The Performance of Post-Fall Detection Using the Cross-Dataset: Feature Vectors, Classifiers and Processing Conditions
In this study, algorithms to detect post-falls were evaluated using the cross-dataset according to feature vectors (time-series and discrete data), classifiers (ANN and SVM), and four different processing conditions (normalization, equalization, increase in the number of training data, and additiona...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 21; no. 14; p. 4638 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
06.07.2021
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s21144638 |
Cover
Loading…
Abstract | In this study, algorithms to detect post-falls were evaluated using the cross-dataset according to feature vectors (time-series and discrete data), classifiers (ANN and SVM), and four different processing conditions (normalization, equalization, increase in the number of training data, and additional training with external data). Three-axis acceleration and angular velocity data were obtained from 30 healthy male subjects by attaching an IMU to the middle of the left and right anterior superior iliac spines (ASIS). Internal and external tests were performed using our lab dataset and SisFall public dataset, respectively. The results showed that ANN and SVM were suitable for the time-series and discrete data, respectively. The classification performance generally decreased, and thus, specific feature vectors from the raw data were necessary when untrained motions were tested using a public dataset. Normalization made SVM and ANN more and less effective, respectively. Equalization increased the sensitivity, even though it did not improve the overall performance. The increase in the number of training data also improved the classification performance. Machine learning was vulnerable to untrained motions, and data of various movements were needed for the training. |
---|---|
AbstractList | In this study, algorithms to detect post-falls were evaluated using the cross-dataset according to feature vectors (time-series and discrete data), classifiers (ANN and SVM), and four different processing conditions (normalization, equalization, increase in the number of training data, and additional training with external data). Three-axis acceleration and angular velocity data were obtained from 30 healthy male subjects by attaching an IMU to the middle of the left and right anterior superior iliac spines (ASIS). Internal and external tests were performed using our lab dataset and SisFall public dataset, respectively. The results showed that ANN and SVM were suitable for the time-series and discrete data, respectively. The classification performance generally decreased, and thus, specific feature vectors from the raw data were necessary when untrained motions were tested using a public dataset. Normalization made SVM and ANN more and less effective, respectively. Equalization increased the sensitivity, even though it did not improve the overall performance. The increase in the number of training data also improved the classification performance. Machine learning was vulnerable to untrained motions, and data of various movements were needed for the training. In this study, algorithms to detect post-falls were evaluated using the cross-dataset according to feature vectors (time-series and discrete data), classifiers (ANN and SVM), and four different processing conditions (normalization, equalization, increase in the number of training data, and additional training with external data). Three-axis acceleration and angular velocity data were obtained from 30 healthy male subjects by attaching an IMU to the middle of the left and right anterior superior iliac spines (ASIS). Internal and external tests were performed using our lab dataset and SisFall public dataset, respectively. The results showed that ANN and SVM were suitable for the time-series and discrete data, respectively. The classification performance generally decreased, and thus, specific feature vectors from the raw data were necessary when untrained motions were tested using a public dataset. Normalization made SVM and ANN more and less effective, respectively. Equalization increased the sensitivity, even though it did not improve the overall performance. The increase in the number of training data also improved the classification performance. Machine learning was vulnerable to untrained motions, and data of various movements were needed for the training.In this study, algorithms to detect post-falls were evaluated using the cross-dataset according to feature vectors (time-series and discrete data), classifiers (ANN and SVM), and four different processing conditions (normalization, equalization, increase in the number of training data, and additional training with external data). Three-axis acceleration and angular velocity data were obtained from 30 healthy male subjects by attaching an IMU to the middle of the left and right anterior superior iliac spines (ASIS). Internal and external tests were performed using our lab dataset and SisFall public dataset, respectively. The results showed that ANN and SVM were suitable for the time-series and discrete data, respectively. The classification performance generally decreased, and thus, specific feature vectors from the raw data were necessary when untrained motions were tested using a public dataset. Normalization made SVM and ANN more and less effective, respectively. Equalization increased the sensitivity, even though it did not improve the overall performance. The increase in the number of training data also improved the classification performance. Machine learning was vulnerable to untrained motions, and data of various movements were needed for the training. |
Author | Kim, Youngho Nam, Yejin Koo, Bummo Kim, Jongman |
AuthorAffiliation | Department of Biomedical Engineering, Yonsei University, Wonju 26493, Korea; bmk726@ybrl.yonsei.ac.kr (B.K.); jmkim0127@ybrl.yonsei.ac.kr (J.K.); namyj1007@ybrl.yonsei.ac.kr (Y.N.) |
AuthorAffiliation_xml | – name: Department of Biomedical Engineering, Yonsei University, Wonju 26493, Korea; bmk726@ybrl.yonsei.ac.kr (B.K.); jmkim0127@ybrl.yonsei.ac.kr (J.K.); namyj1007@ybrl.yonsei.ac.kr (Y.N.) |
Author_xml | – sequence: 1 givenname: Bummo orcidid: 0000-0002-4681-6318 surname: Koo fullname: Koo, Bummo – sequence: 2 givenname: Jongman orcidid: 0000-0003-2053-8994 surname: Kim fullname: Kim, Jongman – sequence: 3 givenname: Yejin surname: Nam fullname: Nam, Yejin – sequence: 4 givenname: Youngho orcidid: 0000-0001-7531-802X surname: Kim fullname: Kim, Youngho |
BookMark | eNplkktv1DAQgCNURB9w4B9Y4gISoX4mDgcktO2WSpXYQ8vVmjjjrVdZu9jeSvx7km5BtJxseb75xh7PcXUQYsCqesvoJyE6epo5Y1I2Qr-ojpjkstac04N_9ofVcc4bSrkQQr-qDoUUlIpWH1X317dIVphcTFsIFkl0ZBVzqZcwjuQMC9riYyA32Yc1KRO8SDHn-gwKZCyfyRKh7BKSHxMYU_5IFiPk7J3HlAmEgaxStJgf0hcxDH7W5dfVSwdjxjeP60l1szy_Xnyrr75fXC6-XtV2ek-pLZODda3qkDUcmG0GxzoFqLWQ2GpQPTRuiqhWO9uAtWAVdD2zA2OKDU6cVJd77xBhY-6S30L6ZSJ483AQ09pAKt6OaKywTnLXcyZ6ybXtrWocZVyh1G6AZnJ92bvudv0WB4uhJBifSJ9Ggr8163hvtKCdarpJ8P5RkOLPHeZitj5bHEcIGHfZcKUUoy0Xc613z9BN3KUwtWqmZEt1J9VEne4pO_9JQmesLzA3eKrvR8OomefD_J2PKePDs4w_1_-f_Q355ryh |
CitedBy_id | crossref_primary_10_3390_s22072547 crossref_primary_10_7736_JKSPE_023_102 crossref_primary_10_3390_s21217166 crossref_primary_10_3390_s21196653 crossref_primary_10_3390_s22166107 |
Cites_doi | 10.1007/978-0-85729-402-9_12 10.3390/s140610691 10.1109/ICCAR.2017.7942757 10.1016/j.cmpb.2019.105265 10.1007/s12541-019-00195-w 10.1177/1847979018787905 10.2147/CIA.S191832 10.1109/SOFTCOM.2016.7772142 10.1093/ageing/16.3.189 10.3390/info10010003 10.3390/s18010020 10.3389/fbioe.2020.00063 10.1109/CVPR.2010.5539875 10.1016/B978-1-55860-335-6.50026-X 10.1093/ageing/afm169 10.1016/j.ijotn.2020.100820 10.1109/EMBC.2017.8037406 10.1093/ageing/afl084 10.1016/j.gaitpost.2008.01.003 10.1007/s12541-020-00398-6 10.4236/ojab.2014.34004 10.1109/TSMC.2016.2562509 10.3390/s20051277 10.1016/j.jbiomech.2010.07.005 10.1007/s11517-016-1504-y 10.1109/JSEN.2019.2955141 10.1023/B:JOHE.0000016717.22032.03 10.1109/TETC.2020.3027454 10.3390/s17010198 10.3390/s18051350 10.3390/electronics8111354 10.1016/j.asoc.2015.10.062 10.1016/j.gaitpost.2006.09.012 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s21144638 |
DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_c3cf42fb213b428cbc56f0125e48fda6 PMC8309569 10_3390_s21144638 |
GeographicLocations | United States--US |
GeographicLocations_xml | – name: United States--US |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c446t-c14dcf759e162a1c6df195ae8834e78a5ba6f62a578fc6accac5a9b1cd1151df3 |
IEDL.DBID | 8FG |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:31:22 EDT 2025 Thu Aug 21 13:58:01 EDT 2025 Fri Jul 11 01:44:33 EDT 2025 Fri Jul 25 20:25:47 EDT 2025 Thu Apr 24 23:11:20 EDT 2025 Tue Jul 01 03:56:15 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c446t-c14dcf759e162a1c6df195ae8834e78a5ba6f62a578fc6accac5a9b1cd1151df3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4681-6318 0000-0003-2053-8994 0000-0001-7531-802X |
OpenAccessLink | https://www.proquest.com/docview/2554708945?pq-origsite=%requestingapplication% |
PMID | 34300378 |
PQID | 2554708945 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c3cf42fb213b428cbc56f0125e48fda6 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8309569 proquest_miscellaneous_2555107236 proquest_journals_2554708945 crossref_citationtrail_10_3390_s21144638 crossref_primary_10_3390_s21144638 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210706 |
PublicationDateYYYYMMDD | 2021-07-06 |
PublicationDate_xml | – month: 7 year: 2021 text: 20210706 day: 6 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Castro (ref_22) 2020; 184 Scheffer (ref_4) 2008; 37 Rubenstein (ref_1) 2006; 35 Yu (ref_39) 2020; 8 Bourke (ref_11) 2007; 26 ref_35 ref_34 ref_10 Ling (ref_30) 1998; 98 ref_19 ref_16 ref_38 ref_15 Yoo (ref_20) 2018; 10 Kubat (ref_28) 1997; 97 Kangas (ref_13) 2008; 28 Aziz (ref_14) 2017; 55 Sadigh (ref_3) 2004; 29 Satuluri (ref_33) 2012; 5 ref_24 ref_23 ref_21 Koo (ref_37) 2020; 21 ref_2 ref_29 Vellas (ref_9) 1987; 16 Barshan (ref_17) 2014; 14 ref_27 Gibson (ref_18) 2016; 39 Lydersen (ref_5) 2019; 14 ref_8 Bayraktar (ref_6) 2021; 40 Bourke (ref_12) 2010; 43 Nukala (ref_26) 2015; 3 Wannenburg (ref_32) 2016; 47 Kadhum (ref_31) 2020; 1530 Kim (ref_36) 2019; 20 ref_7 Liu (ref_25) 2019; 20 |
References_xml | – ident: ref_10 doi: 10.1007/978-0-85729-402-9_12 – volume: 14 start-page: 10691 year: 2014 ident: ref_17 article-title: Detecting falls with wearable sensors using machine learning techniques publication-title: Sensors doi: 10.3390/s140610691 – ident: ref_19 doi: 10.1109/ICCAR.2017.7942757 – volume: 184 start-page: 105265 year: 2020 ident: ref_22 article-title: A cross-dataset deep learning-based classifier for people fall detection and identification publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2019.105265 – volume: 20 start-page: 1997 year: 2019 ident: ref_36 article-title: Development of an armband EMG module and a pattern recognition algorithm for the 5-finger myoelectric hand prosthesis publication-title: Int. J. Precis. Eng. Manuf. doi: 10.1007/s12541-019-00195-w – volume: 10 start-page: 1847979018787905 year: 2018 ident: ref_20 article-title: An artificial neural network–based fall detection publication-title: Int. J. Eng. Bus. Manag. doi: 10.1177/1847979018787905 – volume: 1530 start-page: 012102 year: 2020 ident: ref_31 article-title: An accurate fall detection system for the elderly people using smartphone inertial sensors publication-title: J. Phys. – volume: 14 start-page: 145 year: 2019 ident: ref_5 article-title: Effects of a fall prevention program in elderly: A pragmatic observational study in two orthopedic departments publication-title: Clin. Interv. Aging doi: 10.2147/CIA.S191832 – ident: ref_16 doi: 10.1109/SOFTCOM.2016.7772142 – volume: 16 start-page: 189 year: 1987 ident: ref_9 article-title: Prospective study of restriction of acitivty in old people after falls publication-title: Age Ageing doi: 10.1093/ageing/16.3.189 – ident: ref_7 doi: 10.3390/info10010003 – ident: ref_24 doi: 10.3390/s18010020 – volume: 8 start-page: 63 year: 2020 ident: ref_39 article-title: A novel hybrid deep neural network to predict pre-impact fall for older people based on wearable inertial sensors publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2020.00063 – ident: ref_21 doi: 10.1109/CVPR.2010.5539875 – ident: ref_29 doi: 10.1016/B978-1-55860-335-6.50026-X – volume: 37 start-page: 19 year: 2008 ident: ref_4 article-title: Fear of falling: Measurement strategy, prevalence, risk factors and consequences among older persons publication-title: Age Ageing doi: 10.1093/ageing/afm169 – volume: 40 start-page: 100820 year: 2021 ident: ref_6 article-title: The effectiveness of a recurrent fall prevention program applied to elderly people undergoing fracture treatment publication-title: Int. J. Orthop. Trauma Nurs. doi: 10.1016/j.ijotn.2020.100820 – ident: ref_8 doi: 10.1109/EMBC.2017.8037406 – volume: 98 start-page: 73 year: 1998 ident: ref_30 article-title: Data mining for direct marketing: Problems and solutions publication-title: Proc. Fourth Int. Conf. Knowl. Discov. Data Min. – volume: 35 start-page: 37 year: 2006 ident: ref_1 article-title: Falls in older people: Epidemiology, risk factors and strategies for prevention publication-title: Age Ageing doi: 10.1093/ageing/afl084 – volume: 28 start-page: 285 year: 2008 ident: ref_13 article-title: Comparison of low-complexity fall detection algorithms for body attached accelerometers publication-title: Gait Posture doi: 10.1016/j.gaitpost.2008.01.003 – ident: ref_27 – ident: ref_2 – volume: 21 start-page: 1985 year: 2020 ident: ref_37 article-title: Post-fall detection using ANN based on ranking algorithms publication-title: Int. J. Precis. Eng. Manuf. doi: 10.1007/s12541-020-00398-6 – volume: 3 start-page: 29 year: 2015 ident: ref_26 article-title: An efficient and robust fall detection system using wireless gait analysis sensor with artificial neural network (ANN) and support vector machine (SVM) algorithms publication-title: Open J. Appl. Biosens. doi: 10.4236/ojab.2014.34004 – volume: 47 start-page: 3142 year: 2016 ident: ref_32 article-title: Physical activity recognition from smartphone accelerometer data for user context awareness sensing publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2016.2562509 – ident: ref_15 doi: 10.3390/s20051277 – volume: 97 start-page: 179 year: 1997 ident: ref_28 article-title: Addressing the curse of imbalanced training sets: One-sided selection publication-title: ICML – volume: 43 start-page: 3051 year: 2010 ident: ref_12 article-title: Evaluation of waist-mounted tri-axial accelerometer based fall-detection algorithms during scripted and continuous unscripted activities publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2010.07.005 – volume: 55 start-page: 45 year: 2017 ident: ref_14 article-title: A comparison of accuracy of fall detection algorithms (threshold-based vs. machine learning) using waist-mounted tri-axial accelerometer signals from a comprehensive set of falls and non-fall trials publication-title: Med Biol. Eng. Comput. doi: 10.1007/s11517-016-1504-y – volume: 20 start-page: 3303 year: 2019 ident: ref_25 article-title: An analysis of segmentation approaches and window sizes in wearable-based critical fall detection systems with machine learning models publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2019.2955141 – volume: 5 start-page: 25 year: 2012 ident: ref_33 article-title: A novel class imbalance learning using intelligent under-sampling publication-title: Int. J. Database Theory Appl. – volume: 29 start-page: 129 year: 2004 ident: ref_3 article-title: Falls and fall-related injuries among the elderly: A survey of residential-care facilities in a Swedish municipality publication-title: J. Community Health doi: 10.1023/B:JOHE.0000016717.22032.03 – ident: ref_38 doi: 10.1109/TETC.2020.3027454 – ident: ref_23 doi: 10.3390/s17010198 – ident: ref_34 doi: 10.3390/s18051350 – ident: ref_35 doi: 10.3390/electronics8111354 – volume: 39 start-page: 94 year: 2016 ident: ref_18 article-title: Multiple comparator classifier framework for accelerometer-based fall detection and diagnostic publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.10.062 – volume: 26 start-page: 194 year: 2007 ident: ref_11 article-title: Evaluation of a threshold-based tri-axial accelerometer fall detection algorithm publication-title: Gait Posture doi: 10.1016/j.gaitpost.2006.09.012 |
SSID | ssj0023338 |
Score | 2.3644981 |
Snippet | In this study, algorithms to detect post-falls were evaluated using the cross-dataset according to feature vectors (time-series and discrete data), classifiers... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 4638 |
SubjectTerms | Accuracy Algorithms artificial neural network cross-dataset Datasets fall detection Falls Machine learning Older people Principal components analysis Quality of life Rehabilitation Sensors support vector machine Support vector machines Young adults |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQJzhUFFp1KUUG9cChFuv4I05vsLBCHFAPUHGL7LGtIq2yiM3293fsZLcbCYkL19iJbM-M5008fkPId19xKMsxMGcKy6SGMTOCR6YiYgcXBVQd2-edvnmQt4_qcaPUV8oJ6-iBu4U7BwFRFtEVXDiEyuBA6Yi7qgrSRG8z2Tb6vFUw1YdaAiOvjkdIYFB_vsAwB-OedAllw_tkkv4BshzmRW44muke-dAjRHrRjewj2QrNPtnd4A08IH9RuPTX_5R_Oo80Vd1lUzub0avQ5vyqhuZ8AIoQj07ScNiVbdFptT9pAn7Ll0B_53_2ix8018Z8iqkuNrWNp_39gfT6ZJ5OtZN2fiIP0-v7yQ3rCygwwNm2DLj0EEtVBa4Ly0H7yCtlgzFChtJY5ayO2IJWG0FbFCYoWzkOHnEi91F8JtvNvAlfCK2cN-jJ0WCNkuClRVzhZPAaotVjE0fkbLWwNfTs4qnIxazGKCPJoF7LYERO112fO0qN1zpdJumsOyQW7PwAdaPudaN-SzdG5Ggl27o3zUWNMZQsx6aSakRO1s1oVOmkxDZhvsx9cK8qC4GfKAc6MRjQsKV5-pPpuY1I5I7V4XvM4CvZKVISTc5RPCLb7csyfEMU1LrjrPD_ACraCik priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZKucABUR5ioVQGceCAYR0_4iAhBFtWFRKIA4t6i-yxXSqtEtjNVuXfM_ZmQyNVXONJ4nhmMvPFk28IeeErDmU5BeZMYZnUMGVG8MhUxNzBRQHVlu3zqz5ZyM-n6nSP7Hps9gu4vhbapX5Si9Xy9eXvP-_R4d8lxImQ_c0aQQyiGmFukJsYkMrUweGLHDYTCoEwbEsqNBYfhaLM2D9KM8dFkleizvwuudOni_TDVr8HZC8098jtKySC98kFapp--1f_T9tIUwteNrfLJT0OXS62amguDqCY79FZmg47th1GsO4tTVngZhXoj_wBf_2K5kaZ5zE1yaa28bT_mSCdPmvTFncy1QdkMf_0fXbC-m4KDPBpOwZceoilqgLXheWgfeSVssEYIUNprHJWRxxBF46gLWoWlK0cB49JI_dRPCT7TduER4RWzhsM6-i9Rknw0mKS4WTwGqLVUxMn5OVuYWvoqcZTx4tljZAj6aAedDAhzwfRX1t-jeuEPibtDAKJEjsfaFdnde9hNQiIsoiu4MIhpgIHSkcMvypIE73VE3K40229M7MaAZUsp6aSakKeDcPoYWnbxDah3WQZfHGVhcBLlCObGE1oPNKc_8xc3UYkpsfq8f9v_oTcKlKtTC5FPCT73WoTnmKy07mjbMp_AdNMAlg priority: 102 providerName: Scholars Portal |
Title | The Performance of Post-Fall Detection Using the Cross-Dataset: Feature Vectors, Classifiers and Processing Conditions |
URI | https://www.proquest.com/docview/2554708945 https://www.proquest.com/docview/2555107236 https://pubmed.ncbi.nlm.nih.gov/PMC8309569 https://doaj.org/article/c3cf42fb213b428cbc56f0125e48fda6 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZoe4ED4imWlpVBHDhgdR0_4nBBdNulQqKqEEV7i_wslVZJ2c329zP2etONhLjkEDuJk5nxfGNPvkHovauoLcuJJUYVmnBpJ0QxGogIgB1MYLbasH1eyPMr_m0u5nnBbZXTKrdzYpqoXWvjGvkxQF9eTlTFxefbPyRWjYq7q7mExh46oOBpooar2dc-4GIQf23YhBiE9scrCHYg-om_ouz4oETVP8CXw-zIHXcze4IeZ5yIv2wE-xQ98M0z9GiHPfA5ugMR48v7xH_cBhxr75KZXizwqe9SllWDU1YABqCHp3E45FR34Lq6TzjCv_XS419p5X71EacKmTchVsfGunE4_0UQL5-2cW876ugLdDU7-zk9J7mMArHwth2xlDsbSlF5KgtNrXSBVkJ7pRj3pdLCaBmgBWw3WKlBpFboylDrAC1SF9hLtN-0jX-FcGWcAn8OZqsEt45rQBeGeydt0HKiwgh92H7Y2maO8VjqYlFDrBFlUPcyGKF3fdfbDbHGvzqdROn0HSIXdjrRLq_rbFq1ZTbwIpiCMgPBlDVWyAB-V3iugtNyhI62sq2zga7qe3Uaobd9M5hW3C_RjW_XqQ_MWGXB4BblQCcGAxq2NDe_E0m3YpHisXr9_4cfoodFTJJJOYhHaL9brv0bQDmdGaO9cl6Ok0KP0cHJ2cXlj3FaMYDjd67-Auf9BUU |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxFMsFDAIJA5YTeJHHCSEYJfVlpaKQ4v2lvoJlVZJ2c2C-FP8RsZOsg8Jces1dmzHM575JjOeQeiFLVKT54khWmaKMGESImnqCfeAHbSnpmizfR6LySn7NOXTHfSnvwsTwip7mRgFta1N-Ee-D9CX5YksGH938YOEqlHBu9qX0GjZ4tD9_gUm2-LtwQjo-zLLxh9PhhPSVRUgBkyfhpiUWeNzXrhUZCo1wvq04MpJSZnLpeJaCQ8twMreCAVfaLgqdGosgKfUegrjXkFXQfEmIYQwn64NPAr2Xpu9iNIi2V-AcQVThqsvGzovlgbYwrPb0Zgb6m18C93scCl-3zLSbbTjqjvoxka2wrvoJ7AU_rK-aIBrj0OtXzJWsxkeuSZGdVU4RiFgAJZ4GJZDRqoBVdm8wQFuLucOf42egsVrHCtynvtQjRuryuLu1kJ4fVgHX3o4E_fQ6aVs8H20W9WVe4Bwoa0E_ABiQnJmLFOAZjRzVhivRCL9AL3qN7Y0XU7zUFpjVoJtE2hQrmgwQM9XXS_aRB7_6vQhUGfVIeTejg_q-beyO8qlocazzOsspRqMN6MNFx70PHdMeqvEAO31tC07gbAo1-w7QM9WzXCUg39GVa5exj4gIfOMwhD5Fk9sLWi7pTr_HpOCSxpSShYP_z_5U3RtcvL5qDw6OD58hK5nIUAnxj_uod1mvnSPAWE1-klka4zOLvsc_QW6Lz_a |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGkBA8IK6iY4BBIPGA1SS-xEFCCFqqjaFpDwz1LfMVJlXJ1qYg_hq_jmM3aRsJ8bbX2LEdn9t34uNzEHppi9TkeWKIlpkiTJiESJp6wj1gB-2pKVbZPo_FwSn7POXTHfSnuwsTwio7nRgVta1N-Ec-BOjL8kQWjA99GxZxMp68v7gkoYJUOGntymmsWOTI_f4F7tvi3eEYaP0qyyafvo4OSFthgBhwgxpiUmaNz3nhUpGp1Ajr04IrJyVlLpeKayU8tABbeyMUfK3hqtCpsQCkUuspjHsNXc8pmE2QpXy6cfYo-H6rTEaUFslwAY4WTBmuwWzZv1gmoIdt-5GZW6ZucgfdbjEq_rBiqrtox1X30K2tzIX30U9gL3yyuXSAa49D3V8yUbMZHrsmRnhVOEYkYACZeBSWQ8aqAbPZvMUBei7nDn-LpwaLNzhW5zz3oTI3VpXF7Q2G8PqoDufqQT4eoNMr2eCHaLeqK_cI4UJbCVgCVIbkzFimANlo5qwwXolE-gF63W1sadr85qHMxqwEPyfQoFzTYIBerLterJJ6_KvTx0CddYeQhzs-qOffy1asS0ONZ5nXWUo1OHJGGy482HzumPRWiQHa72hbtsphUW5YeYCer5tBrMNZjapcvYx9QFvmGYUh8h5P9BbUb6nOf8QE4ZKG9JLF3v8nf4ZugASVXw6Pjx6jm1mI1YmhkPtot5kv3RMAW41-Grkao7OrFqO_KEpEEA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Performance+of+Post-Fall+Detection+Using+the+Cross-Dataset%3A+Feature+Vectors%2C+Classifiers+and+Processing+Conditions&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Koo%2C+Bummo&rft.au=Jongman%2C+Kim&rft.au=Nam%2C+Yejin&rft.date=2021-07-06&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=21&rft.issue=14&rft.spage=4638&rft_id=info:doi/10.3390%2Fs21144638&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |