Insight-HXMT Discovery of the Highest-energy CRSF from the First Galactic Ultraluminous X-Ray Pulsar Swift J0243.6+6124
The detection of cyclotron resonance scattering features (CRSFs) is the only way to directly and reliably measure the magnetic field near the surface of a neutron star (NS). The broad energy coverage and large collection area of Insight-HXMT in the hard X-ray band allowed us to detect the CRSF with...
Saved in:
Published in | Astrophysical journal. Letters Vol. 933; no. 1; p. L3 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Austin
The American Astronomical Society
01.07.2022
IOP Publishing |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The detection of cyclotron resonance scattering features (CRSFs) is the only way to directly and reliably measure the magnetic field near the surface of a neutron star (NS). The broad energy coverage and large collection area of Insight-HXMT in the hard X-ray band allowed us to detect the CRSF with the highest energy known to date, reaching about 146 keV during the 2017 outburst of the first galactic pulsing ultraluminous X-ray source (pULX) Swift J0243.6+6124. During this outburst, the CRSF was only prominent close to the peak luminosity of ∼2 × 10
39
erg s
−1
, the highest to date in any of the Galactic pulsars. The CRSF is most significant in the spin-phase region corresponding to the main pulse of the pulse profile, and its centroid energy evolves with phase from 120 to 146 keV. We identify this feature as the fundamental CRSF because no spectral feature exists at 60–70 keV. This is the first unambiguous detection of an electron CRSF from an ULX. We also estimate a surface magnetic field of ∼1.6 × 10
13
G for Swift J0243.6+6124. Considering that the dipole magnetic field strengths, inferred from several independent estimates of magnetosphere radius, are at least an order of magnitude lower than our measurement, we argue that the detection of the highest-energy CRSF reported here unambiguously proves the presence of multipole field components close to the surface of the neutron star. Such a scenario has previously been suggested for several pulsating ULXs, including Swift J0243.6+6124, and our result represents the first direct confirmation of this scenario. |
---|---|
AbstractList | The detection of cyclotron resonance scattering features (CRSFs) is the only way to directly and reliably measure the magnetic field near the surface of a neutron star (NS). The broad energy coverage and large collection area of Insight-HXMT in the hard X-ray band allowed us to detect the CRSF with the highest energy known to date, reaching about 146 keV during the 2017 outburst of the first galactic pulsing ultraluminous X-ray source (pULX) Swift J0243.6+6124. During this outburst, the CRSF was only prominent close to the peak luminosity of ∼2 × 10
39
erg s
−1
, the highest to date in any of the Galactic pulsars. The CRSF is most significant in the spin-phase region corresponding to the main pulse of the pulse profile, and its centroid energy evolves with phase from 120 to 146 keV. We identify this feature as the fundamental CRSF because no spectral feature exists at 60–70 keV. This is the first unambiguous detection of an electron CRSF from an ULX. We also estimate a surface magnetic field of ∼1.6 × 10
13
G for Swift J0243.6+6124. Considering that the dipole magnetic field strengths, inferred from several independent estimates of magnetosphere radius, are at least an order of magnitude lower than our measurement, we argue that the detection of the highest-energy CRSF reported here unambiguously proves the presence of multipole field components close to the surface of the neutron star. Such a scenario has previously been suggested for several pulsating ULXs, including Swift J0243.6+6124, and our result represents the first direct confirmation of this scenario. The detection of cyclotron resonance scattering features (CRSFs) is the only way to directly and reliably measure the magnetic field near the surface of a neutron star (NS). The broad energy coverage and large collection area of Insight-HXMT in the hard X-ray band allowed us to detect the CRSF with the highest energy known to date, reaching about 146 keV during the 2017 outburst of the first galactic pulsing ultraluminous X-ray source (pULX) Swift J0243.6+6124. During this outburst, the CRSF was only prominent close to the peak luminosity of ∼2 × 1039 erg s−1, the highest to date in any of the Galactic pulsars. The CRSF is most significant in the spin-phase region corresponding to the main pulse of the pulse profile, and its centroid energy evolves with phase from 120 to 146 keV. We identify this feature as the fundamental CRSF because no spectral feature exists at 60–70 keV. This is the first unambiguous detection of an electron CRSF from an ULX. We also estimate a surface magnetic field of ∼1.6 × 1013 G for Swift J0243.6+6124. Considering that the dipole magnetic field strengths, inferred from several independent estimates of magnetosphere radius, are at least an order of magnitude lower than our measurement, we argue that the detection of the highest-energy CRSF reported here unambiguously proves the presence of multipole field components close to the surface of the neutron star. Such a scenario has previously been suggested for several pulsating ULXs, including Swift J0243.6+6124, and our result represents the first direct confirmation of this scenario. |
Author | Qu, Jin-Lu Doroshenko, Victor Li, Ti-Pei Kong, Ling-Da Chen, Yu-Peng Peng, Jing-Qiang Wang, Peng-Ju Ji, Long Shui, Qing-Cang Zhang, Shuang-Nan Lu, Fang-Jun Liu, Cong-Zhan Santangelo, Andrea Tao, Lian Chang, Zhi Ge, Ming-Yu Liao, Jin-Yuan Zhang, Shu |
Author_xml | – sequence: 1 givenname: Ling-Da orcidid: 0000-0003-3188-9079 surname: Kong fullname: Kong, Ling-Da organization: Chinese Academy of Sciences University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China – sequence: 2 givenname: Shu surname: Zhang fullname: Zhang, Shu organization: Chinese Academy of Sciences Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, 19B Yuquan Road, Beijing 100049, People’s Republic of China – sequence: 3 givenname: Shuang-Nan orcidid: 0000-0001-5586-1017 surname: Zhang fullname: Zhang, Shuang-Nan organization: Chinese Academy of Sciences University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China – sequence: 4 givenname: Long surname: Ji fullname: Ji, Long organization: Sun Yat-Sen University School of Physics and Astronomy, Zhuhai, 519082, People’s Republic of China – sequence: 5 givenname: Victor orcidid: 0000-0001-8162-1105 surname: Doroshenko fullname: Doroshenko, Victor organization: Space Research Institute of the Russian Academy of Sciences , Profsoyuznaya Str. 84/32, Moscow 117997, Russia – sequence: 6 givenname: Andrea orcidid: 0000-0003-4187-9560 surname: Santangelo fullname: Santangelo, Andrea organization: Eberhard Karls Universität Institut für Astronomie und Astrophysik, Kepler Center for Astro and Particle Physics, Sand 1, D-72076 Tübingen, Germany – sequence: 7 givenname: Yu-Peng surname: Chen fullname: Chen, Yu-Peng organization: Chinese Academy of Sciences Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, 19B Yuquan Road, Beijing 100049, People’s Republic of China – sequence: 8 givenname: Fang-Jun orcidid: 0000-0003-3248-6087 surname: Lu fullname: Lu, Fang-Jun organization: Xiangtan University Key Laboratory of Stellar and Interstellar Physics and Department of Physics, Xiangtan 411105, Hunan, People’s Republic of China – sequence: 9 givenname: Ming-Yu orcidid: 0000-0002-2749-6638 surname: Ge fullname: Ge, Ming-Yu organization: Chinese Academy of Sciences Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, 19B Yuquan Road, Beijing 100049, People’s Republic of China – sequence: 10 givenname: Peng-Ju orcidid: 0000-0002-6454-9540 surname: Wang fullname: Wang, Peng-Ju organization: Chinese Academy of Sciences University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China – sequence: 11 givenname: Lian orcidid: 0000-0002-2705-4338 surname: Tao fullname: Tao, Lian organization: Chinese Academy of Sciences Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, 19B Yuquan Road, Beijing 100049, People’s Republic of China – sequence: 12 givenname: Jin-Lu orcidid: 0000-0002-9796-2585 surname: Qu fullname: Qu, Jin-Lu organization: Chinese Academy of Sciences Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, 19B Yuquan Road, Beijing 100049, People’s Republic of China – sequence: 13 givenname: Ti-Pei surname: Li fullname: Li, Ti-Pei organization: Tsinghua University Department of Astronomy, Beijing 100084, People’s Republic of China – sequence: 14 givenname: Cong-Zhan surname: Liu fullname: Liu, Cong-Zhan organization: Chinese Academy of Sciences Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, 19B Yuquan Road, Beijing 100049, People’s Republic of China – sequence: 15 givenname: Jin-Yuan orcidid: 0000-0001-8277-6133 surname: Liao fullname: Liao, Jin-Yuan organization: Chinese Academy of Sciences Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, 19B Yuquan Road, Beijing 100049, People’s Republic of China – sequence: 16 givenname: Zhi orcidid: 0000-0003-4856-2275 surname: Chang fullname: Chang, Zhi organization: Chinese Academy of Sciences Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, 19B Yuquan Road, Beijing 100049, People’s Republic of China – sequence: 17 givenname: Jing-Qiang surname: Peng fullname: Peng, Jing-Qiang organization: Chinese Academy of Sciences University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China – sequence: 18 givenname: Qing-Cang surname: Shui fullname: Shui, Qing-Cang organization: Chinese Academy of Sciences University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China |
BookMark | eNp9kMtLJDEQxoMo-Nr7HgPLnrQ1r073HGV2x1FGXHyAt1CdSTRDT6dN0sr892acRWFZPKVIfV_VV799tN35ziD0nZITXovqlBFBi5pRfgq6qijdQnsfX9sfNSl30X6MC0IYkbTeQ68XXXSPT6mYPlzd4V8uav9iwgp7i9OTwdPcMzEVpjPhcYXHN7cTbINfvjcnLsSEz6EFnZzG920K0A5L1_kh4ofiBlb4z9BGCPj21dmELwkT_EQeScrEIdqx0Ebz7e97gO4nv-_G02J2fX4xPpsVWgiZiobTstKCSTuvueWMQJlzcyvBNBXjQjRQakJpRRoGcxDA5pIQMiJVpgDNiB-gH5u5ffDPQz5FLfwQurxSMVnnPDlLmVVyo9LBxxiMVdolSM53-STXKkrUGrJaU1RromoDORvJP8Y-uCWE1VeW443F-f4zzBfyn_-RQ79o1YhzRdWMq35u-RvrHJiA |
CitedBy_id | crossref_primary_10_3390_universe10120453 crossref_primary_10_1051_0004_6361_202245123 crossref_primary_10_1093_mnras_stac2239 crossref_primary_10_1093_mnras_stad3390 crossref_primary_10_1093_mnras_stac3208 crossref_primary_10_1093_mnras_stae2322 crossref_primary_10_3847_1538_4357_accf83 crossref_primary_10_3847_1538_4357_aca2a3 crossref_primary_10_1051_0004_6361_202245048 crossref_primary_10_3897_biorisk_18_86616 crossref_primary_10_1051_bcas_2024003 crossref_primary_10_1093_mnras_stad3332 crossref_primary_10_1051_0004_6361_202347712 crossref_primary_10_1051_0004_6361_202450696 crossref_primary_10_1093_mnras_stad614 crossref_primary_10_1093_mnras_stac3380 crossref_primary_10_1007_s41605_023_00383_3 crossref_primary_10_1016_j_newar_2022_101672 crossref_primary_10_3847_1538_4357_acd6ea crossref_primary_10_1093_mnras_stad3677 crossref_primary_10_3847_1538_4357_ac8c93 crossref_primary_10_1051_0004_6361_202243878 crossref_primary_10_1039_D4CP00799A crossref_primary_10_1093_mnras_stac2392 crossref_primary_10_1093_mnras_stae653 crossref_primary_10_1103_PhysRevD_107_094504 crossref_primary_10_1103_PhysRevC_109_034917 crossref_primary_10_1093_mnras_stac2746 crossref_primary_10_3389_fspas_2023_1292500 crossref_primary_10_1016_j_nuclphysb_2022_116029 crossref_primary_10_1051_0004_6361_202347880 crossref_primary_10_1093_mnras_stac2887 crossref_primary_10_3389_fspas_2023_1289432 crossref_primary_10_1093_mnras_stae1304 crossref_primary_10_1051_0004_6361_202452640 crossref_primary_10_3847_1538_4357_acd18a crossref_primary_10_3847_1538_4357_ad8885 crossref_primary_10_1093_mnras_stad1961 crossref_primary_10_11728_cjss2024_04_2024_yg12 crossref_primary_10_31857_S0044451024120083 crossref_primary_10_3847_1538_4357_acbc7a crossref_primary_10_3847_2041_8213_ad67e5 crossref_primary_10_1093_mnras_stad1407 crossref_primary_10_1093_mnras_stac3431 crossref_primary_10_3847_1538_4357_ad24f8 crossref_primary_10_1088_1674_4527_ad3902 crossref_primary_10_3847_1538_4357_ad235d |
Cites_doi | 10.1051/0004-6361/201219065 10.1051/0004-6361/201730922 10.1088/0004-637X/807/2/164 10.3847/2041-8213/ac1ad3 10.3847/2041-8205/831/2/L14 10.1146/annurev-astro-091916-055259 10.3847/1538-4357/abb241 10.1088/0004-637X/748/2/86 10.3847/1538-4357/ab4595 10.1007/s11433-019-1506-1 10.1093/mnrasl/sly030 10.3847/1538-3881/aacb21 10.1093/mnrasl/slx020 10.1093/mnrasl/slw011 10.1093/mnras/staa1041 10.1093/mnras/stv2087 10.1007/s11433-019-1432-6 10.3847/1538-4357/ab93c7 10.1051/0004-6361/202038093 10.1051/0004-6361/201730553 10.1086/317016 10.1093/mnras/stac836 10.1111/j.1745-3933.2008.00594.x 10.1007/s11433-018-9309-2 10.1126/science.aai8635 10.1093/mnras/stz1548 10.1093/mnras/staa930 10.1016/j.jheap.2021.04.002 10.1093/mnras/stab915 10.1007/s11433-019-1486-x 10.1093/mnras/175.2.395 10.3847/1538-4357/ab0211 10.1093/mnrasl/slw218 10.1016/j.jheap.2020.02.009 10.1038/s41550-018-0391-6 10.1051/0004-6361/201834479 10.1093/mnrasl/sly116 10.1086/320343 10.1093/mnras/stz436 10.1117/12.2054144 10.1038/nature13791 10.1016/j.jheap.2020.02.008 10.1093/mnras/stz720 10.3847/2041-8213/abac05 10.1086/182617 10.1051/0004-6361/201732208 10.1051/0004-6361:20041864 10.1086/170153 10.1007/s11433-019-1469-5 10.1093/mnras/stz2879 |
ContentType | Journal Article |
Copyright | 2022. The Author(s). Published by the American Astronomical Society. 2022. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022. The Author(s). Published by the American Astronomical Society. – notice: 2022. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | O3W TSCCA AAYXX CITATION 7TG 8FD H8D KL. L7M |
DOI | 10.3847/2041-8213/ac7711 |
DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | CrossRef Aerospace Database |
Database_xml | – sequence: 1 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics |
EISSN | 2041-8213 |
ExternalDocumentID | 10_3847_2041_8213_ac7711 apjlac7711 |
GroupedDBID | 1JI 2FS 4.4 6J9 AAFWJ AAGCD AAJIO ABDNZ ABHWH ACGFS ACHIP AEFHF AENEX AFPKN AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN CJUJL CRLBU EBS FRP GROUPED_DOAJ IJHAN IOP KOT N5L O3W O43 OK1 PJBAE RIN ROL SY9 T37 TSCCA ~02 AAYXX CITATION 7TG 8FD AEINN H8D KL. L7M |
ID | FETCH-LOGICAL-c446t-b3157c426fd83f320a50613f6aeb72344ba5c01170b2ada4a2d6000907ac7ab93 |
IEDL.DBID | IOP |
ISSN | 2041-8205 |
IngestDate | Wed Aug 13 02:57:28 EDT 2025 Tue Jul 01 04:12:01 EDT 2025 Thu Apr 24 23:03:57 EDT 2025 Wed Aug 21 03:42:25 EDT 2024 Wed Jul 06 01:22:09 EDT 2022 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c446t-b3157c426fd83f320a50613f6aeb72344ba5c01170b2ada4a2d6000907ac7ab93 |
Notes | High-Energy Phenomena and Fundamental Physics AAS39080 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6454-9540 0000-0001-8277-6133 0000-0003-4187-9560 0000-0003-4856-2275 0000-0001-8162-1105 0000-0002-9796-2585 0000-0002-2705-4338 0000-0003-3248-6087 0000-0003-3188-9079 0000-0001-5586-1017 0000-0002-2749-6638 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.3847/2041-8213/ac7711 |
PQID | 2682431245 |
PQPubID | 4562431 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2682431245 crossref_citationtrail_10_3847_2041_8213_ac7711 crossref_primary_10_3847_2041_8213_ac7711 iop_journals_10_3847_2041_8213_ac7711 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-01 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Austin |
PublicationPlace_xml | – name: Austin |
PublicationTitle | Astrophysical journal. Letters |
PublicationTitleAbbrev | APJL |
PublicationTitleAlternate | Astrophys. J. Lett |
PublicationYear | 2022 |
Publisher | The American Astronomical Society IOP Publishing |
Publisher_xml | – name: The American Astronomical Society – name: IOP Publishing |
References | Cao (apjlac7711bib9) 2020; 63 Cenko (apjlac7711bib11) 2017; 21960 Ge (apjlac7711bib18) 2017; 10907 Harding (apjlac7711bib21) 1991; 374 Arnaud (apjlac7711bib1) 1996 Chen (apjlac7711bib12) 2021; 31 Doroshenko (apjlac7711bib15) 2018; 613 King (apjlac7711bib32) 2009; 393 Truemper (apjlac7711bib60) 1978; 219 Doroshenko (apjlac7711bib14) 2020a; 643 Brice (apjlac7711bib7) 2021; 504 Zhang (apjlac7711bib58) 2020; 63 Liao (apjlac7711bib41) 2020b Zhang (apjlac7711bib57) 2019; 62 King (apjlac7711bib29) 2019; 485 Israel (apjlac7711bib22) 2017a; 466 Mushtukov (apjlac7711bib45) 2015; 454 Sugizaki (apjlac7711bib49) 2020; 896 Doroshenko (apjlac7711bib16) 2020b; 491 Bahramian (apjlac7711bib3) 2017; 10866 Carpano (apjlac7711bib10) 2018; 476 Liu (apjlac7711bib42) 2020; 63 Kalberla (apjlac7711bib26) 2005; 440 Tsygankov (apjlac7711bib51) 2017; 605 Bailer-Jones (apjlac7711bib4) 2018; 156 Stanek (apjlac7711bib48) 2017; 10811 van den Eijnden (apjlac7711bib53) 2019; 487 Ge (apjlac7711bib19) 2020; 899 Middleton (apjlac7711bib44) 2019; 486 King (apjlac7711bib33) 2001; 552 Orlandini (apjlac7711bib47) 2012; 748 Zhang (apjlac7711bib56) 2014; 9144 Israel (apjlac7711bib23) 2017b; 355 Basko (apjlac7711bib5) 1976; 175 King (apjlac7711bib30) 2020; 494 Wilms (apjlac7711bib54) 2000; 542 Li (apjlac7711bib39) 2020; 27 Chandra (apjlac7711bib59) 2020; 495 Kouroubatzakis (apjlac7711bib38) 2017; 10822 Chen (apjlac7711bib13) 2020; 63 Kong (apjlac7711bib36) 2021; 917 Bachetti (apjlac7711bib2) 2014; 514 Brightman (apjlac7711bib8) 2018; 2 King (apjlac7711bib28) 2016; 458 Guo (apjlac7711bib20) 2020; 27 Nishimura (apjlac7711bib46) 2015; 807 Fürst (apjlac7711bib17) 2016; 831 Kennea (apjlac7711bib27) 2017; 10809 Liao (apjlac7711bib40) 2020a Kaaret (apjlac7711bib25) 2017; 55 Kong (apjlac7711bib35) 2020; 902 Kong (apjlac7711bib37) 2022 King (apjlac7711bib31) 2017; 468 Yamanaka (apjlac7711bib55) 2017; 10815 Jaisawal (apjlac7711bib24) 2019; 885 Staubert (apjlac7711bib61) 2019; 622 Liu (apjlac7711bib43) 2022; 512 Tsygankov (apjlac7711bib52) 2018; 479 Becker (apjlac7711bib6) 2012; 544 Koliopanos (apjlac7711bib34) 2017; 608 Tao (apjlac7711bib50) 2019; 873 |
References_xml | – volume: 544 start-page: A123 year: 2012 ident: apjlac7711bib6 publication-title: A&A doi: 10.1051/0004-6361/201219065 – volume: 608 start-page: A47 year: 2017 ident: apjlac7711bib34 publication-title: A&A doi: 10.1051/0004-6361/201730922 – volume: 807 start-page: 164 year: 2015 ident: apjlac7711bib46 publication-title: ApJ doi: 10.1088/0004-637X/807/2/164 – volume: 10815 start-page: 1 year: 2017 ident: apjlac7711bib55 publication-title: ATel – volume: 10822 start-page: 1 year: 2017 ident: apjlac7711bib38 publication-title: ATel – volume: 917 start-page: L38 year: 2021 ident: apjlac7711bib36 publication-title: ApJL doi: 10.3847/2041-8213/ac1ad3 – volume: 831 start-page: L14 year: 2016 ident: apjlac7711bib17 publication-title: ApJL doi: 10.3847/2041-8205/831/2/L14 – volume: 55 start-page: 303 year: 2017 ident: apjlac7711bib25 publication-title: ARA&A doi: 10.1146/annurev-astro-091916-055259 – volume: 902 start-page: 18 year: 2020 ident: apjlac7711bib35 publication-title: ApJ doi: 10.3847/1538-4357/abb241 – volume: 748 start-page: 86 year: 2012 ident: apjlac7711bib47 publication-title: ApJ doi: 10.1088/0004-637X/748/2/86 – volume: 10907 start-page: 1 year: 2017 ident: apjlac7711bib18 publication-title: ATel – volume: 885 start-page: 18 year: 2019 ident: apjlac7711bib24 publication-title: ApJ doi: 10.3847/1538-4357/ab4595 – volume: 63 year: 2020 ident: apjlac7711bib9 publication-title: SCPMA doi: 10.1007/s11433-019-1506-1 – volume: 21960 start-page: 1 year: 2017 ident: apjlac7711bib11 publication-title: GCN – volume: 476 start-page: L45 year: 2018 ident: apjlac7711bib10 publication-title: MNRAS doi: 10.1093/mnrasl/sly030 – year: 2020a ident: apjlac7711bib40 – volume: 10866 start-page: 1 year: 2017 ident: apjlac7711bib3 publication-title: ATel – volume: 156 start-page: 58 year: 2018 ident: apjlac7711bib4 publication-title: AJ doi: 10.3847/1538-3881/aacb21 – volume: 468 start-page: L59 year: 2017 ident: apjlac7711bib31 publication-title: MNRAS doi: 10.1093/mnrasl/slx020 – volume: 458 start-page: L10 year: 2016 ident: apjlac7711bib28 publication-title: MNRAS doi: 10.1093/mnrasl/slw011 – volume: 495 start-page: 2664 year: 2020 ident: apjlac7711bib59 publication-title: MNRAS doi: 10.1093/mnras/staa1041 – volume: 454 start-page: 2539 year: 2015 ident: apjlac7711bib45 publication-title: MNRAS doi: 10.1093/mnras/stv2087 – volume: 63 year: 2020 ident: apjlac7711bib58 publication-title: SCPMA doi: 10.1007/s11433-019-1432-6 – volume: 896 start-page: 124 year: 2020 ident: apjlac7711bib49 publication-title: ApJ doi: 10.3847/1538-4357/ab93c7 – volume: 643 start-page: A62 year: 2020a ident: apjlac7711bib14 publication-title: A&A doi: 10.1051/0004-6361/202038093 – volume: 605 start-page: A39 year: 2017 ident: apjlac7711bib51 publication-title: A&A doi: 10.1051/0004-6361/201730553 – volume: 542 start-page: 914 year: 2000 ident: apjlac7711bib54 publication-title: ApJ doi: 10.1086/317016 – volume: 512 start-page: 5686 year: 2022 ident: apjlac7711bib43 publication-title: MNRAS doi: 10.1093/mnras/stac836 – volume: 393 start-page: L41 year: 2009 ident: apjlac7711bib32 publication-title: MNRAS doi: 10.1111/j.1745-3933.2008.00594.x – year: 2020b ident: apjlac7711bib41 – volume: 62 start-page: 29502 year: 2019 ident: apjlac7711bib57 publication-title: SCPMA doi: 10.1007/s11433-018-9309-2 – volume: 355 start-page: 817 year: 2017b ident: apjlac7711bib23 publication-title: Sci doi: 10.1126/science.aai8635 – volume: 487 start-page: 4355 year: 2019 ident: apjlac7711bib53 publication-title: MNRAS doi: 10.1093/mnras/stz1548 – volume: 494 start-page: 3611 year: 2020 ident: apjlac7711bib30 publication-title: MNRAS doi: 10.1093/mnras/staa930 – volume: 31 start-page: 1 year: 2021 ident: apjlac7711bib12 publication-title: JHEAp doi: 10.1016/j.jheap.2021.04.002 – volume: 504 start-page: 701 year: 2021 ident: apjlac7711bib7 publication-title: MNRAS doi: 10.1093/mnras/stab915 – volume: 63 year: 2020 ident: apjlac7711bib42 publication-title: SCPMA doi: 10.1007/s11433-019-1486-x – volume: 175 start-page: 395 year: 1976 ident: apjlac7711bib5 publication-title: MNRAS doi: 10.1093/mnras/175.2.395 – volume: 873 start-page: 19 year: 2019 ident: apjlac7711bib50 publication-title: ApJ doi: 10.3847/1538-4357/ab0211 – volume: 10809 start-page: 1 year: 2017 ident: apjlac7711bib27 publication-title: ATel – volume: 466 start-page: L48 year: 2017a ident: apjlac7711bib22 publication-title: MNRAS doi: 10.1093/mnrasl/slw218 – volume: 27 start-page: 64 year: 2020 ident: apjlac7711bib39 publication-title: JHEAp doi: 10.1016/j.jheap.2020.02.009 – volume: 2 start-page: 312 year: 2018 ident: apjlac7711bib8 publication-title: NatAs doi: 10.1038/s41550-018-0391-6 – volume: 10811 start-page: 1 year: 2017 ident: apjlac7711bib48 publication-title: ATel – volume: 622 start-page: A61 year: 2019 ident: apjlac7711bib61 publication-title: A&A doi: 10.1051/0004-6361/201834479 – volume: 479 start-page: L134 year: 2018 ident: apjlac7711bib52 publication-title: MNRAS doi: 10.1093/mnrasl/sly116 – volume: 552 start-page: L109 year: 2001 ident: apjlac7711bib33 publication-title: ApJL doi: 10.1086/320343 – start-page: 17 year: 1996 ident: apjlac7711bib1 – volume: 486 start-page: 2 year: 2019 ident: apjlac7711bib44 publication-title: MNRAS doi: 10.1093/mnras/stz436 – volume: 9144 start-page: 914421 year: 2014 ident: apjlac7711bib56 publication-title: Proc. SPIE doi: 10.1117/12.2054144 – volume: 514 start-page: 202 year: 2014 ident: apjlac7711bib2 publication-title: Natur doi: 10.1038/nature13791 – volume: 27 start-page: 44 year: 2020 ident: apjlac7711bib20 publication-title: JHEAp doi: 10.1016/j.jheap.2020.02.008 – volume: 485 start-page: 3588 year: 2019 ident: apjlac7711bib29 publication-title: MNRAS doi: 10.1093/mnras/stz720 – volume: 899 start-page: L19 year: 2020 ident: apjlac7711bib19 publication-title: ApJL doi: 10.3847/2041-8213/abac05 – volume: 219 start-page: L105 year: 1978 ident: apjlac7711bib60 publication-title: ApJL doi: 10.1086/182617 – year: 2022 ident: apjlac7711bib37 publication-title: ApJ – volume: 613 start-page: A19 year: 2018 ident: apjlac7711bib15 publication-title: A&A doi: 10.1051/0004-6361/201732208 – volume: 440 start-page: 775 year: 2005 ident: apjlac7711bib26 publication-title: A&A doi: 10.1051/0004-6361:20041864 – volume: 374 start-page: 687 year: 1991 ident: apjlac7711bib21 publication-title: ApJ doi: 10.1086/170153 – volume: 63 year: 2020 ident: apjlac7711bib13 publication-title: SCPMA doi: 10.1007/s11433-019-1469-5 – volume: 491 start-page: 1857 year: 2020b ident: apjlac7711bib16 publication-title: MNRAS doi: 10.1093/mnras/stz2879 |
SSID | ssj0020618 |
Score | 2.6041057 |
Snippet | The detection of cyclotron resonance scattering features (CRSFs) is the only way to directly and reliably measure the magnetic field near the surface of a... |
SourceID | proquest crossref iop |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | L3 |
SubjectTerms | Accretion Binary pulsars Centroids Cyclotron resonance Dipoles Energy High mass x-ray binary stars Luminosity Magnetic fields Magnetospheres Multipoles Neutron stars Pulsars Resonance scattering Ultraluminous x-ray sources X ray sources X-ray astronomy X-rays |
Title | Insight-HXMT Discovery of the Highest-energy CRSF from the First Galactic Ultraluminous X-Ray Pulsar Swift J0243.6+6124 |
URI | https://iopscience.iop.org/article/10.3847/2041-8213/ac7711 https://www.proquest.com/docview/2682431245 |
Volume | 933 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGeOGFb7TCqPwASAi5S2zHScTTNChlYmzaVtEHJMt2bKmQtdWSaip_PWc7LRqgCfESWcrl6-eP-93l7ozQi5JWVjmriSiEJVxoTkCPl0SXmnIHnMMxn5x89FmMxvxwkk220NtNLsx80S39A2jGQsERQj-_GaylYK7zlBQ0ZXvK5LnP673NClCcPnvv-GRjbYGiCtvRRekki_8o_3qHazrpFjz3j4U5aJvhPfR1_Z4xyOT7YNnqgfnxWwnH__yQ--hux0LxfhR9gLbs7CHa2W-8X3x-scKvcGhHt0fzCF19nDWh4shocnSO300b4yM_V3juMBBIHIJFmpbYkEiID07PhtjnrYSTwykQTPxB1SEdC49r71tZXkx9bVg8IadqhU-WdaMu8dnV1LX40FcvHIg3QIr4YzQevj8_GJFuywZiwK5siWZplhvQ-q4qoJtpojJPGJxQVueUca5VZnwZukRTVSmuaCU8zUtygEDpkj1B27P5zO4gXCU6taUSJTWU58IBkwPzVWhqrTBVyXpob91p0nT1zP22GrUEu8bjKz2-0uMrI7499HpzxSLW8rhB9iV0m-wmdHODXP-anFp8q2XJmEzlJyYXleuh3fVQ-iVFRQFQAozZ0398zjN0h_rEixAovIu228ulfQ50qNX94Eboh8EPx2P25SeB7f_w |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELbYkBAvjJ9aYQw_ABJCbhPbcZrHaSN0YxvVtkp9M3ZiS92ytlpSTd1fz9lOhwZoQuLNUs5xchf7vnPuPiP0PqOlUdZoIvrCEC40J-DHM6IzTbkFzGGZK04-OhaDET8YJ-P2nFNfCzObt0t_F5qBKDio0M1vBmsphOs8Jn0as54q0jSOe_PSrqGHCQPf6Sr4vg9vIy5wVv5IutAjSsJ_yr_e5Y5fWoOx_1icvcfJN9CP1bOGRJOL7qLR3eLmNxrH_3iZp-hJi0bxThB_hh6Y6XO0uVO7_fHZ5RJ_xL4dtj_qF-h6f1p75pHB-OgM703qwmWALvHMYgCS2CeN1A0xvqAQ756c5tjVr_iL-QSAJv6qKl-WhUeV22NZXE4cRywekxO1xMNFVasrfHo9sQ0-cCyGXfEZwBF_iUb5l7PdAWmPbiAFxJcN0SxO0gK8vy37YG4aqcQBByuU0SllnGuVFI6OLtJUlYorWgoH96IU1KB0xl6h9elsajYRLiMdm0yJjBaUp8ICooMwVmhqjCjKjHVQb2U4WbS85u54jUpCfON0LJ2OpdOxDDruoE-3PeaB0-Me2Q9gOtlO7Poeue07cmp-XsmMMRnLQybBqB20tfqcfklR0QdVghqT1_84zjv0aLiXy8P9429v0GPqajF87vAWWm-uFuYtIKRGb_tZ8BP6aQN0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insight-HXMT+Discovery+of+the+Highest-energy+CRSF+from+the+First+Galactic+Ultraluminous+X-Ray+Pulsar+Swift+J0243.6%2B6124&rft.jtitle=Astrophysical+journal.+Letters&rft.au=Kong%2C+Ling-Da&rft.au=Zhang%2C+Shu&rft.au=Zhang%2C+Shuang-Nan&rft.au=Ji%2C+Long&rft.date=2022-07-01&rft.issn=2041-8205&rft.eissn=2041-8213&rft.volume=933&rft.issue=1&rft.spage=L3&rft_id=info:doi/10.3847%2F2041-8213%2Fac7711&rft.externalDBID=n%2Fa&rft.externalDocID=10_3847_2041_8213_ac7711 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-8205&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-8205&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-8205&client=summon |