. Softw. doi: 10.1016/j.jss.2010.09.028 – volume: 34 start-page: 471 year: 2008 ident: 10.1016/j.infsof.2015.07.004_b0115 article-title: Analogy-X: providing statistical inference to analogy-based software cost estimation publication-title: IEEE Trans. Softw. Eng. doi: 10.1109/TSE.2008.34 – ident: 10.1016/j.infsof.2015.07.004_b0280 doi: 10.1145/2365324.2365328 – volume: 19 start-page: 537 year: 2011 ident: 10.1016/j.infsof.2015.07.004_b0345 article-title: A comparative study for estimating software development effort intervals publication-title: Softw. Qual. J. doi: 10.1007/s11219-010-9112-9 – volume: 31 start-page: 380 year: 2005 ident: 10.1016/j.infsof.2015.07.004_b0455 article-title: Reliability and validity in comparative studies software prediction models publication-title: IEEE Trans. Softw. Eng. doi: 10.1109/TSE.2005.58 – ident: 10.1016/j.infsof.2015.07.004_b0155 doi: 10.1145/2020390.2020407 – volume: 17 start-page: 90 year: 2012 ident: 10.1016/j.infsof.2015.07.004_b0315 article-title: A replicated assessment and comparison of adaptation techniques for analogy-based effort estimation publication-title: Empirical Softw. Eng. doi: 10.1007/s10664-011-9176-6 – volume: 38 start-page: 425 year: 2012 ident: 10.1016/j.infsof.2015.07.004_b0055 article-title: Exploiting the essential assumptions of analogy-based effort estimation publication-title: IEEE Trans. Softw. Eng. doi: 10.1109/TSE.2011.27 – volume: 16 start-page: 411 year: 2008 ident: 10.1016/j.infsof.2015.07.004_b0290 article-title: Evaluation of preliminary data analysis framework in software cost estimation based on ISBSG R9 data publication-title: Softw. Qual. J. doi: 10.1007/s11219-007-9041-4 – volume: 4 start-page: 135 year: 1999 ident: 10.1016/j.infsof.2015.07.004_b0435 article-title: Empirical study of analogy-based software effort estimation publication-title: Empirical Softw. Eng. doi: 10.1023/A:1009872202035 – ident: 10.1016/j.infsof.2015.07.004_b0240 doi: 10.1145/1414004.1414057 – start-page: 4 year: 2009 ident: 10.1016/j.infsof.2015.07.004_b0465 article-title: Why comparative effort prediction studies may be invalid – volume: 54 start-page: 820 year: 2012 ident: 10.1016/j.infsof.2015.07.004_b0475 article-title: Evaluating prediction systems in software project estimation publication-title: Inform. Softw. Technol. doi: 10.1016/j.infsof.2011.12.008 – volume: 48 start-page: 1034 year: 2006 ident: 10.1016/j.infsof.2015.07.004_b0075 article-title: Optimization of analogy weights by genetic algorithm for software effort estimation publication-title: Inform. Softw. Technol. doi: 10.1016/j.infsof.2005.12.020 – ident: 10.1016/j.infsof.2015.07.004_b0270 doi: 10.1109/ESEM.2011.34 – volume: 259 start-page: 596 year: 2014 ident: 10.1016/j.infsof.2015.07.004_b0365 article-title: Incomplete-case nearest neighbor imputation in software measurement data publication-title: Inform. Sci. doi: 10.1016/j.ins.2010.12.017 – volume: 33 start-page: 33 year: 2007 ident: 10.1016/j.infsof.2015.07.004_b0430 article-title: A systematic review of software development cost estimation studies publication-title: IEEE Trans. Softw. Eng. doi: 10.1109/TSE.2007.256943 – ident: 10.1016/j.infsof.2015.07.004_b0215 doi: 10.1145/1868328.1868335 – volume: 21 start-page: 126 year: 1995 ident: 10.1016/j.infsof.2015.07.004_b0025 article-title: Machine learning approaches to estimating software development effort publication-title: IEEE Trans. Softw. Eng. doi: 10.1109/32.345828 – volume: 18 start-page: 1 year: 2013 ident: 10.1016/j.infsof.2015.07.004_b0065 article-title: Kernel methods for software effort estimation: effects of different kernel functions and bandwidths on estimation accuracy publication-title: Empirical Softw. Eng. doi: 10.1007/s10664-011-9189-1 – volume: 15 start-page: 523 year: 2010 ident: 10.1016/j.infsof.2015.07.004_b0170 article-title: LSEbA: least squares regression and estimation by analogy in a semi-parametric model for software cost estimation publication-title: Empirical Softw. Eng. doi: 10.1007/s10664-010-9128-6 – volume: 16 start-page: 211 year: 2011 ident: 10.1016/j.infsof.2015.07.004_b0185 article-title: Investigating the use of support vector regression for web effort estimation publication-title: Empirical Softw. Eng. doi: 10.1007/s10664-010-9138-4 – ident: 10.1016/j.infsof.2015.07.004_b0195 doi: 10.1109/ESEM.2007.20 – volume: 39 start-page: 281 year: 1997 ident: 10.1016/j.infsof.2015.07.004_b0045 article-title: A comparison of software effort estimation techniques: using function points with neural networks, case-based reasoning and regression models publication-title: J. Syst. Softw. doi: 10.1016/S0164-1212(97)00055-1 – ident: 10.1016/j.infsof.2015.07.004_b0355 doi: 10.1145/2365324.2365333 – volume: 44 start-page: 911 year: 2002 ident: 10.1016/j.infsof.2015.07.004_b0030 article-title: Comparison of artificial neural network and regression models for estimating software development effort publication-title: Inform. Softw. Technol. doi: 10.1016/S0950-5849(02)00128-3 – volume: 55 start-page: 241 year: 2013 ident: 10.1016/j.infsof.2015.07.004_b0460 article-title: Probabilistic size proxy for software effort prediction: a framework publication-title: Inform. Softw. Technol. doi: 10.1016/j.infsof.2012.08.001 – volume: 83 start-page: 2332 year: 2010 ident: 10.1016/j.infsof.2015.07.004_b0445 article-title: Adaptive ridge regression system for software cost estimating on multi-collinear datasets publication-title: J. Syst. Softw. doi: 10.1016/j.jss.2010.07.032 – ident: 10.1016/j.infsof.2015.07.004_b0245 doi: 10.1145/2365324.2365330 – volume: 18 start-page: 57 year: 2009 ident: 10.1016/j.infsof.2015.07.004_b0340 article-title: A new perspective on data homogeneity in software cost estimation: a study in the embedded systems domain publication-title: Softw. Qual. J. doi: 10.1007/s11219-009-9081-z – volume: 38 start-page: 1403 year: 2012 ident: 10.1016/j.infsof.2015.07.004_b0210 article-title: On the value of ensemble effort estimation publication-title: IEEE Trans. Softw. Eng. doi: 10.1109/TSE.2011.111 – volume: 21 start-page: 501 year: 2013 ident: 10.1016/j.infsof.2015.07.004_b0295 article-title: A PSO-based model to increase the accuracy of software development effort estimation publication-title: Softw. Qual. J. doi: 10.1007/s11219-012-9183-x – volume: 39 start-page: 537 year: 2013 ident: 10.1016/j.infsof.2015.07.004_b0330 article-title: Ranking and clustering software cost estimation models through a multiple comparisons algorithm publication-title: IEEE Trans. Softw. Eng. doi: 10.1109/TSE.2012.45 – start-page: 9 year: 2006 ident: 10.1016/j.infsof.2015.07.004_b0200 article-title: Effort estimation modeling techniques: a case study for web applications – ident: 10.1016/j.infsof.2015.07.004_b0350 doi: 10.1109/ICSE.2012.6227203 – volume: 52 start-page: 1155 year: 2010 ident: 10.1016/j.infsof.2015.07.004_b0085 article-title: GA-based method for feature selection and parameters optimization for machine learning regression applied to software effort estimation publication-title: Inform. Softw. Technol. doi: 10.1016/j.infsof.2010.05.009 – volume: 81 start-page: 691 year: 2008 ident: 10.1016/j.infsof.2015.07.004_b0135 article-title: A comprehensive empirical evaluation of missing value imputation in noisy software measurement data publication-title: J. Syst. Softw. doi: 10.1016/j.jss.2007.07.043 – ident: 10.1016/j.infsof.2015.07.004_b0400 doi: 10.1145/1363686.1364116 – volume: 14 start-page: 603 year: 2009 ident: 10.1016/j.infsof.2015.07.004_b0275 article-title: A study of the non-linear adjustment for analogy based software cost estimation publication-title: Empirical Softw. Eng. doi: 10.1007/s10664-008-9104-6 – volume: 13 start-page: 63 year: 2008 ident: 10.1016/j.infsof.2015.07.004_b0080 article-title: Analysis of attribute weighting heuristics for analogy-based software effort estimation method AQUA+ publication-title: Empirical Softw. Eng. doi: 10.1007/s10664-007-9054-4 – ident: 10.1016/j.infsof.2015.07.004_b0235 doi: 10.1109/ESEM.2007.14 – volume: 17 start-page: 375 year: 2003 ident: 10.1016/j.infsof.2015.07.004_b0090 article-title: Data preparation for data mining publication-title: Appl. Artif. Intell. doi: 10.1080/713827180 – volume: 12 start-page: 65 year: 2007 ident: 10.1016/j.infsof.2015.07.004_b0175 article-title: A flexible method for software effort estimation by analogy publication-title: Empirical Softw. Eng. doi: 10.1007/s10664-006-7552-4 – volume: SE-10 start-page: 4 year: 1984 ident: 10.1016/j.infsof.2015.07.004_b0010 article-title: Software engineering economics publication-title: IEEE Trans. Softw. Eng. doi: 10.1109/TSE.1984.5010193 – ident: 10.1016/j.infsof.2015.07.004_b0375 – volume: 39 start-page: 822 year: 2013 ident: 10.1016/j.infsof.2015.07.004_b0260 article-title: Local versus global lessons for defect prediction and effort estimation publication-title: IEEE Trans. Softw. Eng. doi: 10.1109/TSE.2012.83 – volume: 56 start-page: 527 year: 2014 ident: 10.1016/j.infsof.2015.07.004_b0415 article-title: Potential and limitations of the ISBSG dataset in enhancing software engineering research: a mapping review publication-title: Inform. Softw. Technol. doi: 10.1016/j.infsof.2014.01.003 – ident: 10.1016/j.infsof.2015.07.004_b0230 doi: 10.1109/ESEM.2007.10 – volume: 18 start-page: 506 year: 2013 ident: 10.1016/j.infsof.2015.07.004_b0300 article-title: Using tabu search to configure support vector regression for effort estimation publication-title: Empirical Softw. Eng. doi: 10.1007/s10664-011-9187-3 – volume: 19 start-page: 165 year: 2010 ident: 10.1016/j.infsof.2015.07.004_b0320 article-title: Comparison of weighted grey relational analysis for software effort estimation publication-title: Softw. Qual. J. doi: 10.1007/s11219-010-9110-y – volume: 27 start-page: 1226 year: 2005 ident: 10.1016/j.infsof.2015.07.004_b0395 article-title: Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2005.159 – volume: 39 start-page: 1040 year: 2013 ident: 10.1016/j.infsof.2015.07.004_b0325 article-title: Active learning and effort estimation: finding the essential content of software effort estimation data publication-title: IEEE Trans. Softw. Eng. doi: 10.1109/TSE.2012.88 – volume: 32 start-page: 83 year: 2006 ident: 10.1016/j.infsof.2015.07.004_b0255 article-title: Optimal project feature weights in analogy-based cost estimation: improvement and limitations publication-title: IEEE Trans. Softw. Eng. doi: 10.1109/TSE.2006.1599418 – volume: 54 start-page: 41 year: 2012 ident: 10.1016/j.infsof.2015.07.004_b0005 article-title: Systematic literature review of machine learning based software development effort estimation models publication-title: Inform. Softw. Technol. doi: 10.1016/j.infsof.2011.09.002 – volume: 17 start-page: 738 year: 2011 ident: 10.1016/j.infsof.2015.07.004_b0335 article-title: Software development effort prediction of industrial projects applying a general regression neural network publication-title: Empirical Softw. Eng. doi: 10.1007/s10664-011-9192-6 – year: 1991 ident: 10.1016/j.infsof.2015.07.004_b0015 – volume: 27 start-page: 890 year: 2001 ident: 10.1016/j.infsof.2015.07.004_b0130 article-title: Software cost estimation with incomplete data publication-title: IEEE Trans. Softw. Eng. doi: 10.1109/32.962560 – start-page: 61 year: 2003 ident: 10.1016/j.infsof.2015.07.004_b0410 article-title: Case and feature subset selection in case-based software project effort prediction – volume: 29 start-page: 985 year: 2003 ident: 10.1016/j.infsof.2015.07.004_b0450 article-title: A simulation study of the model evaluation criterion MMRE publication-title: IEEE Trans. Softw. Eng. doi: 10.1109/TSE.2003.1245300 – ident: 10.1016/j.infsof.2015.07.004_b0100 doi: 10.1145/2020390.2020399 |
SSID | ssj0017030 |
Score | 2.4894786 |
Snippet | Due to the complex nature of software development process, traditional parametric models and statistical methods often appear to be inadequate to model the... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 108 |
SubjectTerms | Artificial intelligence Case selection Cost estimates Data preprocessing Feature selection Machine learning Missing-data treatments Scaling Software Software cost estimation Software engineering Studies |
Title | An empirical analysis of data preprocessing for machine learning-based software cost estimation |
URI | https://dx.doi.org/10.1016/j.infsof.2015.07.004 https://www.proquest.com/docview/1716946559 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwEA5jgvgi_sTpHHnwNa5tum59HMMxFfeig72F5prKxHVlq_jm3-5dmg4UYeBjS1LC3eXua3L3HWM3AMbztcmEIT7EMM1ioXHBwg8yGYW-kYmmA_2naTSZhQ_z3rzBRnUtDKVVOt9f-XTrrd2brpNmt1gsus8IDjwMnzFCGro_pUJzYq9Dm7792qZ5-GTRFd-eJ2h0XT5nc7xQiZuVJfLsWQpP167tj_D0y1Hb6DM-YocONvJhtbJj1jD5Cduvs9ZPmRrm3CyLhSX84IljGuGrjFMKKC-Iu9JWBGCk4ohT-dImURruuka8CgpnKcd1lp_J2nBYbUpODBxVaeMZm43vXkYT4XonCMAfvFKAydIewhlIMpNGREqfetAPQfdQB30AX-pIg5F-5A3iaBAAIRVITZhIHCy1PGfNfJWbC8b7aQwDAz516QizVOo4wJ0c0PEp4DzdYrIWmQJHLE79Ld5VnUH2pipBKxK08ujGO2wxsZ1VVMQaO8b3a22oHwai0PfvmNmulafcBt0oyxJE3HHx5b8_fMUO6KmqTGyzZrn-MNcIUUrdsTbYYXvD-8fJ9BsbT-gn |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED_mBuqL-InTqXnwNaxd2m59HEPZ3MeLG-wtNNdUJroNV_HfN5emA0UY-NrmSrhL7n5N7n4HcI-oPV_pjGviQwzSLObKTJj7rUxEga9FouhAfzyJ-rPgaR7OK9Ara2EordL5_sKnW2_tnjSdNpvrxaL5bMCBZ8JnbCAN3Z-Ge1AjdqqgCrXuYNifbC8TaFEXlHseJ4Gygs6meRk7blaWyzO0LJ6uY9sfEeqXr7YB6PEYjhxyZN1icidQ0ctT2C8T189AdpdMv68XlvODJY5shK0yRlmgbE30lbYowAQrZqAqe7d5lJq5xhEvnCJaysw886_kQzNcbXJGJBxFdeM5zB4fpr0-d-0TOJp_vJyjztLQIBpMMp1GxEufetgOUIXGDG1EX6hIoRZ-5HXiqNNCAiuY6iARZrBQ4gKqy9VSXwJrpzF2NPrUqCPIUqHiltnMLTpBRSOn6iBKlUl03OLU4uJNlklkr7JQtCRFS48uvYM68K3UuuDW2DG-XVpD_lgj0rj_HZKN0njS7dGNtERBRB8XX_37w3dw0J-OR3I0mAyv4ZDeFIWKDajmH5_6xiCWXN26FfkNEyDq2A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+empirical+analysis+of+data+preprocessing+for+machine+learning-based+software+cost+estimation&rft.jtitle=Information+and+software+technology&rft.au=Huang%2C+Jianglin&rft.au=Li%2C+Yan-Fu&rft.au=Xie%2C+Min&rft.date=2015-11-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0950-5849&rft.eissn=1873-6025&rft.volume=67&rft.spage=108&rft_id=info:doi/10.1016%2Fj.infsof.2015.07.004&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3819875041 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-5849&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-5849&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-5849&client=summon |