Integrated Navigation Algorithm Based on Multiple Fading Factors Kalman Filter

An integrated navigation algorithm based on a multiple fading factors Kalman filter (MFKF) is proposed to solve the problems that the Kalman filtering (KF) algorithm easily brings about diffusion when the model becomes a mismatched or noisy, and the MFKF accuracy is reduced when the fading factor is...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 22; no. 14; p. 5081
Main Authors Sun, Bo, Zhang, Zhenwei, Liu, Shicai, Yan, Xiaobing, Yang, Chengxu
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 06.07.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An integrated navigation algorithm based on a multiple fading factors Kalman filter (MFKF) is proposed to solve the problems that the Kalman filtering (KF) algorithm easily brings about diffusion when the model becomes a mismatched or noisy, and the MFKF accuracy is reduced when the fading factor is overused. Based on the innovation covariance theory, the algorithm designs an improved basis for judging filtering anomalies and makes the timing of the introduction of the fading factor more reasonable by switching the filtering state. Different from the traditional basis of filter abnormality judgment, the improved judgment basis adopts a recursive way to continuously update the estimated value of the innovation covariance to improve the estimation accuracy of the innovation covariance, and an empirical reserve factor for the judgment basis is introduced to adapt to practical engineering applications. By establishing an inertial navigation system (INS)/global navigation satellite system (GNSS) integrated navigation model, the results show that the average positioning accuracy of the proposed algorithm is improved by 26.52% and 7.48%, respectively, compared with the KF and MFKF, and shows better robustness and self-adaptability.
AbstractList An integrated navigation algorithm based on a multiple fading factors Kalman filter (MFKF) is proposed to solve the problems that the Kalman filtering (KF) algorithm easily brings about diffusion when the model becomes a mismatched or noisy, and the MFKF accuracy is reduced when the fading factor is overused. Based on the innovation covariance theory, the algorithm designs an improved basis for judging filtering anomalies and makes the timing of the introduction of the fading factor more reasonable by switching the filtering state. Different from the traditional basis of filter abnormality judgment, the improved judgment basis adopts a recursive way to continuously update the estimated value of the innovation covariance to improve the estimation accuracy of the innovation covariance, and an empirical reserve factor for the judgment basis is introduced to adapt to practical engineering applications. By establishing an inertial navigation system (INS)/global navigation satellite system (GNSS) integrated navigation model, the results show that the average positioning accuracy of the proposed algorithm is improved by 26.52% and 7.48%, respectively, compared with the KF and MFKF, and shows better robustness and self-adaptability.
An integrated navigation algorithm based on a multiple fading factors Kalman filter (MFKF) is proposed to solve the problems that the Kalman filtering (KF) algorithm easily brings about diffusion when the model becomes a mismatched or noisy, and the MFKF accuracy is reduced when the fading factor is overused. Based on the innovation covariance theory, the algorithm designs an improved basis for judging filtering anomalies and makes the timing of the introduction of the fading factor more reasonable by switching the filtering state. Different from the traditional basis of filter abnormality judgment, the improved judgment basis adopts a recursive way to continuously update the estimated value of the innovation covariance to improve the estimation accuracy of the innovation covariance, and an empirical reserve factor for the judgment basis is introduced to adapt to practical engineering applications. By establishing an inertial navigation system (INS)/global navigation satellite system (GNSS) integrated navigation model, the results show that the average positioning accuracy of the proposed algorithm is improved by 26.52% and 7.48%, respectively, compared with the KF and MFKF, and shows better robustness and self-adaptability.An integrated navigation algorithm based on a multiple fading factors Kalman filter (MFKF) is proposed to solve the problems that the Kalman filtering (KF) algorithm easily brings about diffusion when the model becomes a mismatched or noisy, and the MFKF accuracy is reduced when the fading factor is overused. Based on the innovation covariance theory, the algorithm designs an improved basis for judging filtering anomalies and makes the timing of the introduction of the fading factor more reasonable by switching the filtering state. Different from the traditional basis of filter abnormality judgment, the improved judgment basis adopts a recursive way to continuously update the estimated value of the innovation covariance to improve the estimation accuracy of the innovation covariance, and an empirical reserve factor for the judgment basis is introduced to adapt to practical engineering applications. By establishing an inertial navigation system (INS)/global navigation satellite system (GNSS) integrated navigation model, the results show that the average positioning accuracy of the proposed algorithm is improved by 26.52% and 7.48%, respectively, compared with the KF and MFKF, and shows better robustness and self-adaptability.
Author Liu, Shicai
Yang, Chengxu
Sun, Bo
Yan, Xiaobing
Zhang, Zhenwei
AuthorAffiliation 3 College of Communication Engineering, Taishan College of Science and Technology, Tai’an 271000, China; yanxb_1975@163.com
1 College of Intelligent Equipment, Shandong University of Science and Technology, Tai’an 271019, China; bo_sun@sdust.edu.cn (B.S.); sdustliu@163.com (S.L.); ycxjnj@163.com (C.Y.)
2 College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China
AuthorAffiliation_xml – name: 2 College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China
– name: 1 College of Intelligent Equipment, Shandong University of Science and Technology, Tai’an 271019, China; bo_sun@sdust.edu.cn (B.S.); sdustliu@163.com (S.L.); ycxjnj@163.com (C.Y.)
– name: 3 College of Communication Engineering, Taishan College of Science and Technology, Tai’an 271000, China; yanxb_1975@163.com
Author_xml – sequence: 1
  givenname: Bo
  surname: Sun
  fullname: Sun, Bo
– sequence: 2
  givenname: Zhenwei
  orcidid: 0000-0002-8015-627X
  surname: Zhang
  fullname: Zhang, Zhenwei
– sequence: 3
  givenname: Shicai
  surname: Liu
  fullname: Liu, Shicai
– sequence: 4
  givenname: Xiaobing
  surname: Yan
  fullname: Yan, Xiaobing
– sequence: 5
  givenname: Chengxu
  surname: Yang
  fullname: Yang, Chengxu
BookMark eNplkU1vFDEMhiNURD_gwD8YiQscluZrZjwXpLZiYUUpFzhH3iQzzSqTLEm2Ev-edLcgWk627NePLb-n5CjEYAl5zeh7IQZ6njlnsqXAnpETJrlcAOf06J_8mJzmvKGUCyHgBTkWLQy079oTcrMKxU4JizXNDd65CYuLobnwU0yu3M7NJebaqqWvO1_c1ttmicaFqQZdYsrNF_QzhmbpfLHpJXk-os_21UM8Iz-WH79ffV5cf_u0urq4Xmgpu7JYM-yAgtZGGqq5AGMRoWOyt2IYLPSsR9mZETrDcISeChhHaDmXGsb10IszsjpwTcSN2iY3Y_qlIjq1L8Q0KUzFaW-VxgphVPdgjeTQopRoKBWsHzXIVlTWhwNru1vP1mgbSkL_CPq4E9ytmuKdGgQbWskq4O0DIMWfO5uLml3W1nsMNu6y4t3Q8vpw1lXpmyfSTdylUF91r5IUBN1fdH5Q6RRzTnZU2pW9MXW_84pRde-7-ut7nXj3ZOLP-f9rfwN9Raxj
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3404252
crossref_primary_10_1016_j_epsr_2023_109834
crossref_primary_10_3389_fnbot_2024_1374531
crossref_primary_10_3390_su141811230
crossref_primary_10_1177_00202940241258481
crossref_primary_10_3390_s22207742
crossref_primary_10_3390_s22187060
crossref_primary_10_1109_JSEN_2025_3532781
Cites_doi 10.1109/TII.2020.2971056
10.1016/j.ijleo.2019.01.100
10.1109/TAC.2008.2008348
10.1002/asjc.1954
10.3390/s17061254
10.1177/0278364919843996
10.1016/S1000-9361(11)60055-1
10.1016/j.isatra.2020.08.030
10.1109/TCYB.2020.3024672
10.1109/TIM.2020.2995281
10.1016/j.sigpro.2012.07.036
10.3390/s21062085
10.1016/j.jprocont.2013.12.017
10.1016/j.compag.2021.106134
10.3390/math10040610
10.1016/j.measurement.2021.109139
10.4028/www.scientific.net/AMM.367.528
10.3390/agronomy12030591
10.1109/TIE.2019.2907505
10.1007/s10291-021-01148-5
10.1016/j.ymssp.2017.07.051
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s22145081
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest_Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

CrossRef
Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_ca6d110c78ed4285a44ad00317fc8453
PMC9319541
10_3390_s22145081
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c446t-b1a6808ccd4d0c238deaa86147e399e8717a46df86d1af87038ff85224c8fb973
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:32:14 EDT 2025
Thu Aug 21 18:30:02 EDT 2025
Thu Jul 10 19:25:26 EDT 2025
Fri Jul 25 20:09:08 EDT 2025
Thu Apr 24 22:54:36 EDT 2025
Tue Jul 01 02:42:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-b1a6808ccd4d0c238deaa86147e399e8717a46df86d1af87038ff85224c8fb973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8015-627X
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s22145081
PMID 35890765
PQID 2694083053
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_ca6d110c78ed4285a44ad00317fc8453
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9319541
proquest_miscellaneous_2695289016
proquest_journals_2694083053
crossref_citationtrail_10_3390_s22145081
crossref_primary_10_3390_s22145081
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220706
PublicationDateYYYYMMDD 2022-07-06
PublicationDate_xml – month: 7
  year: 2022
  text: 20220706
  day: 6
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Niu (ref_15) 2012; 12
Gu (ref_3) 2021; 39
Xue (ref_23) 2017; 39
Pan (ref_24) 2021; 176
Su (ref_16) 2012; 24
Xu (ref_35) 2017; 25
ref_11
ref_32
Kong (ref_12) 2021; 185
Sarkka (ref_14) 2009; 54
Wang (ref_27) 2021; 108
Zhao (ref_13) 2019; 67
ref_19
Gao (ref_31) 2020; 2020
Liu (ref_17) 2017; 100
Guo (ref_28) 2018; 43
Xue (ref_34) 2014; 4
Gu (ref_9) 2020; 4
Niu (ref_2) 2015; 34
Xu (ref_6) 2011; 33
Yang (ref_22) 2007; 10
Wang (ref_30) 2020; 16
Yan (ref_33) 2020; 7
Gao (ref_26) 2014; 36
Zha (ref_20) 2019; 184
Jeong (ref_36) 2019; 38
ref_1
Wang (ref_4) 2018; 21
Chang (ref_18) 2014; 24
Awin (ref_8) 2013; 367
Ma (ref_21) 2013; 13
Chen (ref_29) 2020; 51
Chang (ref_10) 2021; 25
Shirehjini (ref_5) 2020; 69
Gao (ref_25) 2011; 24
Gadsden (ref_7) 2013; 93
References_xml – volume: 16
  start-page: 6816
  year: 2020
  ident: ref_30
  article-title: Parameter Estimation and Adaptive Control for Servo Mechanisms with Friction Compensation
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2020.2971056
– volume: 184
  start-page: 165
  year: 2019
  ident: ref_20
  article-title: An improved nonlinear Filter based on adaptive fading factor Applied in alignment of SINS
  publication-title: Optik
  doi: 10.1016/j.ijleo.2019.01.100
– volume: 54
  start-page: 596
  year: 2009
  ident: ref_14
  article-title: Recursive Noise Adaptive Kalman Filtering by Variational Bayesian Approximations
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2008.2008348
– volume: 21
  start-page: 1768
  year: 2018
  ident: ref_4
  article-title: Indoor Tracking by RFID Fusion with IMU Data
  publication-title: Asian J. Control
  doi: 10.1002/asjc.1954
– ident: ref_19
  doi: 10.3390/s17061254
– volume: 38
  start-page: 642
  year: 2019
  ident: ref_36
  article-title: Complex urban dataset with multi-level sensors from highly diverse urban environments
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364919843996
– volume: 2020
  start-page: 2534038
  year: 2020
  ident: ref_31
  article-title: Echo State Network for Extended State Observer and Sliding Mode Control of Vehicle Drive Motor with Unknown Hysteresis Nonlinearity
  publication-title: Math. Probl. Eng.
– volume: 25
  start-page: 100
  year: 2017
  ident: ref_35
  article-title: GPS/INS position integrated navigation based on adaptive Kalman filter
  publication-title: Electron. Des. Eng.
– volume: 12
  start-page: 6395
  year: 2012
  ident: ref_15
  article-title: Improved Sage-Husa Filter for Precision Airdrop Integrated Navigation System
  publication-title: Sci. Technol. Eng.
– volume: 4
  start-page: 8
  year: 2014
  ident: ref_34
  article-title: Application of New Information Adaptive Kalman Filter in Integrated Navigation
  publication-title: GNSS World China
– volume: 24
  start-page: 476
  year: 2011
  ident: ref_25
  article-title: Multiple Fading Factors Kalman Filter for SINS Static Alignment Application
  publication-title: Chin. J. Aeronaut.
  doi: 10.1016/S1000-9361(11)60055-1
– volume: 108
  start-page: 295
  year: 2021
  ident: ref_27
  article-title: Adaptive H-infinite kalman filter based on multiple fading factors and its application in unmanned underwater vehicle
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2020.08.030
– volume: 51
  start-page: 5032
  year: 2020
  ident: ref_29
  article-title: Neural-Network-Based Adaptive Singularity-Free Fixed-Time Attitude Tracking Control for Spacecrafts
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2020.3024672
– volume: 69
  start-page: 9190
  year: 2020
  ident: ref_5
  article-title: Improving Accuracy and Robustness in HF-RFID-Based Indoor Positioning with Kalman Filtering and Tukey Smoothing
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2020.2995281
– volume: 39
  start-page: 620
  year: 2017
  ident: ref_23
  article-title: SINS initial alignment method based on adaptive multiple fading factors Kalman filter
  publication-title: Syst. Eng. Electron.
– volume: 93
  start-page: 420
  year: 2013
  ident: ref_7
  article-title: Kalman filtering strategies utilizing the chattering effects of the smooth variable structure filter
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2012.07.036
– ident: ref_1
  doi: 10.3390/s21062085
– volume: 36
  start-page: 1405
  year: 2014
  ident: ref_26
  article-title: Adaptive Kalman filter based on multiple fading factors
  publication-title: Syst. Eng. Electron.
– volume: 24
  start-page: 1669
  year: 2012
  ident: ref_16
  article-title: Adaptive Estimation Kalman Filtering with Fading Factor for Attitude Determination in Integrated Navigation System
  publication-title: J. Syst. Simul.
– volume: 24
  start-page: 81
  year: 2014
  ident: ref_18
  article-title: Kalman filter with both adaptivity and robustness
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2013.12.017
– volume: 185
  start-page: 106134
  year: 2021
  ident: ref_12
  article-title: Multi-stream hybrid architecture based on cross-level fusion strategy for fine-grained crop species recognition in precision agriculture
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106134
– ident: ref_32
  doi: 10.3390/math10040610
– volume: 176
  start-page: 109139
  year: 2021
  ident: ref_24
  article-title: Multiple fading factors-based strong tracking variational Bayesian adaptive Kalman filter
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109139
– volume: 13
  start-page: 9973
  year: 2013
  ident: ref_21
  article-title: Improved Algorithmof Adaptive Fading Kalman Filtering Based on GPS/INS Integrated Navigation
  publication-title: Sci. Technol. Eng.
– volume: 34
  start-page: 38
  year: 2015
  ident: ref_2
  article-title: Research on SINS/GPS Integrated Navigation Kalman Filter Algorithm
  publication-title: Ordnance Ind. Autom.
– volume: 33
  start-page: 2696
  year: 2011
  ident: ref_6
  article-title: Adaptive fading Kalman filter based on innovation covariance
  publication-title: Syst. Eng. Electron.
– volume: 367
  start-page: 528
  year: 2013
  ident: ref_8
  article-title: Application of Extended Kalman Filter Algorithm in SDINS/GPS Integrated Inertial Navigation System
  publication-title: Appl. Mech. Mater.
  doi: 10.4028/www.scientific.net/AMM.367.528
– ident: ref_11
  doi: 10.3390/agronomy12030591
– volume: 43
  start-page: 1667
  year: 2018
  ident: ref_28
  article-title: Adaptive Fading Kalman Filter and Its Application in SINS Initial Alignment
  publication-title: Geomat. Inf. Sci. Wuhan Univ.
– volume: 39
  start-page: 8
  year: 2021
  ident: ref_3
  article-title: A Loosely Coupled GNSS/SINS Integrated Navigation System Assisted by Gyroscope and Vialog
  publication-title: Aerosp. Control
– volume: 7
  start-page: 50
  year: 2020
  ident: ref_33
  article-title: Review on Practical Kalman Filtering Techniques in Traditional Integrated Navigation System
  publication-title: Navig. Position. Timing
– volume: 67
  start-page: 2294
  year: 2019
  ident: ref_13
  article-title: Probabilistic Monitoring of Correlated Sensors for Nonlinear Processes in State-Space
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2019.2907505
– volume: 25
  start-page: 1
  year: 2021
  ident: ref_10
  article-title: A new fuzzy strong tracking cubature Kalman filter for INS/GNSS
  publication-title: GPS Solut.
  doi: 10.1007/s10291-021-01148-5
– volume: 100
  start-page: 605
  year: 2017
  ident: ref_17
  article-title: An innovative information fusion method with adaptive Kalman filter for integrated INS/GNSS navigation of autonomous vehicles
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2017.07.051
– volume: 10
  start-page: 200
  year: 2007
  ident: ref_22
  article-title: Comparison of two fading filters and adaptively robust filter
  publication-title: Geomat. Inf. Sci. Wuhan Univ.
– volume: 4
  start-page: 1
  year: 2020
  ident: ref_9
  article-title: Adaptive fading factor unscented Kalman filter with application to target tracking
  publication-title: Aerosp. Syst.
SSID ssj0023338
Score 2.4215221
Snippet An integrated navigation algorithm based on a multiple fading factors Kalman filter (MFKF) is proposed to solve the problems that the Kalman filtering (KF)...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 5081
SubjectTerms Accuracy
Algorithms
fading factor
Innovations
Integrated approach
integrated navigation system
Kalman filter
Kalman filters
Mathematical models
Navigation systems
state switching
Velocity
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIpwgUZBADS9Q87MQZW0RUQO1EpW6RX6GV2gTRlt_P2XmokZBYmCLZN9h3Pt198fk7hB4iJhNOeewGARMuUQl1RawiF3xLUu3lkZLmf8d4Eo2m5HVGZzutvkxNWEUPXCmuL3mkIETJmGkFqTLlhHBljmKcS0ao5fmEmNeAqRpqhYC8Kh6hEEB9fx0YQm6P-Z3oY0n6O5llty5yJ9Ckx-iozhDxoFrZCdrTxSk63OENPEOTl4bkQeEJ_7YsGWWBB8uPErD-fIWHEJsUhqFxXS-IU1srDx_bXge_8eWKFzhdmMvyczRNn9-fRm7dGMGVgN42rvC56ZghpSLKkxB0leacQaCNNeQbGjBQzEmkcgaq4zl4ZMjynEGmRSTLRRKHF2i_KAt9ibAAbUoZABILEiJkyHjCtFAcRqlSijrosVFYJmvWcNO8YpkBejC6zVrdOui-Ff2sqDJ-ExoarbcCht3aDoDNs9rm2V82d1CvsVlWu9w6M09yIZ_0zPRdOw3OYm5AeKHLrZWh5mbVjxwUd2zdWVB3pljMLe12Ehp2PP_qP3ZwjQ4C847C1h720P7ma6tvILvZiFt7kH8A0r75-A
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT90wDLc2uGyHCdimdXwom3bYpeK1Tdr0hABR2CbeaUjcqjROAenRAu_B34-dl9dRaeJUKbFUy4ljO3Z-BviRa1saZYo4TXUTSyxV3BSYx6RbVrlJm6Pl-47zaX52IX9fqstw4TYPZZWrM9Ef1NhbviPf5xeX5C7Qnjm4u4-5axRnV0MLjbewnpCl4ZIuXZ0OAVdG8dcSTSij0H5_njIs90QnIxvkofpH_uW4OvKFuak24EPwE8XhcmE34Y3rtuD9C_TAjzD9tYJ6QDE1Tx4ro-_E4eyK-F5c34ojslAoaOg8VA2KylfM08c32RF_zOzWdKK64ZT5J7ioTv4en8WhPUJsKYZbxE1iuG-GtShxYsn0ojNGk7ktHHkdjiKhwsgcW51jYlrSy0y3rSZ_S1rdNmWRfYa1ru_cFxCNNGhtSvFYWsrGZtqU2jVoaFQhoorg50pgtQ3Y4dzCYlZTDMGyrQfZRvB9IL1bAmb8j-iIpT4QMMa1H-gfruqgMrU1xHgysYV2SEGSMpK45EOoaK2WKotgZ7VmdVC8ef1vm0TwbZgmleE8iOlc_-hpFOdXkzyCYrTWI4bGM93NtQffLjPGyEu-vv7zbXiX8jsJX1u4A2uLh0e3S97LotnzW_QZeGXx2A
  priority: 102
  providerName: ProQuest
Title Integrated Navigation Algorithm Based on Multiple Fading Factors Kalman Filter
URI https://www.proquest.com/docview/2694083053
https://www.proquest.com/docview/2695289016
https://pubmed.ncbi.nlm.nih.gov/PMC9319541
https://doaj.org/article/ca6d110c78ed4285a44ad00317fc8453
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDLfG9gIPiPEhbhungHjgpdCPpEkfENpN6wboTghx0r1VaZJuJ91adrsh-O-xc221SnvYSyslrpQ6dW3H9s8A71NlMi20DOJYlQG3mQhKadMAZcsIF1apNXTeMZ2l53P-bSEWO9D12GwZeHOva0f9pObr1ce_1_--oMB_Jo8TXfZPNzHBbYdUgL2HCklSI4Mp74MJcZL4htZU0xWgPgy3AEPDRwdqyaP3D0zOYcLkHQ2UP4OnrenIjrd7vQ87rn4OT-4ACr6A2dcO_cGymf7j4TOamh2vLpr1cnN5xSaotCzDoWmbSMhyn0SPN993h33Xqytds3xJUfSXMM9Pf52cB23HhMCgW7cJykhTKw1jLLehQW1sndYKNbB0aIg4dI6k5qmtVGojXaGoJqqqFJpg3KiqzGTyCnbrpnavgZVcW2NidNHijJcmUTpTrrQaR4W1VozgQ8ewwrRw4tTVYlWgW0G8LXrejuBdT_p7i6FxH9GEuN4TEOy1H2jWF0UrRYXRuPAoNFI5i36T0BxXSf8lWRnFRTKCo27Piu5TKqhWFw3NkKbf9tMoRRQa0bVrbj2NoJBrlI5ADvZ6sKDhTL289HjcWUKwedHBQ17zEB7HVEDhkw6PYHezvnVv0KzZlGN4JBcSryo_G8Pe5HT24-fYHxGM_ef8H0F3-t0
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOVXmJ0FIMAolL1DzsxDlUqAXCLtvdUyv1FhzbaSttk9LdgvhT_MbOeJPQSIhbT5HsUWKNZzwz8cw3AO8SqTMlVOpHkSx9bjLhl6lJfNQtLWxQJUbT_47pLBkd828n4mQN_nS1MJRW2Z2J7qA2jaZ_5LtUcYnuAsrMx8sfPnWNotvVroXGSiwm9vcvDNkWe-PPuL_voyj_cvRp5LddBXyNoc_SL0NF7Sa0NtwEGi2WsUpJtFKpRWNtMYBIFU9MJRMTqgrFOZZVJdFN4VpWZZbG-N57cJ_HaMmpMj3_2gd4McZ7K_QinAx2FxHBgAcyHNg81xpg4M8OszFvmbd8EzZav5TtrwTpMazZ-gk8uoVW-BRm4w5awrCZ-umwOZqa7c9PkU_Lswt2gBbRMByatlmKLHcZ-vhwTX3YRM0vVM3yc7qifwbHd8K457BeN7V9AazkymgdYfwXZbzUsVSZtKVROCqMMcKDDx3DCt1ilVPLjHmBMQvxtuh568HbnvRyBdDxL6ID4npPQJjabqC5Oi1aFS20woWHgU6lNRiUCcVxlXTopZWWXMQebHd7VrSKvij-iqUHb_ppVFG6d1G1ba4djaD73DDxIB3s9WBBw5n6_MyBfWcxYfKFL___8dfwYHQ0PSwOx7PJFjyMqEbD5TVuw_ry6tq-Qs9pWe44cWXw_a714wbVCS7V
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTgUPFUAwUMAolLtHk4sXNAqEsbdVkaVYhKvQXHdtpK26R0t6361_h1zGST0EiIW0-RHCuxxjOe-ezxNwDvY6kTFSnhBoEsXG6SyC2EiV20LR1Zr4yNpv2O_SzeO-Rfj6KjNfjd3YWhtMpuTWwWalNr2iMf041LDBdQZ8ZlmxZxsJN-Pv_lUgUpOmntymmsVGRmb64Rvi0-TXdwrj8EQbr748ue21YYcDXCoKVb-IpKT2htuPE0ei9jlZLosYRFx20RTAjFY1PK2PiqRNUOZVlKDFm4lmWRiBC_ew_WBaGiEaxPdrOD7z3cCxH9rbiMwjDxxouASME96Q88YFMoYBDdDnMzbzm79BFstFEq216p1WNYs9UTeHiLu_ApZNOOaMKwTF01TB11xbbnxyip5ckZm6B_NAyb9tucRZY2-fr4aEr8sJman6mKpad0YP8MDu9EdM9hVNWV3QRWcGW0DhANBgkvdChVIm1hFLZGxpjIgY-dwHLdMpdTAY15jgiGZJv3snXgXd_1fEXX8a9OE5J634EYtpuG-uI4bw021woH7ntaSGsQokWK4yhpCRSlljwKHdjq5ixvzX6R_1VSB972r9Fg6RRGVba-bPpEdLrrxw6IwVwPBjR8U52eNNTfSUgMff6L___8DdxH28i_TbPZS3gQ0IWNJslxC0bLi0v7CsOoZfG61VcGP-_aRP4AsDk0Zw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrated+Navigation+Algorithm+Based+on+Multiple+Fading+Factors+Kalman+Filter&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Sun%2C+Bo&rft.au=Zhang%2C+Zhenwei&rft.au=Liu%2C+Shicai&rft.au=Yan%2C+Xiaobing&rft.date=2022-07-06&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=22&rft.issue=14&rft.spage=5081&rft_id=info:doi/10.3390%2Fs22145081&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s22145081
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon