Identification of Brain Electrical Activity Related to Head Yaw Rotations

Automatizing the identification of human brain stimuli during head movements could lead towards a significant step forward for human computer interaction (HCI), with important applications for severely impaired people and for robotics. In this paper, a neural network-based identification technique i...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 21; no. 10; p. 3345
Main Authors Zero, Enrico, Bersani, Chiara, Sacile, Roberto
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 11.05.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Automatizing the identification of human brain stimuli during head movements could lead towards a significant step forward for human computer interaction (HCI), with important applications for severely impaired people and for robotics. In this paper, a neural network-based identification technique is presented to recognize, by EEG signals, the participant’s head yaw rotations when they are subjected to visual stimulus. The goal is to identify an input-output function between the brain electrical activity and the head movement triggered by switching on/off a light on the participant’s left/right hand side. This identification process is based on “Levenberg–Marquardt” backpropagation algorithm. The results obtained on ten participants, spanning more than two hours of experiments, show the ability of the proposed approach in identifying the brain electrical stimulus associate with head turning. A first analysis is computed to the EEG signals associated to each experiment for each participant. The accuracy of prediction is demonstrated by a significant correlation between training and test trials of the same file, which, in the best case, reaches value r = 0.98 with MSE = 0.02. In a second analysis, the input output function trained on the EEG signals of one participant is tested on the EEG signals by other participants. In this case, the low correlation coefficient values demonstrated that the classifier performances decreases when it is trained and tested on different subjects.
AbstractList Automatizing the identification of human brain stimuli during head movements could lead towards a significant step forward for human computer interaction (HCI), with important applications for severely impaired people and for robotics. In this paper, a neural network-based identification technique is presented to recognize, by EEG signals, the participant’s head yaw rotations when they are subjected to visual stimulus. The goal is to identify an input-output function between the brain electrical activity and the head movement triggered by switching on/off a light on the participant’s left/right hand side. This identification process is based on “Levenberg–Marquardt” backpropagation algorithm. The results obtained on ten participants, spanning more than two hours of experiments, show the ability of the proposed approach in identifying the brain electrical stimulus associate with head turning. A first analysis is computed to the EEG signals associated to each experiment for each participant. The accuracy of prediction is demonstrated by a significant correlation between training and test trials of the same file, which, in the best case, reaches value r = 0.98 with MSE = 0.02. In a second analysis, the input output function trained on the EEG signals of one participant is tested on the EEG signals by other participants. In this case, the low correlation coefficient values demonstrated that the classifier performances decreases when it is trained and tested on different subjects.
Automatizing the identification of human brain stimuli during head movements could lead towards a significant step forward for human computer interaction (HCI), with important applications for severely impaired people and for robotics. In this paper, a neural network-based identification technique is presented to recognize, by EEG signals, the participant's head yaw rotations when they are subjected to visual stimulus. The goal is to identify an input-output function between the brain electrical activity and the head movement triggered by switching on/off a light on the participant's left/right hand side. This identification process is based on "Levenberg-Marquardt" backpropagation algorithm. The results obtained on ten participants, spanning more than two hours of experiments, show the ability of the proposed approach in identifying the brain electrical stimulus associate with head turning. A first analysis is computed to the EEG signals associated to each experiment for each participant. The accuracy of prediction is demonstrated by a significant correlation between training and test trials of the same file, which, in the best case, reaches value r = 0.98 with MSE = 0.02. In a second analysis, the input output function trained on the EEG signals of one participant is tested on the EEG signals by other participants. In this case, the low correlation coefficient values demonstrated that the classifier performances decreases when it is trained and tested on different subjects.Automatizing the identification of human brain stimuli during head movements could lead towards a significant step forward for human computer interaction (HCI), with important applications for severely impaired people and for robotics. In this paper, a neural network-based identification technique is presented to recognize, by EEG signals, the participant's head yaw rotations when they are subjected to visual stimulus. The goal is to identify an input-output function between the brain electrical activity and the head movement triggered by switching on/off a light on the participant's left/right hand side. This identification process is based on "Levenberg-Marquardt" backpropagation algorithm. The results obtained on ten participants, spanning more than two hours of experiments, show the ability of the proposed approach in identifying the brain electrical stimulus associate with head turning. A first analysis is computed to the EEG signals associated to each experiment for each participant. The accuracy of prediction is demonstrated by a significant correlation between training and test trials of the same file, which, in the best case, reaches value r = 0.98 with MSE = 0.02. In a second analysis, the input output function trained on the EEG signals of one participant is tested on the EEG signals by other participants. In this case, the low correlation coefficient values demonstrated that the classifier performances decreases when it is trained and tested on different subjects.
Automatizing the identification of human brain stimuli during head movements could lead towards a significant step forward for human computer interaction (HCI), with important applications for severely impaired people and for robotics. In this paper, a neural network-based identification technique is presented to recognize, by EEG signals, the participant’s head yaw rotations when they are subjected to visual stimulus. The goal is to identify an input-output function between the brain electrical activity and the head movement triggered by switching on/off a light on the participant’s left/right hand side. This identification process is based on “Levenberg–Marquardt” backpropagation algorithm. The results obtained on ten participants, spanning more than two hours of experiments, show the ability of the proposed approach in identifying the brain electrical stimulus associate with head turning. A first analysis is computed to the EEG signals associated to each experiment for each participant. The accuracy of prediction is demonstrated by a significant correlation between training and test trials of the same file, which, in the best case, reaches value r = 0.98 with MSE = 0.02. In a second analysis, the input output function trained on the EEG signals of one participant is tested on the EEG signals by other participants. In this case, the low correlation coefficient values demonstrated that the classifier performances decreases when it is trained and tested on different subjects.
Author Zero, Enrico
Sacile, Roberto
Bersani, Chiara
AuthorAffiliation Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genova, 16145 Genoa, Italy; chiara.bersani@unige.it (C.B.); roberto.sacile@unige.it (R.S.)
AuthorAffiliation_xml – name: Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genova, 16145 Genoa, Italy; chiara.bersani@unige.it (C.B.); roberto.sacile@unige.it (R.S.)
Author_xml – sequence: 1
  givenname: Enrico
  surname: Zero
  fullname: Zero, Enrico
– sequence: 2
  givenname: Chiara
  orcidid: 0000-0002-5779-9605
  surname: Bersani
  fullname: Bersani, Chiara
– sequence: 3
  givenname: Roberto
  orcidid: 0000-0003-4086-8747
  surname: Sacile
  fullname: Sacile, Roberto
BookMark eNplkUFPXCEUhUmjqTrtov-ApJt2MRW48B5smlhj6yQmJsZNV-Q-Hlgmbx4WGBv_fdGxTbUryOWc75JzjsjenGZPyDvOPgEYdlwE5wxAqlfkkEshl1oItvfP_YAclbJmTACAfk0OQLJOMVCHZLUa_VxjiA5rTDNNgX7JGGd6NnlXcxtP9MTVeBfrPb3yE1Y_0prouceRfsdf9CrVR2d5Q_YDTsW_fToX5Prr2fXp-fLi8tvq9ORi6aTs6hI9By0Ag2BcBT8MClzfGxFMN3IBahCjcEoOoNEZKQfpkMmeQzea0AcBC7LaYceEa3ub4wbzvU0Y7eMg5RuLuUY3easBpZbKdDwIqdAN0PehzXxbCF3wjfV5x7rdDhs_upZExukZ9PnLHH_Ym3RnNVdMG94AH54AOf3c-lLtJhbnpwlnn7bFCgWdNNq0chbk_QvpOm3z3JJ6UAkjjeK6qY53KpdTKdkH6-Iu37Y_TpYz-9C4_dt4c3x84fjz_f-1vwFrO6n3
CitedBy_id crossref_primary_10_3390_s21134578
crossref_primary_10_3390_act11060161
crossref_primary_10_1016_j_matt_2024_05_023
Cites_doi 10.3389/fnsys.2021.578875
10.1109/LRA.2017.2771329
10.1109/THMS.2019.2938156
10.1016/j.compbiomed.2011.06.020
10.1109/ICORAS.2016.7872610
10.3390/fi13050103
10.1080/2326263X.2014.912881
10.1088/1741-2552/aaf12e
10.1016/j.neuropsychologia.2011.09.026
10.1007/978-3-642-13039-7_28
10.3390/s21072339
10.1016/S0926-6410(02)00225-2
10.1016/j.ifacol.2019.12.068
10.1109/RBME.2010.2084078
10.1080/2326263X.2019.1651186
10.3390/s19061365
10.1371/journal.pone.0230184
10.1016/j.inffus.2020.06.008
10.1088/1741-2560/4/2/R03
10.4324/9780203771587
10.1109/THMS.2018.2830647
10.1109/IEMBS.2007.4352847
10.3390/s21082852
10.1109/THMS.2015.2476818
10.1007/978-1-84996-272-8
10.1088/1741-2560/4/2/R01
10.3390/s19050987
10.1109/ACCESS.2019.2934018
10.1080/2326263X.2014.912883
10.3389/fpsyg.2017.02116
10.1109/THMS.2014.2366914
10.1109/TII.2017.2777460
10.1080/2326263X.2020.1801112
10.3390/brainsci11010043
10.1504/IJBET.2016.079488
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s21103345
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Proquest Central Journals
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
Proquest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_83a4845961f245acb377f3a4ec7736fe
PMC8150891
10_3390_s21103345
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c446t-ae13823af2015febb53c7792f96d1235b2d2c54b38ac944b4ca047136d9f7f23
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:26:49 EDT 2025
Thu Aug 21 18:18:18 EDT 2025
Fri Jul 11 15:14:04 EDT 2025
Fri Jul 25 20:19:23 EDT 2025
Tue Jul 01 03:56:12 EDT 2025
Thu Apr 24 23:09:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-ae13823af2015febb53c7792f96d1235b2d2c54b38ac944b4ca047136d9f7f23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4086-8747
0000-0002-5779-9605
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s21103345
PMID 34065035
PQID 2532949518
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_83a4845961f245acb377f3a4ec7736fe
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8150891
proquest_miscellaneous_2536498903
proquest_journals_2532949518
crossref_citationtrail_10_3390_s21103345
crossref_primary_10_3390_s21103345
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210511
PublicationDateYYYYMMDD 2021-05-11
PublicationDate_xml – month: 5
  year: 2021
  text: 20210511
  day: 11
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Saha (ref_5) 2021; 15
Singh (ref_35) 2016; 22
Lv (ref_39) 2017; 14
Allison (ref_3) 2014; 1
Zero (ref_13) 2019; 52
Rilk (ref_33) 2011; 49
Borhani (ref_14) 2019; 6
ref_34
Monteiro (ref_11) 2019; 49
Randazzo (ref_15) 2017; 3
Liao (ref_17) 2020; 7
Stikic (ref_10) 2014; 1
ref_30
ref_18
Sapna (ref_38) 2012; 2
Sleight (ref_16) 2009; 110
Alazrai (ref_28) 2019; 7
Sakkalis (ref_36) 2011; 41
Abiri (ref_37) 2019; 16
Chi (ref_8) 2010; 3
ref_24
ref_23
ref_22
Nourmohammadi (ref_1) 2018; 48
ref_20
Lotte (ref_31) 2007; 4
Lutzenberger (ref_32) 2003; 16
Li (ref_19) 2017; 8
Narayan (ref_21) 2021; 12
Bashashati (ref_25) 2007; 4
ref_40
ref_29
Zhang (ref_2) 2015; 45
ref_27
Wang (ref_12) 2015; 46
ref_26
Ali (ref_9) 2020; 63
ref_4
ref_7
ref_6
References_xml – ident: ref_30
– volume: 15
  start-page: 4
  year: 2021
  ident: ref_5
  article-title: Progress in Brain Computer Interface: Challenges and Potentials
  publication-title: Front. Syst. Neurosci.
  doi: 10.3389/fnsys.2021.578875
– volume: 12
  start-page: 3339
  year: 2021
  ident: ref_21
  article-title: Motor-Imagery EEG Signals Classification using SVM, MLP and LDA Classifiers
  publication-title: Turk. J. Comput. Math. Educ.
– volume: 3
  start-page: 500
  year: 2017
  ident: ref_15
  article-title: mano: A wearable hand exoskeleton for activities of daily living and neurorehabilitation
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2017.2771329
– volume: 49
  start-page: 599
  year: 2019
  ident: ref_11
  article-title: Using EEG for Mental Fatigue Assessment: A Comprehensive Look into the Current State of the Art
  publication-title: IEEE Trans. Hum.-Mach. Syst.
  doi: 10.1109/THMS.2019.2938156
– ident: ref_24
– volume: 41
  start-page: 1110
  year: 2011
  ident: ref_36
  article-title: Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2011.06.020
– ident: ref_20
  doi: 10.1109/ICORAS.2016.7872610
– ident: ref_22
  doi: 10.3390/fi13050103
– volume: 1
  start-page: 66
  year: 2014
  ident: ref_3
  article-title: A survey of affective brain computer interfaces: Principles, state-of-the-art, and challenges
  publication-title: Brain-Comput. Interfaces
  doi: 10.1080/2326263X.2014.912881
– volume: 16
  start-page: 011001
  year: 2019
  ident: ref_37
  article-title: A comprehensive review of EEG-based brain–computer interface paradigms
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aaf12e
– volume: 49
  start-page: 3704
  year: 2011
  ident: ref_33
  article-title: Alpha coherence predicts accuracy during a visuomotor tracking task
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2011.09.026
– ident: ref_18
  doi: 10.1007/978-3-642-13039-7_28
– ident: ref_23
  doi: 10.3390/s21072339
– volume: 16
  start-page: 104
  year: 2003
  ident: ref_32
  article-title: Complexity of visual stimuli and non-linear EEG dynamics in humans
  publication-title: Cogn. Brain Res.
  doi: 10.1016/S0926-6410(02)00225-2
– volume: 52
  start-page: 299
  year: 2019
  ident: ref_13
  article-title: Towards real-time monitoring of fear in driving sessions
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2019.12.068
– volume: 3
  start-page: 106
  year: 2010
  ident: ref_8
  article-title: Dry-Contact and Noncontact Biopotential Electrodes: Methodological Review
  publication-title: IEEE Rev. Biomed. Eng.
  doi: 10.1109/RBME.2010.2084078
– volume: 6
  start-page: 25
  year: 2019
  ident: ref_14
  article-title: Brain connectivity evaluation during selective attention using EEG-based brain-computer interface
  publication-title: Brain-Comput. Interfaces
  doi: 10.1080/2326263X.2019.1651186
– ident: ref_6
  doi: 10.3390/s19061365
– ident: ref_29
  doi: 10.1371/journal.pone.0230184
– volume: 63
  start-page: 208
  year: 2020
  ident: ref_9
  article-title: A smart healthcare monitoring system for heart disease prediction based on ensemble deep learning and feature fusion
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2020.06.008
– volume: 2
  start-page: 393
  year: 2012
  ident: ref_38
  article-title: Backpropagation learning algorithm based on Levenberg Marquardt Algorithm
  publication-title: Comp. Sci. Inform. Technol.
– volume: 4
  start-page: R32
  year: 2007
  ident: ref_25
  article-title: A survey of signal processing algorithms in brain–computer interfaces based on electrical brain signals
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/4/2/R03
– ident: ref_40
  doi: 10.4324/9780203771587
– volume: 48
  start-page: 337
  year: 2018
  ident: ref_1
  article-title: A survey on unmanned aerial vehicle remote control using brain–computer interface
  publication-title: IEEE Trans. Hum.-Mach. Syst.
  doi: 10.1109/THMS.2018.2830647
– ident: ref_27
  doi: 10.1109/IEMBS.2007.4352847
– ident: ref_7
  doi: 10.3390/s21082852
– volume: 110
  start-page: 2009
  year: 2009
  ident: ref_16
  article-title: Classification of executed and imagined motor movement EEG signals
  publication-title: Ann. Arbor Univ. Mich.
– volume: 46
  start-page: 424
  year: 2015
  ident: ref_12
  article-title: Using wireless EEG signals to assess memory workload in the n-back task
  publication-title: IEEE Trans. Hum.-Mach. Syst.
  doi: 10.1109/THMS.2015.2476818
– ident: ref_4
  doi: 10.1007/978-1-84996-272-8
– volume: 4
  start-page: R1
  year: 2007
  ident: ref_31
  article-title: A review of classification algorithms for EEG-based brain–computer interfaces
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/4/2/R01
– ident: ref_34
  doi: 10.3390/s19050987
– volume: 7
  start-page: 109612
  year: 2019
  ident: ref_28
  article-title: A Deep Learning Framework for Decoding Motor Imagery Tasks of the Same Hand Using EEG Signals
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2934018
– volume: 1
  start-page: 99
  year: 2014
  ident: ref_10
  article-title: EEG-based classification of positive and negative affective states
  publication-title: Brain-Comput. Interfaces
  doi: 10.1080/2326263X.2014.912883
– volume: 8
  start-page: 2116
  year: 2017
  ident: ref_19
  article-title: A public database of immersive VR videos with corresponding ratings of arousal, valence, and correlations between head movements and self report measures
  publication-title: Front. Psychol.
  doi: 10.3389/fpsyg.2017.02116
– volume: 45
  start-page: 200
  year: 2015
  ident: ref_2
  article-title: Recognition of Mental Workload Levels Under Complex Human–Machine Collaboration by Using Physiological Features and Adaptive Support Vector Machines
  publication-title: IEEE Trans. Hum.-Mach. Syst.
  doi: 10.1109/THMS.2014.2366914
– volume: 14
  start-page: 3436
  year: 2017
  ident: ref_39
  article-title: Levenberg–Marquardt backpropagation training of multilayer neural networks for state estimation of a safety-critical cyber-physical system
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2017.2777460
– volume: 7
  start-page: 47
  year: 2020
  ident: ref_17
  article-title: Effects of local and global spatial patterns in EEG motor-imagery classification using convolutional neural network
  publication-title: Brain-Comput. Interfaces
  doi: 10.1080/2326263X.2020.1801112
– ident: ref_26
  doi: 10.3390/brainsci11010043
– volume: 22
  start-page: 250
  year: 2016
  ident: ref_35
  article-title: Comparative study of FIR and IIR filters for the removal of 50 Hz noise from EEG signal
  publication-title: Int. J. Biomed. Eng. Technol.
  doi: 10.1504/IJBET.2016.079488
SSID ssj0023338
Score 2.3547533
Snippet Automatizing the identification of human brain stimuli during head movements could lead towards a significant step forward for human computer interaction...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 3345
SubjectTerms Algorithms
brain electrical activity
Brain research
brain-computer interface
Classification
Discriminant analysis
Electrodes
Electroencephalography
Experiments
feedforward neural networks
Lamps
Neural networks
Support vector machines
system identification
Wheelchairs
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA6ykx7En1idEsWDl7K0L02b4yaOKehBJsxTSdIEBWnFbfjvm9d2YwXBi9fmHdL3mrx8zXvfR8g1MyI1Jo3CyAEPuQQRSmBZyJ0qLNeZjRh2Iz8-ickLf5glsw2pL6wJa-iBG8cNMlA844kUkYt5ooyGNHX-mTVpCsJZ3H19zluBqRZqgUdeDY8QeFA_mCPMAcCepY3sU5P0d06W3brIjUQz3iO77QmRDpuZ7ZMtWx6QnQ3ewENy37TXuvZ_G60cHaHUA72rRW3Q73RoGl0IWpe72YIuKjrxAaWv6ps-V80N_PyITMd309tJ2GoihMYDt0WoLJIGgnI-cSfOap2Ad4SMnRQFtr3quIhNwjVkykjONTeK-fwDopAudTEck15ZlfaEUKsVQ80xyYTlgvsNuEBbYFobmzAWkJuVq3LT8oWjbMVH7nEDejVfezUgV2vTz4Yk4zejEfp7bYC81vUDH-28jXb-V7QD0l9FK28X2zyPE4ilB3pRFpDL9bBfJnj3oUpbLWsbwWUmGQQk7US5M6HuSPn-VhNuZ0iaL6PT_3iDM7IdY1kMEsBGfdJbfC3tuT_XLPRF_Qn_APRe9ro
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Bb9UwDLZgXOCAYIAo21CGOHCpltZpmpzQNu3xmDQOaEjjVCVpwpBQO_bexN9f3OaVVwlxbSy1tZPYTuzvA3jPnaydq4u8CChyoVHmGrnKRTCtF1b5glM38sUXufwmzq-qq3TgtkpllZs9cdio297RGflRWWGpYzRfqI83v3NijaLb1USh8RAeFdHTUEmXWnyaEi6M-deIJoQxtT9aUbKDSJ1LWz5ogOqfxZfz6sgtd7N4Bk9TnMiOR8M-hwe-24UnW-iBL-Dz2GQb0qkb6wM7IcIHdjZQ25D22bEb2SHYUPTmW7bu2TKalX03f9jXfryHX72Ey8XZ5ekyT8wIuYvp2zo3nqAD0YTovqvgra3Q1bUug5YtNb_asi1dJSwq47QQVjjDoxdC2epQhxJfwU7Xd_41MG8NJ-YxzaUXUsRtuCVZ5NY6X3GewYeNqhqXUMOJvOJXE7MH0mozaTWDd5PozQiV8S-hE9L3JEDo1sOD_vZHkxZLo9AIJSoti1CKyjiLdR3iMx9_EmXwGexvrNWkJbdq_k6QDA6n4bhY6AbEdL6_G2Sk0EpzzKCeWXn2QfOR7uf1ALutCDpfF2_-__I9eFxS2QsBvBb7sLO-vfMHMW5Z27fD5LwH1gvucA
  priority: 102
  providerName: ProQuest
Title Identification of Brain Electrical Activity Related to Head Yaw Rotations
URI https://www.proquest.com/docview/2532949518
https://www.proquest.com/docview/2536498903
https://pubmed.ncbi.nlm.nih.gov/PMC8150891
https://doaj.org/article/83a4845961f245acb377f3a4ec7736fe
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB71IaFyQDxFoKwM4sAl4MSOHweEumiXBakVqlppOUW2YwNSlcDuVtB_X0-SDY3UE5ccnImUzNiZ-fz4PoDX1AnpnMzSLDCecs1EqhlVKQ-m8twqn1E8jXx8Ihbn_MuyWO7AVmOzd-D6VmiHelLnq4u3f39ffYgD_j0izgjZ360RxDDGi13YjwlJopDBMR8WE3IWYVhHKjQ2P4A7jGOJ0mq9_ctKLXn_qOIc75e8kYDm9-FeXzmSoy7UD2DH1w_h7g0-wUfwuTt2G_p5ONIEMkUJCDJrxW4wHuTIdXoRpN0G5yuyacgiBpp8M3_IadOtzK8fw9l8dvZxkfZaCamLgG6TGo9kgsyEmNCL4K0tmJNS50GLCo_D2rzKXcEtU8Zpzi13hsa8xESlgww5ewJ7dVP7p0C8NRS1yDQVngsef8wV2jJqrfMFpQm82bqqdD2POMpZXJQRT6CDy8HBCbwaTH915Bm3GU3R34MB8l23Dc3qe9kPn1IxwxUvtMhCzgvjLJMyxDYfP5KJ4BM43Ear3PahMi9YriMAzFQCL4fbcfjgmoipfXPZ2giulaYsATmK8uiFxnfqnz9aIm6FZPo6e_bfTz6Hgxz3yCAbbHYIe5vVpX8Ri5yNncCuXMp4VfNPE9ifzk6-nk7aCYNJ27mvAdatAXs
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V5QAcEE8RKGAQSFyiOrbjxAeEWuiySx8HtEjlZNmODUgoKd2tKn4U_xFPXmwkxK3XeKQk43l4bM_3AbykThbOFVmaBS5SobhMFadlKoKpvLClzyh2Ix-fyPln8fE0P92C30MvDF6rHGJiG6irxuEe-S7LOVNxNZ-Vb89-psgahaerA4VGZxaH_tdlLNlWbxbv4_y-Ymx2sHw3T3tWgdTF0medGo-we9yEmPry4K3NuSsKxYKSFTaOWlYxlwvLS-OUEFY4Q2ME57JSoQiIcxAj_jXBYyLHxvTZh7G-47Hc68CL4iDdXWFtxTk2Sm2kvJYZYLKcnV7G3Mhus9twq1-Wkr3Oju7Alq_vws0NsMJ7sOh6ekO_yUeaQPaRX4IctEw6ONlkz3VkFKS9Y-crsm7IPFoR-WIuyaemO_Zf3YflVajsAWzXTe0fAvHWUCQ6U1R6IUWM-hXKcmqt8zmlCbweVKVdD1KOXBk_dCxWUKt61GoCL0bRsw6Z419C-6jvUQDBtNsHzflX3fumLrkRpciVzAITuXGWF0WIz3z8SS6DT2BnmC3de_hK_7XHBJ6Pw9E38cDF1L65aGWkUKWiPIFiMsuTD5qO1N-_tSjfJSL1q-zR_1_-DK7Pl8dH-mhxcvgYbjC8cYPYstkObK_PL_yTuGRa26etoRLQV-wYfwCVNSpP
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEB7CBkp7KH1SJ2mqlhZ6MStbsmwdSsg2u-w27RJCCunJSLLUBoqdZDeE_rT-u2r86hpKb7laA7bnIWmkme8DeEuNSI1JozByjIdcMhFKRrOQO1VYrjMbUexG_rIU86_803lyvgW_u14YLKvs5sR6oi4qg2fk4zhhsfS7-Sgbu7Ys4uRodnB5FSKDFN60dnQajYsc21-3Pn1bfVgceVu_i-PZ9OzjPGwZBkLj06B1qCxC8DHl_DKYOKt1wkyaythJUWATqY6L2CRcs0wZybnmRlE_mzNRSJc6xDzws_92iknRCLYn0-XJaZ_tMZ_8NVBGjEk6XmGmxRi2TW0sgDVPwGBzOyzN3FjrZo_gYbtJJYeNVz2GLVs-gQcb0IVPYdF0-Lr2yI9UjkyQbYJMa14dND05NA01Bakr7mxB1hWZe58i39QtOa2aIoDVMzi7C6U9h1FZlfYFEKsVRdozSYXlgvs1oEBZRrU2NqE0gPedqnLTQpYjc8bP3KcuqNW812oAb3rRywan419CE9R3L4DQ2vWD6vp73kZqnjHFM55IEbmYJ8polqbOP7P-J5lwNoC9zlp5G--r_K93BvC6H_aRitcvqrTVTS0juMwkZQGkAysPPmg4Ul78qDG_M8Ttl9HO_1_-Cu75oMg_L5bHu3A_xvIbBJqN9mC0vr6xL_3-aa33W08lkN9xbPwBPl4v4Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+Brain+Electrical+Activity+Related+to+Head+Yaw+Rotations&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Zero%2C+Enrico&rft.au=Bersani%2C+Chiara&rft.au=Sacile%2C+Roberto&rft.date=2021-05-11&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=21&rft.issue=10&rft_id=info:doi/10.3390%2Fs21103345&rft_id=info%3Apmid%2F34065035&rft.externalDocID=PMC8150891
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon