Automatic Visual Attention Detection for Mobile Eye Tracking Using Pre-Trained Computer Vision Models and Human Gaze

Processing visual stimuli in a scene is essential for the human brain to make situation-aware decisions. These stimuli, which are prevalent subjects of diagnostic eye tracking studies, are commonly encoded as rectangular areas of interest (AOIs) per frame. Because it is a tedious manual annotation t...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 21; no. 12; p. 4143
Main Authors Barz, Michael, Sonntag, Daniel
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 16.06.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Processing visual stimuli in a scene is essential for the human brain to make situation-aware decisions. These stimuli, which are prevalent subjects of diagnostic eye tracking studies, are commonly encoded as rectangular areas of interest (AOIs) per frame. Because it is a tedious manual annotation task, the automatic detection and annotation of visual attention to AOIs can accelerate and objectify eye tracking research, in particular for mobile eye tracking with egocentric video feeds. In this work, we implement two methods to automatically detect visual attention to AOIs using pre-trained deep learning models for image classification and object detection. Furthermore, we develop an evaluation framework based on the VISUS dataset and well-known performance metrics from the field of activity recognition. We systematically evaluate our methods within this framework, discuss potentials and limitations, and propose ways to improve the performance of future automatic visual attention detection methods.
AbstractList Processing visual stimuli in a scene is essential for the human brain to make situation-aware decisions. These stimuli, which are prevalent subjects of diagnostic eye tracking studies, are commonly encoded as rectangular areas of interest (AOIs) per frame. Because it is a tedious manual annotation task, the automatic detection and annotation of visual attention to AOIs can accelerate and objectify eye tracking research, in particular for mobile eye tracking with egocentric video feeds. In this work, we implement two methods to automatically detect visual attention to AOIs using pre-trained deep learning models for image classification and object detection. Furthermore, we develop an evaluation framework based on the VISUS dataset and well-known performance metrics from the field of activity recognition. We systematically evaluate our methods within this framework, discuss potentials and limitations, and propose ways to improve the performance of future automatic visual attention detection methods.
Processing visual stimuli in a scene is essential for the human brain to make situation-aware decisions. These stimuli, which are prevalent subjects of diagnostic eye tracking studies, are commonly encoded as rectangular areas of interest (AOIs) per frame. Because it is a tedious manual annotation task, the automatic detection and annotation of visual attention to AOIs can accelerate and objectify eye tracking research, in particular for mobile eye tracking with egocentric video feeds. In this work, we implement two methods to automatically detect visual attention to AOIs using pre-trained deep learning models for image classification and object detection. Furthermore, we develop an evaluation framework based on the VISUS dataset and well-known performance metrics from the field of activity recognition. We systematically evaluate our methods within this framework, discuss potentials and limitations, and propose ways to improve the performance of future automatic visual attention detection methods.Processing visual stimuli in a scene is essential for the human brain to make situation-aware decisions. These stimuli, which are prevalent subjects of diagnostic eye tracking studies, are commonly encoded as rectangular areas of interest (AOIs) per frame. Because it is a tedious manual annotation task, the automatic detection and annotation of visual attention to AOIs can accelerate and objectify eye tracking research, in particular for mobile eye tracking with egocentric video feeds. In this work, we implement two methods to automatically detect visual attention to AOIs using pre-trained deep learning models for image classification and object detection. Furthermore, we develop an evaluation framework based on the VISUS dataset and well-known performance metrics from the field of activity recognition. We systematically evaluate our methods within this framework, discuss potentials and limitations, and propose ways to improve the performance of future automatic visual attention detection methods.
Author Barz, Michael
Sonntag, Daniel
AuthorAffiliation 2 Applied Artificial Intelligence, Oldenburg University, Marie-Curie Str. 1, 26129 Oldenburg, Germany
1 German Research Center for Artificial Intelligence (DFKI), Interactive Machine Learning Department, Stuhlsatzenhausweg 3, Saarland Informatics Campus D3_2, 66123 Saarbrücken, Germany; daniel.sonntag@dfki.de
AuthorAffiliation_xml – name: 1 German Research Center for Artificial Intelligence (DFKI), Interactive Machine Learning Department, Stuhlsatzenhausweg 3, Saarland Informatics Campus D3_2, 66123 Saarbrücken, Germany; daniel.sonntag@dfki.de
– name: 2 Applied Artificial Intelligence, Oldenburg University, Marie-Curie Str. 1, 26129 Oldenburg, Germany
Author_xml – sequence: 1
  givenname: Michael
  orcidid: 0000-0001-6730-2466
  surname: Barz
  fullname: Barz, Michael
– sequence: 2
  givenname: Daniel
  orcidid: 0000-0002-8857-8709
  surname: Sonntag
  fullname: Sonntag, Daniel
BookMark eNplkk1v1DAQhi1URD_gwD-wxAUOof5M4gvSailtpVZwaLlajjNZvCT2YjtI5dfjdAuixQd7NH7nGXtmjtGBDx4Qek3Je84VOU2MUiao4M_QERVMVC1j5OAf-xAdp7QlhHHO2xfokAtG2obXRyiv5hwmk53FX12azYhXOYPPLnj8ETLYe2sIEV-Hzo2Az-4A30Rjvzu_wbdp2b9EqIrLeejxOky7OUNcaEvkdehhTNj4Hl_Mk_H43PyCl-j5YMYErx7OE3T76exmfVFdfT6_XK-uKitEnSurlOR1M9AauFSWdZZ3HSeyl6JmSjYdFZaJoSFdYzphZa2UrUE1QIzqrDD8BF3uuX0wW72LbjLxTgfj9L0jxI02sXx9BM3ZIJmQFoRRoqzWyr7uayFb2nBQqrA-7Fm7uZugt6VG0YyPoI9vvPumN-GnbhmXRPACePsAiOHHDCnrySUL42g8hDlpJkUraOmMLNI3T6TbMEdfSrWoJG3rpqFFdbpX2RhSijBo67JZ-lXyu1FTopfp0H-no0S8exLx5_n_a38DVY25Qg
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3462109
crossref_primary_10_3390_s24196479
crossref_primary_10_3389_fphys_2024_1366910
crossref_primary_10_15622_ia_23_2_8
crossref_primary_10_3390_s24092666
crossref_primary_10_1117_1_OE_62_7_073101
crossref_primary_10_1109_ACCESS_2022_3187969
crossref_primary_10_36548_jsws_2024_4_003
crossref_primary_10_1016_j_aeue_2023_155023
crossref_primary_10_1080_19312458_2024_2443396
crossref_primary_10_1080_00913367_2023_2258388
crossref_primary_10_3389_frai_2024_1391745
crossref_primary_10_1145_3530887
crossref_primary_10_3390_electronics12245007
Cites_doi 10.1167/7.14.16
10.1007/978-3-319-54526-4
10.1109/ACCESS.2020.2980901
10.1109/TVCG.2016.2598695
10.16910/jemr.5.2.6
10.1145/2750858.2807520
10.1145/2857491.2857532
10.1145/1743666.1743729
10.1145/2168556.2168570
10.1145/2968219.2971389
10.1145/2070719.2070720
10.1145/3204493.3204538
10.1109/TBME.2004.831523
10.1109/ICCVW.2017.322
10.1145/3301400
10.1145/1889681.1889687
10.1109/CVPR.2016.209
10.1109/CVPR.2015.7298594
10.1109/TNNLS.2018.2876865
10.1109/THMS.2019.2892919
10.1145/3450341.3458766
10.1109/HRI.2016.7451737
10.1145/2470654.2470697
10.1007/s11263-015-0816-y
10.1007/978-3-642-33709-3
10.1145/2939381
10.1016/j.neucom.2020.01.028
10.1177/1541931213601362
10.16910/jemr.11.6.6
10.1145/2893485
10.1109/CVPR.2015.7298625
10.1145/2499474.2499481
10.1145/3379155.3391314
10.1145/2370216.2370363
10.1109/FG.2018.00020
10.1109/CVPR.2019.00441
10.1109/ICCV.2017.322
10.1145/1378773.1378777
10.1145/2499474.2499479
10.1145/2882970
10.1145/2663204.2663275
10.1080/13506280902793843
10.1023/B:VISI.0000029664.99615.94
10.1145/2857491.2857493
10.1109/TPAMI.2012.89
10.1145/2633043
10.1145/2499474.2499480
10.15607/RSS.2017.XIII.012
10.1145/3229434.3229439
10.1145/3185517
10.1145/2669557.2669558
10.1016/S0042-6989(01)00102-X
10.1145/2764921
10.3390/s21062234
10.1007/978-3-319-10602-1_48
10.1007/978-3-030-01228-1_38
10.1109/CVPR.2015.7298700
10.1145/2638728.2641691
10.1145/2070719.2070722
10.1007/978-981-13-1056-0
10.1109/CVPR.2016.90
10.1145/2029956.2029971
10.1145/3204493.3204536
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s21124143
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef

Publicly Available Content Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_32f5245ce4a944448c5d6d6458173e99
PMC8235043
10_3390_s21124143
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c446t-c995367f16e359c2bc3bb305d5462957b14c24f70b7ab4c5699c6e97e0a9bc4a3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:31:31 EDT 2025
Thu Aug 21 18:01:57 EDT 2025
Thu Jul 10 18:03:58 EDT 2025
Fri Jul 25 20:26:53 EDT 2025
Tue Jul 01 03:56:14 EDT 2025
Thu Apr 24 22:53:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-c995367f16e359c2bc3bb305d5462957b14c24f70b7ab4c5699c6e97e0a9bc4a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6730-2466
0000-0002-8857-8709
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s21124143
PMID 34208736
PQID 2545186771
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_32f5245ce4a944448c5d6d6458173e99
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8235043
proquest_miscellaneous_2548413425
proquest_journals_2545186771
crossref_citationtrail_10_3390_s21124143
crossref_primary_10_3390_s21124143
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210616
PublicationDateYYYYMMDD 2021-06-16
PublicationDate_xml – month: 6
  year: 2021
  text: 20210616
  day: 16
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Lowe (ref_60) 2004; 60
Dudley (ref_78) 2018; 8
Ishii (ref_29) 2016; 6
Fong (ref_54) 2016; 60
Panetta (ref_12) 2019; 49
ref_14
ref_58
ref_13
ref_57
ref_56
ref_11
ref_10
Steichen (ref_50) 2014; 4
ref_52
Ishii (ref_28) 2013; 3
Jokinen (ref_30) 2013; 3
ref_17
Conati (ref_51) 2020; 10
ref_15
Wolf (ref_16) 2018; 11
ref_59
Toyama (ref_61) 2015; Volume 9324
Yarbus (ref_20) 1967; 6
Borji (ref_19) 2013; 35
Zhao (ref_68) 2019; 30
Minhas (ref_48) 2017; 7
ref_69
ref_67
ref_66
ref_64
Buscher (ref_35) 2012; 1
ref_62
Chai (ref_24) 2012; 1
Panetta (ref_55) 2020; 8
ref_72
DeAngelus (ref_22) 2009; 17
ref_71
ref_70
Ward (ref_18) 2011; 2
Sattar (ref_38) 2020; 387
ref_36
Evans (ref_53) 2012; 5
ref_79
ref_34
Qvarfordt (ref_27) 2017; Volume 1
Baur (ref_33) 2015; 5
ref_77
ref_76
ref_31
ref_75
ref_74
ref_73
Yu (ref_3) 2004; 51
Rothkopf (ref_23) 2016; 7
ref_39
ref_37
Kurzhals (ref_8) 2017; 23
ref_80
Land (ref_21) 2001; 41
ref_47
ref_46
ref_45
ref_44
ref_43
Russakovsky (ref_63) 2015; 115
Xu (ref_32) 2016; 6
ref_42
ref_41
ref_40
ref_1
Batliner (ref_65) 2020; 34
ref_2
ref_49
ref_9
Nakano (ref_26) 2016; 6
ref_5
ref_4
Chai (ref_25) 2013; 3
ref_7
ref_6
References_xml – volume: Volume 9324
  start-page: 316
  year: 2015
  ident: ref_61
  article-title: Towards episodic memory support for dementia patients by recognizing objects, faces and text in eye gaze
  publication-title: KI 2015: Advances in Artificial Intelligence
– volume: 7
  start-page: 16
  year: 2016
  ident: ref_23
  article-title: Task and context determine where you look
  publication-title: J. Vis.
  doi: 10.1167/7.14.16
– ident: ref_9
– ident: ref_49
– ident: ref_75
  doi: 10.1007/978-3-319-54526-4
– volume: 8
  start-page: 52278
  year: 2020
  ident: ref_55
  article-title: ISeeColor: Method for Advanced Visual Analytics of Eye Tracking Data
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2980901
– volume: 23
  start-page: 301
  year: 2017
  ident: ref_8
  article-title: Visual Analytics for Mobile Eye Tracking
  publication-title: IEEE Trans. Vis. Comput. Graph.
  doi: 10.1109/TVCG.2016.2598695
– volume: 5
  start-page: 19
  year: 2012
  ident: ref_53
  article-title: Collecting and Analyzing Eye-Tracking Data in Outdoor Environments
  publication-title: J. Eye Mov. Res.
  doi: 10.16910/jemr.5.2.6
– ident: ref_39
– ident: ref_42
  doi: 10.1145/2750858.2807520
– ident: ref_4
  doi: 10.1145/2857491.2857532
– ident: ref_10
  doi: 10.1145/1743666.1743729
– ident: ref_11
  doi: 10.1145/2168556.2168570
– ident: ref_7
  doi: 10.1145/2968219.2971389
– ident: ref_1
– volume: 6
  start-page: 222
  year: 1967
  ident: ref_20
  article-title: Eye movements and vision
  publication-title: Neuropsychologia
– volume: 1
  start-page: 1
  year: 2012
  ident: ref_24
  article-title: Introduction to the special issue on eye gaze in intelligent human-machine interaction
  publication-title: ACM Trans. Interact. Intell. Syst.
  doi: 10.1145/2070719.2070720
– ident: ref_74
  doi: 10.1145/3204493.3204538
– volume: 51
  start-page: 1765
  year: 2004
  ident: ref_3
  article-title: A new methodology for determining point-of-gaze in head-mounted eye tracking systems
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2004.831523
– ident: ref_37
  doi: 10.1109/ICCVW.2017.322
– volume: Volume 1
  start-page: 365
  year: 2017
  ident: ref_27
  article-title: Gaze-informed multimodal interaction
  publication-title: The Handbook of Multimodal-Multisensor Interfaces: Foundations, User Modeling, and Common Modality Combinations
– ident: ref_77
– volume: 10
  start-page: 12
  year: 2020
  ident: ref_51
  article-title: Comparing and Combining Interaction Data and Eye-tracking Data for the Real-time Prediction of User Cognitive Abilities in Visualization Tasks
  publication-title: ACM Trans. Interact. Intell. Syst.
  doi: 10.1145/3301400
– volume: 2
  start-page: 1
  year: 2011
  ident: ref_18
  article-title: Performance metrics for activity recognition
  publication-title: ACM Trans. Intell. Syst. Technol.
  doi: 10.1145/1889681.1889687
– ident: ref_56
– ident: ref_70
  doi: 10.1109/CVPR.2016.209
– ident: ref_62
  doi: 10.1109/CVPR.2015.7298594
– volume: 30
  start-page: 3212
  year: 2019
  ident: ref_68
  article-title: Object Detection With Deep Learning: A Review
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2018.2876865
– volume: 49
  start-page: 268
  year: 2019
  ident: ref_12
  article-title: Software Architecture for Automating Cognitive Science Eye-Tracking Data Analysis and Object Annotation
  publication-title: IEEE Trans. Hum. Mach. Syst.
  doi: 10.1109/THMS.2019.2892919
– ident: ref_72
  doi: 10.1145/3450341.3458766
– ident: ref_17
  doi: 10.1109/HRI.2016.7451737
– ident: ref_41
  doi: 10.1145/2470654.2470697
– volume: 115
  start-page: 211
  year: 2015
  ident: ref_63
  article-title: ImageNet Large Scale Visual Recognition Challenge
  publication-title: Int. J. Comput. Vis. (IJCV)
  doi: 10.1007/s11263-015-0816-y
– ident: ref_44
  doi: 10.1007/978-3-642-33709-3
– ident: ref_66
– ident: ref_13
– volume: 7
  start-page: 1
  year: 2017
  ident: ref_48
  article-title: Added value of gaze-exploiting semantic representation to allow robots inferring human behaviors
  publication-title: ACM Trans. Interact. Intell. Syst.
  doi: 10.1145/2939381
– volume: 387
  start-page: 369
  year: 2020
  ident: ref_38
  article-title: Deep gaze pooling: Inferring and visually decoding search intents from human gaze fixations
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.01.028
– volume: 60
  start-page: 1569
  year: 2016
  ident: ref_54
  article-title: Making Sense of Mobile Eye-Tracking Data in the Real-World: A Human-in-the-Loop Analysis Approach
  publication-title: Proc. Hum. Factors Ergon. Soc. Annu. Meet.
  doi: 10.1177/1541931213601362
– volume: 11
  start-page: 6
  year: 2018
  ident: ref_16
  article-title: Automating areas of interest analysis in mobile eye tracking experiments based on machine learning
  publication-title: J. Eye Mov. Res.
  doi: 10.16910/jemr.11.6.6
– volume: 6
  start-page: 1
  year: 2016
  ident: ref_26
  article-title: Introduction to the special issue on new directions in eye gaze for interactive intelligent systems
  publication-title: ACM Trans. Interact. Intell. Syst.
  doi: 10.1145/2893485
– ident: ref_76
– volume: 6
  start-page: 4:1
  year: 2016
  ident: ref_29
  article-title: Prediction of Who Will Be the Next Speaker and When Using Gaze Behavior in Multiparty Meetings
  publication-title: ACM Trans. Interact. Intell. Syst.
– ident: ref_34
– ident: ref_45
  doi: 10.1109/CVPR.2015.7298625
– volume: 3
  start-page: 1
  year: 2013
  ident: ref_30
  article-title: Gaze and turn-taking behavior in casual conversational interactions
  publication-title: ACM Trans. Interact. Intell. Syst.
  doi: 10.1145/2499474.2499481
– ident: ref_40
  doi: 10.1145/3379155.3391314
– ident: ref_52
  doi: 10.1145/2370216.2370363
– ident: ref_58
  doi: 10.1109/FG.2018.00020
– ident: ref_57
  doi: 10.1109/CVPR.2019.00441
– ident: ref_64
  doi: 10.1109/ICCV.2017.322
– ident: ref_31
  doi: 10.1145/1378773.1378777
– ident: ref_73
– volume: 3
  start-page: 1
  year: 2013
  ident: ref_25
  article-title: Introduction to the special section on eye gaze and conversation
  publication-title: ACM Trans. Interact. Intell. Syst.
  doi: 10.1145/2499474.2499479
– volume: 6
  start-page: 1
  year: 2016
  ident: ref_32
  article-title: See you see me: The role of Eye contact in multimodal human-robot interaction
  publication-title: ACM Trans. Interact. Intell. Syst.
  doi: 10.1145/2882970
– ident: ref_6
  doi: 10.1145/2663204.2663275
– volume: 17
  start-page: 790
  year: 2009
  ident: ref_22
  article-title: Top-down control of eye movements: Yarbus revisited
  publication-title: Vis. Cogn.
  doi: 10.1080/13506280902793843
– volume: 34
  start-page: 505
  year: 2020
  ident: ref_65
  article-title: Automated areas of interest analysis for usability studies of tangible screen-based user interfaces using mobile eye tracking
  publication-title: AI EDAM
– volume: 60
  start-page: 91
  year: 2004
  ident: ref_60
  article-title: Distinctive image features from scale-invariant keypoints
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/B:VISI.0000029664.99615.94
– ident: ref_79
  doi: 10.1145/2857491.2857493
– volume: 35
  start-page: 185
  year: 2013
  ident: ref_19
  article-title: State-of-the-Art in Visual Attention Modeling
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.89
– volume: 4
  start-page: 1
  year: 2014
  ident: ref_50
  article-title: Inferring visualization task properties, user performance, and user cognitive abilities from eye gaze data
  publication-title: ACM Trans. Interact. Intell. Syst.
  doi: 10.1145/2633043
– volume: 3
  start-page: 11:1
  year: 2013
  ident: ref_28
  article-title: Gaze awareness in conversational agents: Estimating a user’s conversational engagement from eye gaze
  publication-title: ACM Trans. Interact. Intell. Syst.
  doi: 10.1145/2499474.2499480
– ident: ref_71
  doi: 10.15607/RSS.2017.XIII.012
– ident: ref_43
  doi: 10.1145/3229434.3229439
– volume: 8
  start-page: 1
  year: 2018
  ident: ref_78
  article-title: A Review of User Interface Design for Interactive Machine Learning
  publication-title: ACM Trans. Interact. Intell. Syst.
  doi: 10.1145/3185517
– ident: ref_2
  doi: 10.1145/2669557.2669558
– ident: ref_15
– volume: 41
  start-page: 3559
  year: 2001
  ident: ref_21
  article-title: In what ways do eye movements contribute to everyday activities?
  publication-title: Vis. Res.
  doi: 10.1016/S0042-6989(01)00102-X
– volume: 5
  start-page: 1
  year: 2015
  ident: ref_33
  article-title: Context-aware automated analysis and annotation of social human-agent interactions
  publication-title: ACM Trans. Interact. Intell. Syst.
  doi: 10.1145/2764921
– ident: ref_80
  doi: 10.3390/s21062234
– ident: ref_67
  doi: 10.1007/978-3-319-10602-1_48
– ident: ref_46
  doi: 10.1007/978-3-030-01228-1_38
– ident: ref_36
  doi: 10.1109/CVPR.2015.7298700
– ident: ref_47
  doi: 10.1145/2638728.2641691
– volume: 1
  start-page: 1
  year: 2012
  ident: ref_35
  article-title: Attentive documents: Eye tracking as implicit feedback for information retrieval and beyond
  publication-title: ACM Trans. Interact. Intell. Syst.
  doi: 10.1145/2070719.2070722
– ident: ref_59
  doi: 10.1007/978-981-13-1056-0
– ident: ref_69
  doi: 10.1109/CVPR.2016.90
– ident: ref_14
  doi: 10.1145/2029956.2029971
– ident: ref_5
  doi: 10.1145/3204493.3204536
SSID ssj0023338
Score 2.4343858
Snippet Processing visual stimuli in a scene is essential for the human brain to make situation-aware decisions. These stimuli, which are prevalent subjects of...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 4143
SubjectTerms Annotations
area of interest
Automation
Computer vision
Eye movements
eye tracking
eye tracking data analysis
Human-computer interaction
Information retrieval
Robots
visual attention
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS-UwEA_iSQ_L6rps1w-y4sFL8TWZfB39RATFg4q30qQpK0if-PoO_vfOpH2PV1jYiz0205JmJp35JZPfMHYka4RcVrl8EulIjm3q3GKcnkOAiQUHTZGOj93e6etHuHlWzyulvignrKcH7gfuRIpGCVAhQuUALxtUrWsNyhZGRpeO7qHPW4CpAWpJRF49j5BEUH8yQ5iDrgrkyPskkv5RZDnOi1xxNFff2bchQuSnfc-22Fpst9nmCm_gD9adzrtp4lrlTy-zOUl3XZ-3yC9il7KrWo7hKL-depz2_PIjcvRKgdbFecoS4PfvMX-g-hCx5ovSDvQ2epIKpL3OeNXWPC3yc0oJ2mGPV5cP59f5UD4hD4jxujw42po1TaGjVC4IH6T3OL1rBVo4ZXwBQUBjJt5UHoLSzgUdnYmTyvkAlfzJ1ttpG38xrutQeIXAVeIwNtJWojImysYZL4wHyNjxYljLMHCLU4mL1xIxBmmgXGogY4dL0beeUONfQmekm6UAcWCnG2gZ5WAZ5f8sI2N7C82Ww8SclYiHVeLwKzL2Z9mMU4r2Sao2TudJxqJvx79ZxszIIkYdGre0L38TObcVkkjhfn_FF-yyDUEpNFQqSe-x9e59HvcxBur8QTL3T3ipA38
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELYovbQHRF9qeFSm6qGXiI3fPiGgLAiJqgeouEXxIy0SSugme-DfM-PNpkSqmmM8ecjj8cxnj78h5AsPALmMtPks4pEcU4fcQJyeCy9mRlhRF-n42NV3dXEjLm_l7bDg1g1ples5MU3UofW4Rn4IQEYm8rXi6OFPjlWjcHd1KKHxgrwswNNgSpeZn4-AiwP-WrEJcYD2hx2AHXBYgk98UKLqn8SX0-zIZ-5mvk22hjiRHq8U-4ZsxOYtef2MPfAd6Y-XfZsYV-nPu26J0n2_yl6k32KfcqwaCkEpvWodGD89e4wUfJPH1XGacgXoj0XMr7FKRAx0XeAB34ZPYpm0-45WTaBpqZ9iYtB7cjM_uz69yIciCrkHpNfn3uIGra4LFbm0njnPnQMjD1IoZqV2hfBM1HrmdOWEl8par6LVcVZZ50XFP5DNpm3iR0JV8IWTAF85dGPNTcUqrSOvrXZMOyEy8nXdraUfGMax0MV9CUgDNVCOGsjI51H0YUWr8S-hE9TNKIBM2OlGu_hVDoZVclZLJqSPorICLuNlUEEJaQrNo7UZ2VtrthzMsyv_DqaMHIzNYFi4W1I1sV0mGQMeHua0jOjJiJj80LSlufudKLoN40gNt_P_j--SVwxTZLAUktojm_1iGfchxundpzSQnwC8wPw0
  priority: 102
  providerName: ProQuest
Title Automatic Visual Attention Detection for Mobile Eye Tracking Using Pre-Trained Computer Vision Models and Human Gaze
URI https://www.proquest.com/docview/2545186771
https://www.proquest.com/docview/2548413425
https://pubmed.ncbi.nlm.nih.gov/PMC8235043
https://doaj.org/article/32f5245ce4a944448c5d6d6458173e99
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB7t4wIHxFMElsogDlwCjR9xfEBoF1pWSF2t0Bb1FsWOAytVCbSpxP57Ztwk2kh7oIdUaiZR47Ez89nj7wN4K0qEXJky8dTTlpysKuMM8_RYOjnNpJFVEraPLS7S86X8tlKrA-g1NrsG3N4J7UhParlZv__75-YTDviPhDgRsn_YIojBQCTFIRzjtyYhg4UcFhO4EEHQmvZ0xRgPp3uCofGlo7AU2PtHKee4YPJWBJo_hAdd6shO975-BAe-fgz3bxEKPoH2dNc2gYSV_bje7si6bfcFjeyLb0PZVc0wT2WLxuL7gM1uPMNw5WjCnIXyAXa58fEVCUf4kvWaD3Q3upKU09ZbVtQlC7P_jGqFnsJyPrv6fB53ugqxQ_DXxs7Qmq2uktQLZRy3TliL475UMuVGaZtIx2Wlp1YXVjqVGuNSb7SfFsY6WYhncFQ3tX8OLC1dYhUiWoHNWIms4IXWXlRGW66tlBG865s1dx3pOGlfrHMEH-SBfPBABG8G0997po27jM7IN4MBkWOHH5rNz7wba7ngleJSOS8LI_GTOVWmZSpVlmjhjYngpPds3ne4HIGyCuR-SQSvh9M41mgBpah9sws2GQZ9fM1FoEc9YvSHxmfq61-BtTvjgtjiXvzPY76Ee5xqZ0gjKT2Bo3az868w-WntBA71SuMxm3-dwPHZ7OLy-yRMJExCp_8HFHIFMg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxFMEChgEEpeoiR9xfECo0C5b2q04bFFvaew4UKlKyiYr1D_Fb2TGedBIiFv3GE-ykWc8M188_oaQN7wAyJVKHUYOj-SkZRGmkKeHwoooFVqUsT8-tjhK5sfiy4k82SC_h7MwWFY5-ETvqIva4jfybQAy0pOvxR8ufobYNQp3V4cWGp1ZHLjLXwDZmvf7u6Dft4zN9paf5mHfVSC0AH3a0GrcsVRlnDgutWXGcmPA6gspEqalMrGwTJQqMio3wspEa5s4rVyUa2NFzuG5N8hNwSGS48n02ecR4HHAex17EQxG2w2AKwiQgk9inm8NMMlnp9WYV8Lb7B652-eldKczpPtkw1UPyJ0rbIUPSbuzbmvP8Eq_nTVrlG7brlqS7rrW13RVFJJguqgNOBu6d-koxEKLX-Opr02gX1cuXGJXClfQoaEEPg3vxLZs5w3Nq4L6rQWKhUiPyPG1TO9jslnVlXtCaFLY2EiAyxymseRpznKlHC-1MkwZIQLybpjWzPaM5thY4zwDZIMayEYNBOT1KHrR0Xj8S-gj6mYUQOZtf6Fefc_6hZxxVkompHUi1wJ-qZVFUiRCprHiTuuAbA2azXp30GR_jTcgr8ZhWMi4O5NXrl57mRQyCvChAVETi5i80HSkOvvhKcFTxpGK7un___wluTVfLg6zw_2jg2fkNsPyHGzDlGyRzXa1ds8hv2rNC2_UlJxe9yr6A9GmOLE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVkJwQDxFoIBBIHGJduNHHB8QatldtZSuVqhFvaWx40ClKim7WaH-NX4dM86DRkLcmmMyecjz8Hzx-BtC3vIcIFcidThxuCUnKfIwgTw9FFZMEqFFEfntY0eLeP9EfD6Vp1vkd7cXBssqu5joA3VeWfxHPgYgIz35WjQu2rKI5XT-8fJniB2kcKW1a6fRmMihu_oF8G394WAKun7H2Hx2_Gk_bDsMhBZgUB1ajauXqohix6W2zFhuDHhALkXMtFQmEpaJQk2MyoywMtbaxk4rN8m0sSLj8NxbZFshKhqR7b3ZYvm1h3sc0F_DZcS5nozXALVguhR8MAP6RgGD7HZYm3ltspvfJ_faLJXuNmb1gGy58iG5e4278BGpdzd15fle6bfz9Qal67qpnaRTV_sKr5JCSkyPKgOhh86uHIWZ0eK_eeorFehy5cJj7FHhctq1l8Cn4Z3YpO1iTbMyp36hgWJZ0mNyciMD_ISMyqp0TwmNcxsZCeCZwzAWPMlYppTjhVaGKSNEQN53w5ralt8c22xcpIBzUANpr4GAvOlFLxtSj38J7aFuegHk4fYnqtX3tHXrlLNCMiGtE5kWcCRW5nEeC5lEijutA7LTaTZtg8M6_WvKAXndXwa3xrWarHTVxsskkF9ARA2IGljE4IOGV8rzH54gPGEcieme_f_lr8ht8KD0y8Hi8Dm5w7BWB3syxTtkVK827gUkW7V52Vo1JWc37Uh_AG3aPkM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Visual+Attention+Detection+for+Mobile+Eye+Tracking+Using+Pre-Trained+Computer+Vision+Models+and+Human+Gaze&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Barz%2C+Michael&rft.au=Sonntag%2C+Daniel&rft.date=2021-06-16&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=21&rft.issue=12&rft.spage=4143&rft_id=info:doi/10.3390%2Fs21124143&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s21124143
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon