MCP-Net: Introducing Patlak Loss Optimization to Whole-Body Dynamic PET Inter-Frame Motion Correction
In whole-body dynamic positron emission tomography (PET), inter-frame subject motion causes spatial misalignment and affects parametric imaging. Many of the current deep learning inter-frame motion correction techniques focus solely on the anatomy-based registration problem, neglecting the tracer ki...
Saved in:
Published in | IEEE transactions on medical imaging Vol. 42; no. 12; pp. 3512 - 3523 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In whole-body dynamic positron emission tomography (PET), inter-frame subject motion causes spatial misalignment and affects parametric imaging. Many of the current deep learning inter-frame motion correction techniques focus solely on the anatomy-based registration problem, neglecting the tracer kinetics that contains functional information. To directly reduce the Patlak fitting error for 18F-FDG and further improve model performance, we propose an inter-frame m otion c orrection framework with P atlak loss optimization integrated into the neural network (MCP-Net). The MCP-Net consists of a multiple-frame motion estimation block, an image-warping block, and an analytical Patlak block that estimates Patlak fitting using motion-corrected frames and the input function. A novel Patlak loss penalty component utilizing mean squared percentage fitting error is added to the loss function to reinforce the motion correction. The parametric images were generated using standard Patlak analysis following motion correction. Our framework enhanced the spatial alignment in both dynamic frames and parametric images and lowered normalized fitting error when compared to both conventional and deep learning benchmarks. MCP-Net also achieved the lowest motion prediction error and showed the best generalization capability. The potential of enhancing network performance and improving the quantitative accuracy of dynamic PET by directly utilizing tracer kinetics is suggested. |
---|---|
AbstractList | In whole-body dynamic positron emission tomography (PET), inter-frame subject motion causes spatial misalignment and affects parametric imaging. Many of the current deep learning inter-frame motion correction techniques focus solely on the anatomy-based registration problem, neglecting the tracer kinetics that contains functional information. To directly reduce the Patlak fitting error for
F-FDG and further improve model performance, we propose an interframe motion correction framework with Patlak loss optimization integrated into the neural network (MCP-Net). The MCP-Net consists of a multiple-frame motion estimation block, an image-warping block, and an analytical Patlak block that estimates Patlak fitting using motion-corrected frames and the input function. A novel Patlak loss penalty component utilizing mean squared percentage fitting error is added to the loss function to reinforce the motion correction. The parametric images were generated using standard Patlak analysis following motion correction. Our framework enhanced the spatial alignment in both dynamic frames and parametric images and lowered normalized fitting error when compared to both conventional and deep learning benchmarks. MCP-Net also achieved the lowest motion prediction error and showed the best generalization capability. The potential of enhancing network performance and improving the quantitative accuracy of dynamic PET by directly utilizing tracer kinetics is suggested. In whole-body dynamic positron emission tomography (PET), inter-frame subject motion causes spatial misalignment and affects parametric imaging. Many of the current deep learning inter-frame motion correction techniques focus solely on the anatomy-based registration problem, neglecting the tracer kinetics that contains functional information. To directly reduce the Patlak fitting error for 18 F-FDG and further improve model performance, we propose an interframe m otion c orrection framework with P atlak loss optimization integrated into the neural network (MCP-Net). The MCP-Net consists of a multiple-frame motion estimation block, an image-warping block, and an analytical Patlak block that estimates Patlak fitting using motion-corrected frames and the input function. A novel Patlak loss penalty component utilizing mean squared percentage fitting error is added to the loss function to reinforce the motion correction. The parametric images were generated using standard Patlak analysis following motion correction. Our framework enhanced the spatial alignment in both dynamic frames and parametric images and lowered normalized fitting error when compared to both conventional and deep learning benchmarks. MCP-Net also achieved the lowest motion prediction error and showed the best generalization capability. The potential of enhancing network performance and improving the quantitative accuracy of dynamic PET by directly utilizing tracer kinetics is suggested. In whole-body dynamic positron emission tomography (PET), inter-frame subject motion causes spatial misalignment and affects parametric imaging. Many of the current deep learning inter-frame motion correction techniques focus solely on the anatomy-based registration problem, neglecting the tracer kinetics that contains functional information. To directly reduce the Patlak fitting error for 18F-FDG and further improve model performance, we propose an inter-frame m otion c orrection framework with P atlak loss optimization integrated into the neural network (MCP-Net). The MCP-Net consists of a multiple-frame motion estimation block, an image-warping block, and an analytical Patlak block that estimates Patlak fitting using motion-corrected frames and the input function. A novel Patlak loss penalty component utilizing mean squared percentage fitting error is added to the loss function to reinforce the motion correction. The parametric images were generated using standard Patlak analysis following motion correction. Our framework enhanced the spatial alignment in both dynamic frames and parametric images and lowered normalized fitting error when compared to both conventional and deep learning benchmarks. MCP-Net also achieved the lowest motion prediction error and showed the best generalization capability. The potential of enhancing network performance and improving the quantitative accuracy of dynamic PET by directly utilizing tracer kinetics is suggested. In whole-body dynamic positron emission tomography (PET), inter-frame subject motion causes spatial misalignment and affects parametric imaging. Many of the current deep learning inter-frame motion correction techniques focus solely on the anatomy-based registration problem, neglecting the tracer kinetics that contains functional information. To directly reduce the Patlak fitting error for 18F-FDG and further improve model performance, we propose an interframe motion correction framework with Patlak loss optimization integrated into the neural network (MCP-Net). The MCP-Net consists of a multiple-frame motion estimation block, an image-warping block, and an analytical Patlak block that estimates Patlak fitting using motion-corrected frames and the input function. A novel Patlak loss penalty component utilizing mean squared percentage fitting error is added to the loss function to reinforce the motion correction. The parametric images were generated using standard Patlak analysis following motion correction. Our framework enhanced the spatial alignment in both dynamic frames and parametric images and lowered normalized fitting error when compared to both conventional and deep learning benchmarks. MCP-Net also achieved the lowest motion prediction error and showed the best generalization capability. The potential of enhancing network performance and improving the quantitative accuracy of dynamic PET by directly utilizing tracer kinetics is suggested.In whole-body dynamic positron emission tomography (PET), inter-frame subject motion causes spatial misalignment and affects parametric imaging. Many of the current deep learning inter-frame motion correction techniques focus solely on the anatomy-based registration problem, neglecting the tracer kinetics that contains functional information. To directly reduce the Patlak fitting error for 18F-FDG and further improve model performance, we propose an interframe motion correction framework with Patlak loss optimization integrated into the neural network (MCP-Net). The MCP-Net consists of a multiple-frame motion estimation block, an image-warping block, and an analytical Patlak block that estimates Patlak fitting using motion-corrected frames and the input function. A novel Patlak loss penalty component utilizing mean squared percentage fitting error is added to the loss function to reinforce the motion correction. The parametric images were generated using standard Patlak analysis following motion correction. Our framework enhanced the spatial alignment in both dynamic frames and parametric images and lowered normalized fitting error when compared to both conventional and deep learning benchmarks. MCP-Net also achieved the lowest motion prediction error and showed the best generalization capability. The potential of enhancing network performance and improving the quantitative accuracy of dynamic PET by directly utilizing tracer kinetics is suggested. |
Author | Chen, Ming-Kai Guo, Xueqi Liu, Chi Zhou, Bo Dvornek, Nicha C. Chen, Xiongchao |
Author_xml | – sequence: 1 givenname: Xueqi orcidid: 0000-0002-0416-2811 surname: Guo fullname: Guo, Xueqi email: xueqi.guo@yale.edu organization: Department of Biomedical Engineering, Yale University, New Haven, CT, USA – sequence: 2 givenname: Bo orcidid: 0000-0002-2906-0897 surname: Zhou fullname: Zhou, Bo email: bo.zhou@yale.edu organization: Department of Biomedical Engineering, Yale University, New Haven, CT, USA – sequence: 3 givenname: Xiongchao orcidid: 0000-0003-4112-8492 surname: Chen fullname: Chen, Xiongchao email: xiongchao.chen@yale.edu organization: Department of Biomedical Engineering, Yale University, New Haven, CT, USA – sequence: 4 givenname: Ming-Kai orcidid: 0000-0003-2655-4178 surname: Chen fullname: Chen, Ming-Kai email: ming-kai.chen@yale.edu organization: Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA – sequence: 5 givenname: Chi orcidid: 0000-0002-7007-1037 surname: Liu fullname: Liu, Chi email: chi.liu@yale.edu organization: Department of Biomedical Engineering and the Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA – sequence: 6 givenname: Nicha C. orcidid: 0000-0002-1648-6055 surname: Dvornek fullname: Dvornek, Nicha C. email: nicha.dvornek@yale.edu organization: Department of Biomedical Engineering and the Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37368811$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc9v0zAcxS00xLrBnQNCkbhwSfnaTvyDC4Jug0ot66EIbpbrfLN5JHFx0knlr8ddyzR24GJb8uc9f5_fCTnqQoeEvKQwphT0u-V8OmbA-JgzDQD8CRnRslQ5K4sfR2QETKocQLBjctL3NwC0KEE_I8dccqEUpSOC88ki_4rD-2zaDTFUG-e7q2xhh8b-zGah77PL9eBb_9sOPnTZELLv16HB_FOottnZtrOtd9nifLmTY8wvom0xm4c7eBJiRLc7PidPa9v0-OKwn5JvF-fLyZd8dvl5Ovk4y11RiCGtNUMU2nJZUI6aSieBVq52uljpspK05nXNQAuqueUlZxw4XWnHhURhS35KPux915tVi5XDlMk2Zh19a-PWBOvNvzedvzZX4dZQkCXlSiWHtweHGH5tsB9M63uHTWM7DJveMMVBSCYUS-ibR-hN2MQu5UuULpUslJaJev1wpPtZ_laQANgDLqbvjljfIxTMrmWTWja7ls2h5SQRjyTOD3cFpVC--Z_w1V7oEfHBO1QUVEn-BwqCsw0 |
CODEN | ITMID4 |
CitedBy_id | crossref_primary_10_1109_TMI_2024_3385650 crossref_primary_10_1002_ird3_66 crossref_primary_10_1016_j_media_2024_103190 |
Cites_doi | 10.1007/978-3-030-00934-2_59 10.21203/rs.3.rs-648137/v1 10.1088/1361-6560/ab02c2 10.1109/TMI.2021.3082578 10.1007/978-3-030-00928-1_5 10.1109/TIP.2003.819861 10.1109/TRPMS.2023.3253261 10.1109/TRPMS.2019.2908633 10.1038/jcbfm.1983.1 10.1002/mp.15113 10.1088/0031-9155/51/17/007 10.1088/0031-9155/59/20/6153 10.1007/978-3-031-16440-8_16 10.1109/42.363108 10.5555/1953048.2078195 10.1007/s12350-020-02055-x 10.1109/TMI.2019.2897538 10.1109/TMI.2016.2594150 10.1007/978-3-642-23623-5_60 10.1088/0031-9155/58/20/7391 10.1117/12.2580973 10.1007/978-3-030-00928-1_4 10.1007/978-3-319-46723-8_49 10.2967/jnumed.119.235515 10.1186/2191-219X-3-16 10.1007/s12021-010-9092-8 10.1146/annurev-bioeng-071114-040723 10.1016/j.neuroimage.2013.08.031 10.1007/978-3-030-59728-3_72 10.1007/978-3-642-40811-3_27 10.1109/23.489413 10.1002/mrm.21405 10.1088/1361-6560/aad97f 10.1186/s40658-020-00330-x 10.1109/JBHI.2019.2951024 10.1007/s00259-018-4153-6 10.1007/1-84628-007-9_6 10.1088/1361-6560/ac4a8f 10.1109/TRPMS.2022.3227576 10.1016/j.media.2022.102524 10.1088/0031-9155/60/22/8643 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 5PM |
DOI | 10.1109/TMI.2023.3290003 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) - NZ CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-254X |
EndPage | 3523 |
ExternalDocumentID | PMC10751388 37368811 10_1109_TMI_2023_3290003 10164187 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: National Institutes of Health (NIH) grantid: R01 CA224140 funderid: 10.13039/100000002 – fundername: NCATS NIH HHS grantid: UL1 TR001863 – fundername: NCI NIH HHS grantid: R01 CA224140 |
GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 AAYOK AAYXX CITATION RIG NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 5PM |
ID | FETCH-LOGICAL-c446t-c4f2ee69a37413e917c701dcfc94b95d71f3ff2096193a35323031b9c367e6a53 |
IEDL.DBID | RIE |
ISSN | 0278-0062 1558-254X |
IngestDate | Thu Aug 21 18:29:55 EDT 2025 Fri Jul 11 05:00:06 EDT 2025 Mon Jun 30 06:59:47 EDT 2025 Mon Jul 21 06:01:26 EDT 2025 Thu Apr 24 23:09:35 EDT 2025 Tue Jul 01 05:07:38 EDT 2025 Wed Aug 27 02:04:25 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c446t-c4f2ee69a37413e917c701dcfc94b95d71f3ff2096193a35323031b9c367e6a53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4112-8492 0000-0003-2655-4178 0000-0002-0416-2811 0000-0002-2906-0897 0000-0002-7007-1037 0000-0002-1648-6055 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/10751388 |
PMID | 37368811 |
PQID | 2895874897 |
PQPubID | 85460 |
PageCount | 12 |
ParticipantIDs | ieee_primary_10164187 crossref_primary_10_1109_TMI_2023_3290003 pubmed_primary_37368811 crossref_citationtrail_10_1109_TMI_2023_3290003 proquest_journals_2895874897 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10751388 proquest_miscellaneous_2830672682 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on medical imaging |
PublicationTitleAbbrev | TMI |
PublicationTitleAlternate | IEEE Trans Med Imaging |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 Chen (ref4) 2021 ref31 ref30 ref11 Cheng (ref20) 2015 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 Wang (ref42) ref23 ref45 ref26 Wang (ref44) ref25 ref41 ref22 ref21 ref43 ref28 ref27 ref29 ref8 Shi (ref9) 2015 ref7 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref10 doi: 10.1007/978-3-030-00934-2_59 – volume-title: Is Dynamic Total-Body PET Imaging Feasible in the Clinical Daily Practice? year: 2021 ident: ref4 doi: 10.21203/rs.3.rs-648137/v1 – ident: ref7 doi: 10.1088/1361-6560/ab02c2 – ident: ref11 doi: 10.1109/TMI.2021.3082578 – ident: ref25 doi: 10.1007/978-3-030-00928-1_5 – ident: ref38 doi: 10.1109/TIP.2003.819861 – ident: ref45 doi: 10.1109/TRPMS.2023.3253261 – ident: ref33 doi: 10.1109/TRPMS.2019.2908633 – ident: ref5 doi: 10.1038/jcbfm.1983.1 – ident: ref28 doi: 10.1002/mp.15113 – ident: ref35 doi: 10.1088/0031-9155/51/17/007 – ident: ref3 doi: 10.1088/0031-9155/59/20/6153 – ident: ref26 doi: 10.1007/978-3-031-16440-8_16 – ident: ref29 doi: 10.1109/42.363108 – ident: ref40 doi: 10.5555/1953048.2078195 – ident: ref31 doi: 10.1007/s12350-020-02055-x – ident: ref15 doi: 10.1109/TMI.2019.2897538 – ident: ref22 doi: 10.1109/TMI.2016.2594150 – ident: ref18 doi: 10.1007/978-3-642-23623-5_60 – ident: ref41 doi: 10.1088/0031-9155/58/20/7391 – ident: ref19 doi: 10.1117/12.2580973 – ident: ref24 doi: 10.1007/978-3-030-00928-1_4 – ident: ref13 doi: 10.1007/978-3-319-46723-8_49 – ident: ref39 doi: 10.2967/jnumed.119.235515 – start-page: 1394 volume-title: Proc. Soc. Nucl. Med. Mol. Imag. Annu. Meeting ident: ref44 article-title: Direct estimation of input function based on fine-tuned deep learning method in dynamic PET imaging – ident: ref30 doi: 10.1186/2191-219X-3-16 – ident: ref37 doi: 10.1007/s12021-010-9092-8 – ident: ref1 doi: 10.1146/annurev-bioeng-071114-040723 – ident: ref16 doi: 10.1016/j.neuroimage.2013.08.031 – ident: ref12 doi: 10.1007/978-3-030-59728-3_72 – volume-title: Proc. IEEE Med. Imag. Conf. ident: ref42 article-title: Voxel-wise kinetic model selection using single-subject deep learning for total-body PET parametric imaging – ident: ref21 doi: 10.1007/978-3-642-40811-3_27 – ident: ref34 doi: 10.1109/23.489413 – ident: ref17 doi: 10.1002/mrm.21405 – year: 2015 ident: ref20 article-title: Improving reconstruction of dynamic PET imaging by utilizing temporal coherence and pharmacokinetics – ident: ref6 doi: 10.1088/1361-6560/aad97f – ident: ref27 doi: 10.1186/s40658-020-00330-x – year: 2015 ident: ref9 article-title: Convolutional LSTM network: A machine learning approach for precipitation nowcasting publication-title: arXiv:1506.04214 – ident: ref36 doi: 10.1109/JBHI.2019.2951024 – ident: ref2 doi: 10.1007/s00259-018-4153-6 – ident: ref32 doi: 10.1007/1-84628-007-9_6 – ident: ref23 doi: 10.1088/1361-6560/ac4a8f – ident: ref8 doi: 10.1109/TRPMS.2022.3227576 – ident: ref14 doi: 10.1016/j.media.2022.102524 – ident: ref43 doi: 10.1088/0031-9155/60/22/8643 |
SSID | ssj0014509 |
Score | 2.4523778 |
Snippet | In whole-body dynamic positron emission tomography (PET), inter-frame subject motion causes spatial misalignment and affects parametric imaging. Many of the... |
SourceID | pubmedcentral proquest pubmed crossref ieee |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3512 |
SubjectTerms | Benchmarks Deep learning Dynamics Error correction Fitting Image enhancement Image reconstruction Image warping Inter-frame motion correction Kinetic theory Kinetics Misalignment Motion estimation Motion simulation Neural networks Optimization parametric imaging Patlak loss optimization Positron emission Positron emission tomography whole-body dynamic PET |
Title | MCP-Net: Introducing Patlak Loss Optimization to Whole-Body Dynamic PET Inter-Frame Motion Correction |
URI | https://ieeexplore.ieee.org/document/10164187 https://www.ncbi.nlm.nih.gov/pubmed/37368811 https://www.proquest.com/docview/2895874897 https://www.proquest.com/docview/2830672682 https://pubmed.ncbi.nlm.nih.gov/PMC10751388 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7RHhAceJQCKQUZiQuHZBM_EocbLF21iCx72IreosR2CmpJEE0O9NfX4zy0WwHisorW3lWsGSfzeWa-D-BNoTnlZUL9VIbc51JxX8Za-6I0NI0wT-e49LJlfHzKP52Js6FZ3fXCGGNc8ZkJ8NLl8nWjOjwqmyHS5JFMdmDHIre-WWtKGXDR13NQpIwNYzrmJMN0ts5OApQJDxhFjUzUzmEJi6WMoq3XkdNX-VOoebticuMVtHgIy_Hm-8qTi6Bry0Bd3-J1_O_VPYIHQzBK3vfe8xjumHoP7m9QFO7B3WxIvj8Bk81X_tK078gJlrfrzn59TlZFe1lckM92deSLff78GBo7SduQryi-639o9G_ysVe-J6ujNXGnkP4Cy8JI5lSEyBxFQlyLxT6cLo7W82N_UGnwlYWSrf2sqDFxWjAbnDBj4Z9KwkirSqW8TIVOoopVFUVpmZQVTDALelhUporFiYkLwZ7Cbt3U5jkQExZUW_wjtDC8sLFTqKT1dJ5Ildg4VHowG42Vq4HCHJU0LnMHZcI0t5bO0dL5YGkP3k6_-NnTd_xj7j4aZWNebw8PDkeHyIcNfpVbnCokMvfY4dfTsN2amG8patN0OAfxGI0l9eBZ7z_Tn4_-54Hc8qxpAtJ-b4_U3785-m8L2EXEpDz4y_2-gHu4rL7m5hB221-deWkjp7Z85XbMDSfNEHY |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELZgkXgceCwLBBYwEhcOSRM_EocblK1aaEoPXbG3yLEdWO1ugiA5LL8ej_NQuwLEpYpqt4o143i-zMz3IfRaakZYkRA_FSHzmVDMF7HWPi8MSSPI0zkuvWwVz4_ZxxN-0jeru14YY4wrPjMBXLpcvq5VC6_KJoA0WSSS6-iGPfg56dq1xqQB411FBwHS2DAmQ1YyTCebbBGAUHhACahkgnoOTWgsRBTtHEhOYeVPwebVmsmtQ2h2D62G2-9qT86CtikC9esKs-N_r-8-utuHo_hd5z8P0DVT7aM7WySF--hm1qffHyKTTdf-yjRv8QIK3HVrv_6K17I5l2d4aVeHP9sn0EXf2ombGn8B-V3_fa0v8YfLSl6cKrw-2mD3HtKfQWEYzpyOEJ6CTIhrsjhAx7OjzXTu9zoNvrJgsrGfJTEmTiW14Qk1FgCqJIy0KlXKipTrJCppWRIQl0mppJxa2EOjIlU0TkwsOX2E9qq6Mk8QNqEk2iIgrrlh0kZPoRLW11kiVGIjUeGhyWCsXPUk5qClcZ47MBOmubV0DpbOe0t76M34i-8dgcc_5h6AUbbmdfbw0OHgEHm_xX_mFqlyAdw9dvjVOGw3J2RcZGXqFuYAIiOxIB563PnP-OeD_3lI7HjWOAGIv3dHqtNvjgDcQnYeUSGe_uV-X6Jb8022zJeL1adn6DYssavAOUR7zY_WPLdxVFO8cLvnN4DGE8A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MCP-Net%3A+Introducing+Patlak+Loss+Optimization+to+Whole-Body+Dynamic+PET+Inter-Frame+Motion+Correction&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Guo%2C+Xueqi&rft.au=Zhou%2C+Bo&rft.au=Chen%2C+Xiongchao&rft.au=Chen%2C+Ming-Kai&rft.date=2023-12-01&rft.issn=0278-0062&rft.eissn=1558-254X&rft.volume=42&rft.issue=12&rft.spage=3512&rft.epage=3523&rft_id=info:doi/10.1109%2FTMI.2023.3290003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMI_2023_3290003 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |