A reusable robust radio frequency biosensor using microwave resonator by integrated passive device technology for quantitative detection of glucose level
A reusable robust radio frequency (RF) biosensor with a rectangular meandered line (RML) resonator on a gallium arsenide substrate by integrated passive device (IPD) technology was designed, fabricated and tested to enable the real-time identification of the glucose level in human serum. The air-bri...
Saved in:
Published in | Biosensors & bioelectronics Vol. 67; pp. 687 - 693 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
15.05.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A reusable robust radio frequency (RF) biosensor with a rectangular meandered line (RML) resonator on a gallium arsenide substrate by integrated passive device (IPD) technology was designed, fabricated and tested to enable the real-time identification of the glucose level in human serum. The air-bridge structure fabricated by an IPD technology was applied to the RML resonator to improve its sensitivity by increasing the magnitude of the return loss (S21). The resonance behaviour, based on S21 characteristics of the biosensor, was analysed at 9.20 GHz with human serum containing different glucose concentration ranging from 148-268 mg dl(-1), 105-225 mg dl(-1) and at a deionised (D) water glucose concentration in the range of 25- 500 mg dl(-1) for seven different samples. A calibration analysis was performed for the human serum from two different subjects and for D-glucose at a response time of 60 s; the reproducibility, the minimum shift in resonance frequency and the long-term stability of the signal were investigated. The feature characteristics based on the resonance concept after the use of serum as an analyte are modelled as an inductor, capacitor and resistor. The findings support the development of resonance-based sensing with an excellent sensitivity of 1.08 MHz per 1 mg dl(-1), a detection limit of 8.01 mg dl(-1), and a limit of quantisation of 24.30 mg dl(-1). |
---|---|
AbstractList | A reusable robust radio frequency (RF) biosensor with a rectangular meandered line (RML) resonator on a gallium arsenide substrate by integrated passive device (IPD) technology was designed, fabricated and tested to enable the real-time identification of the glucose level in human serum. The air-bridge structure fabricated by an IPD technology was applied to the RML resonator to improve its sensitivity by increasing the magnitude of the return loss (S21). The resonance behaviour, based on S21 characteristics of the biosensor, was analysed at 9.20GHz with human serum containing different glucose concentration ranging from 148–268mgdl−1, 105–225mgdl−1 and at a deionised (D) water glucose concentration in the range of 25– 500mgdl−1 for seven different samples. A calibration analysis was performed for the human serum from two different subjects and for d-glucose at a response time of 60s; the reproducibility, the minimum shift in resonance frequency and the long-term stability of the signal were investigated. The feature characteristics based on the resonance concept after the use of serum as an analyte are modelled as an inductor, capacitor and resistor. The findings support the development of resonance-based sensing with an excellent sensitivity of 1.08MHz per 1mgdl−1, a detection limit of 8.01mgdl−1, and a limit of quantisation of 24.30mgdl−1. A reusable robust radio frequency (RF) biosensor with a rectangular meandered line (RML) resonator on a gallium arsenide substrate by integrated passive device (IPD) technology was designed, fabricated and tested to enable the real-time identification of the glucose level in human serum. The air-bridge structure fabricated by an IPD technology was applied to the RML resonator to improve its sensitivity by increasing the magnitude of the return loss (S21). The resonance behaviour, based on S21 characteristics of the biosensor, was analysed at 9.20 GHz with human serum containing different glucose concentration ranging from 148-268 mg dl(-1), 105-225 mg dl(-1) and at a deionised (D) water glucose concentration in the range of 25- 500 mg dl(-1) for seven different samples. A calibration analysis was performed for the human serum from two different subjects and for D-glucose at a response time of 60 s; the reproducibility, the minimum shift in resonance frequency and the long-term stability of the signal were investigated. The feature characteristics based on the resonance concept after the use of serum as an analyte are modelled as an inductor, capacitor and resistor. The findings support the development of resonance-based sensing with an excellent sensitivity of 1.08 MHz per 1 mg dl(-1), a detection limit of 8.01 mg dl(-1), and a limit of quantisation of 24.30 mg dl(-1).A reusable robust radio frequency (RF) biosensor with a rectangular meandered line (RML) resonator on a gallium arsenide substrate by integrated passive device (IPD) technology was designed, fabricated and tested to enable the real-time identification of the glucose level in human serum. The air-bridge structure fabricated by an IPD technology was applied to the RML resonator to improve its sensitivity by increasing the magnitude of the return loss (S21). The resonance behaviour, based on S21 characteristics of the biosensor, was analysed at 9.20 GHz with human serum containing different glucose concentration ranging from 148-268 mg dl(-1), 105-225 mg dl(-1) and at a deionised (D) water glucose concentration in the range of 25- 500 mg dl(-1) for seven different samples. A calibration analysis was performed for the human serum from two different subjects and for D-glucose at a response time of 60 s; the reproducibility, the minimum shift in resonance frequency and the long-term stability of the signal were investigated. The feature characteristics based on the resonance concept after the use of serum as an analyte are modelled as an inductor, capacitor and resistor. The findings support the development of resonance-based sensing with an excellent sensitivity of 1.08 MHz per 1 mg dl(-1), a detection limit of 8.01 mg dl(-1), and a limit of quantisation of 24.30 mg dl(-1). A reusable robust radio frequency (RF) biosensor with a rectangular meandered line (RML) resonator on a gallium arsenide substrate by integrated passive device (IPD) technology was designed, fabricated and tested to enable the real-time identification of the glucose level in human serum. The air-bridge structure fabricated by an IPD technology was applied to the RML resonator to improve its sensitivity by increasing the magnitude of the return loss (S 21). The resonance behaviour, based on S 21 characteristics of the biosensor, was analysed at 9.20GHz with human serum containing different glucose concentration ranging from 148-268mgdl-1, 105-225mgdl-1 and at a deionised (D) water glucose concentration in the range of 25- 500mgdl-1 for seven different samples. A calibration analysis was performed for the human serum from two different subjects and for d-glucose at a response time of 60s; the reproducibility, the minimum shift in resonance frequency and the long-term stability of the signal were investigated. The feature characteristics based on the resonance concept after the use of serum as an analyte are modelled as an inductor, capacitor and resistor. The findings support the development of resonance-based sensing with an excellent sensitivity of 1.08MHz per 1mgdl-1, a detection limit of 8.01mgdl-1, and a limit of quantisation of 24.30mgdl-1. A reusable robust radio frequency (RF) biosensor with a rectangular meandered line (RML) resonator on a gallium arsenide substrate by integrated passive device (IPD) technology was designed, fabricated and tested to enable the real-time identification of the glucose level in human serum. The air-bridge structure fabricated by an IPD technology was applied to the RML resonator to improve its sensitivity by increasing the magnitude of the return loss (S21). The resonance behaviour, based on S21 characteristics of the biosensor, was analysed at 9.20 GHz with human serum containing different glucose concentration ranging from 148-268 mg dl(-1), 105-225 mg dl(-1) and at a deionised (D) water glucose concentration in the range of 25- 500 mg dl(-1) for seven different samples. A calibration analysis was performed for the human serum from two different subjects and for D-glucose at a response time of 60 s; the reproducibility, the minimum shift in resonance frequency and the long-term stability of the signal were investigated. The feature characteristics based on the resonance concept after the use of serum as an analyte are modelled as an inductor, capacitor and resistor. The findings support the development of resonance-based sensing with an excellent sensitivity of 1.08 MHz per 1 mg dl(-1), a detection limit of 8.01 mg dl(-1), and a limit of quantisation of 24.30 mg dl(-1). |
Author | Kim, E.S. Dhakal, R. Kim, N.Y. Wang, C. Adhikari, K.K. |
Author_xml | – sequence: 1 givenname: N.Y. surname: Kim fullname: Kim, N.Y. – sequence: 2 givenname: R. surname: Dhakal fullname: Dhakal, R. – sequence: 3 givenname: K.K. surname: Adhikari fullname: Adhikari, K.K. – sequence: 4 givenname: E.S. surname: Kim fullname: Kim, E.S. – sequence: 5 givenname: C. surname: Wang fullname: Wang, C. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25459060$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkrtu3DAQRYnAhr1-_ECKgGUabfiWVBpGXoCBNEktkNRww4WWXJPUBvsp_ttQWSdFisQVgTvnzoBz5wqdhRgAodeUrCmh6t12bXzMa0aoqMKaMPoKrWjX8kYwLs_QivRSNVIpfomuct4SQlrakwt0yaSQPVFkhZ7ucII5azMBTtHMueCkRx-xS_A4Q7BHvAyBkGPCc_Zhg3fepvhDH6oBcgy61Io5Yh8KbJIuMOK9ztnX-ggHbwEXsN9DnOLmiF1lH2cdii-6nJBaLT4GHB3eTLOts_AEB5hu0LnTU4bb5_caffvw_uv9p-bhy8fP93cPjRVClcZKO1qrZC96ZYmjylmn1diaTghddUMY4y01I_SOUcuYI4a0bUuZ4ap3jl-jt6e--xTrj3MZdj5bmCYdIM55YHVtjHWy7vV_KFVt23eSiRehnNeWHX0BKjnllDJZ0TfP6Gx2MA775Hc6HYffeVaAnYAaUc4J3B-EkmE5mmE7LHkOy9EsWj2aaur-Mtlf8cRQkvbTv6w_AbMDy40 |
CitedBy_id | crossref_primary_10_1109_TBME_2022_3207240 crossref_primary_10_1002_smsc_202200013 crossref_primary_10_1016_j_jestch_2025_101947 crossref_primary_10_3390_s18041075 crossref_primary_10_3390_s22020425 crossref_primary_10_1016_j_measurement_2023_113215 crossref_primary_10_1002_admt_201900767 crossref_primary_10_1016_j_bios_2016_03_016 crossref_primary_10_1007_s42835_021_00719_3 crossref_primary_10_1016_j_medengphy_2017_01_008 crossref_primary_10_1038_s41598_024_76741_y crossref_primary_10_1016_j_nanoen_2024_110194 crossref_primary_10_1515_freq_2019_0226 crossref_primary_10_1063_1_4909545 crossref_primary_10_1016_j_cej_2022_138258 crossref_primary_10_1007_s10544_021_00568_x crossref_primary_10_1108_SR_03_2023_0045 crossref_primary_10_3390_s21092945 crossref_primary_10_1088_1361_6463_ab2d78 crossref_primary_10_1002_apj_2525 crossref_primary_10_3390_bios8010012 crossref_primary_10_3390_chemosensors11040257 crossref_primary_10_3390_s21072267 crossref_primary_10_1109_JSEN_2025_3527717 crossref_primary_10_1002_adom_202200331 crossref_primary_10_1109_JSEN_2022_3169768 crossref_primary_10_1002_admt_202000863 crossref_primary_10_1109_ACCESS_2019_2893457 crossref_primary_10_1109_TIM_2023_3327466 crossref_primary_10_1016_j_heliyon_2024_e26646 crossref_primary_10_1080_10584587_2017_1368644 crossref_primary_10_1038_s41598_021_94139_y crossref_primary_10_3390_bios11120480 crossref_primary_10_1021_acsabm_0c01002 crossref_primary_10_1109_JSEN_2021_3075576 crossref_primary_10_1109_JSEN_2024_3419112 crossref_primary_10_1021_acsomega_4c06237 crossref_primary_10_3390_s18113850 crossref_primary_10_1016_j_bios_2015_08_019 crossref_primary_10_3390_s17071572 crossref_primary_10_1109_LAWP_2019_2955176 crossref_primary_10_3390_bios11120508 crossref_primary_10_1016_j_sna_2023_114282 crossref_primary_10_1155_2018_1324145 crossref_primary_10_1038_s41598_018_34001_w crossref_primary_10_1109_TBCAS_2021_3112744 crossref_primary_10_1016_j_bios_2024_116908 crossref_primary_10_1088_1361_6463_ab5ba6 crossref_primary_10_1002_adsr_202200040 crossref_primary_10_1038_s41598_020_60806_9 crossref_primary_10_2139_ssrn_4117016 crossref_primary_10_1088_2516_1091_abe6f8 crossref_primary_10_1038_s41386_019_0431_7 crossref_primary_10_1109_JERM_2019_2954219 crossref_primary_10_1080_02564602_2020_1825127 crossref_primary_10_1002_elan_201800207 crossref_primary_10_3390_mi9060294 crossref_primary_10_3390_s20061565 crossref_primary_10_1007_s00339_016_0238_x crossref_primary_10_1016_j_bios_2017_06_057 crossref_primary_10_3390_s21051843 crossref_primary_10_1109_JMW_2022_3223301 crossref_primary_10_3390_s17020390 crossref_primary_10_1016_j_snb_2024_136229 crossref_primary_10_1021_acs_analchem_0c02153 crossref_primary_10_1038_srep28626 crossref_primary_10_1016_j_bios_2023_115668 crossref_primary_10_1080_03091902_2019_1653388 crossref_primary_10_1109_TMTT_2015_2503275 crossref_primary_10_3390_chemosensors11030158 crossref_primary_10_3390_s19051013 crossref_primary_10_3390_s20144024 crossref_primary_10_1021_acsami_9b02087 crossref_primary_10_3390_mi9030134 crossref_primary_10_1007_s00170_018_3170_8 crossref_primary_10_1016_j_sna_2019_111662 crossref_primary_10_1016_j_snb_2023_134108 crossref_primary_10_1016_j_sna_2019_111663 crossref_primary_10_1016_j_sna_2024_115864 crossref_primary_10_3390_ma13081932 crossref_primary_10_3390_mi15111389 crossref_primary_10_5515_KJKIEES_2018_29_4_247 |
Cites_doi | 10.1016/j.aca.2006.03.005 10.1016/j.aca.2008.11.023 10.1063/1.3653959 10.1016/j.snb.2005.06.005 10.1177/193229680700100404 10.1016/S0963-9969(02)00196-5 10.1021/ac403217t 10.1021/ac201700c 10.1007/s00170-010-2807-z 10.1063/1.3458908 10.3390/s140712127 10.1063/1.3459877 10.1016/j.aca.2011.07.024 10.1063/1.2968115 10.1016/j.bios.2011.10.033 10.1177/193229681000400632 10.1016/j.bios.2012.02.026 10.2528/PIERB11060303 10.1016/j.aca.2005.05.080 10.1016/j.bios.2013.10.053 10.3390/s100605346 10.1016/j.bios.2013.02.010 10.1109/JSEN.2013.2264284 10.1109/TBCAS.2009.2016844 10.1177/193229680900300121 10.1016/j.biosystemseng.2004.01.007 10.1002/mop.25018 10.1016/j.bios.2013.05.014 |
ContentType | Journal Article |
Copyright | Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 7SP 7TB 7U5 L7M 7S9 L.6 |
DOI | 10.1016/j.bios.2014.10.021 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts Solid State and Superconductivity Abstracts Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic Engineering Research Database Solid State and Superconductivity Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Biology |
EISSN | 1873-4235 |
EndPage | 693 |
ExternalDocumentID | 25459060 10_1016_j_bios_2014_10_021 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .HR .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AATTM AAXKI AAXUO AAYWO AAYXX ABFNM ABGSF ABJNI ABMAC ABUDA ABWVN ABXDB ACDAQ ACGFS ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADECG ADEZE ADMUD ADNMO ADTZH ADUVX AEBSH AECPX AEHWI AEIPS AEKER AENEX AEUPX AFFNX AFJKZ AFPUW AFTJW AFXIZ AFZHZ AGCQF AGHFR AGQPQ AGRDE AGRNS AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGII AIIUN AIKHN AITUG AJQLL AJSZI AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CITATION CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA HLW HMU HVGLF HZ~ IHE J1W JJJVA KOM LX3 M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBG SCB SCC SCH SDF SDG SDP SES SEW SPC SPCBC SSH SSK SST SSU SSZ T5K TN5 WUQ XPP Y6R YK3 ZMT ~G- ~KM AACTN CGR CUY CVF ECM EIF NPM 7X8 EFKBS 7QO 8FD FR3 P64 7SP 7TB 7U5 L7M 7S9 L.6 |
ID | FETCH-LOGICAL-c446t-c5cdcc659496c0f16fcfa6d7b844ac65b022371bde9f21c22f0b077712b369ff3 |
ISSN | 0956-5663 1873-4235 |
IngestDate | Fri Jul 11 05:56:29 EDT 2025 Sun Aug 24 03:42:08 EDT 2025 Tue Aug 05 10:07:08 EDT 2025 Mon Jul 21 11:01:12 EDT 2025 Thu Apr 03 07:00:48 EDT 2025 Tue Jul 01 02:51:15 EDT 2025 Thu Apr 24 22:55:56 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | RF biosensor Real-time identification Glucose sensor Reusable biosensor Integrated passive device Microwave sensing |
Language | English |
License | Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c446t-c5cdcc659496c0f16fcfa6d7b844ac65b022371bde9f21c22f0b077712b369ff3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doi.org/10.1016/j.bios.2014.10.021 |
PMID | 25459060 |
PQID | 1653131125 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2000228587 proquest_miscellaneous_1677985247 proquest_miscellaneous_1673387381 proquest_miscellaneous_1653131125 pubmed_primary_25459060 crossref_primary_10_1016_j_bios_2014_10_021 crossref_citationtrail_10_1016_j_bios_2014_10_021 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-05-15 |
PublicationDateYYYYMMDD | 2015-05-15 |
PublicationDate_xml | – month: 05 year: 2015 text: 2015-05-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Biosensors & bioelectronics |
PublicationTitleAlternate | Biosens Bioelectron |
PublicationYear | 2015 |
References | Park (10.1016/j.bios.2014.10.021_bib15) 2014; 54 Kim (10.1016/j.bios.2014.10.021_bib6) 2008; 79 Moore (10.1016/j.bios.2014.10.021_bib14) 2009; 3 Mahdi (10.1016/j.bios.2014.10.021_bib12) 2012; 2 Kuranov (10.1016/j.bios.2014.10.021_bib7) 2007; 1 Liu (10.1016/j.bios.2014.10.021_bib11) 2013; 45 Park (10.1016/j.bios.2014.10.021_bib17) 2012; 31 Ahmadi (10.1016/j.bios.2014.10.021_bib2) 2009; 3 Yan (10.1016/j.bios.2014.10.021_bib28) 2011; 83 Xu (10.1016/j.bios.2014.10.021_bib27) 2009; 114 Tura (10.1016/j.bios.2014.10.021_bib21) 2010; 10 Spada (10.1016/j.bios.2014.10.021_bib20) 2011; 34 Wang (10.1016/j.bios.2014.10.021_bib26) 2011; 52 Venkatesh (10.1016/j.bios.2014.10.021_bib24) 2004; 88 Lee (10.1016/j.bios.2014.10.021_bib9) 2011; 99 Vashist (10.1016/j.bios.2014.10.021_bib23) 2011; 703 Mamdouh (10.1016/j.bios.2014.10.021_bib13) 2014; 14 Lee (10.1016/j.bios.2014.10.021_bib8) 2010; 108 Liao (10.1016/j.bios.2014.10.021_bib10) 2003; 36 Wang (10.1016/j.bios.2014.10.021_bib25) 2010; 52 Park (10.1016/j.bios.2014.10.021_bib16) 2006; 556 Vaddiraju (10.1016/j.bios.2014.10.021_bib22) 2010; 4 Chou (10.1016/j.bios.2014.10.021_bib3) 2013; 13 Kaimori (10.1016/j.bios.2014.10.021_bib4) 2006; 573–574 Kim (10.1016/j.bios.2014.10.021_bib5) 2013; 85 Ruifen (10.1016/j.bios.2014.10.021_bib19) 2012; 35 Yonemori (10.1016/j.bios.2014.10.021_bib29) 2009; 633 Peng (10.1016/j.bios.2014.10.021_bib18) 2013; 49 Abdalla (10.1016/j.bios.2014.10.021_bib1) 2010; 4 |
References_xml | – volume: 573–574 start-page: 104 year: 2006 ident: 10.1016/j.bios.2014.10.021_bib4 publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2006.03.005 – volume: 633 start-page: 90 year: 2009 ident: 10.1016/j.bios.2014.10.021_bib29 publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2008.11.023 – volume: 99 start-page: 163703 year: 2011 ident: 10.1016/j.bios.2014.10.021_bib9 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3653959 – volume: 114 start-page: 379 year: 2009 ident: 10.1016/j.bios.2014.10.021_bib27 publication-title: Sens. Actuators B doi: 10.1016/j.snb.2005.06.005 – volume: 1 start-page: 470 year: 2007 ident: 10.1016/j.bios.2014.10.021_bib7 publication-title: J. Diabetes Sci. Technol. doi: 10.1177/193229680700100404 – volume: 36 start-page: 485 year: 2003 ident: 10.1016/j.bios.2014.10.021_bib10 publication-title: Food Res. Int. doi: 10.1016/S0963-9969(02)00196-5 – volume: 85 start-page: 11643 year: 2013 ident: 10.1016/j.bios.2014.10.021_bib5 publication-title: Anal. Chem. doi: 10.1021/ac403217t – volume: 83 start-page: 8341 year: 2011 ident: 10.1016/j.bios.2014.10.021_bib28 publication-title: Anal. Chem. doi: 10.1021/ac201700c – volume: 52 start-page: 1011 year: 2011 ident: 10.1016/j.bios.2014.10.021_bib26 publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-010-2807-z – volume: 4 start-page: 034101 year: 2010 ident: 10.1016/j.bios.2014.10.021_bib1 publication-title: Biomicrofluidics doi: 10.1063/1.3458908 – volume: 14 start-page: 12127 year: 2014 ident: 10.1016/j.bios.2014.10.021_bib13 publication-title: Sensors doi: 10.3390/s140712127 – volume: 108 start-page: 014908 year: 2010 ident: 10.1016/j.bios.2014.10.021_bib8 publication-title: J. Appl. Phys. doi: 10.1063/1.3459877 – volume: 703 start-page: 124 year: 2011 ident: 10.1016/j.bios.2014.10.021_bib23 publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2011.07.024 – volume: 79 start-page: 086107 year: 2008 ident: 10.1016/j.bios.2014.10.021_bib6 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.2968115 – volume: 31 start-page: 284 year: 2012 ident: 10.1016/j.bios.2014.10.021_bib17 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2011.10.033 – volume: 4 start-page: 1540 year: 2010 ident: 10.1016/j.bios.2014.10.021_bib22 publication-title: J. Diabetes Sci. Technol. doi: 10.1177/193229681000400632 – volume: 35 start-page: 425 year: 2012 ident: 10.1016/j.bios.2014.10.021_bib19 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2012.02.026 – volume: 34 start-page: 205 year: 2011 ident: 10.1016/j.bios.2014.10.021_bib20 publication-title: Prog. Electromagn. Res. B doi: 10.2528/PIERB11060303 – volume: 2 start-page: 1431 year: 2012 ident: 10.1016/j.bios.2014.10.021_bib12 publication-title: J. Chem. Biol. Sci. B – volume: 556 start-page: 46 year: 2006 ident: 10.1016/j.bios.2014.10.021_bib16 publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2005.05.080 – volume: 54 start-page: 141 year: 2014 ident: 10.1016/j.bios.2014.10.021_bib15 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2013.10.053 – volume: 10 start-page: 5346 year: 2010 ident: 10.1016/j.bios.2014.10.021_bib21 publication-title: Sensors doi: 10.3390/s100605346 – volume: 45 start-page: 206 year: 2013 ident: 10.1016/j.bios.2014.10.021_bib11 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2013.02.010 – volume: 13 start-page: 4180 year: 2013 ident: 10.1016/j.bios.2014.10.021_bib3 publication-title: IEEE. Sens. J. doi: 10.1109/JSEN.2013.2264284 – volume: 3 start-page: 169 year: 2009 ident: 10.1016/j.bios.2014.10.021_bib2 publication-title: IEEE Trans. Biomed. Circuits Syst. doi: 10.1109/TBCAS.2009.2016844 – volume: 3 start-page: 180 year: 2009 ident: 10.1016/j.bios.2014.10.021_bib14 publication-title: J. Diabetes Sci. Technol. doi: 10.1177/193229680900300121 – volume: 88 start-page: 1 year: 2004 ident: 10.1016/j.bios.2014.10.021_bib24 publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2004.01.007 – volume: 52 start-page: 618 year: 2010 ident: 10.1016/j.bios.2014.10.021_bib25 publication-title: Microw. Opt. Technol. Lett. doi: 10.1002/mop.25018 – volume: 49 start-page: 204 year: 2013 ident: 10.1016/j.bios.2014.10.021_bib18 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2013.05.014 |
SSID | ssj0007190 |
Score | 2.465099 |
Snippet | A reusable robust radio frequency (RF) biosensor with a rectangular meandered line (RML) resonator on a gallium arsenide substrate by integrated passive device... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 687 |
SubjectTerms | Arsenicals - chemistry Biosensing Techniques Biosensors blood serum detection limit Devices electrical equipment gallium Gallium - chemistry Glucose Glucose - chemistry Glucose - isolation & purification Human Humans Inductors Microwaves Radio frequencies Radio Waves Resonators Reusable Serums |
Title | A reusable robust radio frequency biosensor using microwave resonator by integrated passive device technology for quantitative detection of glucose level |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25459060 https://www.proquest.com/docview/1653131125 https://www.proquest.com/docview/1673387381 https://www.proquest.com/docview/1677985247 https://www.proquest.com/docview/2000228587 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKIiT2gGB5LS8ZiVuUKokdOzlWqKsVLOXSSr1FjhNru7s0JU20Kgdu_Aj-LePYSVpgq4VLVLlOamW-jmfG38wg9C6KWKxIELueBE9Hl9ByBSHaa808TzBOs0jnDn-asNMZ_TAP54PBjy3WUl2lQ_ntr3kl_yNVGAO56izZf5Bs91AYgM8gX7iChOF6KxmPnDKv103yU1mk9bpySpEtCkeVhiC9cdJFsQZHtSidugkKfNH8u2vdcQjcbB0412TNTV80InNWYE1rNlGWax3iVF3ovSEkfq3FsklLM1OqXLYWZ8t9v9IspJ2j4nYJ6wZmsKK-9U5_kmSaOk-c3rI-F5dNM4Ke0jjKzheXwqTGf-zjs_besY3i2hCGH-rTd5PE2cUimQt2JdlWy4w7qyEDFchisqVhmd2fzWZtv_tjHzAhiYuhfsuav0eHmsJncrF3i25PPicns7OzZDqeT--guwF4G7oRxvB7zxTivgnVtau0uVeGJvj7L-zaNzc4LY3xMn2IHlivA48MhB6hQb48QvdMH9LNETrcqkr5GP0c4RZW2MAKN7DCHaxwByvcwAp3sMIdrHC6wT2ssIUVNrDCPawwwApvwwp3sMKFwhZWuIHVEzQ7GU_fn7q2g4crKWWVK0OZScnCmMZMespnSirBMp5GlAoYT8GCJNxPszxWgQ_aQnmpxzn3g5SADlHkKTpYFsv8OcIBPIEoGUZSSSo5FSFVLFKBR4SKUuofI79974m05e11l5WrpOUxXiT65SRaVnoMZHWMnO6elSnusnf221acCehgfbAmlnlRrxOfwU5GwHMJ983hhEQcDOS9c3gchQHlN88JTMmqMII5zwymurUH4A7FHvNe3OLul-h-_1d8hQ6qss5fg31dpW8a9P8CZK7XQg |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+reusable+robust+radio+frequency+biosensor+using+microwave+resonator+by+integrated+passive+device+technology+for+quantitative+detection+of+glucose+level&rft.jtitle=Biosensors+%26+bioelectronics&rft.au=Kim%2C+N+Y&rft.au=Dhakal%2C+R&rft.au=Adhikari%2C+K+K&rft.au=Kim%2C+E+S&rft.date=2015-05-15&rft.issn=0956-5663&rft.volume=67+p.687-693&rft.spage=687&rft.epage=693&rft_id=info:doi/10.1016%2Fj.bios.2014.10.021&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-5663&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-5663&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-5663&client=summon |