A reusable robust radio frequency biosensor using microwave resonator by integrated passive device technology for quantitative detection of glucose level

A reusable robust radio frequency (RF) biosensor with a rectangular meandered line (RML) resonator on a gallium arsenide substrate by integrated passive device (IPD) technology was designed, fabricated and tested to enable the real-time identification of the glucose level in human serum. The air-bri...

Full description

Saved in:
Bibliographic Details
Published inBiosensors & bioelectronics Vol. 67; pp. 687 - 693
Main Authors Kim, N.Y., Dhakal, R., Adhikari, K.K., Kim, E.S., Wang, C.
Format Journal Article
LanguageEnglish
Published England 15.05.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A reusable robust radio frequency (RF) biosensor with a rectangular meandered line (RML) resonator on a gallium arsenide substrate by integrated passive device (IPD) technology was designed, fabricated and tested to enable the real-time identification of the glucose level in human serum. The air-bridge structure fabricated by an IPD technology was applied to the RML resonator to improve its sensitivity by increasing the magnitude of the return loss (S21). The resonance behaviour, based on S21 characteristics of the biosensor, was analysed at 9.20 GHz with human serum containing different glucose concentration ranging from 148-268 mg dl(-1), 105-225 mg dl(-1) and at a deionised (D) water glucose concentration in the range of 25- 500 mg dl(-1) for seven different samples. A calibration analysis was performed for the human serum from two different subjects and for D-glucose at a response time of 60 s; the reproducibility, the minimum shift in resonance frequency and the long-term stability of the signal were investigated. The feature characteristics based on the resonance concept after the use of serum as an analyte are modelled as an inductor, capacitor and resistor. The findings support the development of resonance-based sensing with an excellent sensitivity of 1.08 MHz per 1 mg dl(-1), a detection limit of 8.01 mg dl(-1), and a limit of quantisation of 24.30 mg dl(-1).
AbstractList A reusable robust radio frequency (RF) biosensor with a rectangular meandered line (RML) resonator on a gallium arsenide substrate by integrated passive device (IPD) technology was designed, fabricated and tested to enable the real-time identification of the glucose level in human serum. The air-bridge structure fabricated by an IPD technology was applied to the RML resonator to improve its sensitivity by increasing the magnitude of the return loss (S21). The resonance behaviour, based on S21 characteristics of the biosensor, was analysed at 9.20GHz with human serum containing different glucose concentration ranging from 148–268mgdl−1, 105–225mgdl−1 and at a deionised (D) water glucose concentration in the range of 25– 500mgdl−1 for seven different samples. A calibration analysis was performed for the human serum from two different subjects and for d-glucose at a response time of 60s; the reproducibility, the minimum shift in resonance frequency and the long-term stability of the signal were investigated. The feature characteristics based on the resonance concept after the use of serum as an analyte are modelled as an inductor, capacitor and resistor. The findings support the development of resonance-based sensing with an excellent sensitivity of 1.08MHz per 1mgdl−1, a detection limit of 8.01mgdl−1, and a limit of quantisation of 24.30mgdl−1.
A reusable robust radio frequency (RF) biosensor with a rectangular meandered line (RML) resonator on a gallium arsenide substrate by integrated passive device (IPD) technology was designed, fabricated and tested to enable the real-time identification of the glucose level in human serum. The air-bridge structure fabricated by an IPD technology was applied to the RML resonator to improve its sensitivity by increasing the magnitude of the return loss (S21). The resonance behaviour, based on S21 characteristics of the biosensor, was analysed at 9.20 GHz with human serum containing different glucose concentration ranging from 148-268 mg dl(-1), 105-225 mg dl(-1) and at a deionised (D) water glucose concentration in the range of 25- 500 mg dl(-1) for seven different samples. A calibration analysis was performed for the human serum from two different subjects and for D-glucose at a response time of 60 s; the reproducibility, the minimum shift in resonance frequency and the long-term stability of the signal were investigated. The feature characteristics based on the resonance concept after the use of serum as an analyte are modelled as an inductor, capacitor and resistor. The findings support the development of resonance-based sensing with an excellent sensitivity of 1.08 MHz per 1 mg dl(-1), a detection limit of 8.01 mg dl(-1), and a limit of quantisation of 24.30 mg dl(-1).A reusable robust radio frequency (RF) biosensor with a rectangular meandered line (RML) resonator on a gallium arsenide substrate by integrated passive device (IPD) technology was designed, fabricated and tested to enable the real-time identification of the glucose level in human serum. The air-bridge structure fabricated by an IPD technology was applied to the RML resonator to improve its sensitivity by increasing the magnitude of the return loss (S21). The resonance behaviour, based on S21 characteristics of the biosensor, was analysed at 9.20 GHz with human serum containing different glucose concentration ranging from 148-268 mg dl(-1), 105-225 mg dl(-1) and at a deionised (D) water glucose concentration in the range of 25- 500 mg dl(-1) for seven different samples. A calibration analysis was performed for the human serum from two different subjects and for D-glucose at a response time of 60 s; the reproducibility, the minimum shift in resonance frequency and the long-term stability of the signal were investigated. The feature characteristics based on the resonance concept after the use of serum as an analyte are modelled as an inductor, capacitor and resistor. The findings support the development of resonance-based sensing with an excellent sensitivity of 1.08 MHz per 1 mg dl(-1), a detection limit of 8.01 mg dl(-1), and a limit of quantisation of 24.30 mg dl(-1).
A reusable robust radio frequency (RF) biosensor with a rectangular meandered line (RML) resonator on a gallium arsenide substrate by integrated passive device (IPD) technology was designed, fabricated and tested to enable the real-time identification of the glucose level in human serum. The air-bridge structure fabricated by an IPD technology was applied to the RML resonator to improve its sensitivity by increasing the magnitude of the return loss (S 21). The resonance behaviour, based on S 21 characteristics of the biosensor, was analysed at 9.20GHz with human serum containing different glucose concentration ranging from 148-268mgdl-1, 105-225mgdl-1 and at a deionised (D) water glucose concentration in the range of 25- 500mgdl-1 for seven different samples. A calibration analysis was performed for the human serum from two different subjects and for d-glucose at a response time of 60s; the reproducibility, the minimum shift in resonance frequency and the long-term stability of the signal were investigated. The feature characteristics based on the resonance concept after the use of serum as an analyte are modelled as an inductor, capacitor and resistor. The findings support the development of resonance-based sensing with an excellent sensitivity of 1.08MHz per 1mgdl-1, a detection limit of 8.01mgdl-1, and a limit of quantisation of 24.30mgdl-1.
A reusable robust radio frequency (RF) biosensor with a rectangular meandered line (RML) resonator on a gallium arsenide substrate by integrated passive device (IPD) technology was designed, fabricated and tested to enable the real-time identification of the glucose level in human serum. The air-bridge structure fabricated by an IPD technology was applied to the RML resonator to improve its sensitivity by increasing the magnitude of the return loss (S21). The resonance behaviour, based on S21 characteristics of the biosensor, was analysed at 9.20 GHz with human serum containing different glucose concentration ranging from 148-268 mg dl(-1), 105-225 mg dl(-1) and at a deionised (D) water glucose concentration in the range of 25- 500 mg dl(-1) for seven different samples. A calibration analysis was performed for the human serum from two different subjects and for D-glucose at a response time of 60 s; the reproducibility, the minimum shift in resonance frequency and the long-term stability of the signal were investigated. The feature characteristics based on the resonance concept after the use of serum as an analyte are modelled as an inductor, capacitor and resistor. The findings support the development of resonance-based sensing with an excellent sensitivity of 1.08 MHz per 1 mg dl(-1), a detection limit of 8.01 mg dl(-1), and a limit of quantisation of 24.30 mg dl(-1).
Author Kim, E.S.
Dhakal, R.
Kim, N.Y.
Wang, C.
Adhikari, K.K.
Author_xml – sequence: 1
  givenname: N.Y.
  surname: Kim
  fullname: Kim, N.Y.
– sequence: 2
  givenname: R.
  surname: Dhakal
  fullname: Dhakal, R.
– sequence: 3
  givenname: K.K.
  surname: Adhikari
  fullname: Adhikari, K.K.
– sequence: 4
  givenname: E.S.
  surname: Kim
  fullname: Kim, E.S.
– sequence: 5
  givenname: C.
  surname: Wang
  fullname: Wang, C.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25459060$$D View this record in MEDLINE/PubMed
BookMark eNqNkrtu3DAQRYnAhr1-_ECKgGUabfiWVBpGXoCBNEktkNRww4WWXJPUBvsp_ttQWSdFisQVgTvnzoBz5wqdhRgAodeUrCmh6t12bXzMa0aoqMKaMPoKrWjX8kYwLs_QivRSNVIpfomuct4SQlrakwt0yaSQPVFkhZ7ucII5azMBTtHMueCkRx-xS_A4Q7BHvAyBkGPCc_Zhg3fepvhDH6oBcgy61Io5Yh8KbJIuMOK9ztnX-ggHbwEXsN9DnOLmiF1lH2cdii-6nJBaLT4GHB3eTLOts_AEB5hu0LnTU4bb5_caffvw_uv9p-bhy8fP93cPjRVClcZKO1qrZC96ZYmjylmn1diaTghddUMY4y01I_SOUcuYI4a0bUuZ4ap3jl-jt6e--xTrj3MZdj5bmCYdIM55YHVtjHWy7vV_KFVt23eSiRehnNeWHX0BKjnllDJZ0TfP6Gx2MA775Hc6HYffeVaAnYAaUc4J3B-EkmE5mmE7LHkOy9EsWj2aaur-Mtlf8cRQkvbTv6w_AbMDy40
CitedBy_id crossref_primary_10_1109_TBME_2022_3207240
crossref_primary_10_1002_smsc_202200013
crossref_primary_10_1016_j_jestch_2025_101947
crossref_primary_10_3390_s18041075
crossref_primary_10_3390_s22020425
crossref_primary_10_1016_j_measurement_2023_113215
crossref_primary_10_1002_admt_201900767
crossref_primary_10_1016_j_bios_2016_03_016
crossref_primary_10_1007_s42835_021_00719_3
crossref_primary_10_1016_j_medengphy_2017_01_008
crossref_primary_10_1038_s41598_024_76741_y
crossref_primary_10_1016_j_nanoen_2024_110194
crossref_primary_10_1515_freq_2019_0226
crossref_primary_10_1063_1_4909545
crossref_primary_10_1016_j_cej_2022_138258
crossref_primary_10_1007_s10544_021_00568_x
crossref_primary_10_1108_SR_03_2023_0045
crossref_primary_10_3390_s21092945
crossref_primary_10_1088_1361_6463_ab2d78
crossref_primary_10_1002_apj_2525
crossref_primary_10_3390_bios8010012
crossref_primary_10_3390_chemosensors11040257
crossref_primary_10_3390_s21072267
crossref_primary_10_1109_JSEN_2025_3527717
crossref_primary_10_1002_adom_202200331
crossref_primary_10_1109_JSEN_2022_3169768
crossref_primary_10_1002_admt_202000863
crossref_primary_10_1109_ACCESS_2019_2893457
crossref_primary_10_1109_TIM_2023_3327466
crossref_primary_10_1016_j_heliyon_2024_e26646
crossref_primary_10_1080_10584587_2017_1368644
crossref_primary_10_1038_s41598_021_94139_y
crossref_primary_10_3390_bios11120480
crossref_primary_10_1021_acsabm_0c01002
crossref_primary_10_1109_JSEN_2021_3075576
crossref_primary_10_1109_JSEN_2024_3419112
crossref_primary_10_1021_acsomega_4c06237
crossref_primary_10_3390_s18113850
crossref_primary_10_1016_j_bios_2015_08_019
crossref_primary_10_3390_s17071572
crossref_primary_10_1109_LAWP_2019_2955176
crossref_primary_10_3390_bios11120508
crossref_primary_10_1016_j_sna_2023_114282
crossref_primary_10_1155_2018_1324145
crossref_primary_10_1038_s41598_018_34001_w
crossref_primary_10_1109_TBCAS_2021_3112744
crossref_primary_10_1016_j_bios_2024_116908
crossref_primary_10_1088_1361_6463_ab5ba6
crossref_primary_10_1002_adsr_202200040
crossref_primary_10_1038_s41598_020_60806_9
crossref_primary_10_2139_ssrn_4117016
crossref_primary_10_1088_2516_1091_abe6f8
crossref_primary_10_1038_s41386_019_0431_7
crossref_primary_10_1109_JERM_2019_2954219
crossref_primary_10_1080_02564602_2020_1825127
crossref_primary_10_1002_elan_201800207
crossref_primary_10_3390_mi9060294
crossref_primary_10_3390_s20061565
crossref_primary_10_1007_s00339_016_0238_x
crossref_primary_10_1016_j_bios_2017_06_057
crossref_primary_10_3390_s21051843
crossref_primary_10_1109_JMW_2022_3223301
crossref_primary_10_3390_s17020390
crossref_primary_10_1016_j_snb_2024_136229
crossref_primary_10_1021_acs_analchem_0c02153
crossref_primary_10_1038_srep28626
crossref_primary_10_1016_j_bios_2023_115668
crossref_primary_10_1080_03091902_2019_1653388
crossref_primary_10_1109_TMTT_2015_2503275
crossref_primary_10_3390_chemosensors11030158
crossref_primary_10_3390_s19051013
crossref_primary_10_3390_s20144024
crossref_primary_10_1021_acsami_9b02087
crossref_primary_10_3390_mi9030134
crossref_primary_10_1007_s00170_018_3170_8
crossref_primary_10_1016_j_sna_2019_111662
crossref_primary_10_1016_j_snb_2023_134108
crossref_primary_10_1016_j_sna_2019_111663
crossref_primary_10_1016_j_sna_2024_115864
crossref_primary_10_3390_ma13081932
crossref_primary_10_3390_mi15111389
crossref_primary_10_5515_KJKIEES_2018_29_4_247
Cites_doi 10.1016/j.aca.2006.03.005
10.1016/j.aca.2008.11.023
10.1063/1.3653959
10.1016/j.snb.2005.06.005
10.1177/193229680700100404
10.1016/S0963-9969(02)00196-5
10.1021/ac403217t
10.1021/ac201700c
10.1007/s00170-010-2807-z
10.1063/1.3458908
10.3390/s140712127
10.1063/1.3459877
10.1016/j.aca.2011.07.024
10.1063/1.2968115
10.1016/j.bios.2011.10.033
10.1177/193229681000400632
10.1016/j.bios.2012.02.026
10.2528/PIERB11060303
10.1016/j.aca.2005.05.080
10.1016/j.bios.2013.10.053
10.3390/s100605346
10.1016/j.bios.2013.02.010
10.1109/JSEN.2013.2264284
10.1109/TBCAS.2009.2016844
10.1177/193229680900300121
10.1016/j.biosystemseng.2004.01.007
10.1002/mop.25018
10.1016/j.bios.2013.05.014
ContentType Journal Article
Copyright Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Copyright_xml – notice: Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
7SP
7TB
7U5
L7M
7S9
L.6
DOI 10.1016/j.bios.2014.10.021
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
Solid State and Superconductivity Abstracts
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic
Engineering Research Database
Solid State and Superconductivity Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Biology
EISSN 1873-4235
EndPage 693
ExternalDocumentID 25459060
10_1016_j_bios_2014_10_021
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.HR
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AATTM
AAXKI
AAXUO
AAYWO
AAYXX
ABFNM
ABGSF
ABJNI
ABMAC
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADECG
ADEZE
ADMUD
ADNMO
ADTZH
ADUVX
AEBSH
AECPX
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AFFNX
AFJKZ
AFPUW
AFTJW
AFXIZ
AFZHZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGRNS
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJQLL
AJSZI
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CITATION
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HMU
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LX3
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBG
SCB
SCC
SCH
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSH
SSK
SST
SSU
SSZ
T5K
TN5
WUQ
XPP
Y6R
YK3
ZMT
~G-
~KM
AACTN
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
7QO
8FD
FR3
P64
7SP
7TB
7U5
L7M
7S9
L.6
ID FETCH-LOGICAL-c446t-c5cdcc659496c0f16fcfa6d7b844ac65b022371bde9f21c22f0b077712b369ff3
ISSN 0956-5663
1873-4235
IngestDate Fri Jul 11 05:56:29 EDT 2025
Sun Aug 24 03:42:08 EDT 2025
Tue Aug 05 10:07:08 EDT 2025
Mon Jul 21 11:01:12 EDT 2025
Thu Apr 03 07:00:48 EDT 2025
Tue Jul 01 02:51:15 EDT 2025
Thu Apr 24 22:55:56 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords RF biosensor
Real-time identification
Glucose sensor
Reusable biosensor
Integrated passive device
Microwave sensing
Language English
License Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c446t-c5cdcc659496c0f16fcfa6d7b844ac65b022371bde9f21c22f0b077712b369ff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doi.org/10.1016/j.bios.2014.10.021
PMID 25459060
PQID 1653131125
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_2000228587
proquest_miscellaneous_1677985247
proquest_miscellaneous_1673387381
proquest_miscellaneous_1653131125
pubmed_primary_25459060
crossref_primary_10_1016_j_bios_2014_10_021
crossref_citationtrail_10_1016_j_bios_2014_10_021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-05-15
PublicationDateYYYYMMDD 2015-05-15
PublicationDate_xml – month: 05
  year: 2015
  text: 2015-05-15
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Biosensors & bioelectronics
PublicationTitleAlternate Biosens Bioelectron
PublicationYear 2015
References Park (10.1016/j.bios.2014.10.021_bib15) 2014; 54
Kim (10.1016/j.bios.2014.10.021_bib6) 2008; 79
Moore (10.1016/j.bios.2014.10.021_bib14) 2009; 3
Mahdi (10.1016/j.bios.2014.10.021_bib12) 2012; 2
Kuranov (10.1016/j.bios.2014.10.021_bib7) 2007; 1
Liu (10.1016/j.bios.2014.10.021_bib11) 2013; 45
Park (10.1016/j.bios.2014.10.021_bib17) 2012; 31
Ahmadi (10.1016/j.bios.2014.10.021_bib2) 2009; 3
Yan (10.1016/j.bios.2014.10.021_bib28) 2011; 83
Xu (10.1016/j.bios.2014.10.021_bib27) 2009; 114
Tura (10.1016/j.bios.2014.10.021_bib21) 2010; 10
Spada (10.1016/j.bios.2014.10.021_bib20) 2011; 34
Wang (10.1016/j.bios.2014.10.021_bib26) 2011; 52
Venkatesh (10.1016/j.bios.2014.10.021_bib24) 2004; 88
Lee (10.1016/j.bios.2014.10.021_bib9) 2011; 99
Vashist (10.1016/j.bios.2014.10.021_bib23) 2011; 703
Mamdouh (10.1016/j.bios.2014.10.021_bib13) 2014; 14
Lee (10.1016/j.bios.2014.10.021_bib8) 2010; 108
Liao (10.1016/j.bios.2014.10.021_bib10) 2003; 36
Wang (10.1016/j.bios.2014.10.021_bib25) 2010; 52
Park (10.1016/j.bios.2014.10.021_bib16) 2006; 556
Vaddiraju (10.1016/j.bios.2014.10.021_bib22) 2010; 4
Chou (10.1016/j.bios.2014.10.021_bib3) 2013; 13
Kaimori (10.1016/j.bios.2014.10.021_bib4) 2006; 573–574
Kim (10.1016/j.bios.2014.10.021_bib5) 2013; 85
Ruifen (10.1016/j.bios.2014.10.021_bib19) 2012; 35
Yonemori (10.1016/j.bios.2014.10.021_bib29) 2009; 633
Peng (10.1016/j.bios.2014.10.021_bib18) 2013; 49
Abdalla (10.1016/j.bios.2014.10.021_bib1) 2010; 4
References_xml – volume: 573–574
  start-page: 104
  year: 2006
  ident: 10.1016/j.bios.2014.10.021_bib4
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2006.03.005
– volume: 633
  start-page: 90
  year: 2009
  ident: 10.1016/j.bios.2014.10.021_bib29
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2008.11.023
– volume: 99
  start-page: 163703
  year: 2011
  ident: 10.1016/j.bios.2014.10.021_bib9
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3653959
– volume: 114
  start-page: 379
  year: 2009
  ident: 10.1016/j.bios.2014.10.021_bib27
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2005.06.005
– volume: 1
  start-page: 470
  year: 2007
  ident: 10.1016/j.bios.2014.10.021_bib7
  publication-title: J. Diabetes Sci. Technol.
  doi: 10.1177/193229680700100404
– volume: 36
  start-page: 485
  year: 2003
  ident: 10.1016/j.bios.2014.10.021_bib10
  publication-title: Food Res. Int.
  doi: 10.1016/S0963-9969(02)00196-5
– volume: 85
  start-page: 11643
  year: 2013
  ident: 10.1016/j.bios.2014.10.021_bib5
  publication-title: Anal. Chem.
  doi: 10.1021/ac403217t
– volume: 83
  start-page: 8341
  year: 2011
  ident: 10.1016/j.bios.2014.10.021_bib28
  publication-title: Anal. Chem.
  doi: 10.1021/ac201700c
– volume: 52
  start-page: 1011
  year: 2011
  ident: 10.1016/j.bios.2014.10.021_bib26
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-010-2807-z
– volume: 4
  start-page: 034101
  year: 2010
  ident: 10.1016/j.bios.2014.10.021_bib1
  publication-title: Biomicrofluidics
  doi: 10.1063/1.3458908
– volume: 14
  start-page: 12127
  year: 2014
  ident: 10.1016/j.bios.2014.10.021_bib13
  publication-title: Sensors
  doi: 10.3390/s140712127
– volume: 108
  start-page: 014908
  year: 2010
  ident: 10.1016/j.bios.2014.10.021_bib8
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3459877
– volume: 703
  start-page: 124
  year: 2011
  ident: 10.1016/j.bios.2014.10.021_bib23
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2011.07.024
– volume: 79
  start-page: 086107
  year: 2008
  ident: 10.1016/j.bios.2014.10.021_bib6
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.2968115
– volume: 31
  start-page: 284
  year: 2012
  ident: 10.1016/j.bios.2014.10.021_bib17
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2011.10.033
– volume: 4
  start-page: 1540
  year: 2010
  ident: 10.1016/j.bios.2014.10.021_bib22
  publication-title: J. Diabetes Sci. Technol.
  doi: 10.1177/193229681000400632
– volume: 35
  start-page: 425
  year: 2012
  ident: 10.1016/j.bios.2014.10.021_bib19
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2012.02.026
– volume: 34
  start-page: 205
  year: 2011
  ident: 10.1016/j.bios.2014.10.021_bib20
  publication-title: Prog. Electromagn. Res. B
  doi: 10.2528/PIERB11060303
– volume: 2
  start-page: 1431
  year: 2012
  ident: 10.1016/j.bios.2014.10.021_bib12
  publication-title: J. Chem. Biol. Sci. B
– volume: 556
  start-page: 46
  year: 2006
  ident: 10.1016/j.bios.2014.10.021_bib16
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2005.05.080
– volume: 54
  start-page: 141
  year: 2014
  ident: 10.1016/j.bios.2014.10.021_bib15
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2013.10.053
– volume: 10
  start-page: 5346
  year: 2010
  ident: 10.1016/j.bios.2014.10.021_bib21
  publication-title: Sensors
  doi: 10.3390/s100605346
– volume: 45
  start-page: 206
  year: 2013
  ident: 10.1016/j.bios.2014.10.021_bib11
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2013.02.010
– volume: 13
  start-page: 4180
  year: 2013
  ident: 10.1016/j.bios.2014.10.021_bib3
  publication-title: IEEE. Sens. J.
  doi: 10.1109/JSEN.2013.2264284
– volume: 3
  start-page: 169
  year: 2009
  ident: 10.1016/j.bios.2014.10.021_bib2
  publication-title: IEEE Trans. Biomed. Circuits Syst.
  doi: 10.1109/TBCAS.2009.2016844
– volume: 3
  start-page: 180
  year: 2009
  ident: 10.1016/j.bios.2014.10.021_bib14
  publication-title: J. Diabetes Sci. Technol.
  doi: 10.1177/193229680900300121
– volume: 88
  start-page: 1
  year: 2004
  ident: 10.1016/j.bios.2014.10.021_bib24
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2004.01.007
– volume: 52
  start-page: 618
  year: 2010
  ident: 10.1016/j.bios.2014.10.021_bib25
  publication-title: Microw. Opt. Technol. Lett.
  doi: 10.1002/mop.25018
– volume: 49
  start-page: 204
  year: 2013
  ident: 10.1016/j.bios.2014.10.021_bib18
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2013.05.014
SSID ssj0007190
Score 2.465099
Snippet A reusable robust radio frequency (RF) biosensor with a rectangular meandered line (RML) resonator on a gallium arsenide substrate by integrated passive device...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 687
SubjectTerms Arsenicals - chemistry
Biosensing Techniques
Biosensors
blood serum
detection limit
Devices
electrical equipment
gallium
Gallium - chemistry
Glucose
Glucose - chemistry
Glucose - isolation & purification
Human
Humans
Inductors
Microwaves
Radio frequencies
Radio Waves
Resonators
Reusable
Serums
Title A reusable robust radio frequency biosensor using microwave resonator by integrated passive device technology for quantitative detection of glucose level
URI https://www.ncbi.nlm.nih.gov/pubmed/25459060
https://www.proquest.com/docview/1653131125
https://www.proquest.com/docview/1673387381
https://www.proquest.com/docview/1677985247
https://www.proquest.com/docview/2000228587
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKIiT2gGB5LS8ZiVuUKokdOzlWqKsVLOXSSr1FjhNru7s0JU20Kgdu_Aj-LePYSVpgq4VLVLlOamW-jmfG38wg9C6KWKxIELueBE9Hl9ByBSHaa808TzBOs0jnDn-asNMZ_TAP54PBjy3WUl2lQ_ntr3kl_yNVGAO56izZf5Bs91AYgM8gX7iChOF6KxmPnDKv103yU1mk9bpySpEtCkeVhiC9cdJFsQZHtSidugkKfNH8u2vdcQjcbB0412TNTV80InNWYE1rNlGWax3iVF3ovSEkfq3FsklLM1OqXLYWZ8t9v9IspJ2j4nYJ6wZmsKK-9U5_kmSaOk-c3rI-F5dNM4Ke0jjKzheXwqTGf-zjs_besY3i2hCGH-rTd5PE2cUimQt2JdlWy4w7qyEDFchisqVhmd2fzWZtv_tjHzAhiYuhfsuav0eHmsJncrF3i25PPicns7OzZDqeT--guwF4G7oRxvB7zxTivgnVtau0uVeGJvj7L-zaNzc4LY3xMn2IHlivA48MhB6hQb48QvdMH9LNETrcqkr5GP0c4RZW2MAKN7DCHaxwByvcwAp3sMIdrHC6wT2ssIUVNrDCPawwwApvwwp3sMKFwhZWuIHVEzQ7GU_fn7q2g4crKWWVK0OZScnCmMZMespnSirBMp5GlAoYT8GCJNxPszxWgQ_aQnmpxzn3g5SADlHkKTpYFsv8OcIBPIEoGUZSSSo5FSFVLFKBR4SKUuofI79974m05e11l5WrpOUxXiT65SRaVnoMZHWMnO6elSnusnf221acCehgfbAmlnlRrxOfwU5GwHMJ983hhEQcDOS9c3gchQHlN88JTMmqMII5zwymurUH4A7FHvNe3OLul-h-_1d8hQ6qss5fg31dpW8a9P8CZK7XQg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+reusable+robust+radio+frequency+biosensor+using+microwave+resonator+by+integrated+passive+device+technology+for+quantitative+detection+of+glucose+level&rft.jtitle=Biosensors+%26+bioelectronics&rft.au=Kim%2C+N+Y&rft.au=Dhakal%2C+R&rft.au=Adhikari%2C+K+K&rft.au=Kim%2C+E+S&rft.date=2015-05-15&rft.issn=0956-5663&rft.volume=67+p.687-693&rft.spage=687&rft.epage=693&rft_id=info:doi/10.1016%2Fj.bios.2014.10.021&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-5663&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-5663&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-5663&client=summon