Location: root architecture structures rhizosphere microbial associations
Abstract Root architectural phenotypes are promising targets for crop breeding, but root architectural effects on microbial associations in agricultural fields are not well understood. Architecture determines the location of microbial associations within root systems, which, when integrated with soi...
Saved in:
Published in | Journal of experimental botany Vol. 75; no. 2; pp. 594 - 604 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
UK
Oxford University Press
10.01.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Root architectural phenotypes are promising targets for crop breeding, but root architectural effects on microbial associations in agricultural fields are not well understood. Architecture determines the location of microbial associations within root systems, which, when integrated with soil vertical gradients, determines the functions and the metabolic capability of rhizosphere microbial communities. We argue that variation in root architecture in crops has important implications for root exudation, microbial recruitment and function, and the decomposition and fate of root tissues and exudates. Recent research has shown that the root microbiome changes along root axes and among root classes, that root tips have a unique microbiome, and that root exudates change within the root system depending on soil physicochemical conditions. Although fresh exudates are produced in larger amounts in root tips, the rhizosphere of mature root segments also plays a role in influencing soil vertical gradients. We argue that more research is needed to understand specific root phenotypes that structure microbial associations and discuss candidate root phenotypes that may determine the location of microbial hotspots within root systems with relevance to agricultural systems.
Root architecture and soil vertical gradients create a diverse set of physicochemical conditions in which rhizosphere microbes live; however, these scaffolds of soil microbial ecology are rarely studied. |
---|---|
AbstractList | Root architectural phenotypes are promising targets for crop breeding, but root architectural effects on microbial associations in agricultural fields are not well understood. Architecture determines the location of microbial associations within root systems, which, when integrated with soil vertical gradients, determines the functions and the metabolic capability of rhizosphere microbial communities. We argue that variation in root architecture in crops has important implications for root exudation, microbial recruitment and function, and the decomposition and fate of root tissues and exudates. Recent research has shown that the root microbiome changes along root axes and among root classes, that root tips have a unique microbiome, and that root exudates change within the root system depending on soil physicochemical conditions. Although fresh exudates are produced in larger amounts in root tips, the rhizosphere of mature root segments also plays a role in influencing soil vertical gradients. We argue that more research is needed to understand specific root phenotypes that structure microbial associations and discuss candidate root phenotypes that may determine the location of microbial hotspots within root systems with relevance to agricultural systems. Abstract Root architectural phenotypes are promising targets for crop breeding, but root architectural effects on microbial associations in agricultural fields are not well understood. Architecture determines the location of microbial associations within root systems, which, when integrated with soil vertical gradients, determines the functions and the metabolic capability of rhizosphere microbial communities. We argue that variation in root architecture in crops has important implications for root exudation, microbial recruitment and function, and the decomposition and fate of root tissues and exudates. Recent research has shown that the root microbiome changes along root axes and among root classes, that root tips have a unique microbiome, and that root exudates change within the root system depending on soil physicochemical conditions. Although fresh exudates are produced in larger amounts in root tips, the rhizosphere of mature root segments also plays a role in influencing soil vertical gradients. We argue that more research is needed to understand specific root phenotypes that structure microbial associations and discuss candidate root phenotypes that may determine the location of microbial hotspots within root systems with relevance to agricultural systems. Root architecture and soil vertical gradients create a diverse set of physicochemical conditions in which rhizosphere microbes live; however, these scaffolds of soil microbial ecology are rarely studied. Root architectural phenotypes are promising targets for crop breeding, but root architectural effects on microbial associations in agricultural fields are not well understood. Architecture determines the location of microbial associations within root systems, which, when integrated with soil vertical gradients, determines the functions and the metabolic capability of rhizosphere microbial communities. We argue that variation in root architecture in crops has important implications for root exudation, microbial recruitment and function, and the decomposition and fate of root tissues and exudates. Recent research has shown that the root microbiome changes along root axes and among root classes, that root tips have a unique microbiome, and that root exudates change within the root system depending on soil physicochemical conditions. Although fresh exudates are produced in larger amounts in root tips, the rhizosphere of mature root segments also plays a role in influencing soil vertical gradients. We argue that more research is needed to understand specific root phenotypes that structure microbial associations and discuss candidate root phenotypes that may determine the location of microbial hotspots within root systems with relevance to agricultural systems. Root architecture and soil vertical gradients create a diverse set of physicochemical conditions in which rhizosphere microbes live; however, these scaffolds of soil microbial ecology are rarely studied. Root architectural phenotypes are promising targets for crop breeding, but root architectural effects on microbial associations in agricultural fields are not well understood. Architecture determines the location of microbial associations within root systems, which, when integrated with soil vertical gradients, determines the functions and the metabolic capability of rhizosphere microbial communities. We argue that variation in root architecture in crops has important implications for root exudation, microbial recruitment and function, and the decomposition and fate of root tissues and exudates. Recent research has shown that the root microbiome changes along root axes and among root classes, that root tips have a unique microbiome, and that root exudates change within the root system depending on soil physicochemical conditions. Although fresh exudates are produced in larger amounts in root tips, the rhizosphere of mature root segments also plays a role in influencing soil vertical gradients. We argue that more research is needed to understand specific root phenotypes that structure microbial associations and discuss candidate root phenotypes that may determine the location of microbial hotspots within root systems with relevance to agricultural systems.Root architectural phenotypes are promising targets for crop breeding, but root architectural effects on microbial associations in agricultural fields are not well understood. Architecture determines the location of microbial associations within root systems, which, when integrated with soil vertical gradients, determines the functions and the metabolic capability of rhizosphere microbial communities. We argue that variation in root architecture in crops has important implications for root exudation, microbial recruitment and function, and the decomposition and fate of root tissues and exudates. Recent research has shown that the root microbiome changes along root axes and among root classes, that root tips have a unique microbiome, and that root exudates change within the root system depending on soil physicochemical conditions. Although fresh exudates are produced in larger amounts in root tips, the rhizosphere of mature root segments also plays a role in influencing soil vertical gradients. We argue that more research is needed to understand specific root phenotypes that structure microbial associations and discuss candidate root phenotypes that may determine the location of microbial hotspots within root systems with relevance to agricultural systems. |
Author | Lynch, Jonathan P Hartmann, Martin Galindo-Castañeda, Tania |
Author_xml | – sequence: 1 givenname: Tania orcidid: 0000-0001-6853-4162 surname: Galindo-Castañeda fullname: Galindo-Castañeda, Tania email: tania.galindocastaneda@usys.ethz.ch – sequence: 2 givenname: Martin orcidid: 0000-0001-8069-5284 surname: Hartmann fullname: Hartmann, Martin – sequence: 3 givenname: Jonathan P orcidid: 0000-0002-7265-9790 surname: Lynch fullname: Lynch, Jonathan P |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37882632$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9LIzEcxYO4aHU9eZc5ycIya36n8SKL7I9CwYueQyb9jk2ZTmqSEXf_-o1tlVVETwnJ5z0e7x2g3T70gNAxwd8I1uxs8dCcQbQzTskOGhEucU05I7tohDGlNdZC7aODlBYYY4GF2EP7TI3HVDI6QpNpcDb70J9XMYRc2ejmPoPLQ4Qq5Tisb6mKc_83pNUcyvPSuxgab7vKphScX-vTZ_SptV2Co-15iG5-_ri-_F1Pr35NLr9Pa8e5zLUjzhGiVauIlBKo063AbOysBNDY0hltCGhioZUtA8GZIGJMnWuYahRpOTtEFxvf1dAsYeagz9F2ZhX90sY_JlhvXv70fm5uw70hWCmmtSgOX7YOMdwNkLJZ-uSg62wPYUiG0VKcVph_jNLSI6NcqsdcJ__neg701HUByAYo7aUUoTXO53V3JabvSj7zuKcpe5rtnkXz9ZXmyfZt-nRDh2H1LvgPWoWyGA |
CitedBy_id | crossref_primary_10_1093_jxb_erad488 crossref_primary_10_1093_jxb_eraf006 crossref_primary_10_1016_j_copbio_2024_103139 crossref_primary_10_1007_s44281_024_00041_8 crossref_primary_10_1038_s41598_024_58687_3 crossref_primary_10_1007_s11104_025_07208_w crossref_primary_10_1016_j_micres_2024_128028 crossref_primary_10_3390_bacteria4010012 crossref_primary_10_1016_j_jhazmat_2024_136227 crossref_primary_10_1007_s11104_025_07332_7 crossref_primary_10_1016_j_envexpbot_2024_105853 crossref_primary_10_3389_fpls_2024_1383373 crossref_primary_10_1080_00103624_2025_2474180 crossref_primary_10_1093_plphys_kiae605 crossref_primary_10_1016_j_scitotenv_2024_172714 crossref_primary_10_3389_fpls_2024_1482739 |
Cites_doi | 10.1094/PBIOMES-12-18-0062-R 10.1104/pp.108.130369 10.3389/fpls.2022.827369 10.1111/tpj.15774 10.1093/plphys/kiab311 10.1007/s11104-009-0101-3 10.1080/1343943X.2021.1883990 10.1038/nature21417 10.3389/fpls.2020.00546 10.1094/PBIOMES-03-20-0026-R 10.1111/tpj.15135 10.1104/pp.113.232603 10.1016/j.soilbio.2021.108426 10.1111/pce.13615 10.1104/pp.17.01583 10.1016/j.soilbio.2016.02.020 10.1007/s11104-015-2379-7 10.1890/14-1761.1 10.1016/j.fcr.2022.108547 10.1111/nph.16554 10.36783/18069657rbcs20210108 10.1016/j.pbi.2020.101983 10.3389/fmicb.2021.822487 10.1007/s00344-019-09979-w 10.1016/j.cj.2022.08.013 10.3389/fmicb.2021.619499 10.1038/s41477-020-00826-5 10.1007/s11104-022-05306-7 10.1104/pp.18.00234 10.1071/FP20351 10.1002/agj2.21150 10.1016/j.rhisph.2022.100561 10.3390/ijms21155260 10.1007/s00248-015-0672-x 10.1016/j.soilbio.2021.108541 10.1111/nph.18409 10.1038/s41396-021-00967-1 10.1111/nph.13725 10.7554/eLife.84988 10.1016/j.cub.2022.08.069 10.1016/j.scitotenv.2023.161754 10.1038/s43705-021-00046-8 10.1111/nph.15433 10.1111/nph.17854 10.1098/rstb.2011.0244 10.1111/nph.15738 10.1016/j.ecoenv.2017.09.063 10.1093/jxb/erw243 10.1073/pnas.2301054120 10.1093/aob/mcaa068 10.1264/jsme2.ME11293 10.1111/pce.14135 10.1016/j.geoderma.2020.114206 10.1007/s11104-010-0623-8 10.1007/s13205-019-1638-3 10.1038/s43705-023-00238-4 10.3389/fenvs.2018.00061 10.1094/MPMI-10-12-0241-R 10.1093/aob/mcab074 10.1094/PBIOMES-09-19-0055-FI 10.1016/j.apsoil.2022.104408 10.1093/jxb/eru508 10.1093/aob/mcab144 10.1111/nph.17082 10.1111/tpj.15560 10.1038/s43017-022-00366-w 10.1016/j.scitotenv.2019.134320 10.1201/9780367812256 10.1007/978-1-0716-1816-5_15 10.1093/aob/mcy092 10.1016/j.resmic.2018.04.002 10.1093/jxb/ery252 10.1128/mSystems.00446-21 10.1111/nph.12797 10.1007/s11104-021-05010-y 10.1007/s00248-020-01678-4 10.1016/j.tplants.2016.01.013 10.1016/S0065-2113(10)08002-8 |
ContentType | Journal Article |
Copyright | The Author(s) 2023. Published by Oxford University Press on behalf of the Society for Experimental Biology. 2023 The Author(s) 2023. Published by Oxford University Press on behalf of the Society for Experimental Biology. |
Copyright_xml | – notice: The Author(s) 2023. Published by Oxford University Press on behalf of the Society for Experimental Biology. 2023 – notice: The Author(s) 2023. Published by Oxford University Press on behalf of the Society for Experimental Biology. |
DBID | TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1093/jxb/erad421 |
DatabaseName | Oxford Journals Open Access Collection CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
DocumentTitleAlternate | Special Issue: Root Architecture and Rhizosphere—Microbe Interactions |
EISSN | 1460-2431 |
EndPage | 604 |
ExternalDocumentID | PMC10773995 37882632 10_1093_jxb_erad421 10.1093/jxb/erad421 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Swiss National Science Foundation grantid: 310030_207952 – fundername: ; grantid: 839235 – fundername: ; grantid: 310030_207952 – fundername: ; grantid: 101000371 |
GroupedDBID | --- -DZ -E4 -~X .2P .I3 0R~ 18M 1TH 29K 2WC 2~F 3O- 4.4 482 48X 53G 5GY 5VS 5WA 5WD 70D AAHBH AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAVLN AAWDT AAXTN ABBHK ABDFA ABDPE ABEJV ABEUO ABGNP ABIME ABIXL ABJNI ABLJU ABMNT ABNGD ABNKS ABPIB ABPPZ ABPQP ABPTD ABQLI ABQTQ ABSMQ ABVGC ABWST ABXSQ ABXVV ABXZS ABZBJ ABZEO ACFRR ACGFO ACGFS ACGOD ACHIC ACIWK ACNCT ACPQN ACPRK ACUFI ACUKT ACUTJ ACVCV ACZBC ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRTK ADULT ADVEK ADYVW ADZTZ ADZXQ AEEJZ AEGPL AEGXH AEHUL AEJOX AEKPW AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AETEA AEUPB AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AFSHK AFYAG AGINJ AGKEF AGKRT AGMDO AGQXC AGSYK AHMBA AHXPO AI. AIAGR AIJHB AJDVS AJEEA AJNCP AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX ANFBD APIBT APJGH APWMN AQDSO AQVQM ARIXL ASAOO ASPBG ATDFG ATGXG ATTQO AVWKF AXUDD AYOIW AZFZN BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BSWAC C1A CAG CDBKE COF CS3 CXTWN CZ4 D-I DAKXR DATOO DFGAJ DIK DILTD DU5 D~K E3Z EBS ECGQY EE~ EJD ELUNK F5P F9B FEDTE FHSFR FLUFQ FOEOM FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HVGLF HW0 HZ~ H~9 IOX IPSME J21 JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JST JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN M-Z M49 MBTAY ML0 MVM N9A NEJ NGC NLBLG NOMLY NTWIH NU- NVLIB O0~ O9- OAWHX OBOKY ODMLO OHT OJQWA OJZSN OK1 OVD OWPYF O~Y P2P PAFKI PB- PEELM PQQKQ Q1. Q5Y QBD R44 RD5 RIG RNI ROL ROX ROZ RUSNO RW1 RXO RZF RZO SA0 TCN TEORI TLC TN5 TOX TR2 UHB UKR UPT VH1 W8F WH7 WOQ X7H XOL YAYTL YKOAZ YQT YSK YXANX YZZ ZCG ZKX ~02 ~91 ~KM AAYXX AGORE AHGBF AJBYB CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c446t-c1cc1197f71666e2c9f5038ca6ee90a2d2b1e91aef6f3e54351582ccb37b71f43 |
IEDL.DBID | TOX |
ISSN | 0022-0957 1460-2431 |
IngestDate | Thu Aug 21 18:42:04 EDT 2025 Wed Jul 02 03:00:26 EDT 2025 Fri Jul 11 07:57:09 EDT 2025 Mon Jul 21 06:05:36 EDT 2025 Tue Jul 01 03:05:56 EDT 2025 Thu Apr 24 23:10:09 EDT 2025 Wed Apr 02 07:09:39 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | soil vertical gradients number of axial roots rooting depth Carbon rhizodeposition rhizosphere microbiome soil redox potential lateral roots root system architecture root growth angle |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 The Author(s) 2023. Published by Oxford University Press on behalf of the Society for Experimental Biology. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c446t-c1cc1197f71666e2c9f5038ca6ee90a2d2b1e91aef6f3e54351582ccb37b71f43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7265-9790 0000-0001-8069-5284 0000-0001-6853-4162 |
OpenAccessLink | https://dx.doi.org/10.1093/jxb/erad421 |
PMID | 37882632 |
PQID | 2882324674 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10773995 proquest_miscellaneous_3200297045 proquest_miscellaneous_2882324674 pubmed_primary_37882632 crossref_citationtrail_10_1093_jxb_erad421 crossref_primary_10_1093_jxb_erad421 oup_primary_10_1093_jxb_erad421 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-10 |
PublicationDateYYYYMMDD | 2024-01-10 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | UK |
PublicationPlace_xml | – name: UK – name: England |
PublicationTitle | Journal of experimental botany |
PublicationTitleAlternate | J Exp Bot |
PublicationYear | 2024 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Gfeller (2024011011083509800_CIT0017) 2023; 12 Saleem (2024011011083509800_CIT0058) 2016; 71 Jia (2024011011083509800_CIT0026) 2018; 69 Tannenbaum (2024011011083509800_CIT0071) 2020; 4 Schneider (2024011011083509800_CIT0061) 2021; 45 Ruangsiri (2024011011083509800_CIT0055) 2021; 24 Schneider (2024011011083509800_CIT0062) 2020; 11 Hill (2024011011083509800_CIT0022) 2019; 221 Bashan (2024011011083509800_CIT0002) 2010; 108 Moreau (2024011011083509800_CIT0046) 2015; 96 Trachsel (2024011011083509800_CIT0073) 2011; 341 Saengwilai (2024011011083509800_CIT0057) 2014; 166 Razavi (2024011011083509800_CIT0053) 2016; 96 Liu (2024011011083509800_CIT0033) 2022; 165 Walsh (2024011011083509800_CIT0076) 2021; 15 McKay Fletcher (2024011011083509800_CIT0045) 2020; 227 Marschner (2024011011083509800_CIT0042) 1995 Bilyera (2024011011083509800_CIT0003) 2021; 162 Garnica-Vergara (2024011011083509800_CIT0016) 2016; 209 Quiza (2024011011083509800_CIT0050) 2023; 3 Lynch (2024011011083509800_CIT0040) 2021; 466 Wen (2024011011083509800_CIT0077) 2022; 233 Longepierre (2024011011083509800_CIT0034) 2022; 12 Dijkstra (2024011011083509800_CIT0009) 2021; 230 Gao (2024011011083509800_CIT0015) 2016; 67 Waite (2024011011083509800_CIT0075) 2021; 59 Galindo-Castañeda (2024011011083509800_CIT0013) 2019; 42 Liu (2024011011083509800_CIT0032) 2021; 187 Suzuki (2024011011083509800_CIT0070) 2014; 203 Schnepf (2024011011083509800_CIT0063) 2022; 478 Lynch (2024011011083509800_CIT0037) 2019; 223 Hartmann (2024011011083509800_CIT0020) 2023; 4 Zai (2024011011083509800_CIT0078) 2021; 82 Lynch (2024011011083509800_CIT0039) 2022; 109 Chiu (2024011011083509800_CIT0006) 2022; 32 Strock (2024011011083509800_CIT0067) 2018; 176 Kell (2024011011083509800_CIT0028) 2012; 367 Ortiz-Castro (2024011011083509800_CIT0047) 2020; 39 Sun (2024011011083509800_CIT0069) 2018; 177 Longepierre (2024011011083509800_CIT0035) 2021; 1 Smercina (2024011011083509800_CIT0065) 2021; 5 Ishii (2024011011083509800_CIT0025) 2011; 26 Singh (2024011011083509800_CIT0064) 2019; 9 Zúñiga (2024011011083509800_CIT0080) 2013; 26 Schmidt (2024011011083509800_CIT0060) 2018; 6 Krome (2024011011083509800_CIT0030) 2010; 328 Torres (2024011011083509800_CIT0072) 2018; 169 Lynch (2024011011083509800_CIT0038) 2022; 283 Strock (2024011011083509800_CIT0066) 2020; 126 Etesami (2024011011083509800_CIT0011) 2018; 147 Saad (2024011011083509800_CIT0056) 2023; 11 Bonkowski (2024011011083509800_CIT0004) 2021; 12 Hungria (2024011011083509800_CIT0024) 2022; 114 Matsumoto (2024011011083509800_CIT0043) 2021; 7 Rochefort (2024011011083509800_CIT0054) 2021; 6 Contreras-Cornejo (2024011011083509800_CIT0008) 2009; 149 Lynch (2024011011083509800_CIT0041) 2015; 66 Alahmad (2024011011083509800_CIT0001) 2020; 21 Eichmann (2024011011083509800_CIT0010) 2021; 105 Pereira (2024011011083509800_CIT0048) 2021; 45 Castrillo (2024011011083509800_CIT0005) 2017; 543 Hosseini (2024011011083509800_CIT0023) 2022; 23 Gonin (2024011011083509800_CIT0018) 2023; 120 Schäfer (2024011011083509800_CIT0059) 2022; 2395 Frankenberger (2024011011083509800_CIT0012) 2020 Koestel (2024011011083509800_CIT0029) 2020; 366 Lopes (2024011011083509800_CIT0036) 2022; 174 Strock (2024011011083509800_CIT0068) 2021; 129 Galindo-Castañeda (2024011011083509800_CIT0014) 2022; 13 Hartemink (2024011011083509800_CIT0019) 2020 Zhang (2024011011083509800_CIT0079) 2023; 237 Li (2024011011083509800_CIT0031) 2020; 698 Perkins (2024011011083509800_CIT0049) 2021; 128 Rangarajan (2024011011083509800_CIT0051) 2022; 111 Rangarajan (2024011011083509800_CIT0052) 2018; 122 Colombi (2024011011083509800_CIT0007) 2015; 388 Mattupalli (2024011011083509800_CIT0044) 2019; 3 Kawasaki (2024011011083509800_CIT0027) 2021; 48 He (2024011011083509800_CIT0021) 2023; 869 Verbon (2024011011083509800_CIT0074) 2016; 21 |
References_xml | – volume: 3 start-page: 102 year: 2019 ident: 2024011011083509800_CIT0044 article-title: Digital imaging to evaluate root system architectural changes associated with soil biotic factors publication-title: Phytobiomes Journal doi: 10.1094/PBIOMES-12-18-0062-R – volume: 149 start-page: 1579 year: 2009 ident: 2024011011083509800_CIT0008 article-title: Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis publication-title: Plant Physiology doi: 10.1104/pp.108.130369 – volume: 13 start-page: 827369 year: 2022 ident: 2024011011083509800_CIT0014 article-title: Improving soil resource uptake by plants through capitalizing on synergies between root architecture and anatomy and root-associated microorganisms publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2022.827369 – volume: 111 start-page: 38 year: 2022 ident: 2024011011083509800_CIT0051 article-title: Multi-objective optimization of root phenotypes for nutrient capture using evolutionary algorithms publication-title: The Plant Journal doi: 10.1111/tpj.15774 – volume: 187 start-page: 739 year: 2021 ident: 2024011011083509800_CIT0032 article-title: DIRT/3D: 3D root phenotyping for field-grown maize (Zea mays) publication-title: Plant Physiology doi: 10.1093/plphys/kiab311 – volume: 328 start-page: 191 year: 2010 ident: 2024011011083509800_CIT0030 article-title: Soil bacteria and protozoa affect root branching via effects on the auxin and cytokinin balance in plants publication-title: Plant and Soil doi: 10.1007/s11104-009-0101-3 – volume: 24 start-page: 512 year: 2021 ident: 2024011011083509800_CIT0055 article-title: Genetic control of root architectural traits in KDML105 chromosome segment substitution lines under well-watered and drought stress conditions publication-title: Plant Production Science doi: 10.1080/1343943X.2021.1883990 – volume: 543 start-page: 513 year: 2017 ident: 2024011011083509800_CIT0005 article-title: Root microbiota drive direct integration of phosphate stress and immunity publication-title: Nature doi: 10.1038/nature21417 – volume: 11 start-page: 546 year: 2020 ident: 2024011011083509800_CIT0062 article-title: Should root plasticity be a crop breeding target publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2020.00546 – volume: 4 start-page: 281 year: 2020 ident: 2024011011083509800_CIT0071 article-title: Profiling the Lolium perenne microbiome: from seed to seed publication-title: Phytobiomes Journal doi: 10.1094/PBIOMES-03-20-0026-R – volume: 105 start-page: 518 year: 2021 ident: 2024011011083509800_CIT0010 article-title: Hormones as go-betweens in plant microbiome assembly publication-title: The Plant Journal doi: 10.1111/tpj.15135 – volume: 166 start-page: 581 year: 2014 ident: 2024011011083509800_CIT0057 article-title: Low crown root number enhances nitrogen acquisition from low nitrogen soils in maize (Zea mays L) publication-title: Plant Physiology doi: 10.1104/pp.113.232603 – volume: 162 start-page: 108426 year: 2021 ident: 2024011011083509800_CIT0003 article-title: Maize genotype-specific exudation strategies: an adaptive mechanism to increase microbial activity in the rhizosphere publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2021.108426 – volume: 42 start-page: 2999 year: 2019 ident: 2024011011083509800_CIT0013 article-title: Root cortical anatomy is associated with differential pathogenic and symbiotic fungal colonization in maize publication-title: Plant, Cell & Environment doi: 10.1111/pce.13615 – volume: 176 start-page: 691 year: 2018 ident: 2024011011083509800_CIT0067 article-title: Reduction in root secondary growth as a strategy for phosphorus acquisition publication-title: Plant Physiology doi: 10.1104/pp.17.01583 – volume: 96 start-page: 229 year: 2016 ident: 2024011011083509800_CIT0053 article-title: Rhizosphere shape of lentil and maize: spatial distribution of enzyme activities publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2016.02.020 – volume: 388 start-page: 1 year: 2015 ident: 2024011011083509800_CIT0007 article-title: Next generation shovelomics: set up a tent and REST publication-title: Plant and Soil doi: 10.1007/s11104-015-2379-7 – volume: 96 start-page: 2300 year: 2015 ident: 2024011011083509800_CIT0046 article-title: Plant traits related to nitrogen uptake influence plant–microbe competition publication-title: Ecology doi: 10.1890/14-1761.1 – volume: 283 start-page: 108547 year: 2022 ident: 2024011011083509800_CIT0038 article-title: Edaphic stress interactions: important yet poorly understood drivers of plant production in future climates publication-title: Field Crops Research doi: 10.1016/j.fcr.2022.108547 – start-page: 125 volume-title: Advances in Agronomy year: 2020 ident: 2024011011083509800_CIT0019 article-title: Soil horizon variation: a review – volume: 227 start-page: 376 year: 2020 ident: 2024011011083509800_CIT0045 article-title: Linking root structure to functionality: the impact of root system architecture on citrate-enhanced phosphate uptake publication-title: New Phytologist doi: 10.1111/nph.16554 – volume: 45 start-page: e0210108 year: 2021 ident: 2024011011083509800_CIT0048 article-title: Biogenic and physicogenic aggregates: formation pathways, assessment techniques, and influence on soil properties publication-title: Revista Brasileira de Ciencia do Solo doi: 10.36783/18069657rbcs20210108 – volume: 59 start-page: 101983 year: 2021 ident: 2024011011083509800_CIT0075 article-title: The roles of the IGT gene family in plant architecture: past, present, and future publication-title: Current Opinion in Plant Biology doi: 10.1016/j.pbi.2020.101983 – volume: 12 start-page: 822487 year: 2022 ident: 2024011011083509800_CIT0034 article-title: Mixed effects of soil compaction on the nitrogen cycle under pea and wheat publication-title: Frontiers in Microbiology doi: 10.3389/fmicb.2021.822487 – volume: 39 start-page: 254 year: 2020 ident: 2024011011083509800_CIT0047 article-title: Pseudomonas putida and Pseudomonas fluorescens influence Arabidopsis root system architecture through an auxin response mediated by bioactive cyclodipeptides publication-title: Journal of Plant Growth Regulation doi: 10.1007/s00344-019-09979-w – volume: 11 start-page: 316 year: 2023 ident: 2024011011083509800_CIT0056 article-title: Fusarium pseudograminearum and F. culmorum affect the root system architecture of bread wheat publication-title: The Crop Journal doi: 10.1016/j.cj.2022.08.013 – volume: 12 start-page: 619499 year: 2021 ident: 2024011011083509800_CIT0004 article-title: Spatiotemporal dynamics of maize (Zea mays L) root growth and its potential consequences for the assembly of the rhizosphere microbiota publication-title: Frontiers in Microbiology doi: 10.3389/fmicb.2021.619499 – volume: 7 start-page: 60 year: 2021 ident: 2024011011083509800_CIT0043 article-title: Bacterial seed endophyte shapes disease resistance in rice publication-title: Nature Plants doi: 10.1038/s41477-020-00826-5 – volume: 478 start-page: 5 year: 2022 ident: 2024011011083509800_CIT0063 article-title: Linking rhizosphere processes across scales: opinion publication-title: Plant and Soil doi: 10.1007/s11104-022-05306-7 – volume: 177 start-page: 90 year: 2018 ident: 2024011011083509800_CIT0069 article-title: Large crown root number improves topsoil foraging and phosphorus acquisition publication-title: Plant Physiology doi: 10.1104/pp.18.00234 – volume: 48 start-page: 871 year: 2021 ident: 2024011011083509800_CIT0027 article-title: The microbiomes on the roots of wheat (Triticum aestivum L.) and rice (Oryza sativa L) exhibit significant differences in structure between root types and along root axes publication-title: Functional Plant Biology doi: 10.1071/FP20351 – volume: 114 start-page: 2969 year: 2022 ident: 2024011011083509800_CIT0024 article-title: Improving maize sustainability with partial replacement of N fertilizers by inoculation with Azospirillum brasilense publication-title: Agronomy Journal doi: 10.1002/agj2.21150 – volume: 23 start-page: 100561 year: 2022 ident: 2024011011083509800_CIT0023 article-title: Reduction in root active zones under drought stress controls spatial distribution and catalytic efficiency of enzyme activities in rhizosphere of wheat publication-title: Rhizosphere doi: 10.1016/j.rhisph.2022.100561 – volume: 21 start-page: 5260 year: 2020 ident: 2024011011083509800_CIT0001 article-title: Adaptive traits to improve durum wheat yield in drought and crown rot environments publication-title: International Journal of Molecular Sciences doi: 10.3390/ijms21155260 – volume: 71 start-page: 469 year: 2016 ident: 2024011011083509800_CIT0058 article-title: Nicotiana roots recruit rare rhizosphere taxa as major root-inhabiting microbes publication-title: Microbial Ecology doi: 10.1007/s00248-015-0672-x – volume: 165 start-page: 108541 year: 2022 ident: 2024011011083509800_CIT0033 article-title: Root exudates shift how N mineralization and N fixation contribute to the plant-available N supply in low fertility soils publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2021.108541 – volume: 237 start-page: 780 year: 2023 ident: 2024011011083509800_CIT0079 article-title: The spatial distribution of rhizosphere microbial activities under drought: water availability is more important than root-hair-controlled exudation publication-title: New Phytologist doi: 10.1111/nph.18409 – volume: 15 start-page: 2748 year: 2021 ident: 2024011011083509800_CIT0076 article-title: Variable influences of soil and seed-associated bacterial communities on the assembly of seedling microbiomes publication-title: The ISME Journal doi: 10.1038/s41396-021-00967-1 – volume: 209 start-page: 1496 year: 2016 ident: 2024011011083509800_CIT0016 article-title: The volatile 6-pentyl-2H-pyran-2-one from Trichoderma atroviride regulates Arabidopsis thaliana root morphogenesis via auxin signaling and ETHYLENE INSENSITIVE 2 functioning publication-title: New Phytologist doi: 10.1111/nph.13725 – volume: 12 start-page: e84988 year: 2023 ident: 2024011011083509800_CIT0017 article-title: Plant secondary metabolite-dependent plant–soil feedbacks can improve crop yield in the field publication-title: eLife doi: 10.7554/eLife.84988 – volume: 32 start-page: 4428 year: 2022 ident: 2024011011083509800_CIT0006 article-title: Arbuscular mycorrhizal fungi induce lateral root development in angiosperms via a conserved set of MAMP receptors publication-title: Current Biology doi: 10.1016/j.cub.2022.08.069 – volume: 869 start-page: 161754 year: 2023 ident: 2024011011083509800_CIT0021 article-title: The vertical distribution and control factor of microbial biomass and bacterial community at macroecological scales publication-title: The Science of the Total Environment doi: 10.1016/j.scitotenv.2023.161754 – volume: 1 start-page: 44 year: 2021 ident: 2024011011083509800_CIT0035 article-title: Limited resilience of the soil microbiome to mechanical compaction within four growing seasons of agricultural management publication-title: ISME Communications doi: 10.1038/s43705-021-00046-8 – volume: 221 start-page: 796 year: 2019 ident: 2024011011083509800_CIT0022 article-title: Plant–microbe competition: does injection of isotopes of C and N into the rhizosphere effectively characterise plant use of soil N publication-title: New Phytologist doi: 10.1111/nph.15433 – volume: 233 start-page: 1620 year: 2022 ident: 2024011011083509800_CIT0077 article-title: Linking root exudation to belowground economic traits for resource acquisition publication-title: New Phytologist doi: 10.1111/nph.17854 – volume: 367 start-page: 1589 year: 2012 ident: 2024011011083509800_CIT0028 article-title: Large-scale sequestration of atmospheric carbon via plant roots in natural and agricultural ecosystems: why and how publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences doi: 10.1098/rstb.2011.0244 – volume: 223 start-page: 548 year: 2019 ident: 2024011011083509800_CIT0037 article-title: Root phenotypes for improved nutrient capture: an underexploited opportunity for global agriculture publication-title: New Phytologist doi: 10.1111/nph.15738 – volume: 147 start-page: 881 year: 2018 ident: 2024011011083509800_CIT0011 article-title: Silicon (Si): review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants publication-title: Ecotoxicology and Environmental Safety doi: 10.1016/j.ecoenv.2017.09.063 – volume: 67 start-page: 4545 year: 2016 ident: 2024011011083509800_CIT0015 article-title: Reduced crown root number improves water acquisition under water deficit stress in maize (Zea mays L) publication-title: Journal of Experimental Botany doi: 10.1093/jxb/erw243 – volume: 120 start-page: e2301054120 year: 2023 ident: 2024011011083509800_CIT0018 article-title: Plant microbiota controls an alternative root branching regulatory mechanism in plants publication-title: Proceedings of the National Academy of Sciences, USA doi: 10.1073/pnas.2301054120 – volume: 126 start-page: 205 year: 2020 ident: 2024011011083509800_CIT0066 article-title: Root secondary growth: an unexplored component of soil resource acquisition publication-title: Annals of Botany doi: 10.1093/aob/mcaa068 – volume: 26 start-page: 282 year: 2011 ident: 2024011011083509800_CIT0025 article-title: Nitrogen cycling in rice paddy environments: past achievements and future challenges publication-title: Microbes and Environments doi: 10.1264/jsme2.ME11293 – volume: 45 start-page: 837 year: 2021 ident: 2024011011083509800_CIT0061 article-title: Root angle in maize influences nitrogen capture and is regulated by calcineurin B-like protein (CBL)-interacting serine/threonine-protein kinase 15 (ZmCIPK15) publication-title: Plant, Cell & Environment doi: 10.1111/pce.14135 – volume: 366 start-page: 114206 year: 2020 ident: 2024011011083509800_CIT0029 article-title: Scale and REV analyses for porosity and pore connectivity measures in undisturbed soil publication-title: Geoderma doi: 10.1016/j.geoderma.2020.114206 – volume: 341 start-page: 75 year: 2011 ident: 2024011011083509800_CIT0073 article-title: Shovelomics: high throughput phenotyping of maize (Zea mays L) root architecture in the field publication-title: Plant and Soil doi: 10.1007/s11104-010-0623-8 – volume: 9 start-page: 109 year: 2019 ident: 2024011011083509800_CIT0064 article-title: A novel function of N-signaling in plants with special reference to Trichoderma interaction influencing plant growth, nitrogen use efficiency, and cross talk with plant hormones publication-title: 3 Biotech doi: 10.1007/s13205-019-1638-3 – volume: 3 start-page: 32 year: 2023 ident: 2024011011083509800_CIT0050 article-title: The effect of wheat genotype on the microbiome is more evident in roots and varies through time publication-title: ISME Communications doi: 10.1038/s43705-023-00238-4 – volume: 6 start-page: 61 year: 2018 ident: 2024011011083509800_CIT0060 article-title: Recognizing patterns: spatial analysis of observed microbial colonization on root surfaces publication-title: Frontiers in Environmental Science doi: 10.3389/fenvs.2018.00061 – volume-title: Mineral nutrition of higher plants year: 1995 ident: 2024011011083509800_CIT0042 – volume: 26 start-page: 546 year: 2013 ident: 2024011011083509800_CIT0080 article-title: Quorum sensing and indole-3-acetic acid degradation play a role in colonization and plant growth promotion of Arabidopsis thaliana by Burkholderia phytofirmans PsJN publication-title: Molecular Plant-Microbe Interactions doi: 10.1094/MPMI-10-12-0241-R – volume: 128 start-page: 453 year: 2021 ident: 2024011011083509800_CIT0049 article-title: Increased seminal root number associated with domestication improves nitrogen and phosphorus acquisition in maize seedlings publication-title: Annals of Botany doi: 10.1093/aob/mcab074 – volume: 5 start-page: 88 year: 2021 ident: 2024011011083509800_CIT0065 article-title: Switchgrass rhizosphere metabolite chemistry driven by nitrogen availability publication-title: Phytobiomes Journal doi: 10.1094/PBIOMES-09-19-0055-FI – volume: 174 start-page: 104408 year: 2022 ident: 2024011011083509800_CIT0036 article-title: Anaerobic soil disinfestation for the management of soilborne pathogens: a review publication-title: Applied Soil Ecology doi: 10.1016/j.apsoil.2022.104408 – volume: 66 start-page: 2199 year: 2015 ident: 2024011011083509800_CIT0041 article-title: Opportunities and challenges in the subsoil: pathways to deeper rooted crops publication-title: Journal of Experimental Botany doi: 10.1093/jxb/eru508 – volume: 129 start-page: 315 year: 2021 ident: 2024011011083509800_CIT0068 article-title: Theoretical evidence that root penetration ability interacts with soil compaction regimes to affect nitrate capture publication-title: Annals of Botany doi: 10.1093/aob/mcab144 – volume: 230 start-page: 60 year: 2021 ident: 2024011011083509800_CIT0009 article-title: Root effects on soil organic carbon: a double-edged sword publication-title: New Phytologist doi: 10.1111/nph.17082 – volume: 109 start-page: 415 year: 2022 ident: 2024011011083509800_CIT0039 article-title: Harnessing root architecture to address global challenges publication-title: The Plant Journal doi: 10.1111/tpj.15560 – volume: 4 start-page: 4 year: 2023 ident: 2024011011083509800_CIT0020 article-title: Soil structure and microbiome functions in agroecosystems publication-title: Nature Reviews. Earth & Environment doi: 10.1038/s43017-022-00366-w – volume: 698 start-page: 134320 year: 2020 ident: 2024011011083509800_CIT0031 article-title: Soil acidification of the soil profile across Chengdu Plain of China from the 1980s to 2010s publication-title: The Science of the Total Environment doi: 10.1016/j.scitotenv.2019.134320 – volume-title: Phytohormones in soils: microbial production and function year: 2020 ident: 2024011011083509800_CIT0012 doi: 10.1201/9780367812256 – volume: 2395 start-page: 293 year: 2022 ident: 2024011011083509800_CIT0059 article-title: Simulating crop root systems using OpenSimRoot publication-title: Methods in Molecular Biology doi: 10.1007/978-1-0716-1816-5_15 – volume: 122 start-page: 485 year: 2018 ident: 2024011011083509800_CIT0052 article-title: Co-optimization of axial root phenotypes for nitrogen and phosphorus acquisition in common bean publication-title: Annals of Botany doi: 10.1093/aob/mcy092 – volume: 169 start-page: 313 year: 2018 ident: 2024011011083509800_CIT0072 article-title: New insights into auxin metabolism in Bradyrhizobium japonicum publication-title: Research in Microbiology doi: 10.1016/j.resmic.2018.04.002 – volume: 69 start-page: 4961 year: 2018 ident: 2024011011083509800_CIT0026 article-title: Greater lateral root branching density in maize improves phosphorus acquisition from low phosphorus soil publication-title: Journal of Experimental Botany doi: 10.1093/jxb/ery252 – volume: 6 start-page: e0044621 year: 2021 ident: 2024011011083509800_CIT0054 article-title: Transmission of seed and soil microbiota to seedling publication-title: mSystems doi: 10.1128/mSystems.00446-21 – volume: 203 start-page: 32 year: 2014 ident: 2024011011083509800_CIT0070 article-title: Abiotic and biotic stress combinations publication-title: New Phytologist doi: 10.1111/nph.12797 – volume: 466 start-page: 21 year: 2021 ident: 2024011011083509800_CIT0040 article-title: Root anatomy and soil resource capture publication-title: Plant and Soil doi: 10.1007/s11104-021-05010-y – volume: 82 start-page: 391 year: 2021 ident: 2024011011083509800_CIT0078 article-title: Effect of root diameter on the selection and network interactions of root-associated bacterial microbiomes in Robinia pseudoacacia L publication-title: Microbial Ecology doi: 10.1007/s00248-020-01678-4 – volume: 21 start-page: 218 year: 2016 ident: 2024011011083509800_CIT0074 article-title: Beneficial microbes affect endogenous mechanisms controlling root development publication-title: Trends in Plant Science doi: 10.1016/j.tplants.2016.01.013 – volume: 108 start-page: 77 year: 2010 ident: 2024011011083509800_CIT0002 article-title: How the plant growth-promoting bacterium Azospirillum promotes plant growth—a critical assessment publication-title: Advances in Agronomy doi: 10.1016/S0065-2113(10)08002-8 |
SSID | ssj0005055 |
Score | 2.5576687 |
SecondaryResourceType | review_article |
Snippet | Abstract
Root architectural phenotypes are promising targets for crop breeding, but root architectural effects on microbial associations in agricultural fields... Root architectural phenotypes are promising targets for crop breeding, but root architectural effects on microbial associations in agricultural fields are not... |
SourceID | pubmedcentral proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 594 |
SubjectTerms | botany Expert Views exudation microbiome Plant Breeding Plant Roots - metabolism Rhizosphere root systems soil Soil - chemistry Soil Microbiology |
Title | Location: root architecture structures rhizosphere microbial associations |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37882632 https://www.proquest.com/docview/2882324674 https://www.proquest.com/docview/3200297045 https://pubmed.ncbi.nlm.nih.gov/PMC10773995 |
Volume | 75 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8NAEF6kePAivo2PGsGTEJrNbl7eVCytil5a6C1kN7NY0USaCvrvnc2jbUrVWyCTB_MtzLc7M98QciFdX7hAmSUF9SwOMbcElYllM2GrgEs9jEBXWzx5vSG_H7mjqkA2X5HCD1nn9Ut0YBInvOgXx_CrJfIHz6N5JYfturUoODIGv2rDW3q2EXgazWwLnHK5NHIh1nS3yGZFEs3rEtVtsgbpDlm_yZDIfe-S_mNWnrNdmUh7p-ZiLsAs9WDxKjcnupwu17IBYL6PC8ElfGk8xyPfI8Pu3eC2Z1UTESyJ27apJamUOu-nfJ3tA0eGSsu5yNgDCO3YSRxBIaQxKE8xcJEKUTdwpBTMFz5VnO2TVpqlcEhM5AFAbUV5Ihn3BBVSBkkShMjvHE9xMMhl7a5IVnLhemrFW1SmrVmEvo0q3xoIem38UapkrDY7Q7__bXFeYxLhOtfJiziF7DOPHNwKIPnzfP67DXOKWVzIUg1yUOI4-5jWzdfa9AYJGgjPDLTOdvNOOn4p9LZxh-zrDuCjf3__mGw4SHr0EQ21T0gLIYdTJC1T0Ua63n9oFwv3B8tf7rc |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Location%3A+root+architecture+structures+rhizosphere+microbial+associations&rft.jtitle=Journal+of+experimental+botany&rft.au=Galindo-Casta%C3%B1eda%2C+Tania&rft.au=Hartmann%2C+Martin&rft.au=Lynch%2C+Jonathan+P&rft.date=2024-01-10&rft.issn=1460-2431&rft.eissn=1460-2431&rft.volume=75&rft.issue=2&rft.spage=594&rft_id=info:doi/10.1093%2Fjxb%2Ferad421&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0957&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0957&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0957&client=summon |