MCP-Net: Introducing Patlak Loss Optimization to Whole-Body Dynamic PET Inter-Frame Motion Correction

In whole-body dynamic positron emission tomography (PET), inter-frame subject motion causes spatial misalignment and affects parametric imaging. Many of the current deep learning inter-frame motion correction techniques focus solely on the anatomy-based registration problem, neglecting the tracer ki...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 42; no. 12; pp. 3512 - 3523
Main Authors Guo, Xueqi, Zhou, Bo, Chen, Xiongchao, Chen, Ming-Kai, Liu, Chi, Dvornek, Nicha C.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In whole-body dynamic positron emission tomography (PET), inter-frame subject motion causes spatial misalignment and affects parametric imaging. Many of the current deep learning inter-frame motion correction techniques focus solely on the anatomy-based registration problem, neglecting the tracer kinetics that contains functional information. To directly reduce the Patlak fitting error for 18F-FDG and further improve model performance, we propose an inter-frame m otion c orrection framework with P atlak loss optimization integrated into the neural network (MCP-Net). The MCP-Net consists of a multiple-frame motion estimation block, an image-warping block, and an analytical Patlak block that estimates Patlak fitting using motion-corrected frames and the input function. A novel Patlak loss penalty component utilizing mean squared percentage fitting error is added to the loss function to reinforce the motion correction. The parametric images were generated using standard Patlak analysis following motion correction. Our framework enhanced the spatial alignment in both dynamic frames and parametric images and lowered normalized fitting error when compared to both conventional and deep learning benchmarks. MCP-Net also achieved the lowest motion prediction error and showed the best generalization capability. The potential of enhancing network performance and improving the quantitative accuracy of dynamic PET by directly utilizing tracer kinetics is suggested.
AbstractList In whole-body dynamic positron emission tomography (PET), inter-frame subject motion causes spatial misalignment and affects parametric imaging. Many of the current deep learning inter-frame motion correction techniques focus solely on the anatomy-based registration problem, neglecting the tracer kinetics that contains functional information. To directly reduce the Patlak fitting error for F-FDG and further improve model performance, we propose an interframe motion correction framework with Patlak loss optimization integrated into the neural network (MCP-Net). The MCP-Net consists of a multiple-frame motion estimation block, an image-warping block, and an analytical Patlak block that estimates Patlak fitting using motion-corrected frames and the input function. A novel Patlak loss penalty component utilizing mean squared percentage fitting error is added to the loss function to reinforce the motion correction. The parametric images were generated using standard Patlak analysis following motion correction. Our framework enhanced the spatial alignment in both dynamic frames and parametric images and lowered normalized fitting error when compared to both conventional and deep learning benchmarks. MCP-Net also achieved the lowest motion prediction error and showed the best generalization capability. The potential of enhancing network performance and improving the quantitative accuracy of dynamic PET by directly utilizing tracer kinetics is suggested.
In whole-body dynamic positron emission tomography (PET), inter-frame subject motion causes spatial misalignment and affects parametric imaging. Many of the current deep learning inter-frame motion correction techniques focus solely on the anatomy-based registration problem, neglecting the tracer kinetics that contains functional information. To directly reduce the Patlak fitting error for 18 F-FDG and further improve model performance, we propose an interframe m otion c orrection framework with P atlak loss optimization integrated into the neural network (MCP-Net). The MCP-Net consists of a multiple-frame motion estimation block, an image-warping block, and an analytical Patlak block that estimates Patlak fitting using motion-corrected frames and the input function. A novel Patlak loss penalty component utilizing mean squared percentage fitting error is added to the loss function to reinforce the motion correction. The parametric images were generated using standard Patlak analysis following motion correction. Our framework enhanced the spatial alignment in both dynamic frames and parametric images and lowered normalized fitting error when compared to both conventional and deep learning benchmarks. MCP-Net also achieved the lowest motion prediction error and showed the best generalization capability. The potential of enhancing network performance and improving the quantitative accuracy of dynamic PET by directly utilizing tracer kinetics is suggested.
In whole-body dynamic positron emission tomography (PET), inter-frame subject motion causes spatial misalignment and affects parametric imaging. Many of the current deep learning inter-frame motion correction techniques focus solely on the anatomy-based registration problem, neglecting the tracer kinetics that contains functional information. To directly reduce the Patlak fitting error for 18F-FDG and further improve model performance, we propose an inter-frame m otion c orrection framework with P atlak loss optimization integrated into the neural network (MCP-Net). The MCP-Net consists of a multiple-frame motion estimation block, an image-warping block, and an analytical Patlak block that estimates Patlak fitting using motion-corrected frames and the input function. A novel Patlak loss penalty component utilizing mean squared percentage fitting error is added to the loss function to reinforce the motion correction. The parametric images were generated using standard Patlak analysis following motion correction. Our framework enhanced the spatial alignment in both dynamic frames and parametric images and lowered normalized fitting error when compared to both conventional and deep learning benchmarks. MCP-Net also achieved the lowest motion prediction error and showed the best generalization capability. The potential of enhancing network performance and improving the quantitative accuracy of dynamic PET by directly utilizing tracer kinetics is suggested.
In whole-body dynamic positron emission tomography (PET), inter-frame subject motion causes spatial misalignment and affects parametric imaging. Many of the current deep learning inter-frame motion correction techniques focus solely on the anatomy-based registration problem, neglecting the tracer kinetics that contains functional information. To directly reduce the Patlak fitting error for 18F-FDG and further improve model performance, we propose an interframe motion correction framework with Patlak loss optimization integrated into the neural network (MCP-Net). The MCP-Net consists of a multiple-frame motion estimation block, an image-warping block, and an analytical Patlak block that estimates Patlak fitting using motion-corrected frames and the input function. A novel Patlak loss penalty component utilizing mean squared percentage fitting error is added to the loss function to reinforce the motion correction. The parametric images were generated using standard Patlak analysis following motion correction. Our framework enhanced the spatial alignment in both dynamic frames and parametric images and lowered normalized fitting error when compared to both conventional and deep learning benchmarks. MCP-Net also achieved the lowest motion prediction error and showed the best generalization capability. The potential of enhancing network performance and improving the quantitative accuracy of dynamic PET by directly utilizing tracer kinetics is suggested.In whole-body dynamic positron emission tomography (PET), inter-frame subject motion causes spatial misalignment and affects parametric imaging. Many of the current deep learning inter-frame motion correction techniques focus solely on the anatomy-based registration problem, neglecting the tracer kinetics that contains functional information. To directly reduce the Patlak fitting error for 18F-FDG and further improve model performance, we propose an interframe motion correction framework with Patlak loss optimization integrated into the neural network (MCP-Net). The MCP-Net consists of a multiple-frame motion estimation block, an image-warping block, and an analytical Patlak block that estimates Patlak fitting using motion-corrected frames and the input function. A novel Patlak loss penalty component utilizing mean squared percentage fitting error is added to the loss function to reinforce the motion correction. The parametric images were generated using standard Patlak analysis following motion correction. Our framework enhanced the spatial alignment in both dynamic frames and parametric images and lowered normalized fitting error when compared to both conventional and deep learning benchmarks. MCP-Net also achieved the lowest motion prediction error and showed the best generalization capability. The potential of enhancing network performance and improving the quantitative accuracy of dynamic PET by directly utilizing tracer kinetics is suggested.
Author Chen, Ming-Kai
Guo, Xueqi
Liu, Chi
Zhou, Bo
Dvornek, Nicha C.
Chen, Xiongchao
Author_xml – sequence: 1
  givenname: Xueqi
  orcidid: 0000-0002-0416-2811
  surname: Guo
  fullname: Guo, Xueqi
  email: xueqi.guo@yale.edu
  organization: Department of Biomedical Engineering, Yale University, New Haven, CT, USA
– sequence: 2
  givenname: Bo
  orcidid: 0000-0002-2906-0897
  surname: Zhou
  fullname: Zhou, Bo
  email: bo.zhou@yale.edu
  organization: Department of Biomedical Engineering, Yale University, New Haven, CT, USA
– sequence: 3
  givenname: Xiongchao
  orcidid: 0000-0003-4112-8492
  surname: Chen
  fullname: Chen, Xiongchao
  email: xiongchao.chen@yale.edu
  organization: Department of Biomedical Engineering, Yale University, New Haven, CT, USA
– sequence: 4
  givenname: Ming-Kai
  orcidid: 0000-0003-2655-4178
  surname: Chen
  fullname: Chen, Ming-Kai
  email: ming-kai.chen@yale.edu
  organization: Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
– sequence: 5
  givenname: Chi
  orcidid: 0000-0002-7007-1037
  surname: Liu
  fullname: Liu, Chi
  email: chi.liu@yale.edu
  organization: Department of Biomedical Engineering and the Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
– sequence: 6
  givenname: Nicha C.
  orcidid: 0000-0002-1648-6055
  surname: Dvornek
  fullname: Dvornek, Nicha C.
  email: nicha.dvornek@yale.edu
  organization: Department of Biomedical Engineering and the Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37368811$$D View this record in MEDLINE/PubMed
BookMark eNp9kc9v0zAcxS00xLrBnQNCkbhwSfnaTvyDC4Jug0ot66EIbpbrfLN5JHFx0knlr8ddyzR24GJb8uc9f5_fCTnqQoeEvKQwphT0u-V8OmbA-JgzDQD8CRnRslQ5K4sfR2QETKocQLBjctL3NwC0KEE_I8dccqEUpSOC88ki_4rD-2zaDTFUG-e7q2xhh8b-zGah77PL9eBb_9sOPnTZELLv16HB_FOottnZtrOtd9nifLmTY8wvom0xm4c7eBJiRLc7PidPa9v0-OKwn5JvF-fLyZd8dvl5Ovk4y11RiCGtNUMU2nJZUI6aSieBVq52uljpspK05nXNQAuqueUlZxw4XWnHhURhS35KPux915tVi5XDlMk2Zh19a-PWBOvNvzedvzZX4dZQkCXlSiWHtweHGH5tsB9M63uHTWM7DJveMMVBSCYUS-ibR-hN2MQu5UuULpUslJaJev1wpPtZ_laQANgDLqbvjljfIxTMrmWTWja7ls2h5SQRjyTOD3cFpVC--Z_w1V7oEfHBO1QUVEn-BwqCsw0
CODEN ITMID4
CitedBy_id crossref_primary_10_1109_TMI_2024_3385650
crossref_primary_10_1002_ird3_66
crossref_primary_10_1016_j_media_2024_103190
Cites_doi 10.1007/978-3-030-00934-2_59
10.21203/rs.3.rs-648137/v1
10.1088/1361-6560/ab02c2
10.1109/TMI.2021.3082578
10.1007/978-3-030-00928-1_5
10.1109/TIP.2003.819861
10.1109/TRPMS.2023.3253261
10.1109/TRPMS.2019.2908633
10.1038/jcbfm.1983.1
10.1002/mp.15113
10.1088/0031-9155/51/17/007
10.1088/0031-9155/59/20/6153
10.1007/978-3-031-16440-8_16
10.1109/42.363108
10.5555/1953048.2078195
10.1007/s12350-020-02055-x
10.1109/TMI.2019.2897538
10.1109/TMI.2016.2594150
10.1007/978-3-642-23623-5_60
10.1088/0031-9155/58/20/7391
10.1117/12.2580973
10.1007/978-3-030-00928-1_4
10.1007/978-3-319-46723-8_49
10.2967/jnumed.119.235515
10.1186/2191-219X-3-16
10.1007/s12021-010-9092-8
10.1146/annurev-bioeng-071114-040723
10.1016/j.neuroimage.2013.08.031
10.1007/978-3-030-59728-3_72
10.1007/978-3-642-40811-3_27
10.1109/23.489413
10.1002/mrm.21405
10.1088/1361-6560/aad97f
10.1186/s40658-020-00330-x
10.1109/JBHI.2019.2951024
10.1007/s00259-018-4153-6
10.1007/1-84628-007-9_6
10.1088/1361-6560/ac4a8f
10.1109/TRPMS.2022.3227576
10.1016/j.media.2022.102524
10.1088/0031-9155/60/22/8643
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
DOI 10.1109/TMI.2023.3290003
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL) - NZ
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList PubMed


Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 3523
ExternalDocumentID PMC10751388
37368811
10_1109_TMI_2023_3290003
10164187
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Institutes of Health (NIH)
  grantid: R01 CA224140
  funderid: 10.13039/100000002
– fundername: NCATS NIH HHS
  grantid: UL1 TR001863
– fundername: NCI NIH HHS
  grantid: R01 CA224140
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
ID FETCH-LOGICAL-c446t-c4f2ee69a37413e917c701dcfc94b95d71f3ff2096193a35323031b9c367e6a53
IEDL.DBID RIE
ISSN 0278-0062
1558-254X
IngestDate Thu Aug 21 18:29:55 EDT 2025
Fri Jul 11 05:00:06 EDT 2025
Mon Jun 30 06:59:47 EDT 2025
Mon Jul 21 06:01:26 EDT 2025
Thu Apr 24 23:09:35 EDT 2025
Tue Jul 01 05:07:38 EDT 2025
Wed Aug 27 02:04:25 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-c4f2ee69a37413e917c701dcfc94b95d71f3ff2096193a35323031b9c367e6a53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4112-8492
0000-0003-2655-4178
0000-0002-0416-2811
0000-0002-2906-0897
0000-0002-7007-1037
0000-0002-1648-6055
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/10751388
PMID 37368811
PQID 2895874897
PQPubID 85460
PageCount 12
ParticipantIDs ieee_primary_10164187
crossref_primary_10_1109_TMI_2023_3290003
pubmed_primary_37368811
crossref_citationtrail_10_1109_TMI_2023_3290003
proquest_journals_2895874897
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10751388
proquest_miscellaneous_2830672682
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
Chen (ref4) 2021
ref31
ref30
ref11
Cheng (ref20) 2015
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
Wang (ref42)
ref23
ref45
ref26
Wang (ref44)
ref25
ref41
ref22
ref21
ref43
ref28
ref27
ref29
ref8
Shi (ref9) 2015
ref7
ref3
ref6
ref5
ref40
References_xml – ident: ref10
  doi: 10.1007/978-3-030-00934-2_59
– volume-title: Is Dynamic Total-Body PET Imaging Feasible in the Clinical Daily Practice?
  year: 2021
  ident: ref4
  doi: 10.21203/rs.3.rs-648137/v1
– ident: ref7
  doi: 10.1088/1361-6560/ab02c2
– ident: ref11
  doi: 10.1109/TMI.2021.3082578
– ident: ref25
  doi: 10.1007/978-3-030-00928-1_5
– ident: ref38
  doi: 10.1109/TIP.2003.819861
– ident: ref45
  doi: 10.1109/TRPMS.2023.3253261
– ident: ref33
  doi: 10.1109/TRPMS.2019.2908633
– ident: ref5
  doi: 10.1038/jcbfm.1983.1
– ident: ref28
  doi: 10.1002/mp.15113
– ident: ref35
  doi: 10.1088/0031-9155/51/17/007
– ident: ref3
  doi: 10.1088/0031-9155/59/20/6153
– ident: ref26
  doi: 10.1007/978-3-031-16440-8_16
– ident: ref29
  doi: 10.1109/42.363108
– ident: ref40
  doi: 10.5555/1953048.2078195
– ident: ref31
  doi: 10.1007/s12350-020-02055-x
– ident: ref15
  doi: 10.1109/TMI.2019.2897538
– ident: ref22
  doi: 10.1109/TMI.2016.2594150
– ident: ref18
  doi: 10.1007/978-3-642-23623-5_60
– ident: ref41
  doi: 10.1088/0031-9155/58/20/7391
– ident: ref19
  doi: 10.1117/12.2580973
– ident: ref24
  doi: 10.1007/978-3-030-00928-1_4
– ident: ref13
  doi: 10.1007/978-3-319-46723-8_49
– ident: ref39
  doi: 10.2967/jnumed.119.235515
– start-page: 1394
  volume-title: Proc. Soc. Nucl. Med. Mol. Imag. Annu. Meeting
  ident: ref44
  article-title: Direct estimation of input function based on fine-tuned deep learning method in dynamic PET imaging
– ident: ref30
  doi: 10.1186/2191-219X-3-16
– ident: ref37
  doi: 10.1007/s12021-010-9092-8
– ident: ref1
  doi: 10.1146/annurev-bioeng-071114-040723
– ident: ref16
  doi: 10.1016/j.neuroimage.2013.08.031
– ident: ref12
  doi: 10.1007/978-3-030-59728-3_72
– volume-title: Proc. IEEE Med. Imag. Conf.
  ident: ref42
  article-title: Voxel-wise kinetic model selection using single-subject deep learning for total-body PET parametric imaging
– ident: ref21
  doi: 10.1007/978-3-642-40811-3_27
– ident: ref34
  doi: 10.1109/23.489413
– ident: ref17
  doi: 10.1002/mrm.21405
– year: 2015
  ident: ref20
  article-title: Improving reconstruction of dynamic PET imaging by utilizing temporal coherence and pharmacokinetics
– ident: ref6
  doi: 10.1088/1361-6560/aad97f
– ident: ref27
  doi: 10.1186/s40658-020-00330-x
– year: 2015
  ident: ref9
  article-title: Convolutional LSTM network: A machine learning approach for precipitation nowcasting
  publication-title: arXiv:1506.04214
– ident: ref36
  doi: 10.1109/JBHI.2019.2951024
– ident: ref2
  doi: 10.1007/s00259-018-4153-6
– ident: ref32
  doi: 10.1007/1-84628-007-9_6
– ident: ref23
  doi: 10.1088/1361-6560/ac4a8f
– ident: ref8
  doi: 10.1109/TRPMS.2022.3227576
– ident: ref14
  doi: 10.1016/j.media.2022.102524
– ident: ref43
  doi: 10.1088/0031-9155/60/22/8643
SSID ssj0014509
Score 2.4523778
Snippet In whole-body dynamic positron emission tomography (PET), inter-frame subject motion causes spatial misalignment and affects parametric imaging. Many of the...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3512
SubjectTerms Benchmarks
Deep learning
Dynamics
Error correction
Fitting
Image enhancement
Image reconstruction
Image warping
Inter-frame motion correction
Kinetic theory
Kinetics
Misalignment
Motion estimation
Motion simulation
Neural networks
Optimization
parametric imaging
Patlak loss optimization
Positron emission
Positron emission tomography
whole-body dynamic PET
Title MCP-Net: Introducing Patlak Loss Optimization to Whole-Body Dynamic PET Inter-Frame Motion Correction
URI https://ieeexplore.ieee.org/document/10164187
https://www.ncbi.nlm.nih.gov/pubmed/37368811
https://www.proquest.com/docview/2895874897
https://www.proquest.com/docview/2830672682
https://pubmed.ncbi.nlm.nih.gov/PMC10751388
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7RHhAceJQCKQUZiQuHZBM_EocbLF21iCx72IreosR2CmpJEE0O9NfX4zy0WwHisorW3lWsGSfzeWa-D-BNoTnlZUL9VIbc51JxX8Za-6I0NI0wT-e49LJlfHzKP52Js6FZ3fXCGGNc8ZkJ8NLl8nWjOjwqmyHS5JFMdmDHIre-WWtKGXDR13NQpIwNYzrmJMN0ts5OApQJDxhFjUzUzmEJi6WMoq3XkdNX-VOoebticuMVtHgIy_Hm-8qTi6Bry0Bd3-J1_O_VPYIHQzBK3vfe8xjumHoP7m9QFO7B3WxIvj8Bk81X_tK078gJlrfrzn59TlZFe1lckM92deSLff78GBo7SduQryi-639o9G_ysVe-J6ujNXGnkP4Cy8JI5lSEyBxFQlyLxT6cLo7W82N_UGnwlYWSrf2sqDFxWjAbnDBj4Z9KwkirSqW8TIVOoopVFUVpmZQVTDALelhUporFiYkLwZ7Cbt3U5jkQExZUW_wjtDC8sLFTqKT1dJ5Ildg4VHowG42Vq4HCHJU0LnMHZcI0t5bO0dL5YGkP3k6_-NnTd_xj7j4aZWNebw8PDkeHyIcNfpVbnCokMvfY4dfTsN2amG8patN0OAfxGI0l9eBZ7z_Tn4_-54Hc8qxpAtJ-b4_U3785-m8L2EXEpDz4y_2-gHu4rL7m5hB221-deWkjp7Z85XbMDSfNEHY
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELZgkXgceCwLBBYwEhcOSRM_EocblK1aaEoPXbG3yLEdWO1ugiA5LL8ej_NQuwLEpYpqt4o143i-zMz3IfRaakZYkRA_FSHzmVDMF7HWPi8MSSPI0zkuvWwVz4_ZxxN-0jeru14YY4wrPjMBXLpcvq5VC6_KJoA0WSSS6-iGPfg56dq1xqQB411FBwHS2DAmQ1YyTCebbBGAUHhACahkgnoOTWgsRBTtHEhOYeVPwebVmsmtQ2h2D62G2-9qT86CtikC9esKs-N_r-8-utuHo_hd5z8P0DVT7aM7WySF--hm1qffHyKTTdf-yjRv8QIK3HVrv_6K17I5l2d4aVeHP9sn0EXf2ombGn8B-V3_fa0v8YfLSl6cKrw-2mD3HtKfQWEYzpyOEJ6CTIhrsjhAx7OjzXTu9zoNvrJgsrGfJTEmTiW14Qk1FgCqJIy0KlXKipTrJCppWRIQl0mppJxa2EOjIlU0TkwsOX2E9qq6Mk8QNqEk2iIgrrlh0kZPoRLW11kiVGIjUeGhyWCsXPUk5qClcZ47MBOmubV0DpbOe0t76M34i-8dgcc_5h6AUbbmdfbw0OHgEHm_xX_mFqlyAdw9dvjVOGw3J2RcZGXqFuYAIiOxIB563PnP-OeD_3lI7HjWOAGIv3dHqtNvjgDcQnYeUSGe_uV-X6Jb8022zJeL1adn6DYssavAOUR7zY_WPLdxVFO8cLvnN4DGE8A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MCP-Net%3A+Introducing+Patlak+Loss+Optimization+to+Whole-Body+Dynamic+PET+Inter-Frame+Motion+Correction&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Guo%2C+Xueqi&rft.au=Zhou%2C+Bo&rft.au=Chen%2C+Xiongchao&rft.au=Chen%2C+Ming-Kai&rft.date=2023-12-01&rft.issn=0278-0062&rft.eissn=1558-254X&rft.volume=42&rft.issue=12&rft.spage=3512&rft.epage=3523&rft_id=info:doi/10.1109%2FTMI.2023.3290003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMI_2023_3290003
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon