Location: root architecture structures rhizosphere microbial associations

Abstract Root architectural phenotypes are promising targets for crop breeding, but root architectural effects on microbial associations in agricultural fields are not well understood. Architecture determines the location of microbial associations within root systems, which, when integrated with soi...

Full description

Saved in:
Bibliographic Details
Published inJournal of experimental botany Vol. 75; no. 2; pp. 594 - 604
Main Authors Galindo-Castañeda, Tania, Hartmann, Martin, Lynch, Jonathan P
Format Journal Article
LanguageEnglish
Published UK Oxford University Press 10.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Root architectural phenotypes are promising targets for crop breeding, but root architectural effects on microbial associations in agricultural fields are not well understood. Architecture determines the location of microbial associations within root systems, which, when integrated with soil vertical gradients, determines the functions and the metabolic capability of rhizosphere microbial communities. We argue that variation in root architecture in crops has important implications for root exudation, microbial recruitment and function, and the decomposition and fate of root tissues and exudates. Recent research has shown that the root microbiome changes along root axes and among root classes, that root tips have a unique microbiome, and that root exudates change within the root system depending on soil physicochemical conditions. Although fresh exudates are produced in larger amounts in root tips, the rhizosphere of mature root segments also plays a role in influencing soil vertical gradients. We argue that more research is needed to understand specific root phenotypes that structure microbial associations and discuss candidate root phenotypes that may determine the location of microbial hotspots within root systems with relevance to agricultural systems. Root architecture and soil vertical gradients create a diverse set of physicochemical conditions in which rhizosphere microbes live; however, these scaffolds of soil microbial ecology are rarely studied.
AbstractList Root architectural phenotypes are promising targets for crop breeding, but root architectural effects on microbial associations in agricultural fields are not well understood. Architecture determines the location of microbial associations within root systems, which, when integrated with soil vertical gradients, determines the functions and the metabolic capability of rhizosphere microbial communities. We argue that variation in root architecture in crops has important implications for root exudation, microbial recruitment and function, and the decomposition and fate of root tissues and exudates. Recent research has shown that the root microbiome changes along root axes and among root classes, that root tips have a unique microbiome, and that root exudates change within the root system depending on soil physicochemical conditions. Although fresh exudates are produced in larger amounts in root tips, the rhizosphere of mature root segments also plays a role in influencing soil vertical gradients. We argue that more research is needed to understand specific root phenotypes that structure microbial associations and discuss candidate root phenotypes that may determine the location of microbial hotspots within root systems with relevance to agricultural systems.
Abstract Root architectural phenotypes are promising targets for crop breeding, but root architectural effects on microbial associations in agricultural fields are not well understood. Architecture determines the location of microbial associations within root systems, which, when integrated with soil vertical gradients, determines the functions and the metabolic capability of rhizosphere microbial communities. We argue that variation in root architecture in crops has important implications for root exudation, microbial recruitment and function, and the decomposition and fate of root tissues and exudates. Recent research has shown that the root microbiome changes along root axes and among root classes, that root tips have a unique microbiome, and that root exudates change within the root system depending on soil physicochemical conditions. Although fresh exudates are produced in larger amounts in root tips, the rhizosphere of mature root segments also plays a role in influencing soil vertical gradients. We argue that more research is needed to understand specific root phenotypes that structure microbial associations and discuss candidate root phenotypes that may determine the location of microbial hotspots within root systems with relevance to agricultural systems. Root architecture and soil vertical gradients create a diverse set of physicochemical conditions in which rhizosphere microbes live; however, these scaffolds of soil microbial ecology are rarely studied.
Root architectural phenotypes are promising targets for crop breeding, but root architectural effects on microbial associations in agricultural fields are not well understood. Architecture determines the location of microbial associations within root systems, which, when integrated with soil vertical gradients, determines the functions and the metabolic capability of rhizosphere microbial communities. We argue that variation in root architecture in crops has important implications for root exudation, microbial recruitment and function, and the decomposition and fate of root tissues and exudates. Recent research has shown that the root microbiome changes along root axes and among root classes, that root tips have a unique microbiome, and that root exudates change within the root system depending on soil physicochemical conditions. Although fresh exudates are produced in larger amounts in root tips, the rhizosphere of mature root segments also plays a role in influencing soil vertical gradients. We argue that more research is needed to understand specific root phenotypes that structure microbial associations and discuss candidate root phenotypes that may determine the location of microbial hotspots within root systems with relevance to agricultural systems. Root architecture and soil vertical gradients create a diverse set of physicochemical conditions in which rhizosphere microbes live; however, these scaffolds of soil microbial ecology are rarely studied.
Root architectural phenotypes are promising targets for crop breeding, but root architectural effects on microbial associations in agricultural fields are not well understood. Architecture determines the location of microbial associations within root systems, which, when integrated with soil vertical gradients, determines the functions and the metabolic capability of rhizosphere microbial communities. We argue that variation in root architecture in crops has important implications for root exudation, microbial recruitment and function, and the decomposition and fate of root tissues and exudates. Recent research has shown that the root microbiome changes along root axes and among root classes, that root tips have a unique microbiome, and that root exudates change within the root system depending on soil physicochemical conditions. Although fresh exudates are produced in larger amounts in root tips, the rhizosphere of mature root segments also plays a role in influencing soil vertical gradients. We argue that more research is needed to understand specific root phenotypes that structure microbial associations and discuss candidate root phenotypes that may determine the location of microbial hotspots within root systems with relevance to agricultural systems.Root architectural phenotypes are promising targets for crop breeding, but root architectural effects on microbial associations in agricultural fields are not well understood. Architecture determines the location of microbial associations within root systems, which, when integrated with soil vertical gradients, determines the functions and the metabolic capability of rhizosphere microbial communities. We argue that variation in root architecture in crops has important implications for root exudation, microbial recruitment and function, and the decomposition and fate of root tissues and exudates. Recent research has shown that the root microbiome changes along root axes and among root classes, that root tips have a unique microbiome, and that root exudates change within the root system depending on soil physicochemical conditions. Although fresh exudates are produced in larger amounts in root tips, the rhizosphere of mature root segments also plays a role in influencing soil vertical gradients. We argue that more research is needed to understand specific root phenotypes that structure microbial associations and discuss candidate root phenotypes that may determine the location of microbial hotspots within root systems with relevance to agricultural systems.
Author Lynch, Jonathan P
Hartmann, Martin
Galindo-Castañeda, Tania
Author_xml – sequence: 1
  givenname: Tania
  orcidid: 0000-0001-6853-4162
  surname: Galindo-Castañeda
  fullname: Galindo-Castañeda, Tania
  email: tania.galindocastaneda@usys.ethz.ch
– sequence: 2
  givenname: Martin
  orcidid: 0000-0001-8069-5284
  surname: Hartmann
  fullname: Hartmann, Martin
– sequence: 3
  givenname: Jonathan P
  orcidid: 0000-0002-7265-9790
  surname: Lynch
  fullname: Lynch, Jonathan P
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37882632$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9LIzEcxYO4aHU9eZc5ycIya36n8SKL7I9CwYueQyb9jk2ZTmqSEXf_-o1tlVVETwnJ5z0e7x2g3T70gNAxwd8I1uxs8dCcQbQzTskOGhEucU05I7tohDGlNdZC7aODlBYYY4GF2EP7TI3HVDI6QpNpcDb70J9XMYRc2ejmPoPLQ4Qq5Tisb6mKc_83pNUcyvPSuxgab7vKphScX-vTZ_SptV2Co-15iG5-_ri-_F1Pr35NLr9Pa8e5zLUjzhGiVauIlBKo063AbOysBNDY0hltCGhioZUtA8GZIGJMnWuYahRpOTtEFxvf1dAsYeagz9F2ZhX90sY_JlhvXv70fm5uw70hWCmmtSgOX7YOMdwNkLJZ-uSg62wPYUiG0VKcVph_jNLSI6NcqsdcJ__neg701HUByAYo7aUUoTXO53V3JabvSj7zuKcpe5rtnkXz9ZXmyfZt-nRDh2H1LvgPWoWyGA
CitedBy_id crossref_primary_10_1093_jxb_erad488
crossref_primary_10_1093_jxb_eraf006
crossref_primary_10_1016_j_copbio_2024_103139
crossref_primary_10_1007_s44281_024_00041_8
crossref_primary_10_1038_s41598_024_58687_3
crossref_primary_10_1007_s11104_025_07208_w
crossref_primary_10_1016_j_micres_2024_128028
crossref_primary_10_3390_bacteria4010012
crossref_primary_10_1016_j_jhazmat_2024_136227
crossref_primary_10_1007_s11104_025_07332_7
crossref_primary_10_1016_j_envexpbot_2024_105853
crossref_primary_10_3389_fpls_2024_1383373
crossref_primary_10_1080_00103624_2025_2474180
crossref_primary_10_1093_plphys_kiae605
crossref_primary_10_1016_j_scitotenv_2024_172714
crossref_primary_10_3389_fpls_2024_1482739
Cites_doi 10.1094/PBIOMES-12-18-0062-R
10.1104/pp.108.130369
10.3389/fpls.2022.827369
10.1111/tpj.15774
10.1093/plphys/kiab311
10.1007/s11104-009-0101-3
10.1080/1343943X.2021.1883990
10.1038/nature21417
10.3389/fpls.2020.00546
10.1094/PBIOMES-03-20-0026-R
10.1111/tpj.15135
10.1104/pp.113.232603
10.1016/j.soilbio.2021.108426
10.1111/pce.13615
10.1104/pp.17.01583
10.1016/j.soilbio.2016.02.020
10.1007/s11104-015-2379-7
10.1890/14-1761.1
10.1016/j.fcr.2022.108547
10.1111/nph.16554
10.36783/18069657rbcs20210108
10.1016/j.pbi.2020.101983
10.3389/fmicb.2021.822487
10.1007/s00344-019-09979-w
10.1016/j.cj.2022.08.013
10.3389/fmicb.2021.619499
10.1038/s41477-020-00826-5
10.1007/s11104-022-05306-7
10.1104/pp.18.00234
10.1071/FP20351
10.1002/agj2.21150
10.1016/j.rhisph.2022.100561
10.3390/ijms21155260
10.1007/s00248-015-0672-x
10.1016/j.soilbio.2021.108541
10.1111/nph.18409
10.1038/s41396-021-00967-1
10.1111/nph.13725
10.7554/eLife.84988
10.1016/j.cub.2022.08.069
10.1016/j.scitotenv.2023.161754
10.1038/s43705-021-00046-8
10.1111/nph.15433
10.1111/nph.17854
10.1098/rstb.2011.0244
10.1111/nph.15738
10.1016/j.ecoenv.2017.09.063
10.1093/jxb/erw243
10.1073/pnas.2301054120
10.1093/aob/mcaa068
10.1264/jsme2.ME11293
10.1111/pce.14135
10.1016/j.geoderma.2020.114206
10.1007/s11104-010-0623-8
10.1007/s13205-019-1638-3
10.1038/s43705-023-00238-4
10.3389/fenvs.2018.00061
10.1094/MPMI-10-12-0241-R
10.1093/aob/mcab074
10.1094/PBIOMES-09-19-0055-FI
10.1016/j.apsoil.2022.104408
10.1093/jxb/eru508
10.1093/aob/mcab144
10.1111/nph.17082
10.1111/tpj.15560
10.1038/s43017-022-00366-w
10.1016/j.scitotenv.2019.134320
10.1201/9780367812256
10.1007/978-1-0716-1816-5_15
10.1093/aob/mcy092
10.1016/j.resmic.2018.04.002
10.1093/jxb/ery252
10.1128/mSystems.00446-21
10.1111/nph.12797
10.1007/s11104-021-05010-y
10.1007/s00248-020-01678-4
10.1016/j.tplants.2016.01.013
10.1016/S0065-2113(10)08002-8
ContentType Journal Article
Copyright The Author(s) 2023. Published by Oxford University Press on behalf of the Society for Experimental Biology. 2023
The Author(s) 2023. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Copyright_xml – notice: The Author(s) 2023. Published by Oxford University Press on behalf of the Society for Experimental Biology. 2023
– notice: The Author(s) 2023. Published by Oxford University Press on behalf of the Society for Experimental Biology.
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1093/jxb/erad421
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
AGRICOLA


MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Botany
DocumentTitleAlternate Special Issue: Root Architecture and Rhizosphere—Microbe Interactions
EISSN 1460-2431
EndPage 604
ExternalDocumentID PMC10773995
37882632
10_1093_jxb_erad421
10.1093/jxb/erad421
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Swiss National Science Foundation
  grantid: 310030_207952
– fundername: ;
  grantid: 839235
– fundername: ;
  grantid: 310030_207952
– fundername: ;
  grantid: 101000371
GroupedDBID ---
-DZ
-E4
-~X
.2P
.I3
0R~
18M
1TH
29K
2WC
2~F
3O-
4.4
482
48X
53G
5GY
5VS
5WA
5WD
70D
AAHBH
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAVLN
AAWDT
AAXTN
ABBHK
ABDFA
ABDPE
ABEJV
ABEUO
ABGNP
ABIME
ABIXL
ABJNI
ABLJU
ABMNT
ABNGD
ABNKS
ABPIB
ABPPZ
ABPQP
ABPTD
ABQLI
ABQTQ
ABSMQ
ABVGC
ABWST
ABXSQ
ABXVV
ABXZS
ABZBJ
ABZEO
ACFRR
ACGFO
ACGFS
ACGOD
ACHIC
ACIWK
ACNCT
ACPQN
ACPRK
ACUFI
ACUKT
ACUTJ
ACVCV
ACZBC
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADNBA
ADOCK
ADQBN
ADRTK
ADULT
ADVEK
ADYVW
ADZTZ
ADZXQ
AEEJZ
AEGPL
AEGXH
AEHUL
AEJOX
AEKPW
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AETEA
AEUPB
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFSHK
AFYAG
AGINJ
AGKEF
AGKRT
AGMDO
AGQXC
AGSYK
AHMBA
AHXPO
AI.
AIAGR
AIJHB
AJDVS
AJEEA
AJNCP
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
ANFBD
APIBT
APJGH
APWMN
AQDSO
AQVQM
ARIXL
ASAOO
ASPBG
ATDFG
ATGXG
ATTQO
AVWKF
AXUDD
AYOIW
AZFZN
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BSWAC
C1A
CAG
CDBKE
COF
CS3
CXTWN
CZ4
D-I
DAKXR
DATOO
DFGAJ
DIK
DILTD
DU5
D~K
E3Z
EBS
ECGQY
EE~
EJD
ELUNK
F5P
F9B
FEDTE
FHSFR
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HVGLF
HW0
HZ~
H~9
IOX
IPSME
J21
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
M-Z
M49
MBTAY
ML0
MVM
N9A
NEJ
NGC
NLBLG
NOMLY
NTWIH
NU-
NVLIB
O0~
O9-
OAWHX
OBOKY
ODMLO
OHT
OJQWA
OJZSN
OK1
OVD
OWPYF
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
QBD
R44
RD5
RIG
RNI
ROL
ROX
ROZ
RUSNO
RW1
RXO
RZF
RZO
SA0
TCN
TEORI
TLC
TN5
TOX
TR2
UHB
UKR
UPT
VH1
W8F
WH7
WOQ
X7H
XOL
YAYTL
YKOAZ
YQT
YSK
YXANX
YZZ
ZCG
ZKX
~02
~91
~KM
AAYXX
AGORE
AHGBF
AJBYB
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c446t-c1cc1197f71666e2c9f5038ca6ee90a2d2b1e91aef6f3e54351582ccb37b71f43
IEDL.DBID TOX
ISSN 0022-0957
1460-2431
IngestDate Thu Aug 21 18:42:04 EDT 2025
Wed Jul 02 03:00:26 EDT 2025
Fri Jul 11 07:57:09 EDT 2025
Mon Jul 21 06:05:36 EDT 2025
Tue Jul 01 03:05:56 EDT 2025
Thu Apr 24 23:10:09 EDT 2025
Wed Apr 02 07:09:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords soil vertical gradients
number of axial roots
rooting depth
Carbon rhizodeposition
rhizosphere microbiome
soil redox potential
lateral roots
root system architecture
root growth angle
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
The Author(s) 2023. Published by Oxford University Press on behalf of the Society for Experimental Biology.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-c1cc1197f71666e2c9f5038ca6ee90a2d2b1e91aef6f3e54351582ccb37b71f43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7265-9790
0000-0001-8069-5284
0000-0001-6853-4162
OpenAccessLink https://dx.doi.org/10.1093/jxb/erad421
PMID 37882632
PQID 2882324674
PQPubID 23479
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10773995
proquest_miscellaneous_3200297045
proquest_miscellaneous_2882324674
pubmed_primary_37882632
crossref_citationtrail_10_1093_jxb_erad421
crossref_primary_10_1093_jxb_erad421
oup_primary_10_1093_jxb_erad421
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-10
PublicationDateYYYYMMDD 2024-01-10
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-10
  day: 10
PublicationDecade 2020
PublicationPlace UK
PublicationPlace_xml – name: UK
– name: England
PublicationTitle Journal of experimental botany
PublicationTitleAlternate J Exp Bot
PublicationYear 2024
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Gfeller (2024011011083509800_CIT0017) 2023; 12
Saleem (2024011011083509800_CIT0058) 2016; 71
Jia (2024011011083509800_CIT0026) 2018; 69
Tannenbaum (2024011011083509800_CIT0071) 2020; 4
Schneider (2024011011083509800_CIT0061) 2021; 45
Ruangsiri (2024011011083509800_CIT0055) 2021; 24
Schneider (2024011011083509800_CIT0062) 2020; 11
Hill (2024011011083509800_CIT0022) 2019; 221
Bashan (2024011011083509800_CIT0002) 2010; 108
Moreau (2024011011083509800_CIT0046) 2015; 96
Trachsel (2024011011083509800_CIT0073) 2011; 341
Saengwilai (2024011011083509800_CIT0057) 2014; 166
Razavi (2024011011083509800_CIT0053) 2016; 96
Liu (2024011011083509800_CIT0033) 2022; 165
Walsh (2024011011083509800_CIT0076) 2021; 15
McKay Fletcher (2024011011083509800_CIT0045) 2020; 227
Marschner (2024011011083509800_CIT0042) 1995
Bilyera (2024011011083509800_CIT0003) 2021; 162
Garnica-Vergara (2024011011083509800_CIT0016) 2016; 209
Quiza (2024011011083509800_CIT0050) 2023; 3
Lynch (2024011011083509800_CIT0040) 2021; 466
Wen (2024011011083509800_CIT0077) 2022; 233
Longepierre (2024011011083509800_CIT0034) 2022; 12
Dijkstra (2024011011083509800_CIT0009) 2021; 230
Gao (2024011011083509800_CIT0015) 2016; 67
Waite (2024011011083509800_CIT0075) 2021; 59
Galindo-Castañeda (2024011011083509800_CIT0013) 2019; 42
Liu (2024011011083509800_CIT0032) 2021; 187
Suzuki (2024011011083509800_CIT0070) 2014; 203
Schnepf (2024011011083509800_CIT0063) 2022; 478
Lynch (2024011011083509800_CIT0037) 2019; 223
Hartmann (2024011011083509800_CIT0020) 2023; 4
Zai (2024011011083509800_CIT0078) 2021; 82
Lynch (2024011011083509800_CIT0039) 2022; 109
Chiu (2024011011083509800_CIT0006) 2022; 32
Strock (2024011011083509800_CIT0067) 2018; 176
Kell (2024011011083509800_CIT0028) 2012; 367
Ortiz-Castro (2024011011083509800_CIT0047) 2020; 39
Sun (2024011011083509800_CIT0069) 2018; 177
Longepierre (2024011011083509800_CIT0035) 2021; 1
Smercina (2024011011083509800_CIT0065) 2021; 5
Ishii (2024011011083509800_CIT0025) 2011; 26
Singh (2024011011083509800_CIT0064) 2019; 9
Zúñiga (2024011011083509800_CIT0080) 2013; 26
Schmidt (2024011011083509800_CIT0060) 2018; 6
Krome (2024011011083509800_CIT0030) 2010; 328
Torres (2024011011083509800_CIT0072) 2018; 169
Lynch (2024011011083509800_CIT0038) 2022; 283
Strock (2024011011083509800_CIT0066) 2020; 126
Etesami (2024011011083509800_CIT0011) 2018; 147
Saad (2024011011083509800_CIT0056) 2023; 11
Bonkowski (2024011011083509800_CIT0004) 2021; 12
Hungria (2024011011083509800_CIT0024) 2022; 114
Matsumoto (2024011011083509800_CIT0043) 2021; 7
Rochefort (2024011011083509800_CIT0054) 2021; 6
Contreras-Cornejo (2024011011083509800_CIT0008) 2009; 149
Lynch (2024011011083509800_CIT0041) 2015; 66
Alahmad (2024011011083509800_CIT0001) 2020; 21
Eichmann (2024011011083509800_CIT0010) 2021; 105
Pereira (2024011011083509800_CIT0048) 2021; 45
Castrillo (2024011011083509800_CIT0005) 2017; 543
Hosseini (2024011011083509800_CIT0023) 2022; 23
Gonin (2024011011083509800_CIT0018) 2023; 120
Schäfer (2024011011083509800_CIT0059) 2022; 2395
Frankenberger (2024011011083509800_CIT0012) 2020
Koestel (2024011011083509800_CIT0029) 2020; 366
Lopes (2024011011083509800_CIT0036) 2022; 174
Strock (2024011011083509800_CIT0068) 2021; 129
Galindo-Castañeda (2024011011083509800_CIT0014) 2022; 13
Hartemink (2024011011083509800_CIT0019) 2020
Zhang (2024011011083509800_CIT0079) 2023; 237
Li (2024011011083509800_CIT0031) 2020; 698
Perkins (2024011011083509800_CIT0049) 2021; 128
Rangarajan (2024011011083509800_CIT0051) 2022; 111
Rangarajan (2024011011083509800_CIT0052) 2018; 122
Colombi (2024011011083509800_CIT0007) 2015; 388
Mattupalli (2024011011083509800_CIT0044) 2019; 3
Kawasaki (2024011011083509800_CIT0027) 2021; 48
He (2024011011083509800_CIT0021) 2023; 869
Verbon (2024011011083509800_CIT0074) 2016; 21
References_xml – volume: 3
  start-page: 102
  year: 2019
  ident: 2024011011083509800_CIT0044
  article-title: Digital imaging to evaluate root system architectural changes associated with soil biotic factors
  publication-title: Phytobiomes Journal
  doi: 10.1094/PBIOMES-12-18-0062-R
– volume: 149
  start-page: 1579
  year: 2009
  ident: 2024011011083509800_CIT0008
  article-title: Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis
  publication-title: Plant Physiology
  doi: 10.1104/pp.108.130369
– volume: 13
  start-page: 827369
  year: 2022
  ident: 2024011011083509800_CIT0014
  article-title: Improving soil resource uptake by plants through capitalizing on synergies between root architecture and anatomy and root-associated microorganisms
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2022.827369
– volume: 111
  start-page: 38
  year: 2022
  ident: 2024011011083509800_CIT0051
  article-title: Multi-objective optimization of root phenotypes for nutrient capture using evolutionary algorithms
  publication-title: The Plant Journal
  doi: 10.1111/tpj.15774
– volume: 187
  start-page: 739
  year: 2021
  ident: 2024011011083509800_CIT0032
  article-title: DIRT/3D: 3D root phenotyping for field-grown maize (Zea mays)
  publication-title: Plant Physiology
  doi: 10.1093/plphys/kiab311
– volume: 328
  start-page: 191
  year: 2010
  ident: 2024011011083509800_CIT0030
  article-title: Soil bacteria and protozoa affect root branching via effects on the auxin and cytokinin balance in plants
  publication-title: Plant and Soil
  doi: 10.1007/s11104-009-0101-3
– volume: 24
  start-page: 512
  year: 2021
  ident: 2024011011083509800_CIT0055
  article-title: Genetic control of root architectural traits in KDML105 chromosome segment substitution lines under well-watered and drought stress conditions
  publication-title: Plant Production Science
  doi: 10.1080/1343943X.2021.1883990
– volume: 543
  start-page: 513
  year: 2017
  ident: 2024011011083509800_CIT0005
  article-title: Root microbiota drive direct integration of phosphate stress and immunity
  publication-title: Nature
  doi: 10.1038/nature21417
– volume: 11
  start-page: 546
  year: 2020
  ident: 2024011011083509800_CIT0062
  article-title: Should root plasticity be a crop breeding target
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2020.00546
– volume: 4
  start-page: 281
  year: 2020
  ident: 2024011011083509800_CIT0071
  article-title: Profiling the Lolium perenne microbiome: from seed to seed
  publication-title: Phytobiomes Journal
  doi: 10.1094/PBIOMES-03-20-0026-R
– volume: 105
  start-page: 518
  year: 2021
  ident: 2024011011083509800_CIT0010
  article-title: Hormones as go-betweens in plant microbiome assembly
  publication-title: The Plant Journal
  doi: 10.1111/tpj.15135
– volume: 166
  start-page: 581
  year: 2014
  ident: 2024011011083509800_CIT0057
  article-title: Low crown root number enhances nitrogen acquisition from low nitrogen soils in maize (Zea mays L)
  publication-title: Plant Physiology
  doi: 10.1104/pp.113.232603
– volume: 162
  start-page: 108426
  year: 2021
  ident: 2024011011083509800_CIT0003
  article-title: Maize genotype-specific exudation strategies: an adaptive mechanism to increase microbial activity in the rhizosphere
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2021.108426
– volume: 42
  start-page: 2999
  year: 2019
  ident: 2024011011083509800_CIT0013
  article-title: Root cortical anatomy is associated with differential pathogenic and symbiotic fungal colonization in maize
  publication-title: Plant, Cell & Environment
  doi: 10.1111/pce.13615
– volume: 176
  start-page: 691
  year: 2018
  ident: 2024011011083509800_CIT0067
  article-title: Reduction in root secondary growth as a strategy for phosphorus acquisition
  publication-title: Plant Physiology
  doi: 10.1104/pp.17.01583
– volume: 96
  start-page: 229
  year: 2016
  ident: 2024011011083509800_CIT0053
  article-title: Rhizosphere shape of lentil and maize: spatial distribution of enzyme activities
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2016.02.020
– volume: 388
  start-page: 1
  year: 2015
  ident: 2024011011083509800_CIT0007
  article-title: Next generation shovelomics: set up a tent and REST
  publication-title: Plant and Soil
  doi: 10.1007/s11104-015-2379-7
– volume: 96
  start-page: 2300
  year: 2015
  ident: 2024011011083509800_CIT0046
  article-title: Plant traits related to nitrogen uptake influence plant–microbe competition
  publication-title: Ecology
  doi: 10.1890/14-1761.1
– volume: 283
  start-page: 108547
  year: 2022
  ident: 2024011011083509800_CIT0038
  article-title: Edaphic stress interactions: important yet poorly understood drivers of plant production in future climates
  publication-title: Field Crops Research
  doi: 10.1016/j.fcr.2022.108547
– start-page: 125
  volume-title: Advances in Agronomy
  year: 2020
  ident: 2024011011083509800_CIT0019
  article-title: Soil horizon variation: a review
– volume: 227
  start-page: 376
  year: 2020
  ident: 2024011011083509800_CIT0045
  article-title: Linking root structure to functionality: the impact of root system architecture on citrate-enhanced phosphate uptake
  publication-title: New Phytologist
  doi: 10.1111/nph.16554
– volume: 45
  start-page: e0210108
  year: 2021
  ident: 2024011011083509800_CIT0048
  article-title: Biogenic and physicogenic aggregates: formation pathways, assessment techniques, and influence on soil properties
  publication-title: Revista Brasileira de Ciencia do Solo
  doi: 10.36783/18069657rbcs20210108
– volume: 59
  start-page: 101983
  year: 2021
  ident: 2024011011083509800_CIT0075
  article-title: The roles of the IGT gene family in plant architecture: past, present, and future
  publication-title: Current Opinion in Plant Biology
  doi: 10.1016/j.pbi.2020.101983
– volume: 12
  start-page: 822487
  year: 2022
  ident: 2024011011083509800_CIT0034
  article-title: Mixed effects of soil compaction on the nitrogen cycle under pea and wheat
  publication-title: Frontiers in Microbiology
  doi: 10.3389/fmicb.2021.822487
– volume: 39
  start-page: 254
  year: 2020
  ident: 2024011011083509800_CIT0047
  article-title: Pseudomonas putida and Pseudomonas fluorescens influence Arabidopsis root system architecture through an auxin response mediated by bioactive cyclodipeptides
  publication-title: Journal of Plant Growth Regulation
  doi: 10.1007/s00344-019-09979-w
– volume: 11
  start-page: 316
  year: 2023
  ident: 2024011011083509800_CIT0056
  article-title: Fusarium pseudograminearum and F. culmorum affect the root system architecture of bread wheat
  publication-title: The Crop Journal
  doi: 10.1016/j.cj.2022.08.013
– volume: 12
  start-page: 619499
  year: 2021
  ident: 2024011011083509800_CIT0004
  article-title: Spatiotemporal dynamics of maize (Zea mays L) root growth and its potential consequences for the assembly of the rhizosphere microbiota
  publication-title: Frontiers in Microbiology
  doi: 10.3389/fmicb.2021.619499
– volume: 7
  start-page: 60
  year: 2021
  ident: 2024011011083509800_CIT0043
  article-title: Bacterial seed endophyte shapes disease resistance in rice
  publication-title: Nature Plants
  doi: 10.1038/s41477-020-00826-5
– volume: 478
  start-page: 5
  year: 2022
  ident: 2024011011083509800_CIT0063
  article-title: Linking rhizosphere processes across scales: opinion
  publication-title: Plant and Soil
  doi: 10.1007/s11104-022-05306-7
– volume: 177
  start-page: 90
  year: 2018
  ident: 2024011011083509800_CIT0069
  article-title: Large crown root number improves topsoil foraging and phosphorus acquisition
  publication-title: Plant Physiology
  doi: 10.1104/pp.18.00234
– volume: 48
  start-page: 871
  year: 2021
  ident: 2024011011083509800_CIT0027
  article-title: The microbiomes on the roots of wheat (Triticum aestivum L.) and rice (Oryza sativa L) exhibit significant differences in structure between root types and along root axes
  publication-title: Functional Plant Biology
  doi: 10.1071/FP20351
– volume: 114
  start-page: 2969
  year: 2022
  ident: 2024011011083509800_CIT0024
  article-title: Improving maize sustainability with partial replacement of N fertilizers by inoculation with Azospirillum brasilense
  publication-title: Agronomy Journal
  doi: 10.1002/agj2.21150
– volume: 23
  start-page: 100561
  year: 2022
  ident: 2024011011083509800_CIT0023
  article-title: Reduction in root active zones under drought stress controls spatial distribution and catalytic efficiency of enzyme activities in rhizosphere of wheat
  publication-title: Rhizosphere
  doi: 10.1016/j.rhisph.2022.100561
– volume: 21
  start-page: 5260
  year: 2020
  ident: 2024011011083509800_CIT0001
  article-title: Adaptive traits to improve durum wheat yield in drought and crown rot environments
  publication-title: International Journal of Molecular Sciences
  doi: 10.3390/ijms21155260
– volume: 71
  start-page: 469
  year: 2016
  ident: 2024011011083509800_CIT0058
  article-title: Nicotiana roots recruit rare rhizosphere taxa as major root-inhabiting microbes
  publication-title: Microbial Ecology
  doi: 10.1007/s00248-015-0672-x
– volume: 165
  start-page: 108541
  year: 2022
  ident: 2024011011083509800_CIT0033
  article-title: Root exudates shift how N mineralization and N fixation contribute to the plant-available N supply in low fertility soils
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2021.108541
– volume: 237
  start-page: 780
  year: 2023
  ident: 2024011011083509800_CIT0079
  article-title: The spatial distribution of rhizosphere microbial activities under drought: water availability is more important than root-hair-controlled exudation
  publication-title: New Phytologist
  doi: 10.1111/nph.18409
– volume: 15
  start-page: 2748
  year: 2021
  ident: 2024011011083509800_CIT0076
  article-title: Variable influences of soil and seed-associated bacterial communities on the assembly of seedling microbiomes
  publication-title: The ISME Journal
  doi: 10.1038/s41396-021-00967-1
– volume: 209
  start-page: 1496
  year: 2016
  ident: 2024011011083509800_CIT0016
  article-title: The volatile 6-pentyl-2H-pyran-2-one from Trichoderma atroviride regulates Arabidopsis thaliana root morphogenesis via auxin signaling and ETHYLENE INSENSITIVE 2 functioning
  publication-title: New Phytologist
  doi: 10.1111/nph.13725
– volume: 12
  start-page: e84988
  year: 2023
  ident: 2024011011083509800_CIT0017
  article-title: Plant secondary metabolite-dependent plant–soil feedbacks can improve crop yield in the field
  publication-title: eLife
  doi: 10.7554/eLife.84988
– volume: 32
  start-page: 4428
  year: 2022
  ident: 2024011011083509800_CIT0006
  article-title: Arbuscular mycorrhizal fungi induce lateral root development in angiosperms via a conserved set of MAMP receptors
  publication-title: Current Biology
  doi: 10.1016/j.cub.2022.08.069
– volume: 869
  start-page: 161754
  year: 2023
  ident: 2024011011083509800_CIT0021
  article-title: The vertical distribution and control factor of microbial biomass and bacterial community at macroecological scales
  publication-title: The Science of the Total Environment
  doi: 10.1016/j.scitotenv.2023.161754
– volume: 1
  start-page: 44
  year: 2021
  ident: 2024011011083509800_CIT0035
  article-title: Limited resilience of the soil microbiome to mechanical compaction within four growing seasons of agricultural management
  publication-title: ISME Communications
  doi: 10.1038/s43705-021-00046-8
– volume: 221
  start-page: 796
  year: 2019
  ident: 2024011011083509800_CIT0022
  article-title: Plant–microbe competition: does injection of isotopes of C and N into the rhizosphere effectively characterise plant use of soil N
  publication-title: New Phytologist
  doi: 10.1111/nph.15433
– volume: 233
  start-page: 1620
  year: 2022
  ident: 2024011011083509800_CIT0077
  article-title: Linking root exudation to belowground economic traits for resource acquisition
  publication-title: New Phytologist
  doi: 10.1111/nph.17854
– volume: 367
  start-page: 1589
  year: 2012
  ident: 2024011011083509800_CIT0028
  article-title: Large-scale sequestration of atmospheric carbon via plant roots in natural and agricultural ecosystems: why and how
  publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences
  doi: 10.1098/rstb.2011.0244
– volume: 223
  start-page: 548
  year: 2019
  ident: 2024011011083509800_CIT0037
  article-title: Root phenotypes for improved nutrient capture: an underexploited opportunity for global agriculture
  publication-title: New Phytologist
  doi: 10.1111/nph.15738
– volume: 147
  start-page: 881
  year: 2018
  ident: 2024011011083509800_CIT0011
  article-title: Silicon (Si): review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants
  publication-title: Ecotoxicology and Environmental Safety
  doi: 10.1016/j.ecoenv.2017.09.063
– volume: 67
  start-page: 4545
  year: 2016
  ident: 2024011011083509800_CIT0015
  article-title: Reduced crown root number improves water acquisition under water deficit stress in maize (Zea mays L)
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/erw243
– volume: 120
  start-page: e2301054120
  year: 2023
  ident: 2024011011083509800_CIT0018
  article-title: Plant microbiota controls an alternative root branching regulatory mechanism in plants
  publication-title: Proceedings of the National Academy of Sciences, USA
  doi: 10.1073/pnas.2301054120
– volume: 126
  start-page: 205
  year: 2020
  ident: 2024011011083509800_CIT0066
  article-title: Root secondary growth: an unexplored component of soil resource acquisition
  publication-title: Annals of Botany
  doi: 10.1093/aob/mcaa068
– volume: 26
  start-page: 282
  year: 2011
  ident: 2024011011083509800_CIT0025
  article-title: Nitrogen cycling in rice paddy environments: past achievements and future challenges
  publication-title: Microbes and Environments
  doi: 10.1264/jsme2.ME11293
– volume: 45
  start-page: 837
  year: 2021
  ident: 2024011011083509800_CIT0061
  article-title: Root angle in maize influences nitrogen capture and is regulated by calcineurin B-like protein (CBL)-interacting serine/threonine-protein kinase 15 (ZmCIPK15)
  publication-title: Plant, Cell & Environment
  doi: 10.1111/pce.14135
– volume: 366
  start-page: 114206
  year: 2020
  ident: 2024011011083509800_CIT0029
  article-title: Scale and REV analyses for porosity and pore connectivity measures in undisturbed soil
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2020.114206
– volume: 341
  start-page: 75
  year: 2011
  ident: 2024011011083509800_CIT0073
  article-title: Shovelomics: high throughput phenotyping of maize (Zea mays L) root architecture in the field
  publication-title: Plant and Soil
  doi: 10.1007/s11104-010-0623-8
– volume: 9
  start-page: 109
  year: 2019
  ident: 2024011011083509800_CIT0064
  article-title: A novel function of N-signaling in plants with special reference to Trichoderma interaction influencing plant growth, nitrogen use efficiency, and cross talk with plant hormones
  publication-title: 3 Biotech
  doi: 10.1007/s13205-019-1638-3
– volume: 3
  start-page: 32
  year: 2023
  ident: 2024011011083509800_CIT0050
  article-title: The effect of wheat genotype on the microbiome is more evident in roots and varies through time
  publication-title: ISME Communications
  doi: 10.1038/s43705-023-00238-4
– volume: 6
  start-page: 61
  year: 2018
  ident: 2024011011083509800_CIT0060
  article-title: Recognizing patterns: spatial analysis of observed microbial colonization on root surfaces
  publication-title: Frontiers in Environmental Science
  doi: 10.3389/fenvs.2018.00061
– volume-title: Mineral nutrition of higher plants
  year: 1995
  ident: 2024011011083509800_CIT0042
– volume: 26
  start-page: 546
  year: 2013
  ident: 2024011011083509800_CIT0080
  article-title: Quorum sensing and indole-3-acetic acid degradation play a role in colonization and plant growth promotion of Arabidopsis thaliana by Burkholderia phytofirmans PsJN
  publication-title: Molecular Plant-Microbe Interactions
  doi: 10.1094/MPMI-10-12-0241-R
– volume: 128
  start-page: 453
  year: 2021
  ident: 2024011011083509800_CIT0049
  article-title: Increased seminal root number associated with domestication improves nitrogen and phosphorus acquisition in maize seedlings
  publication-title: Annals of Botany
  doi: 10.1093/aob/mcab074
– volume: 5
  start-page: 88
  year: 2021
  ident: 2024011011083509800_CIT0065
  article-title: Switchgrass rhizosphere metabolite chemistry driven by nitrogen availability
  publication-title: Phytobiomes Journal
  doi: 10.1094/PBIOMES-09-19-0055-FI
– volume: 174
  start-page: 104408
  year: 2022
  ident: 2024011011083509800_CIT0036
  article-title: Anaerobic soil disinfestation for the management of soilborne pathogens: a review
  publication-title: Applied Soil Ecology
  doi: 10.1016/j.apsoil.2022.104408
– volume: 66
  start-page: 2199
  year: 2015
  ident: 2024011011083509800_CIT0041
  article-title: Opportunities and challenges in the subsoil: pathways to deeper rooted crops
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/eru508
– volume: 129
  start-page: 315
  year: 2021
  ident: 2024011011083509800_CIT0068
  article-title: Theoretical evidence that root penetration ability interacts with soil compaction regimes to affect nitrate capture
  publication-title: Annals of Botany
  doi: 10.1093/aob/mcab144
– volume: 230
  start-page: 60
  year: 2021
  ident: 2024011011083509800_CIT0009
  article-title: Root effects on soil organic carbon: a double-edged sword
  publication-title: New Phytologist
  doi: 10.1111/nph.17082
– volume: 109
  start-page: 415
  year: 2022
  ident: 2024011011083509800_CIT0039
  article-title: Harnessing root architecture to address global challenges
  publication-title: The Plant Journal
  doi: 10.1111/tpj.15560
– volume: 4
  start-page: 4
  year: 2023
  ident: 2024011011083509800_CIT0020
  article-title: Soil structure and microbiome functions in agroecosystems
  publication-title: Nature Reviews. Earth & Environment
  doi: 10.1038/s43017-022-00366-w
– volume: 698
  start-page: 134320
  year: 2020
  ident: 2024011011083509800_CIT0031
  article-title: Soil acidification of the soil profile across Chengdu Plain of China from the 1980s to 2010s
  publication-title: The Science of the Total Environment
  doi: 10.1016/j.scitotenv.2019.134320
– volume-title: Phytohormones in soils: microbial production and function
  year: 2020
  ident: 2024011011083509800_CIT0012
  doi: 10.1201/9780367812256
– volume: 2395
  start-page: 293
  year: 2022
  ident: 2024011011083509800_CIT0059
  article-title: Simulating crop root systems using OpenSimRoot
  publication-title: Methods in Molecular Biology
  doi: 10.1007/978-1-0716-1816-5_15
– volume: 122
  start-page: 485
  year: 2018
  ident: 2024011011083509800_CIT0052
  article-title: Co-optimization of axial root phenotypes for nitrogen and phosphorus acquisition in common bean
  publication-title: Annals of Botany
  doi: 10.1093/aob/mcy092
– volume: 169
  start-page: 313
  year: 2018
  ident: 2024011011083509800_CIT0072
  article-title: New insights into auxin metabolism in Bradyrhizobium japonicum
  publication-title: Research in Microbiology
  doi: 10.1016/j.resmic.2018.04.002
– volume: 69
  start-page: 4961
  year: 2018
  ident: 2024011011083509800_CIT0026
  article-title: Greater lateral root branching density in maize improves phosphorus acquisition from low phosphorus soil
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/ery252
– volume: 6
  start-page: e0044621
  year: 2021
  ident: 2024011011083509800_CIT0054
  article-title: Transmission of seed and soil microbiota to seedling
  publication-title: mSystems
  doi: 10.1128/mSystems.00446-21
– volume: 203
  start-page: 32
  year: 2014
  ident: 2024011011083509800_CIT0070
  article-title: Abiotic and biotic stress combinations
  publication-title: New Phytologist
  doi: 10.1111/nph.12797
– volume: 466
  start-page: 21
  year: 2021
  ident: 2024011011083509800_CIT0040
  article-title: Root anatomy and soil resource capture
  publication-title: Plant and Soil
  doi: 10.1007/s11104-021-05010-y
– volume: 82
  start-page: 391
  year: 2021
  ident: 2024011011083509800_CIT0078
  article-title: Effect of root diameter on the selection and network interactions of root-associated bacterial microbiomes in Robinia pseudoacacia L
  publication-title: Microbial Ecology
  doi: 10.1007/s00248-020-01678-4
– volume: 21
  start-page: 218
  year: 2016
  ident: 2024011011083509800_CIT0074
  article-title: Beneficial microbes affect endogenous mechanisms controlling root development
  publication-title: Trends in Plant Science
  doi: 10.1016/j.tplants.2016.01.013
– volume: 108
  start-page: 77
  year: 2010
  ident: 2024011011083509800_CIT0002
  article-title: How the plant growth-promoting bacterium Azospirillum promotes plant growth—a critical assessment
  publication-title: Advances in Agronomy
  doi: 10.1016/S0065-2113(10)08002-8
SSID ssj0005055
Score 2.5576687
SecondaryResourceType review_article
Snippet Abstract Root architectural phenotypes are promising targets for crop breeding, but root architectural effects on microbial associations in agricultural fields...
Root architectural phenotypes are promising targets for crop breeding, but root architectural effects on microbial associations in agricultural fields are not...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 594
SubjectTerms botany
Expert Views
exudation
microbiome
Plant Breeding
Plant Roots - metabolism
Rhizosphere
root systems
soil
Soil - chemistry
Soil Microbiology
Title Location: root architecture structures rhizosphere microbial associations
URI https://www.ncbi.nlm.nih.gov/pubmed/37882632
https://www.proquest.com/docview/2882324674
https://www.proquest.com/docview/3200297045
https://pubmed.ncbi.nlm.nih.gov/PMC10773995
Volume 75
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8NAEF6kePAivo2PGsGTEJrNbl7eVCytil5a6C1kN7NY0USaCvrvnc2jbUrVWyCTB_MtzLc7M98QciFdX7hAmSUF9SwOMbcElYllM2GrgEs9jEBXWzx5vSG_H7mjqkA2X5HCD1nn9Ut0YBInvOgXx_CrJfIHz6N5JYfturUoODIGv2rDW3q2EXgazWwLnHK5NHIh1nS3yGZFEs3rEtVtsgbpDlm_yZDIfe-S_mNWnrNdmUh7p-ZiLsAs9WDxKjcnupwu17IBYL6PC8ElfGk8xyPfI8Pu3eC2Z1UTESyJ27apJamUOu-nfJ3tA0eGSsu5yNgDCO3YSRxBIaQxKE8xcJEKUTdwpBTMFz5VnO2TVpqlcEhM5AFAbUV5Ihn3BBVSBkkShMjvHE9xMMhl7a5IVnLhemrFW1SmrVmEvo0q3xoIem38UapkrDY7Q7__bXFeYxLhOtfJiziF7DOPHNwKIPnzfP67DXOKWVzIUg1yUOI4-5jWzdfa9AYJGgjPDLTOdvNOOn4p9LZxh-zrDuCjf3__mGw4SHr0EQ21T0gLIYdTJC1T0Ua63n9oFwv3B8tf7rc
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Location%3A+root+architecture+structures+rhizosphere+microbial+associations&rft.jtitle=Journal+of+experimental+botany&rft.au=Galindo-Casta%C3%B1eda%2C+Tania&rft.au=Hartmann%2C+Martin&rft.au=Lynch%2C+Jonathan+P&rft.date=2024-01-10&rft.issn=1460-2431&rft.eissn=1460-2431&rft.volume=75&rft.issue=2&rft.spage=594&rft_id=info:doi/10.1093%2Fjxb%2Ferad421&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0957&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0957&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0957&client=summon