Integrated Navigation Algorithm Based on Multiple Fading Factors Kalman Filter
An integrated navigation algorithm based on a multiple fading factors Kalman filter (MFKF) is proposed to solve the problems that the Kalman filtering (KF) algorithm easily brings about diffusion when the model becomes a mismatched or noisy, and the MFKF accuracy is reduced when the fading factor is...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 22; no. 14; p. 5081 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
06.07.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An integrated navigation algorithm based on a multiple fading factors Kalman filter (MFKF) is proposed to solve the problems that the Kalman filtering (KF) algorithm easily brings about diffusion when the model becomes a mismatched or noisy, and the MFKF accuracy is reduced when the fading factor is overused. Based on the innovation covariance theory, the algorithm designs an improved basis for judging filtering anomalies and makes the timing of the introduction of the fading factor more reasonable by switching the filtering state. Different from the traditional basis of filter abnormality judgment, the improved judgment basis adopts a recursive way to continuously update the estimated value of the innovation covariance to improve the estimation accuracy of the innovation covariance, and an empirical reserve factor for the judgment basis is introduced to adapt to practical engineering applications. By establishing an inertial navigation system (INS)/global navigation satellite system (GNSS) integrated navigation model, the results show that the average positioning accuracy of the proposed algorithm is improved by 26.52% and 7.48%, respectively, compared with the KF and MFKF, and shows better robustness and self-adaptability. |
---|---|
AbstractList | An integrated navigation algorithm based on a multiple fading factors Kalman filter (MFKF) is proposed to solve the problems that the Kalman filtering (KF) algorithm easily brings about diffusion when the model becomes a mismatched or noisy, and the MFKF accuracy is reduced when the fading factor is overused. Based on the innovation covariance theory, the algorithm designs an improved basis for judging filtering anomalies and makes the timing of the introduction of the fading factor more reasonable by switching the filtering state. Different from the traditional basis of filter abnormality judgment, the improved judgment basis adopts a recursive way to continuously update the estimated value of the innovation covariance to improve the estimation accuracy of the innovation covariance, and an empirical reserve factor for the judgment basis is introduced to adapt to practical engineering applications. By establishing an inertial navigation system (INS)/global navigation satellite system (GNSS) integrated navigation model, the results show that the average positioning accuracy of the proposed algorithm is improved by 26.52% and 7.48%, respectively, compared with the KF and MFKF, and shows better robustness and self-adaptability. An integrated navigation algorithm based on a multiple fading factors Kalman filter (MFKF) is proposed to solve the problems that the Kalman filtering (KF) algorithm easily brings about diffusion when the model becomes a mismatched or noisy, and the MFKF accuracy is reduced when the fading factor is overused. Based on the innovation covariance theory, the algorithm designs an improved basis for judging filtering anomalies and makes the timing of the introduction of the fading factor more reasonable by switching the filtering state. Different from the traditional basis of filter abnormality judgment, the improved judgment basis adopts a recursive way to continuously update the estimated value of the innovation covariance to improve the estimation accuracy of the innovation covariance, and an empirical reserve factor for the judgment basis is introduced to adapt to practical engineering applications. By establishing an inertial navigation system (INS)/global navigation satellite system (GNSS) integrated navigation model, the results show that the average positioning accuracy of the proposed algorithm is improved by 26.52% and 7.48%, respectively, compared with the KF and MFKF, and shows better robustness and self-adaptability.An integrated navigation algorithm based on a multiple fading factors Kalman filter (MFKF) is proposed to solve the problems that the Kalman filtering (KF) algorithm easily brings about diffusion when the model becomes a mismatched or noisy, and the MFKF accuracy is reduced when the fading factor is overused. Based on the innovation covariance theory, the algorithm designs an improved basis for judging filtering anomalies and makes the timing of the introduction of the fading factor more reasonable by switching the filtering state. Different from the traditional basis of filter abnormality judgment, the improved judgment basis adopts a recursive way to continuously update the estimated value of the innovation covariance to improve the estimation accuracy of the innovation covariance, and an empirical reserve factor for the judgment basis is introduced to adapt to practical engineering applications. By establishing an inertial navigation system (INS)/global navigation satellite system (GNSS) integrated navigation model, the results show that the average positioning accuracy of the proposed algorithm is improved by 26.52% and 7.48%, respectively, compared with the KF and MFKF, and shows better robustness and self-adaptability. |
Author | Liu, Shicai Yang, Chengxu Sun, Bo Yan, Xiaobing Zhang, Zhenwei |
AuthorAffiliation | 3 College of Communication Engineering, Taishan College of Science and Technology, Tai’an 271000, China; yanxb_1975@163.com 1 College of Intelligent Equipment, Shandong University of Science and Technology, Tai’an 271019, China; bo_sun@sdust.edu.cn (B.S.); sdustliu@163.com (S.L.); ycxjnj@163.com (C.Y.) 2 College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China |
AuthorAffiliation_xml | – name: 2 College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China – name: 1 College of Intelligent Equipment, Shandong University of Science and Technology, Tai’an 271019, China; bo_sun@sdust.edu.cn (B.S.); sdustliu@163.com (S.L.); ycxjnj@163.com (C.Y.) – name: 3 College of Communication Engineering, Taishan College of Science and Technology, Tai’an 271000, China; yanxb_1975@163.com |
Author_xml | – sequence: 1 givenname: Bo surname: Sun fullname: Sun, Bo – sequence: 2 givenname: Zhenwei orcidid: 0000-0002-8015-627X surname: Zhang fullname: Zhang, Zhenwei – sequence: 3 givenname: Shicai surname: Liu fullname: Liu, Shicai – sequence: 4 givenname: Xiaobing surname: Yan fullname: Yan, Xiaobing – sequence: 5 givenname: Chengxu surname: Yang fullname: Yang, Chengxu |
BookMark | eNplkU1vFDEMhiNURD_gwD8YiQscluZrZjwXpLZiYUUpFzhH3iQzzSqTLEm2Ev-edLcgWk627NePLb-n5CjEYAl5zeh7IQZ6njlnsqXAnpETJrlcAOf06J_8mJzmvKGUCyHgBTkWLQy079oTcrMKxU4JizXNDd65CYuLobnwU0yu3M7NJebaqqWvO1_c1ttmicaFqQZdYsrNF_QzhmbpfLHpJXk-os_21UM8Iz-WH79ffV5cf_u0urq4Xmgpu7JYM-yAgtZGGqq5AGMRoWOyt2IYLPSsR9mZETrDcISeChhHaDmXGsb10IszsjpwTcSN2iY3Y_qlIjq1L8Q0KUzFaW-VxgphVPdgjeTQopRoKBWsHzXIVlTWhwNru1vP1mgbSkL_CPq4E9ytmuKdGgQbWskq4O0DIMWfO5uLml3W1nsMNu6y4t3Q8vpw1lXpmyfSTdylUF91r5IUBN1fdH5Q6RRzTnZU2pW9MXW_84pRde-7-ut7nXj3ZOLP-f9rfwN9Raxj |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3404252 crossref_primary_10_1016_j_epsr_2023_109834 crossref_primary_10_3389_fnbot_2024_1374531 crossref_primary_10_3390_su141811230 crossref_primary_10_1177_00202940241258481 crossref_primary_10_3390_s22207742 crossref_primary_10_3390_s22187060 crossref_primary_10_1109_JSEN_2025_3532781 |
Cites_doi | 10.1109/TII.2020.2971056 10.1016/j.ijleo.2019.01.100 10.1109/TAC.2008.2008348 10.1002/asjc.1954 10.3390/s17061254 10.1177/0278364919843996 10.1016/S1000-9361(11)60055-1 10.1016/j.isatra.2020.08.030 10.1109/TCYB.2020.3024672 10.1109/TIM.2020.2995281 10.1016/j.sigpro.2012.07.036 10.3390/s21062085 10.1016/j.jprocont.2013.12.017 10.1016/j.compag.2021.106134 10.3390/math10040610 10.1016/j.measurement.2021.109139 10.4028/www.scientific.net/AMM.367.528 10.3390/agronomy12030591 10.1109/TIE.2019.2907505 10.1007/s10291-021-01148-5 10.1016/j.ymssp.2017.07.051 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s22145081 |
DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest_Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_ca6d110c78ed4285a44ad00317fc8453 PMC9319541 10_3390_s22145081 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c446t-b1a6808ccd4d0c238deaa86147e399e8717a46df86d1af87038ff85224c8fb973 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:32:14 EDT 2025 Thu Aug 21 18:30:02 EDT 2025 Thu Jul 10 19:25:26 EDT 2025 Fri Jul 25 20:09:08 EDT 2025 Thu Apr 24 22:54:36 EDT 2025 Tue Jul 01 02:42:02 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c446t-b1a6808ccd4d0c238deaa86147e399e8717a46df86d1af87038ff85224c8fb973 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8015-627X |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s22145081 |
PMID | 35890765 |
PQID | 2694083053 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ca6d110c78ed4285a44ad00317fc8453 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9319541 proquest_miscellaneous_2695289016 proquest_journals_2694083053 crossref_citationtrail_10_3390_s22145081 crossref_primary_10_3390_s22145081 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220706 |
PublicationDateYYYYMMDD | 2022-07-06 |
PublicationDate_xml | – month: 7 year: 2022 text: 20220706 day: 6 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Niu (ref_15) 2012; 12 Gu (ref_3) 2021; 39 Xue (ref_23) 2017; 39 Pan (ref_24) 2021; 176 Su (ref_16) 2012; 24 Xu (ref_35) 2017; 25 ref_11 ref_32 Kong (ref_12) 2021; 185 Sarkka (ref_14) 2009; 54 Wang (ref_27) 2021; 108 Zhao (ref_13) 2019; 67 ref_19 Gao (ref_31) 2020; 2020 Liu (ref_17) 2017; 100 Guo (ref_28) 2018; 43 Xue (ref_34) 2014; 4 Gu (ref_9) 2020; 4 Niu (ref_2) 2015; 34 Xu (ref_6) 2011; 33 Yang (ref_22) 2007; 10 Wang (ref_30) 2020; 16 Yan (ref_33) 2020; 7 Gao (ref_26) 2014; 36 Zha (ref_20) 2019; 184 Jeong (ref_36) 2019; 38 ref_1 Wang (ref_4) 2018; 21 Chang (ref_18) 2014; 24 Awin (ref_8) 2013; 367 Ma (ref_21) 2013; 13 Chen (ref_29) 2020; 51 Chang (ref_10) 2021; 25 Shirehjini (ref_5) 2020; 69 Gao (ref_25) 2011; 24 Gadsden (ref_7) 2013; 93 |
References_xml | – volume: 16 start-page: 6816 year: 2020 ident: ref_30 article-title: Parameter Estimation and Adaptive Control for Servo Mechanisms with Friction Compensation publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2020.2971056 – volume: 184 start-page: 165 year: 2019 ident: ref_20 article-title: An improved nonlinear Filter based on adaptive fading factor Applied in alignment of SINS publication-title: Optik doi: 10.1016/j.ijleo.2019.01.100 – volume: 54 start-page: 596 year: 2009 ident: ref_14 article-title: Recursive Noise Adaptive Kalman Filtering by Variational Bayesian Approximations publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2008.2008348 – volume: 21 start-page: 1768 year: 2018 ident: ref_4 article-title: Indoor Tracking by RFID Fusion with IMU Data publication-title: Asian J. Control doi: 10.1002/asjc.1954 – ident: ref_19 doi: 10.3390/s17061254 – volume: 38 start-page: 642 year: 2019 ident: ref_36 article-title: Complex urban dataset with multi-level sensors from highly diverse urban environments publication-title: Int. J. Robot. Res. doi: 10.1177/0278364919843996 – volume: 2020 start-page: 2534038 year: 2020 ident: ref_31 article-title: Echo State Network for Extended State Observer and Sliding Mode Control of Vehicle Drive Motor with Unknown Hysteresis Nonlinearity publication-title: Math. Probl. Eng. – volume: 25 start-page: 100 year: 2017 ident: ref_35 article-title: GPS/INS position integrated navigation based on adaptive Kalman filter publication-title: Electron. Des. Eng. – volume: 12 start-page: 6395 year: 2012 ident: ref_15 article-title: Improved Sage-Husa Filter for Precision Airdrop Integrated Navigation System publication-title: Sci. Technol. Eng. – volume: 4 start-page: 8 year: 2014 ident: ref_34 article-title: Application of New Information Adaptive Kalman Filter in Integrated Navigation publication-title: GNSS World China – volume: 24 start-page: 476 year: 2011 ident: ref_25 article-title: Multiple Fading Factors Kalman Filter for SINS Static Alignment Application publication-title: Chin. J. Aeronaut. doi: 10.1016/S1000-9361(11)60055-1 – volume: 108 start-page: 295 year: 2021 ident: ref_27 article-title: Adaptive H-infinite kalman filter based on multiple fading factors and its application in unmanned underwater vehicle publication-title: ISA Trans. doi: 10.1016/j.isatra.2020.08.030 – volume: 51 start-page: 5032 year: 2020 ident: ref_29 article-title: Neural-Network-Based Adaptive Singularity-Free Fixed-Time Attitude Tracking Control for Spacecrafts publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2020.3024672 – volume: 69 start-page: 9190 year: 2020 ident: ref_5 article-title: Improving Accuracy and Robustness in HF-RFID-Based Indoor Positioning with Kalman Filtering and Tukey Smoothing publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2020.2995281 – volume: 39 start-page: 620 year: 2017 ident: ref_23 article-title: SINS initial alignment method based on adaptive multiple fading factors Kalman filter publication-title: Syst. Eng. Electron. – volume: 93 start-page: 420 year: 2013 ident: ref_7 article-title: Kalman filtering strategies utilizing the chattering effects of the smooth variable structure filter publication-title: Signal Process. doi: 10.1016/j.sigpro.2012.07.036 – ident: ref_1 doi: 10.3390/s21062085 – volume: 36 start-page: 1405 year: 2014 ident: ref_26 article-title: Adaptive Kalman filter based on multiple fading factors publication-title: Syst. Eng. Electron. – volume: 24 start-page: 1669 year: 2012 ident: ref_16 article-title: Adaptive Estimation Kalman Filtering with Fading Factor for Attitude Determination in Integrated Navigation System publication-title: J. Syst. Simul. – volume: 24 start-page: 81 year: 2014 ident: ref_18 article-title: Kalman filter with both adaptivity and robustness publication-title: J. Process Control doi: 10.1016/j.jprocont.2013.12.017 – volume: 185 start-page: 106134 year: 2021 ident: ref_12 article-title: Multi-stream hybrid architecture based on cross-level fusion strategy for fine-grained crop species recognition in precision agriculture publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106134 – ident: ref_32 doi: 10.3390/math10040610 – volume: 176 start-page: 109139 year: 2021 ident: ref_24 article-title: Multiple fading factors-based strong tracking variational Bayesian adaptive Kalman filter publication-title: Measurement doi: 10.1016/j.measurement.2021.109139 – volume: 13 start-page: 9973 year: 2013 ident: ref_21 article-title: Improved Algorithmof Adaptive Fading Kalman Filtering Based on GPS/INS Integrated Navigation publication-title: Sci. Technol. Eng. – volume: 34 start-page: 38 year: 2015 ident: ref_2 article-title: Research on SINS/GPS Integrated Navigation Kalman Filter Algorithm publication-title: Ordnance Ind. Autom. – volume: 33 start-page: 2696 year: 2011 ident: ref_6 article-title: Adaptive fading Kalman filter based on innovation covariance publication-title: Syst. Eng. Electron. – volume: 367 start-page: 528 year: 2013 ident: ref_8 article-title: Application of Extended Kalman Filter Algorithm in SDINS/GPS Integrated Inertial Navigation System publication-title: Appl. Mech. Mater. doi: 10.4028/www.scientific.net/AMM.367.528 – ident: ref_11 doi: 10.3390/agronomy12030591 – volume: 43 start-page: 1667 year: 2018 ident: ref_28 article-title: Adaptive Fading Kalman Filter and Its Application in SINS Initial Alignment publication-title: Geomat. Inf. Sci. Wuhan Univ. – volume: 39 start-page: 8 year: 2021 ident: ref_3 article-title: A Loosely Coupled GNSS/SINS Integrated Navigation System Assisted by Gyroscope and Vialog publication-title: Aerosp. Control – volume: 7 start-page: 50 year: 2020 ident: ref_33 article-title: Review on Practical Kalman Filtering Techniques in Traditional Integrated Navigation System publication-title: Navig. Position. Timing – volume: 67 start-page: 2294 year: 2019 ident: ref_13 article-title: Probabilistic Monitoring of Correlated Sensors for Nonlinear Processes in State-Space publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2019.2907505 – volume: 25 start-page: 1 year: 2021 ident: ref_10 article-title: A new fuzzy strong tracking cubature Kalman filter for INS/GNSS publication-title: GPS Solut. doi: 10.1007/s10291-021-01148-5 – volume: 100 start-page: 605 year: 2017 ident: ref_17 article-title: An innovative information fusion method with adaptive Kalman filter for integrated INS/GNSS navigation of autonomous vehicles publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2017.07.051 – volume: 10 start-page: 200 year: 2007 ident: ref_22 article-title: Comparison of two fading filters and adaptively robust filter publication-title: Geomat. Inf. Sci. Wuhan Univ. – volume: 4 start-page: 1 year: 2020 ident: ref_9 article-title: Adaptive fading factor unscented Kalman filter with application to target tracking publication-title: Aerosp. Syst. |
SSID | ssj0023338 |
Score | 2.4215221 |
Snippet | An integrated navigation algorithm based on a multiple fading factors Kalman filter (MFKF) is proposed to solve the problems that the Kalman filtering (KF)... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 5081 |
SubjectTerms | Accuracy Algorithms fading factor Innovations Integrated approach integrated navigation system Kalman filter Kalman filters Mathematical models Navigation systems state switching Velocity |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIpwgUZBADS9Q87MQZW0RUQO1EpW6RX6GV2gTRlt_P2XmokZBYmCLZN9h3Pt198fk7hB4iJhNOeewGARMuUQl1RawiF3xLUu3lkZLmf8d4Eo2m5HVGZzutvkxNWEUPXCmuL3mkIETJmGkFqTLlhHBljmKcS0ao5fmEmNeAqRpqhYC8Kh6hEEB9fx0YQm6P-Z3oY0n6O5llty5yJ9Ckx-iozhDxoFrZCdrTxSk63OENPEOTl4bkQeEJ_7YsGWWBB8uPErD-fIWHEJsUhqFxXS-IU1srDx_bXge_8eWKFzhdmMvyczRNn9-fRm7dGMGVgN42rvC56ZghpSLKkxB0leacQaCNNeQbGjBQzEmkcgaq4zl4ZMjynEGmRSTLRRKHF2i_KAt9ibAAbUoZABILEiJkyHjCtFAcRqlSijrosVFYJmvWcNO8YpkBejC6zVrdOui-Ff2sqDJ-ExoarbcCht3aDoDNs9rm2V82d1CvsVlWu9w6M09yIZ_0zPRdOw3OYm5AeKHLrZWh5mbVjxwUd2zdWVB3pljMLe12Ehp2PP_qP3ZwjQ4C847C1h720P7ma6tvILvZiFt7kH8A0r75-A priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT90wDLc2uGyHCdimdXwom3bYpeK1Tdr0hABR2CbeaUjcqjROAenRAu_B34-dl9dRaeJUKbFUy4ljO3Z-BviRa1saZYo4TXUTSyxV3BSYx6RbVrlJm6Pl-47zaX52IX9fqstw4TYPZZWrM9Ef1NhbviPf5xeX5C7Qnjm4u4-5axRnV0MLjbewnpCl4ZIuXZ0OAVdG8dcSTSij0H5_njIs90QnIxvkofpH_uW4OvKFuak24EPwE8XhcmE34Y3rtuD9C_TAjzD9tYJ6QDE1Tx4ro-_E4eyK-F5c34ojslAoaOg8VA2KylfM08c32RF_zOzWdKK64ZT5J7ioTv4en8WhPUJsKYZbxE1iuG-GtShxYsn0ojNGk7ktHHkdjiKhwsgcW51jYlrSy0y3rSZ_S1rdNmWRfYa1ru_cFxCNNGhtSvFYWsrGZtqU2jVoaFQhoorg50pgtQ3Y4dzCYlZTDMGyrQfZRvB9IL1bAmb8j-iIpT4QMMa1H-gfruqgMrU1xHgysYV2SEGSMpK45EOoaK2WKotgZ7VmdVC8ef1vm0TwbZgmleE8iOlc_-hpFOdXkzyCYrTWI4bGM93NtQffLjPGyEu-vv7zbXiX8jsJX1u4A2uLh0e3S97LotnzW_QZeGXx2A priority: 102 providerName: ProQuest |
Title | Integrated Navigation Algorithm Based on Multiple Fading Factors Kalman Filter |
URI | https://www.proquest.com/docview/2694083053 https://www.proquest.com/docview/2695289016 https://pubmed.ncbi.nlm.nih.gov/PMC9319541 https://doaj.org/article/ca6d110c78ed4285a44ad00317fc8453 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDLfG9gIPiPEhbhungHjgpdCPpEkfENpN6wboTghx0r1VaZJuJ91adrsh-O-xc221SnvYSyslrpQ6dW3H9s8A71NlMi20DOJYlQG3mQhKadMAZcsIF1apNXTeMZ2l53P-bSEWO9D12GwZeHOva0f9pObr1ce_1_--oMB_Jo8TXfZPNzHBbYdUgL2HCklSI4Mp74MJcZL4htZU0xWgPgy3AEPDRwdqyaP3D0zOYcLkHQ2UP4OnrenIjrd7vQ87rn4OT-4ACr6A2dcO_cGymf7j4TOamh2vLpr1cnN5xSaotCzDoWmbSMhyn0SPN993h33Xqytds3xJUfSXMM9Pf52cB23HhMCgW7cJykhTKw1jLLehQW1sndYKNbB0aIg4dI6k5qmtVGojXaGoJqqqFJpg3KiqzGTyCnbrpnavgZVcW2NidNHijJcmUTpTrrQaR4W1VozgQ8ewwrRw4tTVYlWgW0G8LXrejuBdT_p7i6FxH9GEuN4TEOy1H2jWF0UrRYXRuPAoNFI5i36T0BxXSf8lWRnFRTKCo27Piu5TKqhWFw3NkKbf9tMoRRQa0bVrbj2NoJBrlI5ADvZ6sKDhTL289HjcWUKwedHBQ17zEB7HVEDhkw6PYHezvnVv0KzZlGN4JBcSryo_G8Pe5HT24-fYHxGM_ef8H0F3-t0 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOVXmJ0FIMAolL1DzsxDlUqAXCLtvdUyv1FhzbaSttk9LdgvhT_MbOeJPQSIhbT5HsUWKNZzwz8cw3AO8SqTMlVOpHkSx9bjLhl6lJfNQtLWxQJUbT_47pLBkd828n4mQN_nS1MJRW2Z2J7qA2jaZ_5LtUcYnuAsrMx8sfPnWNotvVroXGSiwm9vcvDNkWe-PPuL_voyj_cvRp5LddBXyNoc_SL0NF7Sa0NtwEGi2WsUpJtFKpRWNtMYBIFU9MJRMTqgrFOZZVJdFN4VpWZZbG-N57cJ_HaMmpMj3_2gd4McZ7K_QinAx2FxHBgAcyHNg81xpg4M8OszFvmbd8EzZav5TtrwTpMazZ-gk8uoVW-BRm4w5awrCZ-umwOZqa7c9PkU_Lswt2gBbRMByatlmKLHcZ-vhwTX3YRM0vVM3yc7qifwbHd8K457BeN7V9AazkymgdYfwXZbzUsVSZtKVROCqMMcKDDx3DCt1ilVPLjHmBMQvxtuh568HbnvRyBdDxL6ID4npPQJjabqC5Oi1aFS20woWHgU6lNRiUCcVxlXTopZWWXMQebHd7VrSKvij-iqUHb_ppVFG6d1G1ba4djaD73DDxIB3s9WBBw5n6_MyBfWcxYfKFL___8dfwYHQ0PSwOx7PJFjyMqEbD5TVuw_ry6tq-Qs9pWe44cWXw_a714wbVCS7V |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTgUPFUAwUMAolLtHk4sXNAqEsbdVkaVYhKvQXHdtpK26R0t6361_h1zGST0EiIW0-RHCuxxjOe-ezxNwDvY6kTFSnhBoEsXG6SyC2EiV20LR1Zr4yNpv2O_SzeO-Rfj6KjNfjd3YWhtMpuTWwWalNr2iMf041LDBdQZ8ZlmxZxsJN-Pv_lUgUpOmntymmsVGRmb64Rvi0-TXdwrj8EQbr748ue21YYcDXCoKVb-IpKT2htuPE0ei9jlZLosYRFx20RTAjFY1PK2PiqRNUOZVlKDFm4lmWRiBC_ew_WBaGiEaxPdrOD7z3cCxH9rbiMwjDxxouASME96Q88YFMoYBDdDnMzbzm79BFstFEq216p1WNYs9UTeHiLu_ApZNOOaMKwTF01TB11xbbnxyip5ckZm6B_NAyb9tucRZY2-fr4aEr8sJman6mKpad0YP8MDu9EdM9hVNWV3QRWcGW0DhANBgkvdChVIm1hFLZGxpjIgY-dwHLdMpdTAY15jgiGZJv3snXgXd_1fEXX8a9OE5J634EYtpuG-uI4bw021woH7ntaSGsQokWK4yhpCRSlljwKHdjq5ixvzX6R_1VSB972r9Fg6RRGVba-bPpEdLrrxw6IwVwPBjR8U52eNNTfSUgMff6L___8DdxH28i_TbPZS3gQ0IWNJslxC0bLi0v7CsOoZfG61VcGP-_aRP4AsDk0Zw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrated+Navigation+Algorithm+Based+on+Multiple+Fading+Factors+Kalman+Filter&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Sun%2C+Bo&rft.au=Zhang%2C+Zhenwei&rft.au=Liu%2C+Shicai&rft.au=Yan%2C+Xiaobing&rft.date=2022-07-06&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=22&rft.issue=14&rft.spage=5081&rft_id=info:doi/10.3390%2Fs22145081&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s22145081 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |