Identification of Brain Electrical Activity Related to Head Yaw Rotations
Automatizing the identification of human brain stimuli during head movements could lead towards a significant step forward for human computer interaction (HCI), with important applications for severely impaired people and for robotics. In this paper, a neural network-based identification technique i...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 21; no. 10; p. 3345 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
11.05.2021
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Automatizing the identification of human brain stimuli during head movements could lead towards a significant step forward for human computer interaction (HCI), with important applications for severely impaired people and for robotics. In this paper, a neural network-based identification technique is presented to recognize, by EEG signals, the participant’s head yaw rotations when they are subjected to visual stimulus. The goal is to identify an input-output function between the brain electrical activity and the head movement triggered by switching on/off a light on the participant’s left/right hand side. This identification process is based on “Levenberg–Marquardt” backpropagation algorithm. The results obtained on ten participants, spanning more than two hours of experiments, show the ability of the proposed approach in identifying the brain electrical stimulus associate with head turning. A first analysis is computed to the EEG signals associated to each experiment for each participant. The accuracy of prediction is demonstrated by a significant correlation between training and test trials of the same file, which, in the best case, reaches value r = 0.98 with MSE = 0.02. In a second analysis, the input output function trained on the EEG signals of one participant is tested on the EEG signals by other participants. In this case, the low correlation coefficient values demonstrated that the classifier performances decreases when it is trained and tested on different subjects. |
---|---|
AbstractList | Automatizing the identification of human brain stimuli during head movements could lead towards a significant step forward for human computer interaction (HCI), with important applications for severely impaired people and for robotics. In this paper, a neural network-based identification technique is presented to recognize, by EEG signals, the participant’s head yaw rotations when they are subjected to visual stimulus. The goal is to identify an input-output function between the brain electrical activity and the head movement triggered by switching on/off a light on the participant’s left/right hand side. This identification process is based on “Levenberg–Marquardt” backpropagation algorithm. The results obtained on ten participants, spanning more than two hours of experiments, show the ability of the proposed approach in identifying the brain electrical stimulus associate with head turning. A first analysis is computed to the EEG signals associated to each experiment for each participant. The accuracy of prediction is demonstrated by a significant correlation between training and test trials of the same file, which, in the best case, reaches value
r
= 0.98 with
MSE
= 0.02. In a second analysis, the input output function trained on the EEG signals of one participant is tested on the EEG signals by other participants. In this case, the low correlation coefficient values demonstrated that the classifier performances decreases when it is trained and tested on different subjects. Automatizing the identification of human brain stimuli during head movements could lead towards a significant step forward for human computer interaction (HCI), with important applications for severely impaired people and for robotics. In this paper, a neural network-based identification technique is presented to recognize, by EEG signals, the participant's head yaw rotations when they are subjected to visual stimulus. The goal is to identify an input-output function between the brain electrical activity and the head movement triggered by switching on/off a light on the participant's left/right hand side. This identification process is based on "Levenberg-Marquardt" backpropagation algorithm. The results obtained on ten participants, spanning more than two hours of experiments, show the ability of the proposed approach in identifying the brain electrical stimulus associate with head turning. A first analysis is computed to the EEG signals associated to each experiment for each participant. The accuracy of prediction is demonstrated by a significant correlation between training and test trials of the same file, which, in the best case, reaches value r = 0.98 with MSE = 0.02. In a second analysis, the input output function trained on the EEG signals of one participant is tested on the EEG signals by other participants. In this case, the low correlation coefficient values demonstrated that the classifier performances decreases when it is trained and tested on different subjects.Automatizing the identification of human brain stimuli during head movements could lead towards a significant step forward for human computer interaction (HCI), with important applications for severely impaired people and for robotics. In this paper, a neural network-based identification technique is presented to recognize, by EEG signals, the participant's head yaw rotations when they are subjected to visual stimulus. The goal is to identify an input-output function between the brain electrical activity and the head movement triggered by switching on/off a light on the participant's left/right hand side. This identification process is based on "Levenberg-Marquardt" backpropagation algorithm. The results obtained on ten participants, spanning more than two hours of experiments, show the ability of the proposed approach in identifying the brain electrical stimulus associate with head turning. A first analysis is computed to the EEG signals associated to each experiment for each participant. The accuracy of prediction is demonstrated by a significant correlation between training and test trials of the same file, which, in the best case, reaches value r = 0.98 with MSE = 0.02. In a second analysis, the input output function trained on the EEG signals of one participant is tested on the EEG signals by other participants. In this case, the low correlation coefficient values demonstrated that the classifier performances decreases when it is trained and tested on different subjects. Automatizing the identification of human brain stimuli during head movements could lead towards a significant step forward for human computer interaction (HCI), with important applications for severely impaired people and for robotics. In this paper, a neural network-based identification technique is presented to recognize, by EEG signals, the participant’s head yaw rotations when they are subjected to visual stimulus. The goal is to identify an input-output function between the brain electrical activity and the head movement triggered by switching on/off a light on the participant’s left/right hand side. This identification process is based on “Levenberg–Marquardt” backpropagation algorithm. The results obtained on ten participants, spanning more than two hours of experiments, show the ability of the proposed approach in identifying the brain electrical stimulus associate with head turning. A first analysis is computed to the EEG signals associated to each experiment for each participant. The accuracy of prediction is demonstrated by a significant correlation between training and test trials of the same file, which, in the best case, reaches value r = 0.98 with MSE = 0.02. In a second analysis, the input output function trained on the EEG signals of one participant is tested on the EEG signals by other participants. In this case, the low correlation coefficient values demonstrated that the classifier performances decreases when it is trained and tested on different subjects. |
Author | Zero, Enrico Sacile, Roberto Bersani, Chiara |
AuthorAffiliation | Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genova, 16145 Genoa, Italy; chiara.bersani@unige.it (C.B.); roberto.sacile@unige.it (R.S.) |
AuthorAffiliation_xml | – name: Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genova, 16145 Genoa, Italy; chiara.bersani@unige.it (C.B.); roberto.sacile@unige.it (R.S.) |
Author_xml | – sequence: 1 givenname: Enrico surname: Zero fullname: Zero, Enrico – sequence: 2 givenname: Chiara orcidid: 0000-0002-5779-9605 surname: Bersani fullname: Bersani, Chiara – sequence: 3 givenname: Roberto orcidid: 0000-0003-4086-8747 surname: Sacile fullname: Sacile, Roberto |
BookMark | eNplkUFPXCEUhUmjqTrtov-ApJt2MRW48B5smlhj6yQmJsZNV-Q-Hlgmbx4WGBv_fdGxTbUryOWc75JzjsjenGZPyDvOPgEYdlwE5wxAqlfkkEshl1oItvfP_YAclbJmTACAfk0OQLJOMVCHZLUa_VxjiA5rTDNNgX7JGGd6NnlXcxtP9MTVeBfrPb3yE1Y_0prouceRfsdf9CrVR2d5Q_YDTsW_fToX5Prr2fXp-fLi8tvq9ORi6aTs6hI9By0Ag2BcBT8MClzfGxFMN3IBahCjcEoOoNEZKQfpkMmeQzea0AcBC7LaYceEa3ub4wbzvU0Y7eMg5RuLuUY3easBpZbKdDwIqdAN0PehzXxbCF3wjfV5x7rdDhs_upZExukZ9PnLHH_Ym3RnNVdMG94AH54AOf3c-lLtJhbnpwlnn7bFCgWdNNq0chbk_QvpOm3z3JJ6UAkjjeK6qY53KpdTKdkH6-Iu37Y_TpYz-9C4_dt4c3x84fjz_f-1vwFrO6n3 |
CitedBy_id | crossref_primary_10_3390_s21134578 crossref_primary_10_3390_act11060161 crossref_primary_10_1016_j_matt_2024_05_023 |
Cites_doi | 10.3389/fnsys.2021.578875 10.1109/LRA.2017.2771329 10.1109/THMS.2019.2938156 10.1016/j.compbiomed.2011.06.020 10.1109/ICORAS.2016.7872610 10.3390/fi13050103 10.1080/2326263X.2014.912881 10.1088/1741-2552/aaf12e 10.1016/j.neuropsychologia.2011.09.026 10.1007/978-3-642-13039-7_28 10.3390/s21072339 10.1016/S0926-6410(02)00225-2 10.1016/j.ifacol.2019.12.068 10.1109/RBME.2010.2084078 10.1080/2326263X.2019.1651186 10.3390/s19061365 10.1371/journal.pone.0230184 10.1016/j.inffus.2020.06.008 10.1088/1741-2560/4/2/R03 10.4324/9780203771587 10.1109/THMS.2018.2830647 10.1109/IEMBS.2007.4352847 10.3390/s21082852 10.1109/THMS.2015.2476818 10.1007/978-1-84996-272-8 10.1088/1741-2560/4/2/R01 10.3390/s19050987 10.1109/ACCESS.2019.2934018 10.1080/2326263X.2014.912883 10.3389/fpsyg.2017.02116 10.1109/THMS.2014.2366914 10.1109/TII.2017.2777460 10.1080/2326263X.2020.1801112 10.3390/brainsci11010043 10.1504/IJBET.2016.079488 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s21103345 |
DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Proquest Central Journals ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic Proquest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_83a4845961f245acb377f3a4ec7736fe PMC8150891 10_3390_s21103345 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c446t-ae13823af2015febb53c7792f96d1235b2d2c54b38ac944b4ca047136d9f7f23 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:26:49 EDT 2025 Thu Aug 21 18:18:18 EDT 2025 Fri Jul 11 15:14:04 EDT 2025 Fri Jul 25 20:19:23 EDT 2025 Tue Jul 01 03:56:12 EDT 2025 Thu Apr 24 23:09:40 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c446t-ae13823af2015febb53c7792f96d1235b2d2c54b38ac944b4ca047136d9f7f23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4086-8747 0000-0002-5779-9605 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s21103345 |
PMID | 34065035 |
PQID | 2532949518 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_83a4845961f245acb377f3a4ec7736fe pubmedcentral_primary_oai_pubmedcentral_nih_gov_8150891 proquest_miscellaneous_2536498903 proquest_journals_2532949518 crossref_citationtrail_10_3390_s21103345 crossref_primary_10_3390_s21103345 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210511 |
PublicationDateYYYYMMDD | 2021-05-11 |
PublicationDate_xml | – month: 5 year: 2021 text: 20210511 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Saha (ref_5) 2021; 15 Singh (ref_35) 2016; 22 Lv (ref_39) 2017; 14 Allison (ref_3) 2014; 1 Zero (ref_13) 2019; 52 Rilk (ref_33) 2011; 49 Borhani (ref_14) 2019; 6 ref_34 Monteiro (ref_11) 2019; 49 Randazzo (ref_15) 2017; 3 Liao (ref_17) 2020; 7 Stikic (ref_10) 2014; 1 ref_30 ref_18 Sapna (ref_38) 2012; 2 Sleight (ref_16) 2009; 110 Alazrai (ref_28) 2019; 7 Sakkalis (ref_36) 2011; 41 Abiri (ref_37) 2019; 16 Chi (ref_8) 2010; 3 ref_24 ref_23 ref_22 Nourmohammadi (ref_1) 2018; 48 ref_20 Lotte (ref_31) 2007; 4 Lutzenberger (ref_32) 2003; 16 Li (ref_19) 2017; 8 Narayan (ref_21) 2021; 12 Bashashati (ref_25) 2007; 4 ref_40 ref_29 Zhang (ref_2) 2015; 45 ref_27 Wang (ref_12) 2015; 46 ref_26 Ali (ref_9) 2020; 63 ref_4 ref_7 ref_6 |
References_xml | – ident: ref_30 – volume: 15 start-page: 4 year: 2021 ident: ref_5 article-title: Progress in Brain Computer Interface: Challenges and Potentials publication-title: Front. Syst. Neurosci. doi: 10.3389/fnsys.2021.578875 – volume: 12 start-page: 3339 year: 2021 ident: ref_21 article-title: Motor-Imagery EEG Signals Classification using SVM, MLP and LDA Classifiers publication-title: Turk. J. Comput. Math. Educ. – volume: 3 start-page: 500 year: 2017 ident: ref_15 article-title: mano: A wearable hand exoskeleton for activities of daily living and neurorehabilitation publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2017.2771329 – volume: 49 start-page: 599 year: 2019 ident: ref_11 article-title: Using EEG for Mental Fatigue Assessment: A Comprehensive Look into the Current State of the Art publication-title: IEEE Trans. Hum.-Mach. Syst. doi: 10.1109/THMS.2019.2938156 – ident: ref_24 – volume: 41 start-page: 1110 year: 2011 ident: ref_36 article-title: Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2011.06.020 – ident: ref_20 doi: 10.1109/ICORAS.2016.7872610 – ident: ref_22 doi: 10.3390/fi13050103 – volume: 1 start-page: 66 year: 2014 ident: ref_3 article-title: A survey of affective brain computer interfaces: Principles, state-of-the-art, and challenges publication-title: Brain-Comput. Interfaces doi: 10.1080/2326263X.2014.912881 – volume: 16 start-page: 011001 year: 2019 ident: ref_37 article-title: A comprehensive review of EEG-based brain–computer interface paradigms publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aaf12e – volume: 49 start-page: 3704 year: 2011 ident: ref_33 article-title: Alpha coherence predicts accuracy during a visuomotor tracking task publication-title: Neuropsychologia doi: 10.1016/j.neuropsychologia.2011.09.026 – ident: ref_18 doi: 10.1007/978-3-642-13039-7_28 – ident: ref_23 doi: 10.3390/s21072339 – volume: 16 start-page: 104 year: 2003 ident: ref_32 article-title: Complexity of visual stimuli and non-linear EEG dynamics in humans publication-title: Cogn. Brain Res. doi: 10.1016/S0926-6410(02)00225-2 – volume: 52 start-page: 299 year: 2019 ident: ref_13 article-title: Towards real-time monitoring of fear in driving sessions publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2019.12.068 – volume: 3 start-page: 106 year: 2010 ident: ref_8 article-title: Dry-Contact and Noncontact Biopotential Electrodes: Methodological Review publication-title: IEEE Rev. Biomed. Eng. doi: 10.1109/RBME.2010.2084078 – volume: 6 start-page: 25 year: 2019 ident: ref_14 article-title: Brain connectivity evaluation during selective attention using EEG-based brain-computer interface publication-title: Brain-Comput. Interfaces doi: 10.1080/2326263X.2019.1651186 – ident: ref_6 doi: 10.3390/s19061365 – ident: ref_29 doi: 10.1371/journal.pone.0230184 – volume: 63 start-page: 208 year: 2020 ident: ref_9 article-title: A smart healthcare monitoring system for heart disease prediction based on ensemble deep learning and feature fusion publication-title: Inf. Fusion doi: 10.1016/j.inffus.2020.06.008 – volume: 2 start-page: 393 year: 2012 ident: ref_38 article-title: Backpropagation learning algorithm based on Levenberg Marquardt Algorithm publication-title: Comp. Sci. Inform. Technol. – volume: 4 start-page: R32 year: 2007 ident: ref_25 article-title: A survey of signal processing algorithms in brain–computer interfaces based on electrical brain signals publication-title: J. Neural Eng. doi: 10.1088/1741-2560/4/2/R03 – ident: ref_40 doi: 10.4324/9780203771587 – volume: 48 start-page: 337 year: 2018 ident: ref_1 article-title: A survey on unmanned aerial vehicle remote control using brain–computer interface publication-title: IEEE Trans. Hum.-Mach. Syst. doi: 10.1109/THMS.2018.2830647 – ident: ref_27 doi: 10.1109/IEMBS.2007.4352847 – ident: ref_7 doi: 10.3390/s21082852 – volume: 110 start-page: 2009 year: 2009 ident: ref_16 article-title: Classification of executed and imagined motor movement EEG signals publication-title: Ann. Arbor Univ. Mich. – volume: 46 start-page: 424 year: 2015 ident: ref_12 article-title: Using wireless EEG signals to assess memory workload in the n-back task publication-title: IEEE Trans. Hum.-Mach. Syst. doi: 10.1109/THMS.2015.2476818 – ident: ref_4 doi: 10.1007/978-1-84996-272-8 – volume: 4 start-page: R1 year: 2007 ident: ref_31 article-title: A review of classification algorithms for EEG-based brain–computer interfaces publication-title: J. Neural Eng. doi: 10.1088/1741-2560/4/2/R01 – ident: ref_34 doi: 10.3390/s19050987 – volume: 7 start-page: 109612 year: 2019 ident: ref_28 article-title: A Deep Learning Framework for Decoding Motor Imagery Tasks of the Same Hand Using EEG Signals publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2934018 – volume: 1 start-page: 99 year: 2014 ident: ref_10 article-title: EEG-based classification of positive and negative affective states publication-title: Brain-Comput. Interfaces doi: 10.1080/2326263X.2014.912883 – volume: 8 start-page: 2116 year: 2017 ident: ref_19 article-title: A public database of immersive VR videos with corresponding ratings of arousal, valence, and correlations between head movements and self report measures publication-title: Front. Psychol. doi: 10.3389/fpsyg.2017.02116 – volume: 45 start-page: 200 year: 2015 ident: ref_2 article-title: Recognition of Mental Workload Levels Under Complex Human–Machine Collaboration by Using Physiological Features and Adaptive Support Vector Machines publication-title: IEEE Trans. Hum.-Mach. Syst. doi: 10.1109/THMS.2014.2366914 – volume: 14 start-page: 3436 year: 2017 ident: ref_39 article-title: Levenberg–Marquardt backpropagation training of multilayer neural networks for state estimation of a safety-critical cyber-physical system publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2017.2777460 – volume: 7 start-page: 47 year: 2020 ident: ref_17 article-title: Effects of local and global spatial patterns in EEG motor-imagery classification using convolutional neural network publication-title: Brain-Comput. Interfaces doi: 10.1080/2326263X.2020.1801112 – ident: ref_26 doi: 10.3390/brainsci11010043 – volume: 22 start-page: 250 year: 2016 ident: ref_35 article-title: Comparative study of FIR and IIR filters for the removal of 50 Hz noise from EEG signal publication-title: Int. J. Biomed. Eng. Technol. doi: 10.1504/IJBET.2016.079488 |
SSID | ssj0023338 |
Score | 2.3547533 |
Snippet | Automatizing the identification of human brain stimuli during head movements could lead towards a significant step forward for human computer interaction... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 3345 |
SubjectTerms | Algorithms brain electrical activity Brain research brain-computer interface Classification Discriminant analysis Electrodes Electroencephalography Experiments feedforward neural networks Lamps Neural networks Support vector machines system identification Wheelchairs |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA6ykx7En1idEsWDl7K0L02b4yaOKehBJsxTSdIEBWnFbfjvm9d2YwXBi9fmHdL3mrx8zXvfR8g1MyI1Jo3CyAEPuQQRSmBZyJ0qLNeZjRh2Iz8-ickLf5glsw2pL6wJa-iBG8cNMlA844kUkYt5ooyGNHX-mTVpCsJZ3H19zluBqRZqgUdeDY8QeFA_mCPMAcCepY3sU5P0d06W3brIjUQz3iO77QmRDpuZ7ZMtWx6QnQ3ewENy37TXuvZ_G60cHaHUA72rRW3Q73RoGl0IWpe72YIuKjrxAaWv6ps-V80N_PyITMd309tJ2GoihMYDt0WoLJIGgnI-cSfOap2Ad4SMnRQFtr3quIhNwjVkykjONTeK-fwDopAudTEck15ZlfaEUKsVQ80xyYTlgvsNuEBbYFobmzAWkJuVq3LT8oWjbMVH7nEDejVfezUgV2vTz4Yk4zejEfp7bYC81vUDH-28jXb-V7QD0l9FK28X2zyPE4ilB3pRFpDL9bBfJnj3oUpbLWsbwWUmGQQk7US5M6HuSPn-VhNuZ0iaL6PT_3iDM7IdY1kMEsBGfdJbfC3tuT_XLPRF_Qn_APRe9ro priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Bb9UwDLZgXOCAYIAo21CGOHCpltZpmpzQNu3xmDQOaEjjVCVpwpBQO_bexN9f3OaVVwlxbSy1tZPYTuzvA3jPnaydq4u8CChyoVHmGrnKRTCtF1b5glM38sUXufwmzq-qq3TgtkpllZs9cdio297RGflRWWGpYzRfqI83v3NijaLb1USh8RAeFdHTUEmXWnyaEi6M-deIJoQxtT9aUbKDSJ1LWz5ogOqfxZfz6sgtd7N4Bk9TnMiOR8M-hwe-24UnW-iBL-Dz2GQb0qkb6wM7IcIHdjZQ25D22bEb2SHYUPTmW7bu2TKalX03f9jXfryHX72Ey8XZ5ekyT8wIuYvp2zo3nqAD0YTovqvgra3Q1bUug5YtNb_asi1dJSwq47QQVjjDoxdC2epQhxJfwU7Xd_41MG8NJ-YxzaUXUsRtuCVZ5NY6X3GewYeNqhqXUMOJvOJXE7MH0mozaTWDd5PozQiV8S-hE9L3JEDo1sOD_vZHkxZLo9AIJSoti1CKyjiLdR3iMx9_EmXwGexvrNWkJbdq_k6QDA6n4bhY6AbEdL6_G2Sk0EpzzKCeWXn2QfOR7uf1ALutCDpfF2_-__I9eFxS2QsBvBb7sLO-vfMHMW5Z27fD5LwH1gvucA priority: 102 providerName: ProQuest |
Title | Identification of Brain Electrical Activity Related to Head Yaw Rotations |
URI | https://www.proquest.com/docview/2532949518 https://www.proquest.com/docview/2536498903 https://pubmed.ncbi.nlm.nih.gov/PMC8150891 https://doaj.org/article/83a4845961f245acb377f3a4ec7736fe |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB71IaFyQDxFoKwM4sAl4MSOHweEumiXBakVqlppOUW2YwNSlcDuVtB_X0-SDY3UE5ccnImUzNiZ-fz4PoDX1AnpnMzSLDCecs1EqhlVKQ-m8twqn1E8jXx8Ihbn_MuyWO7AVmOzd-D6VmiHelLnq4u3f39ffYgD_j0izgjZ360RxDDGi13YjwlJopDBMR8WE3IWYVhHKjQ2P4A7jGOJ0mq9_ctKLXn_qOIc75e8kYDm9-FeXzmSoy7UD2DH1w_h7g0-wUfwuTt2G_p5ONIEMkUJCDJrxW4wHuTIdXoRpN0G5yuyacgiBpp8M3_IadOtzK8fw9l8dvZxkfZaCamLgG6TGo9kgsyEmNCL4K0tmJNS50GLCo_D2rzKXcEtU8Zpzi13hsa8xESlgww5ewJ7dVP7p0C8NRS1yDQVngsef8wV2jJqrfMFpQm82bqqdD2POMpZXJQRT6CDy8HBCbwaTH915Bm3GU3R34MB8l23Dc3qe9kPn1IxwxUvtMhCzgvjLJMyxDYfP5KJ4BM43Ear3PahMi9YriMAzFQCL4fbcfjgmoipfXPZ2giulaYsATmK8uiFxnfqnz9aIm6FZPo6e_bfTz6Hgxz3yCAbbHYIe5vVpX8Ri5yNncCuXMp4VfNPE9ifzk6-nk7aCYNJ27mvAdatAXs |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V5QAcEE8RKGAQSFyiOrbjxAeEWuiySx8HtEjlZNmODUgoKd2tKn4U_xFPXmwkxK3XeKQk43l4bM_3AbykThbOFVmaBS5SobhMFadlKoKpvLClzyh2Ix-fyPln8fE0P92C30MvDF6rHGJiG6irxuEe-S7LOVNxNZ-Vb89-psgahaerA4VGZxaH_tdlLNlWbxbv4_y-Ymx2sHw3T3tWgdTF0medGo-we9yEmPry4K3NuSsKxYKSFTaOWlYxlwvLS-OUEFY4Q2ME57JSoQiIcxAj_jXBYyLHxvTZh7G-47Hc68CL4iDdXWFtxTk2Sm2kvJYZYLKcnV7G3Mhus9twq1-Wkr3Oju7Alq_vws0NsMJ7sOh6ekO_yUeaQPaRX4IctEw6ONlkz3VkFKS9Y-crsm7IPFoR-WIuyaemO_Zf3YflVajsAWzXTe0fAvHWUCQ6U1R6IUWM-hXKcmqt8zmlCbweVKVdD1KOXBk_dCxWUKt61GoCL0bRsw6Z419C-6jvUQDBtNsHzflX3fumLrkRpciVzAITuXGWF0WIz3z8SS6DT2BnmC3de_hK_7XHBJ6Pw9E38cDF1L65aGWkUKWiPIFiMsuTD5qO1N-_tSjfJSL1q-zR_1_-DK7Pl8dH-mhxcvgYbjC8cYPYstkObK_PL_yTuGRa26etoRLQV-wYfwCVNSpP |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEB7CBkp7KH1SJ2mqlhZ6MStbsmwdSsg2u-w27RJCCunJSLLUBoqdZDeE_rT-u2r86hpKb7laA7bnIWmkme8DeEuNSI1JozByjIdcMhFKRrOQO1VYrjMbUexG_rIU86_803lyvgW_u14YLKvs5sR6oi4qg2fk4zhhsfS7-Sgbu7Ys4uRodnB5FSKDFN60dnQajYsc21-3Pn1bfVgceVu_i-PZ9OzjPGwZBkLj06B1qCxC8DHl_DKYOKt1wkyaythJUWATqY6L2CRcs0wZybnmRlE_mzNRSJc6xDzws_92iknRCLYn0-XJaZ_tMZ_8NVBGjEk6XmGmxRi2TW0sgDVPwGBzOyzN3FjrZo_gYbtJJYeNVz2GLVs-gQcb0IVPYdF0-Lr2yI9UjkyQbYJMa14dND05NA01Bakr7mxB1hWZe58i39QtOa2aIoDVMzi7C6U9h1FZlfYFEKsVRdozSYXlgvs1oEBZRrU2NqE0gPedqnLTQpYjc8bP3KcuqNW812oAb3rRywan419CE9R3L4DQ2vWD6vp73kZqnjHFM55IEbmYJ8polqbOP7P-J5lwNoC9zlp5G--r_K93BvC6H_aRitcvqrTVTS0juMwkZQGkAysPPmg4Ul78qDG_M8Ttl9HO_1_-Cu75oMg_L5bHu3A_xvIbBJqN9mC0vr6xL_3-aa33W08lkN9xbPwBPl4v4Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+Brain+Electrical+Activity+Related+to+Head+Yaw+Rotations&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Zero%2C+Enrico&rft.au=Bersani%2C+Chiara&rft.au=Sacile%2C+Roberto&rft.date=2021-05-11&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=21&rft.issue=10&rft_id=info:doi/10.3390%2Fs21103345&rft_id=info%3Apmid%2F34065035&rft.externalDocID=PMC8150891 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |