The Performance of Post-Fall Detection Using the Cross-Dataset: Feature Vectors, Classifiers and Processing Conditions

In this study, algorithms to detect post-falls were evaluated using the cross-dataset according to feature vectors (time-series and discrete data), classifiers (ANN and SVM), and four different processing conditions (normalization, equalization, increase in the number of training data, and additiona...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 21; no. 14; p. 4638
Main Authors Koo, Bummo, Kim, Jongman, Nam, Yejin, Kim, Youngho
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 06.07.2021
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s21144638

Cover

Loading…
Abstract In this study, algorithms to detect post-falls were evaluated using the cross-dataset according to feature vectors (time-series and discrete data), classifiers (ANN and SVM), and four different processing conditions (normalization, equalization, increase in the number of training data, and additional training with external data). Three-axis acceleration and angular velocity data were obtained from 30 healthy male subjects by attaching an IMU to the middle of the left and right anterior superior iliac spines (ASIS). Internal and external tests were performed using our lab dataset and SisFall public dataset, respectively. The results showed that ANN and SVM were suitable for the time-series and discrete data, respectively. The classification performance generally decreased, and thus, specific feature vectors from the raw data were necessary when untrained motions were tested using a public dataset. Normalization made SVM and ANN more and less effective, respectively. Equalization increased the sensitivity, even though it did not improve the overall performance. The increase in the number of training data also improved the classification performance. Machine learning was vulnerable to untrained motions, and data of various movements were needed for the training.
AbstractList In this study, algorithms to detect post-falls were evaluated using the cross-dataset according to feature vectors (time-series and discrete data), classifiers (ANN and SVM), and four different processing conditions (normalization, equalization, increase in the number of training data, and additional training with external data). Three-axis acceleration and angular velocity data were obtained from 30 healthy male subjects by attaching an IMU to the middle of the left and right anterior superior iliac spines (ASIS). Internal and external tests were performed using our lab dataset and SisFall public dataset, respectively. The results showed that ANN and SVM were suitable for the time-series and discrete data, respectively. The classification performance generally decreased, and thus, specific feature vectors from the raw data were necessary when untrained motions were tested using a public dataset. Normalization made SVM and ANN more and less effective, respectively. Equalization increased the sensitivity, even though it did not improve the overall performance. The increase in the number of training data also improved the classification performance. Machine learning was vulnerable to untrained motions, and data of various movements were needed for the training.
In this study, algorithms to detect post-falls were evaluated using the cross-dataset according to feature vectors (time-series and discrete data), classifiers (ANN and SVM), and four different processing conditions (normalization, equalization, increase in the number of training data, and additional training with external data). Three-axis acceleration and angular velocity data were obtained from 30 healthy male subjects by attaching an IMU to the middle of the left and right anterior superior iliac spines (ASIS). Internal and external tests were performed using our lab dataset and SisFall public dataset, respectively. The results showed that ANN and SVM were suitable for the time-series and discrete data, respectively. The classification performance generally decreased, and thus, specific feature vectors from the raw data were necessary when untrained motions were tested using a public dataset. Normalization made SVM and ANN more and less effective, respectively. Equalization increased the sensitivity, even though it did not improve the overall performance. The increase in the number of training data also improved the classification performance. Machine learning was vulnerable to untrained motions, and data of various movements were needed for the training.In this study, algorithms to detect post-falls were evaluated using the cross-dataset according to feature vectors (time-series and discrete data), classifiers (ANN and SVM), and four different processing conditions (normalization, equalization, increase in the number of training data, and additional training with external data). Three-axis acceleration and angular velocity data were obtained from 30 healthy male subjects by attaching an IMU to the middle of the left and right anterior superior iliac spines (ASIS). Internal and external tests were performed using our lab dataset and SisFall public dataset, respectively. The results showed that ANN and SVM were suitable for the time-series and discrete data, respectively. The classification performance generally decreased, and thus, specific feature vectors from the raw data were necessary when untrained motions were tested using a public dataset. Normalization made SVM and ANN more and less effective, respectively. Equalization increased the sensitivity, even though it did not improve the overall performance. The increase in the number of training data also improved the classification performance. Machine learning was vulnerable to untrained motions, and data of various movements were needed for the training.
Author Kim, Youngho
Nam, Yejin
Koo, Bummo
Kim, Jongman
AuthorAffiliation Department of Biomedical Engineering, Yonsei University, Wonju 26493, Korea; bmk726@ybrl.yonsei.ac.kr (B.K.); jmkim0127@ybrl.yonsei.ac.kr (J.K.); namyj1007@ybrl.yonsei.ac.kr (Y.N.)
AuthorAffiliation_xml – name: Department of Biomedical Engineering, Yonsei University, Wonju 26493, Korea; bmk726@ybrl.yonsei.ac.kr (B.K.); jmkim0127@ybrl.yonsei.ac.kr (J.K.); namyj1007@ybrl.yonsei.ac.kr (Y.N.)
Author_xml – sequence: 1
  givenname: Bummo
  orcidid: 0000-0002-4681-6318
  surname: Koo
  fullname: Koo, Bummo
– sequence: 2
  givenname: Jongman
  orcidid: 0000-0003-2053-8994
  surname: Kim
  fullname: Kim, Jongman
– sequence: 3
  givenname: Yejin
  surname: Nam
  fullname: Nam, Yejin
– sequence: 4
  givenname: Youngho
  orcidid: 0000-0001-7531-802X
  surname: Kim
  fullname: Kim, Youngho
BookMark eNplkktv1DAQgCNURB9w4B9Y4gISoX4mDgcktO2WSpXYQ8vVmjjjrVdZu9jeSvx7km5BtJxseb75xh7PcXUQYsCqesvoJyE6epo5Y1I2Qr-ojpjkstac04N_9ofVcc4bSrkQQr-qDoUUlIpWH1X317dIVphcTFsIFkl0ZBVzqZcwjuQMC9riYyA32Yc1KRO8SDHn-gwKZCyfyRKh7BKSHxMYU_5IFiPk7J3HlAmEgaxStJgf0hcxDH7W5dfVSwdjxjeP60l1szy_Xnyrr75fXC6-XtV2ek-pLZODda3qkDUcmG0GxzoFqLWQ2GpQPTRuiqhWO9uAtWAVdD2zA2OKDU6cVJd77xBhY-6S30L6ZSJ483AQ09pAKt6OaKywTnLXcyZ6ybXtrWocZVyh1G6AZnJ92bvudv0WB4uhJBifSJ9Ggr8163hvtKCdarpJ8P5RkOLPHeZitj5bHEcIGHfZcKUUoy0Xc613z9BN3KUwtWqmZEt1J9VEne4pO_9JQmesLzA3eKrvR8OomefD_J2PKePDs4w_1_-f_Q355ryh
CitedBy_id crossref_primary_10_3390_s22072547
crossref_primary_10_7736_JKSPE_023_102
crossref_primary_10_3390_s21217166
crossref_primary_10_3390_s21196653
crossref_primary_10_3390_s22166107
Cites_doi 10.1007/978-0-85729-402-9_12
10.3390/s140610691
10.1109/ICCAR.2017.7942757
10.1016/j.cmpb.2019.105265
10.1007/s12541-019-00195-w
10.1177/1847979018787905
10.2147/CIA.S191832
10.1109/SOFTCOM.2016.7772142
10.1093/ageing/16.3.189
10.3390/info10010003
10.3390/s18010020
10.3389/fbioe.2020.00063
10.1109/CVPR.2010.5539875
10.1016/B978-1-55860-335-6.50026-X
10.1093/ageing/afm169
10.1016/j.ijotn.2020.100820
10.1109/EMBC.2017.8037406
10.1093/ageing/afl084
10.1016/j.gaitpost.2008.01.003
10.1007/s12541-020-00398-6
10.4236/ojab.2014.34004
10.1109/TSMC.2016.2562509
10.3390/s20051277
10.1016/j.jbiomech.2010.07.005
10.1007/s11517-016-1504-y
10.1109/JSEN.2019.2955141
10.1023/B:JOHE.0000016717.22032.03
10.1109/TETC.2020.3027454
10.3390/s17010198
10.3390/s18051350
10.3390/electronics8111354
10.1016/j.asoc.2015.10.062
10.1016/j.gaitpost.2006.09.012
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s21144638
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
Publicly Available Content Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_c3cf42fb213b428cbc56f0125e48fda6
PMC8309569
10_3390_s21144638
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c446t-c14dcf759e162a1c6df195ae8834e78a5ba6f62a578fc6accac5a9b1cd1151df3
IEDL.DBID 8FG
ISSN 1424-8220
IngestDate Wed Aug 27 01:31:22 EDT 2025
Thu Aug 21 13:58:01 EDT 2025
Fri Jul 11 01:44:33 EDT 2025
Fri Jul 25 20:25:47 EDT 2025
Thu Apr 24 23:11:20 EDT 2025
Tue Jul 01 03:56:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-c14dcf759e162a1c6df195ae8834e78a5ba6f62a578fc6accac5a9b1cd1151df3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4681-6318
0000-0003-2053-8994
0000-0001-7531-802X
OpenAccessLink https://www.proquest.com/docview/2554708945?pq-origsite=%requestingapplication%
PMID 34300378
PQID 2554708945
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_c3cf42fb213b428cbc56f0125e48fda6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8309569
proquest_miscellaneous_2555107236
proquest_journals_2554708945
crossref_citationtrail_10_3390_s21144638
crossref_primary_10_3390_s21144638
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210706
PublicationDateYYYYMMDD 2021-07-06
PublicationDate_xml – month: 7
  year: 2021
  text: 20210706
  day: 6
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Castro (ref_22) 2020; 184
Scheffer (ref_4) 2008; 37
Rubenstein (ref_1) 2006; 35
Yu (ref_39) 2020; 8
Bourke (ref_11) 2007; 26
ref_35
ref_34
ref_10
Ling (ref_30) 1998; 98
ref_19
ref_16
ref_38
ref_15
Yoo (ref_20) 2018; 10
Kubat (ref_28) 1997; 97
Kangas (ref_13) 2008; 28
Aziz (ref_14) 2017; 55
Sadigh (ref_3) 2004; 29
Satuluri (ref_33) 2012; 5
ref_24
ref_23
ref_21
Koo (ref_37) 2020; 21
ref_2
ref_29
Vellas (ref_9) 1987; 16
Barshan (ref_17) 2014; 14
ref_27
Gibson (ref_18) 2016; 39
Lydersen (ref_5) 2019; 14
ref_8
Bayraktar (ref_6) 2021; 40
Bourke (ref_12) 2010; 43
Nukala (ref_26) 2015; 3
Wannenburg (ref_32) 2016; 47
Kadhum (ref_31) 2020; 1530
Kim (ref_36) 2019; 20
ref_7
Liu (ref_25) 2019; 20
References_xml – ident: ref_10
  doi: 10.1007/978-0-85729-402-9_12
– volume: 14
  start-page: 10691
  year: 2014
  ident: ref_17
  article-title: Detecting falls with wearable sensors using machine learning techniques
  publication-title: Sensors
  doi: 10.3390/s140610691
– ident: ref_19
  doi: 10.1109/ICCAR.2017.7942757
– volume: 184
  start-page: 105265
  year: 2020
  ident: ref_22
  article-title: A cross-dataset deep learning-based classifier for people fall detection and identification
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2019.105265
– volume: 20
  start-page: 1997
  year: 2019
  ident: ref_36
  article-title: Development of an armband EMG module and a pattern recognition algorithm for the 5-finger myoelectric hand prosthesis
  publication-title: Int. J. Precis. Eng. Manuf.
  doi: 10.1007/s12541-019-00195-w
– volume: 10
  start-page: 1847979018787905
  year: 2018
  ident: ref_20
  article-title: An artificial neural network–based fall detection
  publication-title: Int. J. Eng. Bus. Manag.
  doi: 10.1177/1847979018787905
– volume: 1530
  start-page: 012102
  year: 2020
  ident: ref_31
  article-title: An accurate fall detection system for the elderly people using smartphone inertial sensors
  publication-title: J. Phys.
– volume: 14
  start-page: 145
  year: 2019
  ident: ref_5
  article-title: Effects of a fall prevention program in elderly: A pragmatic observational study in two orthopedic departments
  publication-title: Clin. Interv. Aging
  doi: 10.2147/CIA.S191832
– ident: ref_16
  doi: 10.1109/SOFTCOM.2016.7772142
– volume: 16
  start-page: 189
  year: 1987
  ident: ref_9
  article-title: Prospective study of restriction of acitivty in old people after falls
  publication-title: Age Ageing
  doi: 10.1093/ageing/16.3.189
– ident: ref_7
  doi: 10.3390/info10010003
– ident: ref_24
  doi: 10.3390/s18010020
– volume: 8
  start-page: 63
  year: 2020
  ident: ref_39
  article-title: A novel hybrid deep neural network to predict pre-impact fall for older people based on wearable inertial sensors
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2020.00063
– ident: ref_21
  doi: 10.1109/CVPR.2010.5539875
– ident: ref_29
  doi: 10.1016/B978-1-55860-335-6.50026-X
– volume: 37
  start-page: 19
  year: 2008
  ident: ref_4
  article-title: Fear of falling: Measurement strategy, prevalence, risk factors and consequences among older persons
  publication-title: Age Ageing
  doi: 10.1093/ageing/afm169
– volume: 40
  start-page: 100820
  year: 2021
  ident: ref_6
  article-title: The effectiveness of a recurrent fall prevention program applied to elderly people undergoing fracture treatment
  publication-title: Int. J. Orthop. Trauma Nurs.
  doi: 10.1016/j.ijotn.2020.100820
– ident: ref_8
  doi: 10.1109/EMBC.2017.8037406
– volume: 98
  start-page: 73
  year: 1998
  ident: ref_30
  article-title: Data mining for direct marketing: Problems and solutions
  publication-title: Proc. Fourth Int. Conf. Knowl. Discov. Data Min.
– volume: 35
  start-page: 37
  year: 2006
  ident: ref_1
  article-title: Falls in older people: Epidemiology, risk factors and strategies for prevention
  publication-title: Age Ageing
  doi: 10.1093/ageing/afl084
– volume: 28
  start-page: 285
  year: 2008
  ident: ref_13
  article-title: Comparison of low-complexity fall detection algorithms for body attached accelerometers
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2008.01.003
– ident: ref_27
– ident: ref_2
– volume: 21
  start-page: 1985
  year: 2020
  ident: ref_37
  article-title: Post-fall detection using ANN based on ranking algorithms
  publication-title: Int. J. Precis. Eng. Manuf.
  doi: 10.1007/s12541-020-00398-6
– volume: 3
  start-page: 29
  year: 2015
  ident: ref_26
  article-title: An efficient and robust fall detection system using wireless gait analysis sensor with artificial neural network (ANN) and support vector machine (SVM) algorithms
  publication-title: Open J. Appl. Biosens.
  doi: 10.4236/ojab.2014.34004
– volume: 47
  start-page: 3142
  year: 2016
  ident: ref_32
  article-title: Physical activity recognition from smartphone accelerometer data for user context awareness sensing
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2016.2562509
– ident: ref_15
  doi: 10.3390/s20051277
– volume: 97
  start-page: 179
  year: 1997
  ident: ref_28
  article-title: Addressing the curse of imbalanced training sets: One-sided selection
  publication-title: ICML
– volume: 43
  start-page: 3051
  year: 2010
  ident: ref_12
  article-title: Evaluation of waist-mounted tri-axial accelerometer based fall-detection algorithms during scripted and continuous unscripted activities
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2010.07.005
– volume: 55
  start-page: 45
  year: 2017
  ident: ref_14
  article-title: A comparison of accuracy of fall detection algorithms (threshold-based vs. machine learning) using waist-mounted tri-axial accelerometer signals from a comprehensive set of falls and non-fall trials
  publication-title: Med Biol. Eng. Comput.
  doi: 10.1007/s11517-016-1504-y
– volume: 20
  start-page: 3303
  year: 2019
  ident: ref_25
  article-title: An analysis of segmentation approaches and window sizes in wearable-based critical fall detection systems with machine learning models
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2019.2955141
– volume: 5
  start-page: 25
  year: 2012
  ident: ref_33
  article-title: A novel class imbalance learning using intelligent under-sampling
  publication-title: Int. J. Database Theory Appl.
– volume: 29
  start-page: 129
  year: 2004
  ident: ref_3
  article-title: Falls and fall-related injuries among the elderly: A survey of residential-care facilities in a Swedish municipality
  publication-title: J. Community Health
  doi: 10.1023/B:JOHE.0000016717.22032.03
– ident: ref_38
  doi: 10.1109/TETC.2020.3027454
– ident: ref_23
  doi: 10.3390/s17010198
– ident: ref_34
  doi: 10.3390/s18051350
– ident: ref_35
  doi: 10.3390/electronics8111354
– volume: 39
  start-page: 94
  year: 2016
  ident: ref_18
  article-title: Multiple comparator classifier framework for accelerometer-based fall detection and diagnostic
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.10.062
– volume: 26
  start-page: 194
  year: 2007
  ident: ref_11
  article-title: Evaluation of a threshold-based tri-axial accelerometer fall detection algorithm
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2006.09.012
SSID ssj0023338
Score 2.3644981
Snippet In this study, algorithms to detect post-falls were evaluated using the cross-dataset according to feature vectors (time-series and discrete data), classifiers...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 4638
SubjectTerms Accuracy
Algorithms
artificial neural network
cross-dataset
Datasets
fall detection
Falls
Machine learning
Older people
Principal components analysis
Quality of life
Rehabilitation
Sensors
support vector machine
Support vector machines
Young adults
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQJzhUFFp1KUUG9cChFuv4I05vsLBCHFAPUHGL7LGtIq2yiM3293fsZLcbCYkL19iJbM-M5008fkPId19xKMsxMGcKy6SGMTOCR6YiYgcXBVQd2-edvnmQt4_qcaPUV8oJ6-iBu4U7BwFRFtEVXDiEyuBA6Yi7qgrSRG8z2Tb6vFUw1YdaAiOvjkdIYFB_vsAwB-OedAllw_tkkv4BshzmRW44muke-dAjRHrRjewj2QrNPtnd4A08IH9RuPTX_5R_Oo80Vd1lUzub0avQ5vyqhuZ8AIoQj07ScNiVbdFptT9pAn7Ll0B_53_2ix8018Z8iqkuNrWNp_39gfT6ZJ5OtZN2fiIP0-v7yQ3rCygwwNm2DLj0EEtVBa4Ly0H7yCtlgzFChtJY5ayO2IJWG0FbFCYoWzkOHnEi91F8JtvNvAlfCK2cN-jJ0WCNkuClRVzhZPAaotVjE0fkbLWwNfTs4qnIxazGKCPJoF7LYERO112fO0qN1zpdJumsOyQW7PwAdaPudaN-SzdG5Ggl27o3zUWNMZQsx6aSakRO1s1oVOmkxDZhvsx9cK8qC4GfKAc6MRjQsKV5-pPpuY1I5I7V4XvM4CvZKVISTc5RPCLb7csyfEMU1LrjrPD_ACraCik
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZKucABUR5ioVQGceCAYR0_4iAhBFtWFRKIA4t6i-yxXSqtEtjNVuXfM_ZmQyNVXONJ4nhmMvPFk28IeeErDmU5BeZMYZnUMGVG8MhUxNzBRQHVlu3zqz5ZyM-n6nSP7Hps9gu4vhbapX5Si9Xy9eXvP-_R4d8lxImQ_c0aQQyiGmFukJsYkMrUweGLHDYTCoEwbEsqNBYfhaLM2D9KM8dFkleizvwuudOni_TDVr8HZC8098jtKySC98kFapp--1f_T9tIUwteNrfLJT0OXS62amguDqCY79FZmg47th1GsO4tTVngZhXoj_wBf_2K5kaZ5zE1yaa28bT_mSCdPmvTFncy1QdkMf_0fXbC-m4KDPBpOwZceoilqgLXheWgfeSVssEYIUNprHJWRxxBF46gLWoWlK0cB49JI_dRPCT7TduER4RWzhsM6-i9Rknw0mKS4WTwGqLVUxMn5OVuYWvoqcZTx4tljZAj6aAedDAhzwfRX1t-jeuEPibtDAKJEjsfaFdnde9hNQiIsoiu4MIhpgIHSkcMvypIE73VE3K40229M7MaAZUsp6aSakKeDcPoYWnbxDah3WQZfHGVhcBLlCObGE1oPNKc_8xc3UYkpsfq8f9v_oTcKlKtTC5FPCT73WoTnmKy07mjbMp_AdNMAlg
  priority: 102
  providerName: Scholars Portal
Title The Performance of Post-Fall Detection Using the Cross-Dataset: Feature Vectors, Classifiers and Processing Conditions
URI https://www.proquest.com/docview/2554708945
https://www.proquest.com/docview/2555107236
https://pubmed.ncbi.nlm.nih.gov/PMC8309569
https://doaj.org/article/c3cf42fb213b428cbc56f0125e48fda6
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZoe4ED4imWlpVBHDhgdR0_4nBBdNulQqKqEEV7i_wslVZJ2c329zP2etONhLjkEDuJk5nxfGNPvkHovauoLcuJJUYVmnBpJ0QxGogIgB1MYLbasH1eyPMr_m0u5nnBbZXTKrdzYpqoXWvjGvkxQF9eTlTFxefbPyRWjYq7q7mExh46oOBpooar2dc-4GIQf23YhBiE9scrCHYg-om_ouz4oETVP8CXw-zIHXcze4IeZ5yIv2wE-xQ98M0z9GiHPfA5ugMR48v7xH_cBhxr75KZXizwqe9SllWDU1YABqCHp3E45FR34Lq6TzjCv_XS419p5X71EacKmTchVsfGunE4_0UQL5-2cW876ugLdDU7-zk9J7mMArHwth2xlDsbSlF5KgtNrXSBVkJ7pRj3pdLCaBmgBWw3WKlBpFboylDrAC1SF9hLtN-0jX-FcGWcAn8OZqsEt45rQBeGeydt0HKiwgh92H7Y2maO8VjqYlFDrBFlUPcyGKF3fdfbDbHGvzqdROn0HSIXdjrRLq_rbFq1ZTbwIpiCMgPBlDVWyAB-V3iugtNyhI62sq2zga7qe3Uaobd9M5hW3C_RjW_XqQ_MWGXB4BblQCcGAxq2NDe_E0m3YpHisXr9_4cfoodFTJJJOYhHaL9brv0bQDmdGaO9cl6Ok0KP0cHJ2cXlj3FaMYDjd67-Auf9BUU
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxFMsFDAIJA5YTeJHHCSEYJfVlpaKQ4v2lvoJlVZJ2c2C-FP8RsZOsg8Jces1dmzHM575JjOeQeiFLVKT54khWmaKMGESImnqCfeAHbSnpmizfR6LySn7NOXTHfSnvwsTwip7mRgFta1N-Ee-D9CX5YksGH938YOEqlHBu9qX0GjZ4tD9_gUm2-LtwQjo-zLLxh9PhhPSVRUgBkyfhpiUWeNzXrhUZCo1wvq04MpJSZnLpeJaCQ8twMreCAVfaLgqdGosgKfUegrjXkFXQfEmIYQwn64NPAr2Xpu9iNIi2V-AcQVThqsvGzovlgbYwrPb0Zgb6m18C93scCl-3zLSbbTjqjvoxka2wrvoJ7AU_rK-aIBrj0OtXzJWsxkeuSZGdVU4RiFgAJZ4GJZDRqoBVdm8wQFuLucOf42egsVrHCtynvtQjRuryuLu1kJ4fVgHX3o4E_fQ6aVs8H20W9WVe4Bwoa0E_ABiQnJmLFOAZjRzVhivRCL9AL3qN7Y0XU7zUFpjVoJtE2hQrmgwQM9XXS_aRB7_6vQhUGfVIeTejg_q-beyO8qlocazzOsspRqMN6MNFx70PHdMeqvEAO31tC07gbAo1-w7QM9WzXCUg39GVa5exj4gIfOMwhD5Fk9sLWi7pTr_HpOCSxpSShYP_z_5U3RtcvL5qDw6OD58hK5nIUAnxj_uod1mvnSPAWE1-klka4zOLvsc_QW6Lz_a
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGkBA8IK6iY4BBIPGA1SS-xEFCCFqqjaFpDwz1LfMVJlXJ1qYg_hq_jmM3aRsJ8bbX2LEdn9t34uNzEHppi9TkeWKIlpkiTJiESJp6wj1gB-2pKVbZPo_FwSn7POXTHfSnuwsTwio7nRgVta1N-Ec-BOjL8kQWjA99GxZxMp68v7gkoYJUOGntymmsWOTI_f4F7tvi3eEYaP0qyyafvo4OSFthgBhwgxpiUmaNz3nhUpGp1Ajr04IrJyVlLpeKayU8tABbeyMUfK3hqtCpsQCkUuspjHsNXc8pmE2QpXy6cfYo-H6rTEaUFslwAY4WTBmuwWzZv1gmoIdt-5GZW6ZucgfdbjEq_rBiqrtox1X30K2tzIX30U9gL3yyuXSAa49D3V8yUbMZHrsmRnhVOEYkYACZeBSWQ8aqAbPZvMUBei7nDn-LpwaLNzhW5zz3oTI3VpXF7Q2G8PqoDufqQT4eoNMr2eCHaLeqK_cI4UJbCVgCVIbkzFimANlo5qwwXolE-gF63W1sadr85qHMxqwEPyfQoFzTYIBerLterJJ6_KvTx0CddYeQhzs-qOffy1asS0ONZ5nXWUo1OHJGGy482HzumPRWiQHa72hbtsphUW5YeYCer5tBrMNZjapcvYx9QFvmGYUh8h5P9BbUb6nOf8QE4ZKG9JLF3v8nf4ZugASVXw6Pjx6jm1mI1YmhkPtot5kv3RMAW41-Grkao7OrFqO_KEpEEA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Performance+of+Post-Fall+Detection+Using+the+Cross-Dataset%3A+Feature+Vectors%2C+Classifiers+and+Processing+Conditions&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Koo%2C+Bummo&rft.au=Jongman%2C+Kim&rft.au=Nam%2C+Yejin&rft.date=2021-07-06&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=21&rft.issue=14&rft.spage=4638&rft_id=info:doi/10.3390%2Fs21144638&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon